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Living systems produce “persistent” copies of information-carrying polymers, in which template
and copy sequences remain correlated after physically decoupling. We identify a general measure
of the thermodynamic efficiency with which these non-equilibrium states are created, and analyze
the accuracy and efficiency of a family of dynamical models that produce persistent copies. For the
weakest chemical driving, when polymer growth occurs in equilibrium, both the copy accuracy and,
more surprisingly, the efficiency vanish. At higher driving strengths, accuracy and efficiency both
increase, with efficiency showing one or more peaks at moderate driving. Correlations generated
within the copy sequence, as well as between template and copy, store additional free energy in
the copied polymer and limit the single-site accuracy for a given chemical work input. Our results
provide insight in the design of natural self-replicating systems and can aid the design of synthetic
replicators.

The copying of information from a template into a sub-
strate is fundamental to life. The most powerful copying
mechanisms are persistent, autonomous and generic. A
persistent copy retains the copied data after physically
decoupling from its template [7, 8]. An autonomous copy
process does not require systematically time-varying ex-
ternal conditions [8], making it more versatile. Finally, a
generic copy process is able to copy arbitrary data. DNA
replication and both steps of gene expression necessarily
exhibit all three characteristics.

Unlike natural systems, synthetic copying mechanisms
developed hitherto have not incorporated all three fea-
tures. Early work focused on using template polymers to
synthesize specific daughter polymers, but failed to ade-
quately demonstrate subsequent separation of copy and
template [9, 10]. We describe such a process as templated
self-assembly (TSA), by analogy with structures that as-
semble with high specificity due to favourable contacts in
the final state.

Due to cooperativity, the tendency of copies to remain
bound to templates grows with template length [11–13].
Consequently, generic copying of long polymers (as op-
posed to dimers and trimers [11, 14, 15]) has proved chal-
lenging. One tactic is to consider environments in which
the system experiences cyclically varying conditions, with
assembly of the copy favoured in one set of conditions
and detachment from the template in another [16–18]. A
more subtle approach is to use a spatially non-uniform
environment, so that individual molecules undergo cyclic
variation in conditions [19]. Whilst these experiments
may indeed reflect early life [20, 21], they do not demon-
strate copying in a truly autonomous context.

We also contrast the copying of a generic polymer se-
quence with the approach in Refs. [13, 22]. Here, the
information is propagated between successive units of
a single self-assembling polymer, rather than between a
template and a daughter polymer, limiting information
transmission. Externally induced mechanical stress on

long length scales severs the polymers, leading to more
nucleation sites and exponential growth.
These challenges suggest that a full understanding of

the basic biophysics of copying is lacking. Recently,
we outlined fundamental thermodynamic constraints im-
posed by persistence [7], but did not propose a dynamical
mechanism for autonomous copying. Previous analyses
fall into two major categories: those that remain agnos-
tic about the distinction between TSA and copying by
considering thermodynamically self-consistent models for
only part of the polymerization process [24], and those
that explicitly address TSA [1–6, 29, 31].
In this work we analyze a family of model systems that

generate persistent copies in an autonomous and generic
way. We introduce a new metric for the thermodynamic
efficiency of copying, and investigate the accuracy and
efficiency of our models. We highlight the profound con-
sequences of requiring persistence, namely that correla-
tions between copy and template can only be generated
by pushing the system out of equilibrium. Previous work
has considered self-assembly [23? ? ] or templated self-
assembly [1–6, 23, 29, 31] in non-equilibrium contexts; in
these cases, however, the non-equilibrium driving merely
modulates a non-zero equilibrium specificity. Alongside
the effect on copy-template interactions, we find that
intra-copy-sequence correlations arise naturally. These
correlations store additional free energy in the copied
polymer, which do not contribute towards the accuracy
of copying.

