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ABSTRACT: We report on a Python toolbox for unbiased statistical analysis of
fluorescence intermittency properties of single emitters. Intermittency, that is,
step-wise temporal variations in the instantaneous emission intensity and
fluorescence decay rate properties, is common to organic fluorophores, II−VI
quantum dots, and perovskite quantum dots alike. Unbiased statistical analysis of
intermittency switching time distributions, involved levels, and lifetimes are
important to avoid interpretation artifacts. This work provides an implementation
of Bayesian changepoint analysis and level clustering applicable to time-tagged
single-photon detection data of single emitters that can be applied to real
experimental data and as a tool to verify the ramifications of hypothesized
mechanistic intermittency models. We provide a detailed Monte Carlo analysis to illustrate these statistics tools and to benchmark
the extent to which conclusions can be drawn on the photophysics of highly complex systems, such as perovskite quantum dots that
switch between a plethora of states instead of just two.

■ INTRODUCTION
Since the seminal first observation of single molecule emitters
in fluorescence microscopy three decades ago,1 single quantum
emitter photophysics has taken center stage in a large body of
research. On the one hand, single quantum emitters as single
photon sources2 are held to be an essential part of quantum
communication networks and are deemed essential for
building optically addressed and cavity-quantum electro-
dynamics-based quantum computing nodes.3 This has
particularly spurred research in III−V semiconductor quantum
dots,4,5 color centers in diamond, silicon carbide and 2D
materials,6−8 and organic molecules at low temperatures.9 On
the other hand, classical applications of ensembles of emitters
for displays, lighting, lasers, and as microscopy tags drive the
continuous development of new types of emitters, such as II−
VI self-assembled quantum dots 20 years ago10−12 and
inorganic perovskite quantum dots just recently.13−20 For all
these systems, understanding the photophysics on the single
emitter level is instrumental, whether the intended use is at the
single or ensemble level. A common challenge for almost all
types of emitters is that they exhibit intermittency, also known
as blinking.21,22 Under constant pumping, emitters switch,
seemingly at random, between brighter and dimmer states,
often corresponding with higher and low quantum yields and
different fluorescence decay rates. Frequently, the switching
behavior also shows peculiar, power-law distributed, random
distributions of durations of events. Determining the
mechanisms through which emitters blink, that is, the origin
of the involved states, the power-law distribution of residence
times, and the cause of switching, have been the topic of a large
number of studies particularly for II−VI quantum dots as

recently reviewed by Efros and Nesbitt.23 Recent studies on
inorganic perovskite quantum dots uncover intermittency
behavior that does not fit common models for intermittency
in their II−VI counterparts.14−20
In order to quantify intermittent behavior, the simplest and

most commonly employed method is to subdivide a measure-
ment stream of individual photon-arrival times into short bins
of a few milliseconds to calculate the intensity (in counts/
second) of each bin. Every bin can then be assigned to a state
(on, off, or gray) according to its brightness so that on/off
times as well as intensity levels can be defined and analyzed.21

For pulsed laser excitation, also quasi-instantaneous fluores-
cence decay rates can be obtained.24,25 However, it is well
known that this method of binning time streams and
histogramming binned intensities causes detrimental arti-
facts.21,26−32 Retrieved parameters of the quantum dot
behavior often exhibit a dependency on the choice of the bin
width, which affect estimates of switching time distributions
and power laws and also the objective assignment of intensities
to intrinsic levels. Narrower bin widths in principle allow better
resolution but run into shot noise limits, while conversely
choosing larger bins suppresses noise but will render the
analysis blind to fast events. To overcome these issues, Watkins

Received: February 24, 2021
Revised: May 5, 2021

Articlepubs.acs.org/JPCC

© XXXX The Authors. Published by
American Chemical Society

A
https://doi.org/10.1021/acs.jpcc.1c01670
J. Phys. Chem. C XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

A
M

O
L

F 
on

 M
ay

 2
8,

 2
02

1 
at

 1
5:

15
:2

8 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Isabelle+M.+Palstra"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="A.+Femius+Koenderink"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.1c01670&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01670?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01670?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01670?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01670?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c01670?fig=abs1&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c01670?rel=cite-as&ref=PDF&jav=VoR
https://pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org/JPCC?ref=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://acsopenscience.org/open-access/licensing-options/


and Yang26 proposed changepoint analysis (CPA) as a
Bayesian statistics approach for the unbiased determination
of switching times that is optimal, that is, gives the best
performance given the constraints of shot noise in the data.
CPA and clustering are examples of Bayesian inference
methods to determine the transitions and underlying levels
in single photon trajectories. In the domain of high-throughput
single-molecule analysis,33 many methods to process single
photon trajectories have appeared, which one can classify as
supervised learning methods with a priori model assumptions
on one hand and unsupervised approaches on the other hand.
The so-called hidden Markov model (HMM) methods34 that
view photon data streams as an experimentally measured
output of transitions between hidden transition states are
prominent. Bayesian inference can then estimate parameters
such as transition probabilities if one a priori postulates the
number of levels and the allowed transitions. As this underlying
model is a priori often not known, one can apply HMM with
different possible models and rank them according to
probabilistic criteria, such as the Bayesian information criterion
(BIC). Also, the requirement for a priori known models is
relaxed in so-called aggregated Markov models35 and non-
Markov memory kernel models.36 Juxtaposed to such
supervised analysis methods are unsupervised approaches.
Such methods apply CPA to partition data into time segments
between jumps and subsequent clustering of intensity levels.
The CPA method pioneered by Watkins and Yang is
essentially such a combination of changepoint detection and
hierarchical agglomerative clustering using the BIC to
determine the best clustering of measured intensities in

distinct levels (states) with as sole assumption that in each
segment of time wherein the emitter is in a given level, the
counts are Poisson distributed.26,29 A main drawback is that
particularly the clustering is slow. We refer to ref 37 for recent
developments in machine learning to mitigate this problem. A
main advantage of CPA is that no underlying model is required
and that the data are segmented and clustered to the level that
the data allow, given that the data is Poisson-distributed in
intensity and given a required confidence level stipulated by
the user. Variations on CP for other types of noise, such as
Gaussian noise, have also appeared.38,39 Despite the well-
documented superior performance over binning of photon
counting data, in the domain of single photon counting data
from quantum dots, only very few groups have adopted these
methods.17,26,28,29,32,40,41

