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SUMMARY
Gene regulation networks allow organisms to adapt to diverse environmental niches. However, the
constraints underlying the evolution of gene regulation remain ill defined. Here, we show that partial or-
der—a concept that ranks network output levels as a function of different input signals—identifies such con-
straints. We tested our predictions by experimentally evolving an engineered signal-integrating network in
multiple environments. We find that populations: (1) expand in fitness space along the Pareto-optimal front
associated with conflicts in regulatory demands, by fine-tuning binding affinities within the network, and (2)
expand beyond the Pareto-optimal front through changes in the network structure. Our constraint predic-
tions are based only on partial order and do not require information on the network architecture or underlying
genetics. Overall, our findings show that limited knowledge of current regulatory phenotypes can provide
predictions on future evolutionary constraints.
INTRODUCTION

Regulatory networks that integrate multiple environmental cues

enable organisms to proliferate in diverse environments (Bell,

2010; Brion et al., 2016). For instance, bacteria can tolerate high-

ly diverse conditions by recognizing specific combinations of

stressors, such as pH and osmotic pressure (Hofmann and

Todgham, 2010), and plants can elongate above dense canopies

by responding to particular combinations of light intensity and

wavelength (Ballaré, 2014). However, it is not straightforward

to establish whether a particular regulatory network is able to

optimally respond to the multiplicity of signals presented by a

complex environment (Taute et al., 2014; Poelwijk et al., 2007;

Sorrells et al., 2015; Peng et al., 2015; de Vos et al., 2013) and,

consequently, how evolutionary constraints limit the range of

tolerated environments. Constraints on the adaptation abilities

of regulatory networks have been studied experimentally, by tar-

geted mutagenesis or knockout of its constituent components

(Sorrells et al., 2015; Mayo et al., 2006; Wray, 2007), and compu-

tationally, by varying parameters in kinetic models (Ma et al.,

2009; Ciliberti et al., 2007; Payne and Wagner, 2013). The com-

mon denominator for these approaches is their need for detailed

information on the network topology and the functioning of its
526 Cell Systems 10, 526–534, June 24, 2020 ª 2020 Elsevier Inc.
parts, which is lacking for many phenotypes. For instance, evolu-

tionary constraints have been mostly studied for regulatory net-

works that control developmental programs (Jiménez et al.,

2015), but they remain poorly explored for networks that are

involved in competition and selection in variable environments

(Taute et al., 2014; Nghe et al., 2018a). To address these issues,

we developed a method to identify constraints in signal integra-

tion phenotypes that only requires information on current re-

sponses, and subsequently tested the predictions by subjecting

synthetic networks in Escherichia coli to laboratory evolution.

RESULTS

The Order of Expressed Phenotypes
Central to our approach is the concept of partial order, which is

used in combinatorial optimization applied to task scheduling,

algorithmic verification (Nghe et al., 2018b), and decisionmaking

(Br€uggemann and Carlsen, 2006). We will explain it using the

following example: phenotype P. P is controlled by two signals,

s1 and s2, through a regulatory network (Figure 1A, right), with

S = (s1, s2) representing both signals. Importantly, the network’s

response to its input signals is monotonic, that is, P only in-

creases or only decreases as s1 increases, and P only increases
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Figure 1. Partial Phenotype Order Identifies Conflicting Regulatory Objectives and Constraint

(A) Schematic diagram of studied system. An organism exhibits a phenotype P that controls fitness F, in response to two environmental signals s1 and s2 (left). A

signal integration network is used for this purpose, but its architecture can be unknown in this framework. The only required information is thatP is repressed by s1
and activated by s2 (right). This also implies that dependencies between s1 and s2 may well exist but do not need to be known.

(B) Four environmental conditions that alternate in time. Signals s1 and s2 can be present at a certain concentration (‘‘ON’’) or absent (‘‘OFF’’).

(C) Corresponding magnitudes of P. Independently of other details, we know P01 is highest because P is not repressed (by s1) but activated (by s2). P
10 is lowest

because P is repressed and not activated.

(D) Hasse diagrams explaining partial order corresponding to (C). Phenotypes are nodes (circles), with their position along the Y axis indicating their magnitude, in

between their maximum andminimum possible values. We consider mutations that alter the activation and repression, hence change the positions of the nodes.

However, as an example, P01 remains higher than P00, therefore the two nodes exhibit an invariant order (grey line), which represents a constraint. There is no

invariant order between P00 and P11, because either repression or activation can dominate. Therefore, these phenotypes are not connected by a grey line. Hence,

the four phenotypes exhibit a partial order.

(E–G) Prediction of conflicts, trade-offs, Pareto-optimal front, and its dimensionality. Nodes indicate the magnitude of P in the four environments in between their

maximum and minimum. Up or down arrows in circles indicate selection objectives imposed on P in the four environments. Connected nodes are constrained in

their rank order, unconnected nodes are not. Blue lines indicate conflicts between selective objectives and order constraints. Right: dashed lines are cartoons of

the edge of fitness domain, accessible given the partial order constraints. Orange indicates the Pareto front of this domain. (E) No conflict case: through mutation

and selection, all nodes can meet their objective without conflict. Phenotypes in three environments are maximal and equal, and their nodes merge. This yields a

single optimum phenotype, and hence a single point in the multi-environment fitness space (right). (F) One-conflict case. The order indicates P10 < P00 while P10

objective is minimization and P00 is maximization. The best solution is then P10 = P00 (nodes merge), but no particular value of Pmeets the objectives better than

another. This results in a one-dimensional Pareto front in the fitness space (orange line), indicating a trade-off: if P10 = P00 increases, F00 increases at the expense

of a decrease in F10. (G) Two-conflict case, resulting in a two-dimensional Pareto front (right).