MODELS AND METHODS

Model definition

We consider a copy polymerM =M1, ...,Ml, made up
of a series of sub-units or monomers Mx, growing with
respect to a template N = N1, ..., NL (l ≤ L). Inspired
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FIG. 1. Free-energy landscapes for simple examples of
(a) templated self-assembly, in which the monomers remain
bound to the template during the copy process; and (b) per-
sistent copying, in which the monomers detach from the tem-
plate after they have been incorporated into the polymer.
Both diagrams show the addition of three monomers to a
growing polymer, driven by a chemical free energy of back-
bone polymerisation ∆Gpol. In each case, two scenarios are
considered: the addition of two incorrect monomers, followed
by a correct one (top), and the addition of three correct
monomers (bottom). Local minima in the landscape represent
macrostates following complete incorporation of monomers;
intermediate configurations, illustrated schematically for the
first transition, are part of the effective barriers. In templated
self-assembly, the chemical free-energy cost of previously in-
corporated mismatches is retained as the daughter grows [1–
6]. Thus in (a), each mismatch in the daughter increases the
chemical free energy by ∆GD relative to the perfect match.
In persistent copying (b), the chemical free-energy penalty for
incorporating wrong momomers is only temporary; it arises
when the incorrect monomer is added to the growing poly-
mer, but is lost when that monomer subsequently detaches
from the template. As a result, the overall chemical free-
energy change of creating an incorrect polymer is the same as
that for a correct one. Analyzing the consequences of this con-
straint, which is a generic feature of copying but does not arise
in TSA, is the essence of this work. The figure also shows that
in our specific model, incorporating a wrong monomer after a
correct one tends to reduce the chemical free-energy drop to
∆Gpol − ∆GTT, and incorporating a correct monomer after
an incorrect one tends to increase it to ∆Gpol +∆GTT; how-
ever, adding a wrong monomer to a wrong one, and adding a
correct monomer to a correct one, does not change the free-
energy drop ∆Gpol.

FIG. 2. Transitions of an arbitrary polymer &. To relate the
final chain to the growing chain it is useful to consider fluxes
through interfaces in this transition diagram. Using the tip
and combined probabilities, along with relative propensities
it is possible to describe the fluxes through interfaces 4-7 in
terms of properties of the growing chain. Equally by con-
sidering errors and conditional errors and taking fractions of
the overall growth velocity, it is possible to find the fluxes
through interfaces 4-7 in terms of properties of the final chain
and growth velocity.

by transcription and translation, we consider a copy that
detaches from the template as it grows; fig. 1b shows
the simplest model of this type. We consider whole steps
in which a single monomer is added or removed, encom-
passing many individual chemical sub-steps [1, 2]. After
each step there is only a single inter-polymer bond at po-
sition l, between Ml and Nl. As a new monomer joins
the copy at position l+ 1, the bond position l is broken,
contrasting with previous models of TSA [1–6] (Fig. 1a).
Importantly, as explained below, each step now depends
on both of the two leading monomers, generating extra
correlations within the copy sequence.
Following earlier work, we assume that both polymers

are copolymers, and that the two monomer types are
symmetric [1–6]. Thus the relevant question is whether
monomers Ml and Nl match; we therefore ignore the
specific sequence of N and describe Ml simply as right
or wrong. Thus Ml ∈ r, w; with example chain M =
rrwwrrrrrwrr. An excess of r indicates a correlation be-
tween template and copy sequences. Breaking this sym-
metry would favour specific template sequences over oth-
ers, disfavouring the accurate copying of other templates
and compromising the generality of the process.
Given the model’s state space, we now consider state

free energies (which must be time-invariant for auton-
omy). We treat the environment as a bath of monomers
at constant chemical potential [1–6]. By symmetry, ex-
tending the polymer while leaving the copy-template in-
teraction unchanged involves a fixed polymerization free
energy. We thus define −∆Gpol as the chemical free-
energy change for the transition between any specific se-
quence m1, ...,ml and any specific sequence m1, ...,ml+1,
ignoring any contribution from interactions with the tem-
plate. We then define ∆GTT as the effect of the free-
energy difference between r and w interactions with tem-
plate. This bias can be describes as ”temporary thermo-
dynamic” (TT) since it only lasts until that contact is



3

broken.

Overall, each forward step makes and breaks one copy-
template bond. There are four possibilities: either
adding r or w at position l+1 to a template withMl = r;
or adding r or w in position l + 1 to a template with
Ml = w. The first and last of these options make and
break the same kind of template bond, so the total free-
energy change is −∆Gpol. For the second case there is
a r bond broken and a w bond added, implying a free-
energy change of −∆Gpol + ∆GTT. Conversely, for the
third case, there is a w bond broken and a r bond added,
giving a free-energy change of −∆Gpol −∆GTT. These
constraints are shown in fig. 1b; the contribution of this
work is to study the consequences of these constraints.
Models of TSA (fig. 1a) of equivalent complexity can be
constructed, but they are not bound by these constraints
and hence the underlying results and biophysical inter-
pretation are distinct.

Having specified model thermodynamics, we now pa-
rameterize kinetics. We assume that there are no “futile
cycles”, such as appear in kinetic proofreading [24]. Re-
actions are thus tightly coupled: each step requires a well
defined input of free energy determined by −∆Gpol and
±∆GTT [26], and no free-energy release occurs without
a step.