In this paper, we provide, benchmark, and document a
Python toolbox for CPA, state clustering, and analysis of
fluorescence−intensity−decay rate correlations (Figure 1) that
is posted on GitHub.42 A main motivation lies in the
emergence of new quantum emitter systems with complex
photophysics. While II−VI quantum dots for which CPA was
originally developed are generally understood to switch
between just two or three states, the problem of accurate
analysis of intermittency is gaining in prominence with the
advent of novel emitters such as perovskite quantum dots,
which appear to switch not between just two but instead a
multitude of states.14−20 There is hence a large need for a
toolbox that provides unbiased, model-free analysis of photon
counting data, for which reason we provide a CPA
implementation and benchmark it for complex multilevel

Figure 1. Schematic overview of the working of the toolbox. (A) Illustration of the two methods available to obtain TCSPC data either by
photoluminescence TCSPC measurements of a single emitter (top panel) or through simulation of a single emitter (bottom panel). The latter is
provided in the toolbox. Both will result in a stream of time stamps that can then be further analyzed by the toolkit. The simulation part of the
toolbox simulates dots of m0 levels, with associated count rates and fluorescence decay rates Im and γm, with the dot visiting levels in random order,
and with residence times for each segment chosen drawn according to specified power law exponents αm. The output simulated data consist of
time-stamped photon arrivals over a total time span T, where for each photon k = 1..., a time stamp sk is recorded. These time stamps are randomly
distributed over two detector channels SA, SB. The delays of each of the photon time stamps relative to the time stamp in the third channel SR,
representing the periodic pump laser pulse train, is chosen in accordance with the set emitter decay rate. (B) Starting out with this stream of photon
events, using CPA (C), the changepoints are found and with these, the instantaneous intensities. (D) Subsequently, these events are grouped in
order to find the most likely underlying intensity levels between the behavior. Following this, a number of analyses can be done, such as (E)
ascertaining whether the time between switching events is power law-distributed, (F) the visible separation of states in FDIDs/FLIDs, and (G) the
presence of memory in the switching behavior. Here, we show an example of a simulated, four-level emitter, with simulation parameters chosen for
clarity of illustration.
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emitters. Our toolbox is both applicable to real quantum dot
data and valuable as a testbed for both testing models and
analysis techniques on synthetic, that is, numerically generated,
data. Indeed, the code toolbox we supply includes a code to
generate numerically random photon time arrival data streams
for “synthetic” quantum dots that jump between an arbitrary
set of intensity levels and decay rates, with jump time statistics
and photon budgets that can be set by the user. As results, we
provide benchmarks on the performance of CPA for detecting
changepoints in the function of the number of intensity levels
and total photon budget, and we explore the limits to the
number of distinct states that the clustering analysis can
reliably separate. Moreover, the toolbox allows to us test the
accuracy of jump time statistic such as power law statistics, for
such multilevel dots. Finally, the test suite also allows to
benchmark the accuracy of fluorescence decay model fitting
with maximum likelihood estimation, and we discuss the
construction of fluorescence−intensity−decay rate correlations
from CPA-partitioned data. The applicability of the toolbox to
experimental data is illustrated by the supplied data sets, which
correspond to a related paper in this journal.43 We note that
some other approaches such as HMM methods may be more
suited for processes where more knowledge on the underlying
physical processes is available. In contrast, our toolbox is ideal
for cases in which one wants to make no a priori assumption
on the physical mechanism behind intermittency. Furthermore,
the CPA method in the toolbox operates on the finest level of
information available in photon counting, that is, on the
distribution of individual photon arrival times, as opposed to
methods that are optimized to work on camera frame data.33

This paper is structured as follows. In the Methods section, we
summarize the Bayesian statistics tools we implemented to
analyze all aspects of our data. Next, we benchmark the
performance of CPA to pinpoint intensity jumps and of level
clustering to identify the number of levels between which a dot
switches on the basis of Monte Carlo simulations. Next, we
present considerations on the dependence of on−off time
distributions, decay rate fit, and so-called “fluorescence decay
rate intensity diagrams” (FDIDs) on count rates.

■ METHODS
In this section, we present all the methods implemented in our
Python toolbox as well as the methods for benchmarking them.
Benchmark results are presented in the Results section. We
refer to the Supporting Information for a manual to the code
and the code itself.
Changepoint Analysis. First, we summarize CPA, a

Bayesian statistics method for the unbiased determination of
jumps or “changepoints” in time traces of discrete
events.17,26,28,29,32,39,41,44−48 Bayesian statistics is a paradigm
that reverses the usual standpoint of probability theory. Usual
probability theory views a data set as a random draw from a
probability distribution, given a hypothesis on the parameters
of the underlying physical process. In this framework, one can
calculate the likelihood of drawing the specific measured data
set. Bayesian statistics, on the other hand, compares the
likelihood of distinct hypotheses, given a measured data set and
assumptions on the underlying measurement noise.
We consider time-tagged single photon counting data

consisting of an ordered list of measured photon arrival
times sk, collected over a measurement time T. For a single
emitter with no memory that emits at a count rate of N
photons in a time T, the waiting timesthat is, the times

between photon arrivalsare exponentially distributed with
waiting time τw = T/N. In order to determine whether there is
a changepoint in some segment q, CPA compares the
likelihood of two distinct hypotheses (1) there is a jump in
emission intensity (i.e., the average waiting time τw jumping
from some value to another) against (2) there is the same
intensity throughout the measurement interval. When testing
for a jump at a photon detection event k at time sk in this
trajectory q with time duration Tq containing Nq photon
events, this leads to a log-likelihood ratio, or “Bayes
factor””26,28,29