ll
Report
or only decreases as s2 increases. Such monotonic responses

are ubiquitous in a wide range of biochemical networks (Fig-

ure S1) (Sontag, 2007). In our approach, the only information

that is required is whether these signals repress (here s1) or acti-

vate P (here s2, see Figure 1A, left). P may, for instance, be the

expression level of a gene, but in principle can be of any pheno-

type on which selection acts. With the two signals, s1 and s2, be-

ing either ‘‘OFF’’ (0) or ‘‘ON,’’ four environments are possible. The

magnitudes of the corresponding values of P are denoted as:

P00, P10, P01, and P11 (Figure 1B). Note that the OFF and ON

values of P are taken for simplicity. However, in principle any
number of intermediate values can be considered within this

approach.

Key to our approach is to identify the rank order between pairs

of these values of P—or lack thereof. For instance, here we know

P00 < P01, because the activating signal s2 is turned ON in P01.

Similarly, P00 > P10 because the repressing signal s1 is turned

ON inP10 (Figure 1C). Importantly, this ranking order is preserved

even upon mutations that change the strength but not the nature

of the repression and the activation, as s1 and s2 then still repress

and activate—even if they do so differently. However, this pres-

ervation of rank order does not hold for all pairs. In particular, P00
Cell Systems 10, 526–534, June 24, 2020 527
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may be either larger (Figure 1D, middle) or smaller than P11 (Fig-

ure 1D, right), because here both the repressing s1 and the acti-

vating s2 singles are turned ON in P11. If the repression domi-

nates over the activation, then P00 >P11, but conversely if the

activation dominates over the repression, then P00 <P11. Hence,

P00 and P11 are not strictly ordered.

Thus, all values of P together are bound by a partial order

constraint, as the rank order between some pairs is constrained

but for others it is not (Figure 1D). Note that none of these con-

straints are absolute, as evolution may extensively alter the

network and its components and thus produce any change in or-

der. Indeed, genetic constraints in general are not absolute and

can be broken in principle, in contrast to constraints based on

physico-chemical laws (Taute et al., 2014; Poelwijk et al., 2007;

de Vos et al., 2013). These partial order constraints should thus

be obeyed for evolutionary adaptation where s1 and s2 maintain

their repressive and activating nature (Figure 1A, right).

Partial Order Constraints and Their Graph
Representation
The absence of rank order between some pairs of phenotypic

values seems to imply that phenotypic order will not always allow

us to identify a constraint. However, the notion of partial order

provides an approach to still capture the available order informa-

tion, which can be represented in graphs introduced in Figure 1D,

which are also called Hasse diagrams (Davey and Priestley,

2002). The nodes of the graph thus represent the magnitude of

the phenotypes P(S) for different environments S (Figure 1D).

The node with the highest value of P is displayed at the top,

the one with the lowest value of P at the bottom. Any two nodes

that are ordered are connected by vertices. Here the resulting

Hasse diagram is diamond-shaped (Figure 1D). Mutations

affecting characteristics like activation and repression strength

can move nodes up and down, but cannot alter the connectivity

or topology of the graph. The graph therefore is a partial order

graph, as it defines both the order and lack of order that is

present.

Given a certain evolutionary objective, the partial order graphs

become simpler, and indicate the optimal P(S) values. For

instance, suppose that the four environments alternate in time,

with low P favored only in S = (1,0), and high P in the other envi-

ronments (green and red arrows in Figure 1E, left). In this situa-

tion, all four nodes can optimize to the minimum and maximum

possible values of Pwithout encountering conflicts. More specif-

ically, the optimal solution here is that P10 takes the minimum

value, and P00, P01, and P11 all take themaximum possible value,

which also means that these three nodes merge (Figure 1E, mid-

dle). Here, the solution is thus one regulatory phenotype (defined

by P00, P10, P01, and P11), which determines a single point in

fitness space (Figure 1E, right).

The situation differs for selective objectives that favor themini-

mization of P00 andmaximization of P10, because it logically con-

flicts with the order constraint P00 > P10 (Figure 1F). In other

words, P00 cannotminimize andP10maximize because s1 is a re-

pressing signal—turning it ON in P10 will decrease P (Figure 1A).

Rather, the best solution then is for P00 to be equal to P10. Again

the nodes thus merge, but now their objectives (Figure 1F, green

and red arrows) are met similarly (poorly) for all P values, as long

as P00 = P10, which thus remains variable within the optimal so-
528 Cell Systems 10, 526–534, June 24, 2020
lution (Figure 1F). Consequently, the system can either optimize

P10 (by increasingP00 =P10), or optimizeP00 (by decreasingP00 =

P10), but not both. Overall, the shape of the Hasse diagrams thus

becomes simpler under selective pressure and allows the iden-

tification of regulatory conflicts.