A full kinetic treatment would be a continuous time
Markov process incorporating the intermediate states
shown schematically in fig. 1b. To identify sequence out-
put, however, we need only consider the state space in fig.
1b and the relative probabilities for transitions between
these explicitly modelled states, ignoring the complexity
of non-exponential transition waiting times [1]. We de-
fine propensities ψ+

xy as the rate per unit time in which
a system in state &x starts the process of becoming &xy
and ψ−

xy as the equivalent quantity in the reverse direc-
tion (& is an unspecified polymer sequence). Our system
has eight of these propensities (ψ±

rr, ψ
±
rw, ψ

±
wr and ψ±

ww);
the simplest TSA models require four [1–3, 5, 6].

Prior literature on TSA [5] has differentiated between
purely “kinetic” discrimination, in which r and w have
an equal template-binding free energy but different bind-
ing rates; and purely thermodynamic discrimination in
which r and w bind at the same rate, but r is stabilized
in equilibrium by stronger binding interactions. Even-
tually, all discrimination is “kinetic” for persistent copy-
ing, since there is no lasting equilibrium bias (Fig. 1 (b)).
However, by analogy with TSA, we do consider two dis-
tinct mechanisms for discrimination - a kinetic one, in
which r is added faster than w to the growing tip, and
one based on the temporary thermodynamic bias towards
correct matches at the tip of the growing polymer due
to short-lived favourable interactions with the template,
quantified by ∆GTT > 0 (Fig. 1b). The kinetic mech-
anism should not be conflated with fuel consuming “ki-
netic proofreading” cycles that can also enhance accu-
racy, which are not considered.

We parameterize the propensities as follows. Assum-
ing, for simplicity, that the propensity for adding r or

w is independent of the previous monomer, we have:
ψ+
rr = ψ+

wr and ψ+
rw = ψ+

ww = 1, also defining the overall
timescale. “Kinetic” discrimination is then quantified by
ψ+
xr/ψ

+
xw = exp(∆GK/kBT ). Forwards propensities are

thus differentiated solely by ∆GK; backwards propen-
sities are set by fixing the ratios ψ+

xy/ψ
−
xy according to

the free energy change of the reaction, which follow from
∆Gpol and ∆GTT (Fig. 1(b)). Thus, setting kBT = 1,

ψ+
rr = e∆GK, ψ−

rr = e−∆Gpole∆GK , (1)

ψ+
rw = 1, ψ−

rw = e−∆Gpole∆GTT , (2)

ψ+
wr = e∆GK, ψ−

wr = e−∆Gpole∆GKe−∆GTT , (3)

ψ+
ww = 1, ψ−

ww = e−∆Gpol . (4)

For a given ∆GK, ∆Gpol and ∆GTT, eqs. 1-4 describe a
set of models with distinct intermediate states that yield
the same copy sequence distribution. We can thus ana-
lyze the simplest model in each set, which is Markovian
at the level of the explicitly modelled states with ψ±

xy as
rate constants.

Model analysis

We use Gaspard’s method to solve the system [23];
the underlying equations can also be mapped to mod-
els of distinct physical systems that have different
constraints on the parameters [? ]. In this ap-
proach, the tip-monomer identity probabilities (µ(ml)),
the joint tip and penultimate monomer identity proba-
bilities (µ(ml−1,ml)), and the conditional probabilities
(µ(ml−1|ml)) become stationary for a long polymer and
can be calculated. One must first calculate the partial
velocities, vr and vw. The quantity vxµ(x) is the net
rate at which monomers are added after an x,

vx = ψ+
xr −

µ(x|r)µ(r)

µ(x)
ψ−

xr + ψ+
xw −

µ(x|w)µ(w)

µ(x)
ψ−

xw.

(5)

Following ref. [23], these velocities can be solved in terms
of the propensities. In turn, the velocities and propen-
sities determine tip and conditional probabilities µ(ml)
and µ(ml−1|ml) [23]. Further details are provided in SI
Appendix.
Gaspard’s method describes the chain while it is still

growing through the stochastic variables Ml and Ml−1,
with the index l being the current length of the poly-
mer. We, however, are interested in the identity of the
monomer at position n when l ≫ n. We label this ”fi-
nal” state of the monomer at position n as M∞

n . As
discussed in the SI Index, M∞

n is distinct from Mn near
the tip. M∞

n is described by the error probability ǫ and
the conditional error probabilities ǫr and ǫw, defined as
the probability that M∞

n+1 = w given that M∞
n = r or

M∞
n = w, respectively. We show that ǫ, ǫr and ǫw are

sufficient in the SI Appendix, by proving that the M∞ is
a Markov chain of r and w monomers (this requirement is
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distinct from the Markovian growth dynamics). We note
that ǫ 6= ǫr 6= ǫw as a direct result of the dependence of
the transition propensities on the current and previous
tip monomers, which in turn arises from detachment.
To calculate ǫ, ǫr and ǫw, we define currents Jxy that

are related to both ψ±
xy and ǫ, ǫr and ǫw separately. The

current Jxy is the net rate per unit time at which tran-
sitions &x → &xy occur: Jxy = ψ+

xyµ(x) − ψ−
xyµ(x, y).

