Perovskite photovoltaics has witnessed an unprecedented increase in power conversion efficiency over the last decade. The choice oftransport layers, through which photo-generated electrons and holes are transported to electrodes, is a crucial factor for further improvingboth the device performance and stability. In this perspective, we critically examine the application of optical spectroscopy to characterizethe quality of the transport layer-perovskite interface. We highlight the power of complementary studies that use both continuous wave andtime-resolved photoluminescence to understand non-radiative losses and additional transient spectroscopies for characterizing the potentialfor loss-less carrier extraction at the solar cell interfaces. Based on this discussion, we make recommendations on how to extrapolate resultsfrom optical measurements to assess the quality of a transport layer and its impact on solar cell efficiency.

AIP
The Netherlands Organisation for Scientific Research (NWO)
doi.org/10.1063/1.5143121
Appl. Phys. Lett.
Hybrid Solar Cells

Hutter, E., Kirchartz, T., Ehrler, B., Cahen, D., & von Hauff, E. (2020). Pitfalls and prospects of optical spectroscopy to characterize perovskite-transport layer interfaces. Appl. Phys. Lett., 116(10), 100501: 1–8. doi:10.1063/1.5143121