Localizing light to nanoscale volumes through nanoscale resonators that are low loss and precisely tailored in spectrum to properties of matter is crucial for classical and quantum light sources, cavity QED, molecular spectroscopy, and many other applications. To date, two opposite strategies have been identified: to either use plasmonics with deep subwavelength confinement yet high loss and very poor spectral control, or instead microcavities with exquisite quality factors yet poor confinement. In this work we realize hybrid plasmonic-photonic resonators that enhance the emission of single quantum dots, profiting both from plasmonic confinement and microcavity quality factors. Our experiments directly demonstrate how cavity and antenna jointly realize large cooperative Purcell enhancements through interferences. These can be controlled to engineer arbitrary Fano lineshapes in the local density of optical states.

General Engineering, General Physics and Astronomy, General Materials Science
ACS Nano
Resonant Nanophotonics

Doeleman, H.M, Dieleman, C.D, Mennes, C, Ehrler, B, & Koenderink, A.F. (2020). Observation of Cooperative Purcell Enhancements in Antenna-Cavity Hybrids. ACS Nano, 14(9), 12027–12036. doi:10.1021/acsnano.0c05233