By considering the transitions in our system as a tree,
as in Fig. 2, we can relate the current through a
branch to the overall rate at which errors are perma-
nently incorporated into a polymer growing at total ve-
locity v = vrµ(r) + vwµ(w)

Jrr = (1 − ǫ)(1− ǫr)v = µ(r)ψ+
rr − µ(r, r)ψ−

rr , (6)

Jrw = (1 − ǫ)ǫrv = µ(r)ψ+
rw − µ(r, w)ψ−

rw , (7)

Jwr = ǫ(1− ǫw)v = µ(w)ψ+
wr − µ(w, r)ψ−

wr , (8)

Jww = ǫǫwv = µ(w)ψ+
ww − µ(w,w)ψ−

ww . (9)

Eliminating ǫ from the simultaneous equations 6-9
yields ǫr and ǫw in terms of known quantities. To find ǫ,
note that the final sequence has a transition matrix pa-
rameterized by ǫr and ǫw, with the overall error ǫ given
by its dominant eigenvector. As detailed in the SI Ap-
pendix, we obtain ǫ = ǫr/(1 + ǫr − ǫw). From ǫ, ǫr and
ǫw we calculate properties of the copy in terms of ψ±

xy

and thus the free energies. We corroborate the analyti-
cal results with simulation (see SI Index).

RESULTS

General thermodynamic bounds

The free energy of the combined bath and polymer sys-
tem decreases over time. There are two contributions to
the free-energy change per added monomer: the chemi-
cal free energy ∆Gpol, and a contribution from the un-
certainty of the final polymer sequence [7]. The latter is
quantified by the entropy rate H [27, 28]:

H(M∞) = lim
n→∞

1

n
H(M∞

1 ,M∞

2 , ...,M∞

n ), (10)

which in our case is given by [28]

H(M∞) =− ǫ (ǫw ln ǫw + (1− ǫw) ln (1 − ǫw))

− (1 − ǫ) (ǫr ln ǫr + (1− ǫr) ln (1− ǫr)) .
(11)

The overall free energy change per added monomer is
then ∆Gtot = −∆Gpol −H , which must be negative for
growth: H ≥ −∆Gpol. Since copy-template interactions
are not extensive in the copy length, they do not con-
tribute. Given that H ≥ 0, growth is possible in the
region where ∆Gpol < 0, corresponding to the “entropi-
cally driven” regime [3, 6].
The entropy rate is bounded by the single site entropy

H ≤ Hss = −ǫ ln ǫ − (1 − ǫ) ln (1 − ǫ). Hss quantifies

the desired correlations between copy and template. For
previous models of TSA with uncorrelated monomer in-
corporation, H = Hss [1–6, 23]. In our model, the neces-
sary complexity of ψ±

xy generates correlations within the
copy. A stronger constraint on the single site entropy,
and hence accuracy, then follows: Hss ≥ H ≥ −∆Gpol.
Fundamentally, a persistent copy is a high free energy

state, as the entropic cost of copy-template correlations
cannot be counteracted by stabilizing copy-template in-
teractions. Thus the process moves a system between
two high free energy states, converting chemical work
into correlations. In general, only a fraction of the chem-
ical work done by the monomer bath is retained in the
final state, implying dissipation, and so it is natural to
introduce an efficiency. The overall free energy stored in
the polymer has contributions both from the creation of
an equilibrium (uncorrelated) polymer and from correla-
tions within the copy and with the template. We are in-
terested only in the contributions above equilibrium. The
efficiency η is then the proportion of the additional free
energy expended in making a copy above the minimum
required to grow a random equilibrium polymer that is
successfully converted into the non-equilibrium free en-
ergy of the copy sequence rather than being dissipated.
In our simple case,

η ≡
Heq −H

Heq +∆Gpol

≤ 1. (12)

Here, ∆Gpol +Heq = ∆Gpol + ln 2 is the extra chemical
work done by the buffer above that required to grow an
equilibrium polymer, ∆Geq

pol = −Heq = − ln 2. The free
energy stored in the copy sequence, above that stored in
an equilibrium system, is Heq − H . η ≤ 1 follows from
∆Gpol +H ≥ 0. Similarly, since Hss ≥ H we can define
a single-site efficiency

ηss ≡
Heq −Hss

Heq +∆Gpol

≤ η ≤ 1. (13)

Unlike η, the single site efficiency ηss discounts the free
energy stored in “useless” correlations within the copy.