Conflicting Objectives, Trade-Offs, and Pareto Fronts
The conflict discussed above reflects a trade-off: at some point

(when the nodes merge, Figure 1F), the system can do better at

the objective in one environment, but only by doing worse at the

objective in another environment. Hence, there are now multiple

best regulatory phenotypes which map to a line in fitness space

(Figure 1F, right), this line being referred to as the Pareto front

(Pareto, 1906), and its curvature depends on the expression-

fitness relations (Figure 1F, right). In the same way, the Pareto

front becomes a surface for two conflicts (Figure 1G), and so

on. We have previously shown theoretically that this approach

can reduce many constraints into a Pareto optimal set of much

lower dimension, for arbitrary numbers of signals and monotone

responses (Nghe et al., 2018b). The algorithm developed for this

purpose processes larger-scale Hasse diagrams, and hence

similarly as above identifies conflicting regulatory objectives,

the number of which predicts the dimensionality of the Pareto

front. We illustrate with a few examples how one can find the

Pareto optimal set of regulatory phenotypes for more complex

networks (Figures S1 and S2).

Experimental System and Selection Protocol in Variable
Environments
To test the partial order predictions experimentally, we con-

structed a regulatory network responding to two input signals,

designed a selection protocol in which mutants compete in

different consecutive environments that correspond to a variety

of objectives (Figure 2), and tested this protocol by improving the

initial network, pNetwork-WT. Specifically, we engineered a ge-

netic network responding to the inducers doxycycline (dox) and

isopropyl-b-D-galactopyranoside (IPTG), which define s1 and s2
respectively (Figure 2A; STAR Methods; Table S1). The network

controlled a selection cassette (Poelwijk et al., 2011a), whose

expression level defined P. In this way, the network output P

was coupled to the growth rate (F), on which selection acts

(Figure 2A).

To select for increased P, a chloramphenicol-containing me-

dium was used, resulting in a growth rate Fup. Increased expres-

sion of chloramphenicol acetyltransferase (cmR) within the

cassette provides resistance and hence faster growth. The rela-

tion between P and Fup can be quantified (Poelwijk et al., 2011a)

(Figure 2B, left), which shows that Fup is close to zero when P is

low, and increases to about 1.7 doublings per hours (dbl/h) when

P is high. To select for decreased P, a sucrose-containing me-

dium was used, resulting in a growth rate Fdown. Because the

polymerization of sucrose by the levansucrase enzyme (SacB)

is toxic, decreased expression of the cassette then produces

faster growth. Quantification of the relation between P and Fdown

indeed shows that Fdown is about 2 dbl/h when P is low and de-

creases to negative values when P is high (Figure 2B, right) (Po-

elwijk et al., 2011a).

The regulatory behavior of the initial network (pNetwork-WT)

corresponds to the example of Figure 1A (right). Increases in s1



Figure 2. Experimental System and Selection Protocol in Variable Environments

(A) Diagram of engineered genetic network and selection cassette. Expression of selection cassette (P) is controlled by two environmental signals dox (s1) and

IPTG (s2). Dox represses P, owing to the sequence of 3 negative interactions. IPTG is an activating signal for P, owing to the sequence of 2 negative interactions.

The effect of IPTG depends on dox, and vice versa, the effect of dox depends on IPTG.Our partial order framework does not rely on knowing such dependencies –

only that s1 represses and s2 activates P (Figure 1). The network is mutated using error-prone PCR, yielding a population of different network variants. The

selection cassette contains beta-galactosidase fragment LacZ to measure expression levels and the chloramphenicol resistance gene cmR to select for

increasing P. The levansucrase gene sacB confers toxicity in sucrose media, hence selects for decreasing P.

(B) Quantification of selection (data from Poelwijk et al., 2011a). Measured growth rates as function of P, which here is varied by induction. In a chloramphenicol-

containing medium (left), cells with high P grow faster and hence are favored, due to their high levels of resistance. In a sucrose-containing medium, cells with

lower P grow faster and hence are favored, due to reduced toxicity.

(C) Illustration of the experimental evolution protocol (see STAR Methods). A mutant population is successively grown in two environments, which present input

signals (dox and/or IPTG) and selection P (cm or sucrose).

(D) Expression P for pNetwork-WT (light blue) or pNetwork-M1 (dark blue) in presence and absence of dox and IPTG, measured using a pPtrc-eYFP reporter

construct. eYFP fluorescence was normalized to the optical density at 550 nm. Data are represented as mean ± SD from two biological replicates (error bars are

smaller than the symbols and thus not visible). This shows P10 decreased according to selection, while preventing TetR knockouts by also selecting for high P00.

(E) Measured increase in the dynamic range (the fold change between highest and lowest value of P). Data are represented as mean ± SD from two biological

replicates.

(F) Genotype of pNetwork-M1, obtained by Sanger sequencing of corresponding plasmid. Amino-acid substitutions are indicated in red in the TetR and LacI

structural models (PDB codes 1QPI and 1Z04).
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(dox) should relieve repression by the upstream TetR repressor,

of the downstream LacI repressor, which in turn represses the

network output P. On the other hand, increases in s2 (IPTG)

should relieve repression of P. Thus, s1 should repress, while

s2 should activate P (Figure 1A). Note that here the effect of

IPTG on P should depend on dox, and vice versa, the effect of
dox should depend on IPTG. The advantage of the partial order

framework is that the details of such dependencies do not need

to be known (Figure 1). Using an enhanced yellow fluorescent

protein (eYFP) reporter, we verified that dox and IPTG were

indeed repressing and activating signals, respectively (Figure 2D;

Table S1). The dynamic range was small, however: even the
Cell Systems 10, 526–534, June 24, 2020 529



Figure 3. Experimental Evolution under Conflicting Objectives

(A) Constraint prediction for experimental network and selective growth. Selection objectives (green and red arrows) for phenotypes P in different environments

(see Figure 1) predict a single conflict between P10 and P00 (blue edge). Genetic adaptation in response to this selection should drive P10 and P00 to become equal

(nodes merge). The two objectives cannot be met, given the order constraint. Their magnitude remains variable (orange arrows), because it is not clear, a priori,

which objective is more important.

