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SEMICLASSICAL SCATTERING ANALYSIS

Here we detail the derivation of the scattering matrix of
the system, starting from the optomechanical Hamiltonian
for two degenerate cavity modes a4’ = (ay,dy) in the
rotating frame of a biasing pump field at frequency wry,.
Setting & = 1, this is given by H = Hyec — éTé(A + Gi),
where Hoee = mefggm &+ 5 fiff for an oscillator with
effective mass meg [1]. Introducing a strong biasing pump
via Hin ~ @&*-a+H.c. and defining the effective detuning
A = A + 2¢2|@|?/Qn, linearization around the steady
state amplitude & yields

Heg = Hpee — Ada'6a — G(a - 64" + a* - 6a)2, (S1)

Neglecting mechanical noise, the system evolution under
a weak probe s;, follows from the equations of motion:

Sa —i (A — g) 04 + iGai + \/KeSin, (S3a)
P=—023-Ti+ (@*-da+Hc). (S3b)
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From Eq. (S2), the mechanical oscillations act as sources
for the optical modes, with strengths and phases directly
related to the steady-state biasing fields. The same holds
for the optical forces. Solving in Fourier space for the
long-time mechanical amplitudes in Eq. (S3b), Eq. (S3a)
reads as —iwda(w) = iM(&)da(w) + sin with

HM (@) + 10) = x5 (@) [1 — Cxa(@)xm(w) (@a)],

(S3)
where Yo (w) = (Mmeg(22, — W?) — imeglw) ™! and
Xa(w) = (—i(A + w) + x/2)~! stand for the mechanical
and cavity susceptibilities, respectively. Input and output
modes are linked by the 2 x 2 scattering matrix (basis-
independent) expression S(w, &) = —1 + ik (M(&) +
wl)~!. Since M(@) can be written as the outer prod-
uct of two vectors, the inverse follows from the following
corollary of the Woodbury matrix identity [2]: for general
u,v, (1+uv?)~t =1 —uvT /(1 + vTu), hence

1

G?Xa(W)Xm(w)aat
1+ G?|a)?Xa(w)Xm (w)

S = —1+Kexa(w) [1 - } . (S4)

An explicit computation of the four matrix elements in the horizontal /vertical polarization (H/V') basis yields

1Ke

_ . X KR _
Sw,@)gawv)y=—1+ 7P |:meﬁ‘ (w2 -2 + il pw) (w + A+ 25) - G2|aV(H)|2 ,

.

S(w, &)VH(HV) :W"%GQE‘E(V)&V(H),

(Sha)

(S5b)

where f(|a|?) = (w +A+ Z%) |:meff (w? = 02, +iTpw) (w + A+ lg) . G2|6¢|2]

The expressions above capture arbitrary detuning con-
ditions. In the main text, we consider a red-detuned
cavity in the resolved-sideband limit (k < £2,,), where
the rotating-wave approximation (A ~ —Q,,), simpli-
fies Eq. (S1) to the excitation-conserving interaction
Hy ~ —Asafsa + 9,010 — go(& - sa’h + H.c.), using
T = xzpp(5+ BT) and defining go = G/xzpr. In this limit,

54 = — i(A + ir/2)54 + igoath + sin, (S6)

(S7)

b= —i(Q + T /2)b + igoa! - 4.

(

Hence, the S-matrix expressions become equivalent to
Eq. (S4) after the replacement G — g and

X (@) = XEWVA (W) = [—i(Q +w) + T /2] 5. (S8)

Note also that Eq. (Sbb) clearly shows that the S-
matrix becomes nonreciprocal (Sy i # Syv) when the
steady-state cavity fields have a relative phase difference
along two orthogonal axes, such as with the circularly
polarized pump used in the main text.