Behaviour of specific systems

We consider three representative models consistent
with eqs. 1-4. First, the purely kinetic mechanism ob-
tained by setting ∆GTT = 0 and ∆GK = ∆G in equa-
tions 1-4. Originally proposed by Bennett for TSA [3],
it is coincidentally a limiting case of persistent copying
since there is no equilibrium bias. We also consider two
new mechanisms: pure “temporary thermodynamic dis-
crimination” with ∆GK = 0 and ∆GTT = ∆G, and
a “combined discrimination mechanism”, in which both
template binding strengths and rates of addition favour
r monomers: ∆GK = ∆GTT = ∆G.
All three mechanisms have two free parameters, the

overall driving strength ∆Gpol and the discrimination
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FIG. 3. Error probability ǫ as a function of ∆Gpol for all three mechanisms: (a) over a wide range of ∆Gpol, and (b) within
the entropy-driven region ∆Gpol ≤ 0. The temporary thermodynamic mechanism is always least accurate, and the combined
mechanism most accurate. All mechanisms have no accuracy in the limit of ǫ → 0, and are far from the fundamental bound on
single-site accuracy imposed by Hss = −ǫ ln ǫ− (1− ǫ) ln(1− ǫ) ≥ −∆Gpol except at ∆Gpol ≈ 0.

parameter ∆G. We plot error probability against ∆Gpol

for various ∆G in fig. 3. Also shown is the thermody-
namic lower bound on ǫ implied by Hss ≥ H ≥ −∆Gpol.
All three cases have no accuracy (ǫ = 0.5) in equilib-
rium (∆Gpol → − ln 2) since an accurate persistent copy
is necessarily out of equilibrium [7]. By contrast, TSA
allows for accuracy in equilibrium [2, 5, 29].

The temporary thermodynamic mechanism is always
the least effective. It has no accuracy for high ∆Gpol

as the difference between r and w is only manifest when
stepping backwards, and for high ∆Gpol back steps are
rare [2, 5]. More interestingly, temporary thermody-
namic discrimination is also inaccurate as ∆Gpol →
− ln 2, when the system takes so many back steps that
it fully equilibrates. Low ǫ only occurs when ∆Gpol is
sufficient to inhibit the detachment of r monomers, but
not the detachment of w monomers. This trade-off re-
gion grows with ∆G. By contrast, both the combined
case and the kinetic case have accuracy in the limit of
∆Gpol → ∞, since they allow r to bind faster than w.
Considering ∆Gpol ≤ 0 closely (fig. 3b) shows the com-
bined case to be superior.

Intriguingly, all three mechanisms are far from the fun-
damental bound on ǫ implied by Hss ≥ H ≥ −∆Gpol as
∆Gpol → − ln 2, and there is an apparent cusp in ǫ at
∆Gpol ≈ 0.48 as ∆G → ∞ in the combined case. The
performance relative to the bound is quantified by ηss
(fig. 4). Surprisingly, we observe in fig. 4a that not only
does ǫ go to zero as ∆Gpol → − ln 2, so does ηss in all
cases. For small non-equilibrium driving, none of the
extra chemical work input is stored in correlations with
the template. Mathematically, this inefficiency arises be-
cause ǫ − 0.5 ∝ ∆Gpol − ln 2 as ∆Gpol → − ln 2 (as ob-
served in fig. 3), and Hss − ln 2 ∝ (ǫ − 0.5)2 for ǫ ≈ 0.5
by definition. Thus, from equation 13, ηss ∝ ∆Gpol− ln 2
as ∆Gpol → − ln 2. That this result only depends on er-
ror probability decreasing proportionally with ∆Gpol for

small driving suggests that a vanishing ηss in equilibrium
may be quite general.

In all cases, the single-site efficiency ηss increases from
0 at ∆Gpol = − ln 2 to a peak near ∆Gpol = 0, with
ηss → 1 as ∆G → ∞. Beyond this peak, ηss drops as
the stored free energy is bounded by ln 2 per monomer.
To understand the peak, note that for every ∆Gpol ≤ 0
there is a hypothetical highest accuracy copy with ǫ fixed
by Hss = −∆Gpol that is marginally thermodynamically
permitted. However, this copy is not usually kinetically
accessible. At ∆Gpol = 0 the marginal copy has 100%
accuracy and, unusually, all three mechanisms can ap-
proach it kinetically, causing a peak. The efficiency ap-
proaches its limit of unity even for moderate values of
∆G. We note that as ∆G → ∞, growth is slow for
∆Gpol ≤ 0: the total number of steps taken diverges.