(B) Blue and orange lines: boundaries of the accessible fitness domain theoretically predicted from the partial order constraints (A). Corners of this domain are

predicted archetypal regulatory phenotypes. Connecting edges are predicted intermediate regulatory phenotypes, which are determined using the partial order

graph (A) and the measured relations between P and fitness (Figure 2B). Orange line: Pareto front (P10 = P00 varies along this line) predicted from the optimization

objectives and partial order. Grey dot: initial genotype pNetwork-WT, which is close to the archetypal phenotype that has maximum expression in all environ-

ments (corner of fitness domain). Black dots: single isolates after first selection round (Figure 2A), whose phenotype was measured. See Figure S4A for 2D

projection of same dataset.

(C) Blue lines: as panel B. green lines: fitness domain predicted from partial order constraints in (D). green dot, pNetwork-M2 and founder for the second round of

mutagenesis; Orange dot, theoretically predicted optimal phenotype in green domain; Purple dot, pNetwork-M3 isolate closest to orange dot; Black dots, other

experimental isolates measured after the second round of selection. See Figure S4B for 2D projection of same dataset.

(D) Suggested change in partial order. Conflict is resolved by crossing the nodes, which alters the order relations. Resulting Hasse diagram (green box) predicts a

different accessible fitness domain (green lines C).

(E and F) Euclidian distance to optima, for isolates after first and second selection round. Colors as in (B and C). Data are represented as mean from at least two

biological replicates.
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lowest P (P10) was near the maximum of the range of P (2.4-fold

change, Figure 2E). To validate the experimental evolution proto-

col, we first aimed to select for a lower P10.

Themutation-selection protocol was tested for a network opti-

mization without regulatory conflicts (as in Figure 1E). The

network spanning tetR to lacI including the promoters of

respective genes (2,235 base pairs) was randomly mutated by

an error-prone PCR (Figure 2A). On average, we observed three

mutations per kilobase, or 6–7mutations for the entiremutagenic

region. We subsequently inserted the mutated amplicons into a

vector containing intact selection cassette (see STAR Methods).

This resulting pool of mutant networks was transformed into

E. coli, yielding a population size of about 5 3 105 to 1 3 107.

Next, we performed selection in a medium with chloramphenicol

in the absence of both inducers, which corresponds to an up-

ward pressure for P00 (Figures 2B and 2C). After this, the popu-

lation was transferred to a medium containing dox and sucrose

but without IPTG, which corresponds to a downward pressure

on P10 (Figures 2B and 2C; STAR Methods). This dual selection

provided a counter-selection for tetR knockout mutants. The

latter can be achieved by a wide range of mutations that not
530 Cell Systems 10, 526–534, June 24, 2020
only decrease P10 but also fully abolish the response to dox.

Finally, the expression P was characterized in the presence

and absence of IPTG and dox for isolates of the resulting popu-

lation, using an eYFP reporter as the network output. Figure 2D

shows the results for an evolved network (pNetwork-M1) that

displayed the most significant decrease in P10 (Figure 2E, 14-

fold change of the response after selection), while the response

to dox remained intact. Sequencing showed that both TetR and

LacI were indeed mutated within pNetwork-M1 (Figure 2F).

Overall, these findings indicated that the network could be opti-

mized with this mutation and selection protocol.

Prediction of FitnessDomains in Presence of Conflicting
Objectives
Next, we aimed to study the case of conflicting regulatory objec-

tives (Figures 1F and 3A), using the same genetic network and

evolutionary protocol (Figure 2A). This case corresponded to a

downward selection of P00, an upward selection of P10, P01,

and P11 (Figure 3A), and hence a conflict between P00 and P10.

Using the predicted optimum partial order graph (Figure 3A,

right) and the measured Fdown(P) and Fup(P) (Figure 2B), we
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determined the shape of the one-dimensional Pareto front theo-

retically (Figure 3B, orange line). We similarly mapped out the

accessible four-dimensional fitness space (Figure S3), here visu-

alized in three dimensions by averaging the fitness of P01 and

P11, as they both favor maximization without conflict (Figure 3B).

They can similarly be mapped onto a two-dimensional fitness

space (Figure S4). In these fitness spaces, each network geno-

type and its regulatory phenotype (as defined by P00, P10, P01,

and P11), corresponds to a single point, while the Pareto front

represents a collection of networks. The two extreme ends of

this Pareto line are two archetypal regulatory responses (Fig-

ure 3B), following Shoval et al. (Shoval et al., 2012). These

respectively correspond to P00 and P01 being low while P10

and P11 are both high, and P00, P10, P01, and P11 all being high

(Figure 3B). Additionally, the lower and upper limit of F00 on the

Pareto front in Figure 3B correspond to the minimum and

maximum values measured for Fdown(P) and Fup(P), which level

off at low and high P, as seen in Figure 2B. The other corners

of the fitness boundaries in Figure 3B correspond to other arche-

typal regulatory phenotypes that are not optimal under this se-

lective regime (Figure S3). Altogether, the regulatory archetypes

and the line connecting them limit a domain of fitness that is

theoretically accessible under the defined partial order con-

straints, while the space beyond it is predicted to be

inaccessible.