= + −
−

−
−k

k
V

N k
N k

V
N N2 ln 2( )ln

1
2 lnk

k
q

q

k
q q

where Vk = sk/Tq. Derivation of this log-likelihood ratio
involves several steps. First, it incorporates the assumption that
in between jumps, the waiting time between photons is
exponentially distributed, on the basis of which one can assess
the likelihood of measuring the given data set for a given
hypothesis on the exponential waiting time τw. Second, it uses
maximally non-informative priors for k to compare the
hypothesis of presence versus absence of a changepoint
without further restrictive assumptions on the involved
intensity levels.
It should be noted that there are other ways to arrive at the

same log-likelihood ratio test. One alternative starting point is
a binary time series in which there is an underlying uniform
and small probability distribution of photon detection per bin
[e.g., imagining the time axis binned in by the timing card
resolution (of order 0.1 ns for typical hardware)].40 Such a
uniform distribution would emerge as a direct consequence of
exponential waiting time distributions. In this case, one should
start from a binomial distribution and ultimately arrive at the
same formula after application of Stirling’s formula. Another
starting point is CPA applied to binned data with wider bins
with multiple counts, that is, to series of Poisson-distributed
intensities instead of discrete events.26,29 However, the binning
would introduce an undesirable time scale through the chosen
bin width. Of these three methods, working with photon arrival
times is the most data-efficient approach and introduces no
artificial partitioning whatsoever. We refer to ref 29 for a
derivation of the log-likelihood ratio in all these three
scenarios, which includes a precise description of the use of
maximally non-informative priors.
Following Watkins and Yang26 and Ensign,29 the most likely

location of a changepoint, if any, is at the k that maximizes the
Bayes factor k. The hypothesis that this most likely
changepoint is indeed a real event is accepted if k exceeds
a critical threshold value for k or “skepticism”. This value is
chosen to balance false positives against missed events. A full
data set is partitioned recursively, that is, by recursively
checking if data sets between two accepted changepoints
themselves contain further changepoints. This results in a
division of the data set into segments, each of which starts and
ends at an accepted changepoint and with the level of
skepticism as the stop criterion for the recursion. The resulting
segmentation provides the most likely description of data as
consisting of segments within which the intensity is constant,
given the value chosen for the degree of “skepticism” and given
the amount of data collected. Since the algorithm works with
the list of individual photon arrival times, this segmentation
entails no arbitrary partitioning. An accepted rule of thumb is
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that if the Bayes factor k exceeds a “skepticism” value of just
between 1 and 3, the evidence for a changepoint is highly
ambiguous, whereas values in the range 7−10 are deemed
strong evidence. The toolbox is supplied with a default value of
skepticism of 8, set following the analysis of refs 26 and 29.
The reader is warned that for a given photophysics scenario
(intensity levels, segment duration statistics), it is advisable to
set the level of “skepticism” on the basis of simulations in order
to optimize the trade-off between missing changepoints
altogether (false negatives) and precision (avoiding false
positives). Our Result section provides an example of such
an optimization.
Clustering. CPA splits the data in segments separated by

jumps (a list of Q jumps delineate Q − 1 segments). One can
now ask what the statistical properties are of the segmentation,
that is, what the statistics is of the length of segments, the
intensity levels most likely corresponding to the segments, and
the fluorescence decay times associated with the segments. For
instance, it is a nontrivial question how many distinct constant
intensity levels or states mr actually underlie the N − 1 found
segments, with intensities I1...IQ−1. To answer this question,
Watkins and Yang26 proposed a clustering approach. The
recent work of Li and Yang39 provides a detailed explanation of
the reasoning involved, though quoting results for Gaussian
instead of Poissonian distributed data. The idea is that with the
Q − 1 found segments, each with their associated recorded
intensities Iq, one can use expectation maximization to
calculate for a hypothesized and fixed number of levels nG
what the most likely underlying intensity levels m are (with m
∈ 1...nG) and how probable it is that each segment is ascribed
to a given level (probability pmq). Subsequently, Bayesian
inference is used to establish the most likely number of levels
(i.e., states) mr and associated intensities m, with m ∈ {1...mr}
describing the data.
Following refs 26 and 39, the expectation minimization in

our toolbox is implemented as an interactive algorithm started
by a first guess of the segmentation. This guess is obtained by a
hierarchical clustering of Q − 1 segments in m = 1, 2, ..., Q − 1
levels that proceeds recursively. In each step, it identifies the
two segments in the list with the most similar intensity levels as
belonging to the same level. This provides an initial clustering
of the measured data in any number m = 1, 2, ..., Q − 1 of
levels. For the expectation maximization, the idea is to
simultaneously and iteratively optimize the probability pmq
for segment q to belong to the mth level as well as an estimate
of the intensities of these levels m. In each iteration, the
intensities of all levels are estimated from the level assignment
from pm,q. Following this, the probability distribution pmq is
updated to redistribute the segments over the levels. In this
calculation, it is important to understand the type of noise
statistics the data obey. In the case of single-photon
measurements and for the purpose of this discussion, the
intensities are Poisson-distributed. The iteration is repeated
until pmq converges (practically also capped by a maximum
number of iterations). The final outcome is a most likely
assignment of the measured segments into nG levels. Next, for
each value of nG one assesses the BIC. This criterion is a
measure for how good the description of the segmented
intensity trace is with nG intensity levels, given the assumption
of Poisson counting statistics for each fixed intensity level.
Beyond a mere “goodness of fit” metric that would simply
improve with improved number of parameters available to

describe the data, this metric is penalized for the number of
parameters to avoid overfitting. For Poisson-distributed data,
the criterion is derived in ref 26 as

= − − −n Q Q NBIC 2 (2 1)ln lnEM G

where Q again is the number of changepoints detected and nG
is the number of available levels. The term EM is the log-
likelihood function optimized in the expectation maximization
step, that is, = ∑ ∑ [ ]= p p Iln ( ; )q m

n
mq m q mEM 1

G with λx( ; )

the Poisson probability function at mean λ, pm the probability
of drawing level m. The second term in the BIC is the term
penalizing the BIC for overfitting. The accepted best
description of an emitter in nG-levels is taken to be the value
of nG where the BIC peaks.