A related argument explains the apparent cusp in the
error ǫ for the combined mechanism at ∆Gpol ≈ −0.48
and high ∆G. On the plot of ηss (fig. 4 a) this cusp man-
ifests as a shoulder. The full efficiency η (fig. 4 b) has a
prominent second peak. Uniquely, the combined mech-
anism’s kinetics strongly disfavour chains of consecutive
ws for high ∆G. A final copy with no consecutive ws
has ǫw = 0 but ǫr 6= 0. Maximizing the entropy rate
of such a Markov chain over ǫr gives Hmax = 0.48121;
∆Gpol = −Hmax matches the location of our peak/cusp.
Thus the combined mechanism initially eliminates con-
secutive ws, and at ∆Gpol = −0.48121 a state with
ηw = 0 is thermodynamically permitted for the first time.
For large ∆G, this polymer is kinetically accessible and
grows with thermodynamic efficiency approaching unity
(fig. 4 c). In this limit, the overall entropy generation is
zero.

The above behaviour is a striking example of corre-
lations being generated within the copy sequence, as
well as with the template. Notably, whilst η approaches
unity at this point, ηss does not (fig. 4). Correlations
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FIG. 4. Effieciencies ηss (a) and η (b) plotted against ∆Gpol show sharp peaks at ∆Gpol = 0 as ∆G → ∞ in all three cases. In
the combined case we see a second peak in η, and a shoulder in ηss at ∆Gpol = −0.48121. (c) Both of these peaks in η tend to
unity at ∆G → ∞.

within the copy sequence limit the chemical work that
can be devoted to improving the single site accuracy of
the copy polymer, since they prevent the bound Hss ≥
H ≥ −∆Gpol from being saturated.

CONCLUSION

The thermodynamic constraint on copying that un-
derlies this work is deceptively simple: unlike TSA, the
overall chemical contribution to the free-energy of a copy
must be independent of the match between template and
copy sequences. By studying the simplest mechanisms
satisfying this constraint, however, we can draw impor-
tant conclusions for copying mechanisms and thermody-
namics more generally.
For copying, the most immediate contrast with pre-

vious work on TSA [1–6, 23] is that accuracy is nec-
essarily zero when the copy assembles in equilibrium,
since equilibrium correlations between physically sepa-
rated polymers are impossible [7]. Consequently, unlike
self-assembly, no autonomous copying system can rely
on relaxation to near-equilibrium; fundamentally differ-
ent paradigms are required.
A direct result of the temporary nature of thermody-

namic discrimination in persistent copying is that relying
solely on the strong binding of correct copies is ineffec-
tive in ensuring accuracy. At ∆G = 6kBT , compara-
ble to the cost of a mismatched base pair [30], the tem-
porary thermodynamic discrimination model never im-
proves upon ǫ = 0.0285, which is more than ten times
the equilibrium error probability based on energetic dis-
crimination obtainable in TSA, 1/(1 + exp(∆G)). This
performance would degrade further if many competing
monomers were present. Mechanisms for copying must
therefore be more carefully optimized than those for
TSA. Either some degree of direct “kinetic” discrimina-
tion (with correct monomers incorporated more quickly),
or as an alternative, fuel-consuming proofreading cycles,

appear necessary. It is well-established that proofreading
cycles can enhance discrimination above equilibrium in
TSA [2, 3, 31], and the challenges in achieving direct ki-
netic discrimination in diffusion-influenced reactions via
the details of the microscopic sub-steps may explain the
ubiquity of such cycles in true copying systems.
Correlations within the copy, as well as between copy

and template, arise naturally in persistent mechanisms.
Indeed, in one case, pairs of mistakes are eliminated well
before individual mistakes. These correlations contribute
to the non-equilibrium free energy of the final state, re-
ducing the single-site copy accuracy achievable for a given
chemical work input. Biologically, however, it is arguably
the accuracy of whole sequences, rather than individual
monomers, that matters. In this case, positive correla-
tions could advantageously increase the number of 100%
correct copies for a given average error rate. It remains
to be seen whether this tactic, which indeed may arise in
real systems [? ], is feasible. Regardless, we predict that
within-copy correlations may be significant, particularly
in simple systems with low accuracy. These correlations
may change significantly if the requirement to remain
bound with one exactly bond is relaxed, and exploiting
correlations to extend functionality beyond simple copy-
ing is an intriguing prospect.
Relaxing this requirement also raises the possibility of

early copy detachment. This risk is likely to be worse for
genome replication than for transcription and transla-
tion, which may explain why the latter proceed by mech-
anisms analogous to our model, while DNA replication
does not: here, the copy of a single DNA strand from the
double helix is first completely assembled on the template
and separated only much later.
Thermodynamically, a persistent copying mechanism