Experimental Evolution with Conflicting Objectives
We tested the above theoretical predictions by experimental

evolution. The initial wild-type network (pNetwork-WT, Figure 2A)

was found to map to a corner of this fitness domain (Figure 3B,

grey dot) and hence is close to an archetypal response. This is

consistent with the empirical observation that the expression

level P was comparatively high in all four environments (Fig-

ure 2D). Next, we mutated the network by error-prone PCR,

yielding about 53 105 to 13 107 variants, and performed selec-

tion in different environments, with a protocol similar to the one

described in Figure 2C, but with the selective pressures as indi-

cated in Figure 3A. The resulting isolated and characterized

genotypes were found to remain confined within the fitness

domain predicted by the partial order (Figure 3B, each black

dot representing one assayed isolate). Moreover, a majority of

these isolates scattered along the predicted Pareto front (Fig-

ure 3B, black dots along the orange line, Figure S4A). The iso-

lates showed increased F00 at the expense of decreased F10,

while hardly affecting F01 and F11 (Figure 3B), consistent with

the single conflict identified between the nodes P00 and P10 (Fig-

ure 3A). A similar experiment starting from the same mutant but

with a selection pressure inducing a conflict betweenP11 andP10

also yielded spreading of mutant networks along a Pareto front,

though logically a different one (Figure S5), indicating that our

method is not limited to one selection protocol.

We performed a second round of mutagenesis and selection,

with as founder one of the isolates that was selected during the

first round (Figure 3C, pNetwork-M2, green dot). Consistent with

the previous round, many of the progeny that were present in the

population after selection in multiple environments were again

found scattered along the one-dimensional Pareto front (Fig-

ure 3C, black dots along the orange line). Some of the progeny,

however, had moved outside the predicted fitness domain (Fig-
ure 3C). These isolates were scattered toward the theoretical

fitness optimum (orange dot in Figures 3C, 3F, and S4B), where

growth rates are as high as they can be in all environments. One

of the isolates, referred to as pNetwork-M3, had a nearly optimal

response (Figures 3C and 3F, purple dot).

The departure from the initial fitness domain findings could, at

least in principle, indicate a problem with our predictions.

Instead, however, as shown in the next section, we found that

they rather indicated the emergence of an altered network struc-

ture that resolved the conflict between theP00 andP10 objectives

and hence overcame the partial order constraints and allowed

population of the fitness domain corresponding to this altered

network structure.

Breaking Order Constraints with Changes in Network
Topology
We wondered if our partial order approach was consistent with

the observed higher fitness genotypes outside the fitness

domain in Figure 3C. Indeed, partial order can change in princi-

ple through more extensive network changes. Originally, the ob-

jectives of decreasing P00 while increasing P10 conflicted with

the phenotype order, P00 > P10 (Figure 3A). This conflict would

be resolved by a changed order: P10 > P00, which means that

the corresponding nodes cross (Figure 3D). This partial order

change can result from several network changes, all represent-

ing ways in which s1 (dox) no longer represses P but rather acti-

vates it (Figure 4A, top to bottom): (1) the upstream TetR

repressor becomes an activator, (2) the downstream LacI be-

comes sensitive to dox, (3) dox becomes a co-repressor of

TetR, and (4) the upstream TetR becomes a direct repressor of

the output, like LacI. In these solutions, not only the order be-

tween P00 and P10 changes, but also the order P01 > P11 reverses

to P11 > P01 (Figure 3D). The new corresponding (green) fitness

domain (Figure 3C, green lines) is directly adjacent to the previ-

ous (blue) fitness domain, and indeed enclosed the variants that

moved away from the initial Pareto constraint.

To distinguish between the different networks (Figure 4A) that

could produce the altered partial order (Figure 3D), we

sequenced and characterized the responses of the most optimal

network variants after rounds 1 and 2 (Figures 4B–4D). The se-

quences revealed point mutations in the evolved tetR and lacI

coding sequences, but not in the regions controlling DNA or

ligand binding. Solutions involving altered ligand binding, which

could make LacI sensitive to dox (Figure 4A, second from the

top), and altered TetR binding sites on the DNA, which could

enable an activator TetR variant (Figure 4A, top), or allow TetR

to repress the output directly (Figure 4A, bottom), thus seem un-

likely. To further test this hypothesis, we functionally character-

ized TetR variants from pNetwork-WT, pNetwork-M2, and pNet-

work-M3, by measuring the expression of a fluorescent reporter

protein that is regulated by TetR directly (Table S1). These data

showed that fluorescent reporter protein expression increased

with increasing dox for the wild-type TetR, as expected for an

induced repressor (Figure 4C). Expression became low and

insensitive to dox after the first round (pNetwork-M2). However,

after the second round, expression was high for low dox and

then decreased with increasing dox (pNetwork-M3). These

data suggest that dox has become a co-repressor of TetR (Fig-

ure 4A, third from the top). The expression P as a function of dox
Cell Systems 10, 526–534, June 24, 2020 531



Figure 4. Breaking an Order Constraint with Network Innovations

(A) Four possible network changes that all correspond to the adjusted partial order, in which the conflict (Figure 3D, blue line) resolved. In all cases, dox now

activates P whereas it repressed P originally (Figure 2A).