Intensity Cross-/Autocorrelation and Maximum Like-
lihood Lifetime Fitting. Many single photon counting
experiments are set up with pulsed laser excitation for
fluorescence decay rate measurements and with multiple
detectors to collect intensity autocorrelations (e.g., to verify
antibunching in g(2)(τ) for time intervals τ comparable to the
fluorescence decay rate and shorter than the commonly longer
detector dead time). In a typical absolute-time tagging setup,
this results in multiple data streams SA, SB, SR of time stamps
corresponding to the detection events on each detector and the
concomitant laser pulses that created them, respectively. Our
Python toolbox contains an implementation of the correlation
algorithm of Wahl et al.49 that operates on time stamp series,
and returns, for any combination of channels S1, S2 (1, 2 ∈ {A,
B, R}), the cross-correlation C(τ)Δτ, that is, the number of
events in the time series S1 and the time series S2 that
coincided when shifted over τ, within a precision Δτ.
Cross-correlating detected photons and laser arrival times,

taking Δτ to be the binning precision of the counting
electronics and the range of τ equal to the laser pulse repetition
rate, returns a histogram of the delay times between photon
detection events and laser pulses. To obtain g(2)(τ) to
investigate antibunching, streams of photon events from two
detectors in a Hanbury−Brown Twiss setup are cross-
correlated. Δτ is taken to be the binning precision of the
counting electronics and the sampled range of τ as an interval
is taken symmetrically around τ = 0 and several times the laser
pulse interval. Finally auto- or cross-correlating detector
streams over τ-ranges from nanoseconds to seconds,
coarsening both τ and Δτ to obtain equidistant sampling on
a logarithmic time axis, results in long-time intensity
autocorrelations of use in intermittency analysis.31 Our toolbox
also provides this logarithmic time-step coarsening version of
the correlation algorithm of Wahl et al.49

Of particular interest for intermittent single emitters is the
analysis of fluorescence decay rates in short segments of data as
identified by CPA, which may be so short as to contain only 20
to 1000 photons. For each of the photon detection events in a
single CPA segment, cross-correlation with the laser pulse train
yields a histogram of the Nq photons in segment q. In each of
the bins (with width Δτ), the photon counts are expected to
be Poisson-distributed. Therefore, the optimum fit procedure
to extract decay rates employs the maximum likelihood
estimate procedure for Poisson-distributed data, as described
by Bajzer et al.50 In brief, for a decay trace sampled at time
points τi relative to the laser excitation, with counts per bin
D(τi), the merit function reads
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∑ τ τ τ= − { [ ] − }M D F F( )log ( ) ( )
i

i A i A i
all data bins (1)

Assuming a chosen fit function FA(t), the parameter set A
that minimizes this merit function provides the parameter
values that most likely correspond to the data. The estimated
errors in these parameters then follow from the diagonal
elements of the inverse of the Hessian of M relative to the
parameters A. Importantly, the fact that the Poisson
distribution is tied to absolute numbers of counts implies
that this approach requires that the data are neither scaled nor
background-subtracted. Instead, the background should be part
of the fit function either as a free parameter or as a known
constant. Furthermore, it should be noted that time bins with
zero counts are as informative to the fit as non-empty ones and
should not be left out.
Generating Synthetic Quantum Dot Data. To bench-

mark the CPA and clustering method and to test its limits, our
toolbox provides an example routine to generate artificial data
mimicking quantum dot intermittency. To obtain mimicked
quantum dot data, we first choose a number m0 of intensity
levels m0, between which we assume the dot to switch. Next,
we generate switching times for each of the states. In this work,
we choose all switching times from a power law distribution.
For benchmark purposes, we will present results with power
law exponent α = 1.5, though any exponent can be set in the
code. On the assumption that intensity levels appear in a
random and uncorrelated order, this segments the time axis in
a list of switching events T0,j, j = 1, 2, ..., m0, where for each
segment, we randomly assign one of the nominal intensities

m0, . Next, to mimic a pulsed excitation experiment, we
imagine each of these segments to be subdivided in intervals of
length τL equivalent to a laser repetition rate (τL = 100 ns in
the examples in this work). We assign each of these intervals to
be populated with one photon at probability τ=pm m0, L. This
ensures that the number of photons Nq in every segment is
drawn from a Poisson distribution at meanT q m0, 0, . By removal
of all empty bins, the binary list is translated into a list S = (t1,
t2, t3, ...) of photon arrival time stamps at resolution τL to which
one can directly apply CPA to attempt a retrieval of switching
times and apply clustering to retrieve the number of states.
To also enable fluorescence decay rate analysis, we further

refine the photon arrival time list. Recalling that we have
generated switching events T0,q between intensity states m0, ,
we now also assume fluorescence decay rates γ0,m. As each
segment q was already chosen to correspond to some level mq,
we now impose the decay rate γ0,mq on the photon arrival
times. To do so, for each of the photon events k = 1...Nq
already generated at resolution τL, we now randomly draw a
delay time Δk relative to its exciting laser from an exponential
distribution characterized by rate γ0,mq. To mimic the behavior
of typical TCSPC counting equipment, the delay time is
discretized at a finite time resolution Δτ [in this work, it was
chosen as 165 ps to match the hardware in the provided
example experimental data measured in our lab (Becker &
Hickl DPC-230), though of course in the toolbox, the value
can be set to match that of any time-correlated single photon
counting (TCSPC) card vendor]. Testing of fluorescence
decay trace fitting can operate directly on the generated list of
delay times, or alternatively, one can synthesize a TCSPC
experiment by re-assigning S to represent laser-pulse arrival
times SR and defining photon arrival times as the events in SA,

SB each shifted by its delay time, that is, SX = (t1 + Δ1, t1 + Δ2,
...), with X ∈ A, B. Cross-correlation of SR and SX returns the
delay time list. We note that although our work does not focus
on antibunching, our quantum dot simulation routine provides
data distributed over two detector channels, where emission
events antibunch, while an uncorrelated background noise level
of the detectors can also be set.

