2020-05-21
Phase-Resolved Surface Plasmon Scattering Probed by Cathodoluminescence Holography
Publication
Publication
ACS Photonics , Volume 7 - Issue 6 p. 1476- 1482
High-energy (1–100 keV) electrons can coherently couple to plasmonic and dielectric nanostructures, creating cathodoluminescence (CL) of which the spectral features reveal details of the material’s resonant modes at a deep-subwavelength spatial resolution. While CL provides fundamental insight in optical modes, detecting its phase has remained elusive. Here, we use Fourier-transform CL holography to determine the far-field phase distribution of fields scattered from plasmonic nanoholes, nanocubes, and helical nanoapertures and reconstruct the angle-resolved phase distributions. From the derived fields, we derive the relative strength and phase of induced scattering dipoles. Fourier-transform CL holography opens up a new world of coherent light scattering and surface wave studies with nanoscale spatial resolution.
Additional Metadata | |
---|---|
ACS | |
The Netherlands Organisation for Scientific Research (NWO) , European Research Council (ERC) | |
doi.org/10.1021/acsphotonics.0c00209 | |
ACS Photonics | |
Organisation | Nanoscale Solar Cells |
Schilder, N., Agrawal, H., Garnett, E., & Polman, A. (2020). Phase-Resolved Surface Plasmon Scattering Probed by Cathodoluminescence Holography. ACS Photonics, 7(6), 1476–1482. doi:10.1021/acsphotonics.0c00209 |