(B) Genotypes of pNetwork-M2 and pNetwork-M3, obtained by Sanger sequencing of corresponding plasmid. Amino-acid substitutions are indicated in red in the

TetR and LacI structural models (PDB codes 1QPI and 1Z04). Indicated dissociation constants determined by fitting (Methods): kdox , KTetR , kIPTG , KLacI

respectively denote binding of dox to TetR, TetR to promotor, IPTG to LacI, LacI to promotor. KTetR and KLacI are unit-less because of normalization to maximum

TetR and LacI concentrations.

(C) LacI expression level vs dox concentration for different TetR variants. The LacI expression level is normalized by the highest measured value obtained across

all experiments (no dox, lowest panel). LacI expression ismeasured by fusing it with a fluorescent marker mCherry (Table S1). Top: data for the wild-type network.

Dox relieves repression of LacI by TetR, and hence increases LacI expression. Middle: LacI expression level from the first round selection isolate that was

transferred to the second round of selection (Figure 3C, green dot). The expression level of LacI becomes insensitive to dox, within detection limit. Bottom: LacI

expression after the second round, of the most optimal isolate (Figure 3C, purple dot). Dox now decreases LacI expression. Data are represented as mean ± SD

from two biological replicates.

(D) Measured P as a function of dox and IPTG, for the isolate transferred from round 1 and the most optimal isolate. These data are consistent with dox having

become a co-repressor of TetR (A, third from the top).
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and IPTG concentrations (Figure 4D) was indeed improved; from

a nearly insensitive response to dox before the second round of

selection (Figure 4D, top), to a regulatory phenotype (Figure 4D,

bottom) in which P00 is minimized and P10, P01, and P11 aremaxi-

mized. In fact, the observedmutation R49G (Figure 4B) is consis-

tent with a TetR inversion (Scholz et al., 2004). Fitting these data

to a cascade model of biochemical rate constants suggests that

the dissociation constants of both transcription factors have

changed across the rounds of evolution (Figures 4B and S6).

Overall, we found that a molecular innovation resolved the con-

flict and allowed access into a new region of fitness space.
532 Cell Systems 10, 526–534, June 24, 2020
DISCUSSION

Pareto fronts have long been established as a powerful concept

in disciplines ranging from economy to instrument design (Greco

et al., 2016; Osiadacz, 1989; Marler and Arora, 2004). They allow

one to consider possible solutions and their limits when pursuing

multiple objectives. In biology, Pareto fronts are observed when

mapping collections of species within multi-dimensional pheno-

type spaces (Walker et al., 2008; Poelwijk et al., 2011b). It has

been proposed that Pareto fronts can be detected by interpo-

lating highly specialized phenotypes (also called archetypes)
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(Shoval et al., 2012). They thus provide insight in constraints

arising from functional trade-offs in evolutionary adaptation. At

the same time, it is a major challenge to mechanistically under-

stand and predict such constraints (Hofmann and Todgham,

2010; Taute et al., 2014; Mayo et al., 2006; Kogenaru et al.,

2009), in addition to observing them. Even framing the problem

is not straightforward: to identify which aspects could be pre-

dictable and which not, and what information about the evolving

system is then required, whether it be at the genetic, phenotypic,

or fitness level.

Here, we addressed these issues by developing a framework

to predict constraints of networks that integrate multiple signals

in monotonic fashion. We found that the notion of partial order

identifies such constraints. Specifically, it defines the evolu-

tionary limits of a network, in which functional properties such

as transcription-factor-binding affinities can be altered, but their

activating or repressive nature and the overall network topology

remain unchanged. The partial order captures the limited

amount of information that is needed, namely whether input sig-

nals activate or repress the phenotype in question. Notably, not

needed are typically poorly understood details like the actual to-

pology, the number of regulatory proteins, how they function, or

which mutations affect their function and how. Owing to its foun-

dations in graph theory, the approach is well suited for more

complex environments and regulatory objectives and indeed

can reveal the minimal core underlying conflicts between these

objectives (for example, see Figure S1) (Nghe et al., 2018b).

The partial order framework may be used to predict the space

of accessible phenotypes, provide the dimensionality and shape

of the Pareto-optimal front, identify extremal regulatory pheno-

types (regulatory archetypes), and allow more targeted network

engineering approaches. Interestingly, the dimensionality of the

Pareto-optimal front equals the number of conflicts between

(regulatory) objectives in different environments. This dimension-

ality relates to diversity, as a zero-dimensional front indicates a

single optimal phenotype, while additional dimensions indicate

that diverse phenotypes can be equally optimal. Conceptually,

one may see the partial order analysis to apply to regulatory net-

works in a similar fashion that Flux Balance Analysis (Ibarra et al.,

2002) applies to metabolic networks, where themere knowledge

of a graph structure constrains accessible fluxes and optimality

is used to predict evolutionary outcomes. We note that the

approach is not valid for non-monotonic responses to signals,

when unknown signals vary jointly with considered signals, and

when dynamical features such as oscillations are central to func-

tion and selective advantage. On the other hand, many regulato-

ry responses are monotonic (Sontag, 2007). In addition, it has

been shown that any biological regulatory network can be de-

composed into monotonic modules (Dasgupta et al., 2007),

which may allow further generalization.

The experiments presented here provided a direct test of

these concepts, and illustrate which types of functional changes

can modify the phenotype order. Experimental evolution in mul-

tiple environments revealed two modes of adaptation. In the first

mode, solutions that emerge are those that obey the partial order

constraints defined by the founding genotype, and are enriched

at the predicted Pareto-optimal front. The secondmode involves

types of mutations that are rarer: those that confer functional in-

novations capable of altering the partial order, and hence allow-
ing escape from these constraints. This observed escape indi-

cates that partial order represents ‘‘soft’’ genetic constraint

that can be overcome in principle, in contrast to ‘‘hard’’ con-

straints that are for instance set by thermodynamics. The

strength of the constraint in turn should depend on various fac-

tors such as the mutation rate and the population dynamics.