Practical Implementation. We have implemented the
toolbox ingredients in Python 3.8. As time stamp data can be
substantial in size, we use the “parquet” binary format to store
time stamps as 64-bit integers. Processing and plotting the data
is dependent on Pythons’ standard libraries numpy, matplotlib,
while we use Numba, a just-in-time compiler, to accelerate the
time stamp correlation algorithms. An example script to
generate synthetic data and to run the entire workflow on
simulated data is provided. We refer to the Supporting
Information for a guide to the practical implementation and
use of our toolbox. The toolbox comes also with example
experimental data on single CsPbBr3 quantum dots from a
recent experiment.43 Table 1 lists scaling and performance
metrics for the algorithms contained in the toolbox.

■ RESULTS
The remainder of this work is devoted to presenting
benchmarks of the provided methods. Benchmarks for emitters
with “binary”” switching, that is, two well-separated intensity
levels as is typical for II−VI quantum dots, have already been
presented in literature.26,32,40 However, emitters under the
current study, such as perovskite quantum dots, appear to have
a multitude or perhaps even a continuum of intensity levels.
Our tests hence focus on determining the performance of CPA
and level clustering for many-level single photon emitters.

Precision of Identifying Individual Changepoints.
Figure 2A,B shows examples of CPA applied to a simulated
quantum dot with a single jump in its behavior, from an
intensity level of 104 to 103 cts/s resp. from 4.5 × 102 to 2.25 ×
102, with ∼900 and ∼150 photons left and right of the
changepoint, respectively. Purely for visualization purposes, the

Table 1. Algorithm Scaling and Computation Time as a
Function of Number of Photons N and Changepoints Qa

algorithm scaling timing

CPA N N( ) ca. 10 s for N = 106

grouping initial clustering dominates over
iterative algorithm

initializationb Q( )2 0.5 s for Q = 3 × 102

iterative
optimizationc

overhead dominated 0.75 ms per iteration
(Q < 500)

g(2)d Nn( )plot points
8 ms per plot point at
N = 106

long-time
autocorrelatione

Nn( )cascade ca. 2 s for full plot

aTimings were obtained on a standard desktop (Intel I7 4790 at 3.6
GHz, with 16 Gb of DDR3 RAM) and are obtained on the basis of 5
× 100 photon trajectories (100 independent draws for 5 different
trajectory record lengths from ca. 104 to 3 × 106 photon events). bFor
a large Q, this is accelerated by first clustering subsets, merging, and
continuing clustering. cTypically, 5 to 10 iterations are required when
nG ≈ m. dNumba JIT acceleration assuming int64 provides over 2
orders of magnitude acceleration. A typical g(2) plot has ca. nplot points =
2000 and hence requires 10 to 20 s to evaluate. eEssentially repeating,
g(2) and logarithmic coarsening every ncascade points.
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data are plotted in a binned format as the analysis itself does
not make use of any binning. Alongside the binned intensity
trace, we also show the log-likelihood ratio k. In both cases,
the log-likelihood ratio clearly peaks at or close to the point
where there is a changepoint in the data. Since the Bayes factor
is actually a logarithmic measure for the comparison of
hypotheses, the algorithm indeed identifies the changepoint
with high probability and to within just a few photon events,
even where the jump is far smaller than the shot noise in the
binned representation in the plot at a relative intensity contrast
of just a factor of 2. Generally, the probability with which the
algorithm identifies or misses the changepoint is dependent on
the total number of photons recorded both before and after the
changepoint and on the contrast in intensities, consistent with
the findings of Watkins, and Ensign.26

To identify the limits of CPA,29,32 we consider the feasibility
of identifying changepoints of contrast I2/I1 as a function of
the total number of photons in the time record. The results are
shown in Figure 2C for the likelihood of detecting a
changepoint and Figure 2D for the error in identifying the
precise event k at which the changepoint that is identified
occurred. Here, we only consider the case where there are

roughly an equal number of photon events before and after the
changepoint. These data are obtained by simulating 104

switching events of the type as shown in Figure 2A,B for
each contrast and mean photon count shown. The range of
contrasts is chosen commensurate with reported on−off
contrasts for typical quantum dots in literature, which generally
fall in the 1.5- to 5-fold contrast range. At a high intensity
contrast, exceeding a factor 5, a total photon count as low as
300 is enough for near-unity detection. Moreover, for
sufficiently high photon count left and right of the change-
point, even very small changes in intensity have a high
likelihood of being accurately detected, even if in binned data
representations, the jump is not visible within the shot noise.
Figure 2D provides a metric for the accuracy within which
changepoints are pinpointed. CPA returns the most likely
photon event k in which the jump occurred, which in our
analysis can be compared to the actual photon event index k0
at which we programmed the Monte Carlo simulation to show

a jump. Figure 2d reports the mean error −k k( var( ) )0 as a
metric of accuracy. At jump contrasts above a factor 2,
changepoints are identified to within an accuracy of almost one
photon event even with just 102 photon counts in the total

Figure 2. Demonstration of changepoint detection applied to a synthesized data set with a single changepoint, with equal photon counts before and
after the changepoint. In (A,B) the contrast between intensities is a factor of 10 and 2, respectively, while the total photon budget is approximately
2000 and 300. The bottom panels show the log-likelihood ratio test, which clearly peaks at the changepoint in both cases. The y-axis unit cts/ms
stands for counts per millisecond. The robustness of the method is demonstrated in (C,D), where we show the likelihood of detecting a
changepoint in such a series for different intensity contrasts, and the variance of the found times, respectively, as a function of the total photon
numbers. To gather accurate statistics, 104 photon traces were generated for each data point. The data are plotted in a binned fashion (ms bins) for
visualization purposes only.