converts the high free energy of the input molecules into
a high free-energy copy state; we have defined a general
efficiency of this free-energy transduction for copying. In
typical physical systems with tight coupling of reactions,
high efficiency occurs when the load is closely matched
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to the driving, either in autonomous systems operating
near the stall force, or in quasistatically manipulated sys-
tems. For the polymer copying mechanisms studied here,
however, we find that the thermodynamic efficiency of in-
formation transfer, and not just the accuracy, approaches
zero as polymer growth stalls. We predict that this result
is general, since the alternative would require a sub-linear
convergence of the error rate on 50% as thermodynamic
driving tends towards the stall point.
Fundamentally, the copy process transduces free en-

ergy into a complex system with many degrees of free-
dom (the sequence), and not just the polymer length. To
be accurate, the sequence must be prevented from equi-
librating. Thus, whilst weak driving leads to polymer
growth with little overall entropy generation, it does a
poor job of pushing the polymer sequence out of equi-
librium. We predict that similar behaviour will arise in
other systems intended to create an output in which a
subset of the degrees of freedom are out of equilibrium.
Away from the equilibrium limit, the efficiency shows

one or more peaks as the polymerization free energy is
varied. At these peaks, the system transitions between
two non-equilibrium states with remarkably little dissi-
pation. These particular values of ∆Gpol are sufficient to
stabilise non-equilibrium distributions that happen to be
especially kinetically accessible, rendering the true equi-
librium particularly inaccessible. This alignment of ki-
netic and thermodynamic factors is most evident in the

combined mechanism that efficiently produces a state
with few adjacent mismatches at ∆Gpol = −0.48121.
These results slightly qualify the prediction of Ref. [7]
that accurate copying is necessarily entropy generating,
since entropy generation can be made arbitrarily small,
whilst retaining finite copy accuracy, by taking ∆G→ ∞
at these specific values of ∆Gpol.
The behaviour of the efficiency in these models empha-

sizes the importance, in both natural and synthetic copy-
ing systems, of kinetically preventing equilibration. Our
work emphasizes that this paradigm should be applied
not only to highly-evolved systems with kinetic proof-
reading mechanisms [24], but also the most basic mech-
anisms imaginable.
Extending our analysis to consider fuel-consuming

proofreading cycles would be natural. However these
cycles will not change the fundamental result that the
entropy of the copy sequence is thermodynamically con-
strained, in this case by Hss ≥ H ≥ −∆Gpol − ∆Gfuel,
where the final term is the additional free energy ex-
pended per step to drive the system around proofreading
cycles. We predict that non-equilibrium proofreading cy-
cles, by their very nature, are unlikely to approach effi-
ciencies of unity.
We thank Charles Bennett for instructive conversation.
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SUPPLEMENTARY INFORMATION

Solving for partial velocities and tip probabilities

Following ref. [23], the partial velocities can also be
expressed as

vx =
ψ+
xrvr

ψ−
xr + vr

+
ψ+
xwvw

ψ−
xw + vw

, (14)

for x = r, w. This gives a pair of simultaneous equa-
tions that can be solved for the partial velocities in terms
of the propensities. In turn, the velocities and propen-
sities determine tip and conditional probabilities µ(ml)
and µ(ml−1|ml), with ml,ml−1 ∈ {r, w}, via

µ(x) =
ψ+
rx

ψ−
rx + vx

µ(r) +
ψ+
wx

ψ−
wx + vx

µ(w), (15)

µ(x|y) =
ψ+
xy

ψ−
xy + vy

µ(x)

µ(y)
. (16)

Difference between the tip probabilities and the

final sequence

It might not be immediately obvious why the prop-
erties of the growing chain described by µ(ml) and
µ(ml,ml−1) should be different from those of the final

chain described by ǫ, ǫr and ǫw, but the difference can
be illustrated with a simple example. Consider a system
in which incorrect monomers could be added to the end
of the chain, but where nothing can be added after an
incorrect match. In this case while the tip probability
for an incorrect match µ(w) would be finite, the error of
the final chain ǫ would be vanishingly small, as all incor-
rect matches would have to be removed in order for the
polymer to grow further.

Demonstrating that the sequence of the final chain

is Markovian

Let M∞
n be the monomer at the nth site in the final

chain. Let a polymer be represented by M∞
1 , ...,M∞

n .
The probability of a given chain existing is then
P∞(m1, ...,mn). In order for the sequence of monomers
moving along the chain (increasing n) to be able to be
represented by a Markov chain, the condition

P∞(mn|mn−1, ...,m1) = P∞(mn|mn−1) (17)

must hold.
In order to demonstrate that eq. 17 holds, we rewrite

the final chain probability in terms of properties of the
growing chain. Specifically we state that the probability
of the sequence m1, ...,mn existing in the final chain is
the product of the probabilityQ(m1, ...,mn−1, t) that the
chain is in the state m1, ...,mn−1 at a time t during the
growth process, and the propensity ν(mn;m1, ...,mn−1)
with whichmn is added to a chainm1, ...,mn−1 and never
removed, integrated over all time. It should be noted that
r(mn;m1, ...,mn−1) is time-independent.