Given the comparatively high mutation rates used here, partial

order may be more constraining in nature than in our experi-

ments. Overall, our findings also identify qualitatively distinct

evolutionary stages in regulatory strategies.

The ability to define evolutionary constraints of regulatory phe-

notypes, as we have pursued here, will be central to arriving at a

mechanistic understanding of evolution in complex niches. It can

provide hypotheses on the compatibility of different regulatory

objectives, or lack thereof, and on their evolutionary accessi-

bility, as also illustrated by our data. Such regulatory limitations,

and associated tradeoffs when occupying broad spectra of envi-

ronmental conditions, can promote niche exclusion in the

context of competition (Rainey et al., 2000), and hence play a

role in species diversity and coexistence.
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Constructs
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contains a kanamycin-resistance gene and a medium copy p15A origin of replication. Materials are available upon request.

To measure the output from the network variants, various reporter constructs were used (Table S1). The LacZ based assays utilized

either constitutively expressed lacZu fragment viaPlacI
Q tomeasure in cis, that constitute a functional LacZ togetherwith lacZa encoded

by the selection operon of the network, or the full version of lacZ under the promoter Plac to measure in trans(Poelwijk et al., 2011a).

Whilst the fluorescent protein based readout assays utilized the plasmid encoding either lacI-mCherry under the promoter PLtetO1 or

eYFPunder the promoterPtrc (Nghe et al., 2018a). This reporter plasmid backbone contains an ampicillin-resistance gene and amedium

copy colE1-rop origin of replication, which is compatible to co-reside with the network harboring plasmid in the same cell (Table S1).

Mutagenesis
The mutations were introduced into the regulatory network sequence spanning tetR to lacI including the promoters of respective

genes by error-prone PCR (Stratagene Genemorph II Random Mutagenesis kit). The mutated PCR amplicons digested with DraIII

(NEB), ligated into the vector backbone containing the intact selection cassette, and transformed into E. coli MC1061 strain by elec-

troporation (Avidity EVB100). Routinely we obtained a pool size of half a million to ten million. To determine the mutation rate, DNA
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isolated from randomly picked transformants was Sanger sequenced, revealing an average mutation rate of 3.0 mutations per

kb (n=9).

Selection
Cells harboring mutant networks were grown at 37 oC with vigorous shaking in 20-40 mL of EZ Rich Defined medium (Teknova, Cat.

M2105) supplemented with 0.2%glucose as a carbon source, 1 mM thiamine hydrochloride and 50 mg/ml kanamycin. The small-mole-

cule inducers doxycycline or isopropyl-b-D-galactopyranoside (IPTG) were added 3 hours prior to the beginning of selection. After this

pre-selection growth phase, chloramphenicol (40 mg/ml) or sucrose (0.25%w/v) were added for selection and cells were cultured for an

additional 6 hours. This duration of the selection growth phase was chosen to obtain significant enrichment factors (of up to 104), while

still maintaining the diversity of the population. During selection the optical density of the culture was monitored at regular intervals and

diluted 500 times in pre-warmed medium whenever the optical density (OD) at 550 nm reached 0.1 value.

Measurement of Network Responses
The output of an isolated network variant was measured by co-transforming with a suitable reporter encoding plasmid (Table S1). In

all Figures, the data presented are mean of at least two biological replicates.

For LacZ based assays, 200 ml cultures were grown at 37 �C in EZ Rich Defined medium (Teknova, cat. M2105) with glucose as a

carbon source and supplemented with 1 mM thiamine hydrochloride and the appropriate antibiotics, in a 96-well optical-bottom

black color micro-titer plate (NUNC, Cat. 165305), using Wallac Perkin Elmer Victor3 plate reader. The OD at 600 nm was recorded

at regular intervals of 4 minutes, and evaporation of the cultures were compensated by adding 9 ml of sterile water per well at an in-

terval of 29 minutes. When most of the cultures were grown to 0.05 to 0.2 OD range, cells were fixed by adding 20 ml of fixation so-

lution, which was freshly constituted before use by mixing 109 mM fluorescein-di-b-D-galactopyranoside (FDG, MarkerGene, cat.

M0250) substrate, 0.15% formaldehyde and 0.04% DMSO in sterile water. The development of the fluorescence from LacZ activity

was measured at regular interval of 8 minutes by excitation at 480 nm and emission at 535 nm, in parallel to the OD600 measurement.

This data was analyzed as described previously(Poelwijk et al., 2011a).

For the fluorescent protein based assays, the cultureswere grown in EZRich Definedmedium early-exponential growth phase, and

then diluted into a final OD550 of 1x10
-4 and transferred to a 96-well optical-bottom black color micro-titer plate (NUNC, Cat. 165305)

in a total volume of 200 mL per well. The OD550 and fluorescence intensities from two distinct fluorescent reporter proteins (mCherry

(excitation 580/20, emission 632/45) and eYFP (excitation 500/20, emission 535/25) were monitored in a Wallac Perkin Elmer Victor3

plate reader at regular intervals at 37 �C. The instrument was shaking (double orbital) and replenishing 9 mL of sterile water per well

every 27 minutes. This data was analyzed as described previously(Nghe et al., 2018a).