GEOMETRICAL ACTION OF THE
SCATTERING MATRIX

In this section we offer a geometrical interpretation of
the scattering matrix in Eq. (S4) within the high coop-
erativity limit (C = 4¢2|@|?/(T'mk) > 1) and resonance
(w= Q). The action of S on s;, is thus given by

B! st 2 (s (e snden), (S9)
where e5 = &/|@&] is a complex polarization vector for the
control field. Neglecting the intrinsic loss channel, k ~ k.,
and Eq. (S9) shows the mapping implemented by S reflects
the input vector over the (complex) control field. In order
to determine how this mapping translates into a geometri-
cal operation in the Bloch sphere, the control polarization
vector is written as egq = (cos 0y /2, €'« sin 0y /2) and the
S-matrix is expanded in the Pauli basis as

S, @) =1—2eles = —vs -0, (S10)
where vg = ( sin O cos pg, sin by sin pg, cosbs ) is the
3-vector representing the control field in the Poincaré
sphere and o = (04, 0y,0.). This procedure effectively
allows to switch from a (complex) SU(2) representation
to a (real) O(3) representation, in which the scattering
transfomation of the input state occurs via a similarity
transform S(vi, - 0)ST, which can be expressed as
Vout - 0 = [—Vin + 2 (Vin - Vg,p) Va| - 0. (S11)
Here we exploited the relation (a-o)(b-o)(a o) =
—(a-o)+2(a-b)(b- o), fora,b € R>. Since we are free
to choose the representation for o, the general expression
Vout = —Vin + 2 (vd . Vin) Va, (812)
must hold. Eq. (S12) is a particular case of the Rodrigues
rotation formula for a real 3-vector around an axis vg
and angle ¢ = 7 [3], given by a,os = acose + (v X
a)sine+ vg(va - a)(l —cose) = —a+ 2(vg, - a)vg. This
formula outputs the rotated vector by decomposing the
input into its components parallel and perpendicular to
v and rotating only the perpendicular component.

SCATTERING AT FINITE PUMP DETUNING

As discussed in the main text, a primary effect of de-
tuning of the control field from the mechanical sideband
is a weakened optomechanical interaction. This results
in varying output amplitude and phase for the reflection
component of the signal parallel to the control field. In the
following discussion we consider a real control and probe

polarization axes for the sake of simplicity. In particular,
in the limit of vanishing optical absorption (k ~ k.) and
negligibly damped mechanical resonator (I, < k), we
recover under an H-polarized control, an approximate
phase p(0) = arg [Spr(Qm — 6, @ || ex)] that only de-
pends on the dimensionless quantity b=24¢ /Tm, which
parametrizes the control field detuning, and the coopera-
tivity C. For a probe frequency centered on the optical
resonance and neglecting terms O(I'y, /Ke),

@(6) ~ tan™! | = 4o

G+3Ve-D0 -3V -1

The reflection phase thus approaches 7 as the resonance
is crossed (0 — 0) in the limit C > 1, recovering re-
sults from the previous section, while p(8y) ~ =+m/2
when 6y = +£v/C2 — 1/2. This gives a good sense of the
cooperativity-dependent resonance width. Such variable
phase difference (8) € (0, 27) is responsible for the be-
havior shown in Fig. 2 in the main text, where for instance
a 45° control field converts H — V on resonance, while
being able to access elliptical states off resonance.

. (S13)

CIRCULATOR DISCUSSION

Utilizing polarization-dependent interactions, we can
create a circulator with a CP pump and a two-sided cavity,
as shown in the main text. The starting point consists
of an unpumped, lossless cavity that transmits all fields
on resonance and is thus reciprocal. An RHCP pump
then induces reflection of for RHCP probe signals, with
strength and bandwidth proportional to the cooperativity.
We offer here a quick reminder that we define RHCP
as a field component (ey + iey)/v/2 without regard for
propagation direction. With the setup of Fig. 3d, in the
high cooperativity regime, the H input from both sides of
the resonator is converted to RHCP by the QWP, reflected
from the resonator, and converted to V by a second pass
through the QWP on the same side. The V input instead
can pass through the resonator as LHCP light, and passes
through the opposite H port. Thus, on resonance, there
is circulation between ports 1 -2 — 3 — 4 — 1, shown
clearly in Fig. S1.
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FIG. S1. S-matrix amplitudes for the circulator geometry sketched in the main text with an RH control field. The H input
probe fields become RH after passing through the QWP, and exhibit reflection on the mechanical sideband as the cooperativity
increases, leaving through the V port on the same side. The V fields however pass through the cavity on resonance, independent
of pump power. The coefficients |Sa3|, |Sas|, |S14|, and |Ss4| are equal to |Ss1|, |S21], |Ss2|, and |Si2|, respectively. For these
plots, Iy, = 2,,,/5000 and k = ke = Q4 /10.
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