2021-05-18
A plausible mechanism for longitudinal lock-in of the plant cortical microtubule array after light-induced reorientation
Publication
Publication
Quantitative Plant Biology , Volume 2 p. e9: 1- 9
The light-induced reorientation of the cortical microtubule array in dark-grown Arabidopsis thaliana hypocotyl cells is a striking example of the dynamical plasticity of the microtubule cytoskeleton. A consensus model, based on katanin-mediated severing at microtubule crossovers, has been developed that successfully describes the onset of the observed switch between a transverse and longitudinal array orientation. However, we currently lack an understanding of why the newly populated longitudinal array direction remains stable for longer times and re-equilibration effects would tend to drive the system back to a mixed orientation state. Using both simulations and analytical calculations, we show that the assumption of a small orientation-dependent shift in microtubule dynamics is sufficient to explain the long-term lock-in of the longitudinal array orientation. Furthermore, we show that the natural alternative hypothesis that there is a selective advantage in severing longitudinal microtubules, is neither necessary nor sufficient to achieve cortical array reorientation, but is able to accelerate this process significantly.
Additional Metadata | |
---|---|
Cambridge University Press (CUP) | |
The Netherlands Organisation for Scientific Research (NWO) , ERC 2013 Synergy Grant MODELCELL | |
doi.org/10.1017/qpb.2021.9 | |
Quantitative Plant Biology | |
Organisation | Theory of Biomolecular Matter |
Saltini, M., & Mulder, B. (2021). A plausible mechanism for longitudinal lock-in of the plant cortical microtubule array after light-induced reorientation. Quantitative Plant Biology, 2, e9: 1–9. doi:10.1017/qpb.2021.9 |