P∞(m1, ...,mn) =

∫

Q(m1, ...,mn−1, t)ν(mn;m1, ...,mn−1)dt

(18)

P∞(m1, ...,mn) = ν(mn;m1, ...,mn−1)

∫

Q(m1, ...,mn−1, t)dt

(19)
Setting the integral equal to I(m1, ...,mn−1) gives

P∞(m1, ...,mn) = ν(mn;m1, ...,mn−1)I(m1, ...,mn−1)
(20)

Let’s consider the probabilities of two sub-sequences,
identical except for the final monomer. We call the two
final monomers mn and m′

n and we can denote the ratios
of the probabilities of these two chains as follows.

P∞(m1, ...,mn)

P∞(m1, ...,m′
n)

=
ν(mn;m1, ...,mn−1)I(m1, ...,mn−1)

ν(m′
n;m1, ...,mn−1)I(m1, ...,mn−1)

(21)
The I terms are independent of this final monomer and
so cancel. Thus

P∞(m1, ...,mn)

P∞(m1, ...,m′
n)

=
ν(mn;m1, ...,mn−1)

ν(m′
n;m1, ...,mn−1)

(22)
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The same relationship holds for the conditional prob-
abilities

P∞(mn|m1, ...,mn−1)

P∞(m′
n|m1, ...,mn−1)

=
r(mn;m1, ...,mn−1)

r(m′
n;m1, ...,mn−1)

(23)

For our system, the propensity with which a monomer
mn is added and never removed, ν(mn;m1, ...,mn−1), is
dependent on only on the final two monomers in the se-
quence fragment, mn and mn−1. To see why, note that
this propensity is determined by addition and removal of
monomers at sites i ≥ n. The identities of monomers at
positions j < n− 1, however, only influence addition and
removal propensities at sites k < n (eq. 1-4 main text).
Thus we convert ν(mn;m1, ...,mn−1) to f(mn,mn−1).

P∞(mn|m1, ...,mn−1)

P∞(m′
n|m1, ...,mn−1)

=
f(mn,mn−1)

f(m′
n,mn−1)

(24)

Multiplying both sides by P∞(m1, ...,mn−2)
and summing over all values of m1, ...mn−2 (recall
∑

c,d P (a|b, c, d)P (c, d) = P (a|b) and
∑

c,d P (c, d) = 1)
gives

P (mn|mn−1)

P (m′
n|mn−1)

=
f(mn,mn−1)

f(m′
n,mn−1)

. (25)

Comparing equations 24 and 25 yields:

P∞(mn|mn−1, ...,m1)

P (m′
n|mn−1, ...,m1)

=
P∞(mn|mn−1)

P∞(m′
n|mn−1).

(26)

Summing over the possible values of m′
n and re-

calling that P∞(r|mn−1) + P∞(w|mn−1) = 1 and
P∞(r|mn−1, ...,m1) + P∞(w|mn−1, ...,m1) = 1 yields:

P∞(mn|mn−1, ...,m1) = P∞(mn|mn−1), (27)

thereby proving that the sequence of the final chain is
Markovian.

Overall error probability of the final chain

The final sequence is described by the Markov chain
illustrated in figure 5. The transition matrix for this

process is

T =

[

1− ǫr 1− ǫw
ǫr ǫw

]

, (28)

The eigenvector of this transition matrix with eigenvalue
equal to unity gives the steady state of the Markov chain.
The second component of this eigenvector corresponds to
the overall probability of incorrect matches, ǫ:

ǫ = ǫr/(1 + ǫr − ǫw). (29)

FIG. 5. The transition diagram for the Markov process de-
scribing the sequence of monomers found by stepping forward
along a completed chain.

Corroboration with simulation

To check the analytical methods used to solve the sys-
tem we also simulated the growth of a polymer. We used
a Gillespie simulation [32], with transition rates given by
ψ±
xy. Simulations were initialised with a randomly de-

termined two monomer sequence, and truncated as soon
as the polymer reached 1000 monomers. We found that
such a length rendered edge effects negligible in all but
the most extreme cases for the calculation of ǫ. Poly-
mer error probabilities were inferred directly from the
100 simulations, and are compared to analytical results
in fig. 6.
We note in passing that the calculation of H , Hss,

and particularly the efficiency’s η and ηss, are more vul-
nerable to random fluctuations in a simulation of finite
length, and peculiar edge effects, than ǫ. Gaspard’s solu-
tion is therefore invaluable in reaching robust conclusions
for these quantities.
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FIG. 6. Errors obtained from Gillespie simulations are indistinguishable from the analytical results obtained using Gaspard’s
method for all three mechanisms.