Mathematical Formulation of Pareto Optima
We consider the environments EðnÞ (n = 1, ..., N), each corresponding a vector SðnÞ of inputs signals ðsðnÞ1 ; :::; s

ðnÞ
K Þ and a monotone

regulatory network which transforms each input vector SðnÞ into a certain level PðnÞ of the phenotype. Given the monotonicity of

the network, the output PðnÞ is an increasing (resp. decreasing) function of s
ðnÞ
k for the indexes k in the subset I+ (resp. I-). The natural

partial order onRK induces a partial order "R} between the PðnÞ values defined as follows: PðuÞ RPðvÞ if and only if for every k in I-, we

have s
ðuÞ
k %s

ðvÞ
k , and for every k in I+, we have s

ðuÞ
k Rs

ðvÞ
k . Additionally, depending on the phenotype being beneficial or deleterious, we

consider a fitness optimization objective being respectively the maximization or minimization of PðnÞ.
We have devised a graph algorithmwhich allows to compute efficiently (in polynomial time) an exact closed form of the Pareto front of

this optimization problem under partial order constraints as reported in Nghe et al., 2018b. The steps of the algorithm are exemplified in

Figure S2. The problem is represented as a directed graph, where each vertex u corresponds to the phenotype level PðuÞ in the environ-

mentEðuÞ, andanedgebetween fromvertexu tovertexv indicatesPðuÞ RPðvÞ. Toeachvertex,weattributeoneof the four followingstates:

1. "descending" if PðuÞ should be minimized;

2. "ascending" if PðuÞ should be maximized;

3. "trade-off" if the vertex results from the fusion of a descending and ascending vertices;

4. "bound" if the vertex results from the fusion of a vertex representing the minimum or the maximum possible value of PðuÞ.

The solution to the problem is found by an algorithm applied to the graph of the partial order between the PðnÞ values, where the

vertex states are attributed according to fitness objectives. At each step of the algorithm, a pair of vertices {U,V} is fused (correspond-

ing to imposing PðuÞ = PðvÞ), according to the rules described below, applied recursively to the graph, until there is no ascending or

descending vertex left:

- Perform a transitive reduction of the graph.

- Find an ascending (or resp. descending) vertex V which is pointed to (resp. which points to) no other vertex of the same state.

- For each vertex Uwhich points to (resp. is pointed by) V, create a new graph resulting from the fusion between U and V, the state

of this vertex being "bound" if U is a "bound", or " trade-off" in any other case.

We have shown in (Nghe et al., 2018b) that the terminal graphs of the recursion are exact and minimal parameterizations of each

face of the Pareto front. They consists of convex sub-spaces of RN defined by the partial order relations (given by a terminal graph)
e2 Cell Systems 10, 526–534.e1–e3, June 24, 2020
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between sets of variables all equal to each other (the PðuÞ values which are grouped in a same vertex). The union of all these sub-

spaces is the Pareto front. The number of vertices of each terminal graph provides the dimension of the corresponding face.

Application to Signal Integration Networks
The full envelope of the accessible fitness, as depicted in main text Figure 3, has been obtained by computing all the extremal reg-

ulatory phenotypes compatible with the partial order (Figure S2). Given that the accessible domain of regulatory phenotypes is

convex, the envelope of the domains can be computed by interpolating their extremal phenotypes. The envelope in the space of

fitness values is then the image FðPð1Þ;:::;PðNÞÞ = ðF1ðPð1ÞÞ;:::;FNðPðNÞÞÞ, where each Fn is either the F+ or the F- function of Figure 2B

depending on whether the environment EðnÞ contains respectively chloramphenicol or sucrose.

Fitness Computation
The fitness as a function of the expression level P was previously modeled and fitted(Poelwijk et al., 2011a) and take the form:

Fup =
1:65

1+ 0:085

�
c� 8� P,10�5 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:28,103 +

�
c� 8� P,10�5

�2q �

where Fup is the increasing fitness response as a function of increasing expression levels P, in the presence of a chloramphenicol

concentration c = 40 mg/ml in the medium, and

Fdown =
2:84

1+ 100 r1:5
� 0:84

with

r = 2:7,10�6 P

,0
B@1 +

10�
s� 10� 2:7,10�6 P

�
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40s+

�
s� 10� 2:7,10�6 P

�2q �
1
CA

where Fdown is the decreasing fitness response to increasing expression levels P in the presence of a sucrose concentration s=

0:25% (weight fraction) in the medium. Expression levels of the mutants of Figure 3 are reported in the Supplemental Information.

Estimation of Network Parameters
Dissociation constants were estimated by fitting the responses of the separate components (Figure S5) assuming constant consti-

tutive expression of TetR and using the following forms:

i) TetR induction by dox:
LacIðdoxÞ = 1

1+ 1=ðKTetRð1+dox=kdoxÞÞ

ii) TetR co-repression by dox:
LacIðdoxÞ = 1

1+ ð1+dox=kdoxÞ=KTetR

iii) YFP output as a function LacI induction by IPTG:
Pðdox; IPTGÞ = Pmax

1+ LacIðdoxÞ=KLacIð1=ð1+ IPTG=kIPTGÞÞ
whereKTetR is expressed in units of constitutively expressed TetR concentration, LacI andKLacI are both normalized tomaximumLacI

expression. Fitted curves shown in Figure S6. For each regulatory network, the four dissociation constants where fitted to 31 exper-

imentally measured data points which were measured in duplicate.
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