Figure 3. (A) Typical time trace of a simulated quantum dot. The intensity duty cycle switches between 0.5 × 104 and 2 × 104 counts/s. It shows
an on/off input duty cycle generated with a power-law distribution (orange), the duty cycle with Poissonian noise (purple), and the retrieved duty
cycle (green). Overall, the original intensities and lifetimes (B) are retrieved well. (C) Histogram of the number of switching events as a function of
their duration. Each data point represents 10.000, 10 s power-law distributed time traces. The input shows the initial power-law distribution, the
lighter colors show the number of retrieved changepoints, after applying Poisson noise and CPA, at different contrasts, with I1 = 105. counts/s. We
can see that even at low contrast, events with long times between switching are retrieved, but each contrast has a characteristic duration below
which changepoints cannot be accurately retrieved. This puts a fundamental limit on the information that can be extracted from a given data set.
(D) Occupancy diagram illustrating the behavior of the clustering algorithm for a system with m0 = 4 intensity levels. The color scale indicates the
amount of time spent in each state mi after the assignment of states for a given number of available states nG. We see that when nG > m0, effectively
all segments are distributed across only nG ≤ m0 intensity levels.
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event record. At very small contrasts, the error in determining
the location of a changepoint is generally on the level of one or
two photon events, only worsening when there are fewer than
200 counts. This observation highlights the fact that if the
photon record has just a few counts in total, the error in
estimating the count rate before and after the jump becomes
comparable to the magnitude of the jump.
Intermittency and On−Off Time Histograms. As the

next step in our Monte Carlo benchmarking, we turn to time
series with many, instead of a single, jumps. Figure 3A shows a
representative example for a simulated intermittent quantum
dot with two states, assuming a contrast ratio between states of
2 × 104 and 5 × 103 s−1. We generally observe that the
recursive CPA algorithm accurately identifies switching events,
barring a number of missed events of very short duration.
From the CPA, we retrieve the time duration between
switching events. Figure 3C shows a histogram of time
durations, plotted as a probability density function obtained
from a whole series of Monte Carlo simulated time traces of
varying contrasts between states (see legend). Notably, if we
simulate quantum dots that have switching times that are
power-law distributed, the retrieved distribution indeed follows
the assumed power-law particularly for long times. At shorter
times, the histogram remains significantly below the power law,
particularly at low intensity ratios between the two assumed
states. This indicates that CPA misses fast switching events and
is consistent with the observation from Figure 2C that a
minimum photon count is required to observe switching
events of a given contrast. As a rule of thumb, usual II−VI
colloidal quantum dots have a contrast between dark and
bright states of around 5, meaning that of order 200 photons
are required to detect a changepoint with near-certainty. At the
assumed count rates (2 × 104 s−1 for the bright state), this
means one expects CPA to fail for switching times below 10
ms, where the on−off time histogram indeed shows a distinct
roll-off. This result suggests that one should interpret on−off
time histograms from changepoint detection with care: one can
generally rely on the long-time tail but should determine the
shortest time scale below which the histogram is meaningless
on basis of the intensity levels present in the data.
Error Analysis for Trajectories with Multiple Jumps.

The CPA results in Figure 2C essentially quantify the
algorithm performance in terms of the fraction of correctly
identified changepoints (true positives) for traces with a single
step in intensity as a function of contrast and photon budget.
Actual single emitter photon trajectories have a plethora of
steps, where CPA is mainly likely to miss short segments
because only those changepoints are accepted for which the
evidence in the data is compelling relative to the shot noise in

it. Indeed, the short-time roll-off in Figure 3C highlights
exactly this tendency of CPA to under-report on closely spaced
changepoints (false negative rates high for short segments).
The level of skepticism set as a parameter for running CPA sets
the overall accuracy of the algorithm, essentially trading off the
rates of false positives and false negatives. When using the
toolbox for a particular photophysical scenario, the reader is
recommended to study the error rates as a function of
skepticism. To demonstrate that type of study, here we report
on algorithm performance as a function of skepticism using the
error metrics accuracy, precision, and recall. To this end, we
generate synthetic data and match the list of nominal
changepoints and retrieved changepoints to determine the
rate TP of true positives, the rate FP (false positives) of
detected transitions for which no transition was actually
present, and the rate FN of false negatives, in which a true
transition is not detected by CPA. The standard definition for
the error metrics reads34,37

=
+ +

accuracy
TP

TP FN FP (2)

=
+

precision
TP

TP FP (3)

=
+

recall
TP

TP FN (4)

The accuracy benchmarks overall performance, whereas
precision measures the false positive error rate and recall
quantifies the false negative rate. Since, first, changepoint
detection is not accurate to the level of a single photon arrival
time and, second, the set of stored nominal switching times in
our toolbox may fall in between synthesized photon events,
such a comparison requires a tolerance range to be meaningful.
Figure 4 presents the algorithm performance as a function of
the level of skepticism (vertical axis) and as a function of the
tolerance range within which changepoints are accepted as true
positives, measured in milliseconds. The results are for a more
challenging case than a two-level dot, namely, a four-level
system with mean count rate 5 × 104 counts per second, four
equidistant intensity levels (2, 4, 6, and 8 × 104 counts per
second), and power law-distributed segment residence times
(exponent 1.5, with shortest residence time of 10 ms in a
segment). The presented results are obtained from 200 photon
trajectories with on average 5 × 105 photons and 102

changepoints each. If the time axis for the tolerance is chosen
as short as the inverse mean count rate, the apparent algorithm
precision is low, indicating that changepoints are generally
found close to, but not quite at, the moment where the

Figure 4. Accuracy (A), precision (B), and recall (C) for CPA as a function of tolerance in milliseconds for which nominal and detected
changepoints are matched as equal and as a function of the level of “skepticism” which the Bayes factor needs to exceed for a changepoint to be
accepted.
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switching event occurs. At tolerances of 2 to 5 ms (containing
of order 50−250 photons typically at the given rate and for the
various assumed intensity levels), the error rate saturates at
above 90%. The accuracy for this example peaks at a skepticism
of ca. 7.0 (Figure 4A). At higher levels of skepticism, the
precision increases, that is, the number of false positives reduces
further (Figure 4B). However, this is at the expense of recall,
that is, the number of missed changepoints. The false negatives
rate decreases only with skepticism lowered to below 10
(Figure 4C).
Performance of Level Clustering. Next, we consider the

performance of the grouping algorithm applied to the
segmentation of simulated time traces. For reference, Figure
5A shows the BIC versus nG for the example of simulated dots
with m0 = 2, 3, 4 intensity levels. Generally, the BIC rapidly
rises as nG approaches the actual number of levels with which
the data were simulated and gently decreases once nG exceeds
the actual number of levels in the data m0. The fast rise
indicates that within the assumption of Poisson-distributed
intensities, the data cannot at all be described by fewer than m0
levels. The slow decrease is due to the penalization of the BIC
by the number of fit parameters. Since the BIC criterion
actually relates to the logarithm of the probability with which
nG states are the appropriate description of the data, even an
apparently gentle maximum in BIC actually coincides with an
accurate, unique determination of m0.
To gauge the accuracy of the retrieval of the number of

states for multi-state quantum dots, we simulated quantum dot
data with power law-distributed (α = 1.5) switching events,
assuming switching from m̃0 = 2 to 10 equally likely levels,
where we assumed intensity levels to be assigned to segments
randomly and where we assumed levels for simplicity evenly
spaced from dark to bright. Lastly, all segments were
reassigned an intensity according to Poisson statistics. In
other words, we added shot noise.
For many random realizations with different m0 and ⟨N⟩, we

determine the most likely number of states mr (BIC(mr) =
max(BIC)) according to the clustering algorithm and construct
histograms of outcomes. The total photon budget is set by the
product of assumed record length and the mean count rates of
the different levels. The outcomes of these calculations are
shown in Figure 5B−E, where each panel corresponds to a
different photon budget. A plot with only diagonal entries
signifies that the number of levels retrieved by the clustering
algorithm always corresponds to the number of levels assumed,
so mr = m0. At high photon budgets (Figure 5D,E), the
retrieval of the number of states is indeed robust, even for

simulated dots that switch between as many as 10 intensity
levels. At low total photon budgets (Figure 5B,C), we see that
mr is often underestimated. This signifies that there is high
uncertainty due to shot noise in the assigned intensity levels, so
that levels cannot be discriminated within the photon budget.
It is remarkable that at photon budgets of 106 photons, as
many as 10 intensity levels can be robustly discerned even
though the smallest contrast between levels is as small as 10%
in intensity in view of Figure 2, where it is evident that
detecting changepoints for small intensity jumps is difficult.
Here, however, one should realize that in contrast to Figure 2C
where single small-contrast changepoints are studied, here
many levels are visited in a random order. Thus, the correct
detection of small level differences is not reliant on the
detection of small changepoint contrasts but on having
sufficient photon statistics to resolve the segment count rates
of already identified segments. A secondary metric, additional
to the BIC, is in how the clustering algorithm assigns
occupancy to the levels. The clustering algorithm assigns to
each data segment the most likely intensity level that it was
drawn from. Occupancy is a metric for how often each of the
nG levels available to the algorithm is actually visited by the
measured intensity sequence. We find that if one allows the
clustering algorithm to use more levels than originally used to
synthesize the quantum dot data (nG > m0), the additional
levels take essentially no occupancy. We show this in Figure
3D for an example of a dot assumed to have four intensity
levels with a total photon count of 5 × 105. As soon as
additional states (m ≥ 5) are offered to the grouping algorithm,
these additional states take no occupancy and do not change
the distribution of segments over the states found at the
correct m. Thus, we confirm again that the grouping algorithm
does not over-estimate the number of states.

Accuracy of Decay Rates versus Photon Budget.
Figure 6A shows examples of fitted simulated data for slow and
fast decays as examples of the Monte Carlo simulations we
have performed to benchmark the accuracy of decay rate fitting
in function of photon budget and decay rate (panel (B)). We
find that the error in γ very roughly follows roughly a power
law with an exponent of 0.9−1.1, with slower decay rates
showing higher errors. Consistent with ref 51, we find by
Monte Carlo simulation that one requires approx. 200 (50)
counts to obtain an error below 10% (20%) in decay rate if one
fits mono-exponential decay with free parameters. A problem
intrinsic to the use of CPA is that fast switching events may be
missed, leading to an averaging of short time intervals with

Figure 5. (A) Examples of the BIC for simulated quantum dots, with m0 = 2, 3, 4. The most likely number of levels is indicated by a small peak in
Lk. In the inset, we show that the distributions indeed peak at their respective m0. It should be noted that the BIC shows a very sharp rise and then,
from m0 onward appears almost flat. There is in fact a shallow downward slope. Here, one should keep in mind that the BIC is a logarithmic metric.
On a linear scale, the maximum is significant. (B−E) Likelihood P of finding mr levels for a simulated system, given m0 initial intensity levels and
⟨N⟩ the mean number of photon counts. We see that the photon budget plays a defining role in the total number of states that one can reliably
resolve. At low photon budgets, the number of levels is systematically underestimated, whereas at high photon budgets, P(mi = m0) remains high
even at high m0. We see that mr is never overestimated.
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others. This leads to decay traces that are in fact not
attributable to a single exponential decay.
FDID Diagrams. Correlative diagrams that plot correla-

tions between intensity levels and fluorescence lifetime24,25,32

form a powerful visualization of quantum dot photophysics.
Our toolbox contains the code to generate both FDIDs and
fluorescence lifetime intensity diagrams (FLIDs). The
considerations in this section hold equally for FDID and
FLID diagrams, although the provided example is for a FDID
analysis. Essential to the construction of FDID/FLID diagrams
is that for each detected photon also the delay time to the laser
pulse that generated it is known so that decay rates can be
fitted even to short segments of a time trace segmented by
CPA. Here, we discuss the construction of FDID diagrams
derived from CPA, again illustrated by examining simulated
data for a quantum dot that switches between two states of
distinct intensity and lifetime. FDID diagrams are convention-
ally constructed from time-binned data, where it is interpreted
as a simple histogram in which each time-bin contributes a
single histogram count to one single intensity-decay rate bin. It
is not trivial to extend this notion to CPA-segmented data
since CPA segments intrinsically have very different time
durations instead of having equal width as in conventional
time-binning. We propose two modifications to the con-
struction of a FDID as a histogram. First, instead of
representing FDID entries as a single binary entry in just
one histogram bin (one time segment contributes one count to
a single pixel in an FDID), we propose to incorporate the
uncertainty in intensity and decay rate that is associated with
each time segment. To this end, each segment contributes to
the FDID diagram according to a 2D Gaussian function
centered at the CPA-segment decay rate and intensity (total
counts Cj in segment j divided by segment duration Tj), where

the width is given by the fit error in the decay rate and the shot
noise error in the segment C T/j j. If one would apply this

logic to regular time-binned data, giving each Gaussian
contributor the same integrated weight, one obtains a diagram
similar to a regular FDID histogram except that the results are
smooth and with less dependency on a chosen histogram bin
width. Instead, the feature size in FDID represents the actual
uncertainties in intensity and rate.
As a second modification, we propose to reconsider the

weights of the Gaussiansthat is, the integrated contribution to
each entry in the FDID. For time-binned data, one assigns each
segment equal weight so that equal lengths of time contribute
to equal weight. Since CPA results in segments of unequal
length, several choices for constructing FDID diagrams are
possible, which to our knowledge have not been discussed in
CPA literature. Giving equal weight to each CPA fragment will
lead to FDID diagrams from those obtained from binned data
since effectively long time segments are then underrepresented
compared to short segments. This leads to under-representa-
tion of states with steeper power law distributions in their
switching times. The direct equivalent to regular FDID-
weighting for CPA-segmented data is that a segment of
duration Ti has a weight proportional to Ti (henceforth
“duration-weighted FDIDs”). Alternatively one could argue
that since time-averaged intensity and fluorescence decay traces
are rather set by the contribution in emitted photons, one
could instead use the total number of photons Ci in each
segment as weight (henceforth “count-weighted FDID”).
It has been established in a multitude of studies of II−VI

quantum dots that the distribution of on−off times follows a
power law (exponents αon,off) truncated by an exponential with
specific time τl, giving the distribution21−23 t−α e−t/τl. We
analyze Monte Carlo-simulated FDIDs to establish if there are
conditions of the truncation time under which a two-state
quantum dot would appear not as a bimodal distribution.
Figure 7 shows duration-weighted FDIDs for simulated
quantum dot data. For (A), we consider a two-state quantum
dot with power law-distributed switching times. In (B−D), we
show a quantum dot simulated with similar parameters but
with the maximum duration of the segments Tc = 10, 1, 0.1 s.
Evidently, the bi-modal nature of the quantum dot is faithfully
represented by the FDID diagram constructed through CPA.
This remains true also for power laws with a long time
truncation (t−α e−t/τl), unless truncation times τl are as short as
20 ms, so that there are no segments with over approximately
102 counts. This limit of our benchmarking space zooms in on
the regime where CPA intrinsically fails (Figure 2C). In this
regime, the originally assumed bimodal quantum dot behavior

Figure 6. (A) Two examples of decay traces (γ = 0.1, 1 ns−1) with low
photon count (N = 300) fitted to a single-exponential decay. (B)
Standard error of the fitted decay rate w.r.t. the input decay rate as a
function of the total photon count for different decay rates. Each data
point is the average of 103 simulated decay traces.

Figure 7. Four FDID diagrams of a simulated bimodal quantum dot with (I, γ) = (2 × 104 s−1, 0.1 ns−1) and (0.5 × 104 s−1, 0.4 ns−1). In each
diagram, we apply a different cutoff time Tc to the simulated power law at ∞, 10, 1, and 0.1 s. We find that a shorter cutoff causes an increasingly
strong smearing effect between the two states.
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no longer results in a bi-modal FDID. Instead a significant
broadening is evident. We can conclude that for most realistic
quantum dot systems, CPA-generated FDIDs will not suffer
from this artificial broadening artifact.

■ CONCLUSIONS

In this work, we have provided a Python toolbox for CPA and
for determining the most likely intensity level assignment for
intermittent multilevel emitters. We investigated the limits of
CPA and clustering as fundamentally set by the photon budget
and for the case of many state emitters. We have shown that
for long switching times, the typical power law behavior of
many quantum emitters can be accurately retrieved. We also
show that in the case of many-state emitters, the number of
intensity levels can be retrieved with high fidelity, provided the
photon count is high enough. At low photon counts, the
number of states is systematically underestimated. This shows
in which way the photon budget puts a fundamental limit on
the amount of information that can be retrieved from a given
TCSPC data set. We show that the photon budget also poses a
limitation on the accuracy at which the slope of a single-
exponential decay can be retrieved. Additionally, we investigate
the commonly used intensity-decay time diagrams. We show
that with CPA, a two-state simulated quantum dot is well-
represented in an FDID, but when a cutoff is introduced to
match that commonly found in literature, the states become
increasingly poorly defined in an FDID representation. While
the Bayesian inference algorithms in this toolbox were reported
earlier for application to quantum dots with just two or three
intensity states, this toolbox and the provided benchmarks
point at the applicability even to emitters that the jump
between many closely spaced intensity levels will, in our view,
be of large practical use for many workers analyzing the
complex photophysics of, for example, perovskite quantum
dots. Also, the toolbox can be used for theory development,
following a workflow in which hypotheses are cast in synthetic
photon counting data, which in turn can be subjected to the
CPA suite to assess how hypothesized mechanisms express in
observables and how far they are testable. The limit of this
testability generally depends on an interplay of total photon
budgets, residence time in each level, intensity contrast
between levels, and segment durations. For a given photo-
physics scenario, the user can easily deploy the toolbox to
directly assess data segmentation in terms of accuracy,
precision, and recall error rates. These rates will depend on
the level of skepticism that the user wishes to apply in order to
accept assertions regarding the segmentation of data in
segments and intensity levels. These error rates, and hence
the testability of a hypothesized photophysics scenario, are
ultimately limited by the evidence in the counting statistics and
not the segmentation algorithm.
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