Hyaluronan is a biopolymer that is essential for many biological processes in the human body, like the regulation of tissue lubrication and inflammatory responses. Here, we study the behavior of hyaluronan at aqueous surfaces using heterodyne-detected vibrational sum-frequency generation spectroscopy (HD-VSFG). Low-molecular-weight hyaluronan (similar to 150 I(Da) gradually covers the water-air interface within hours, leading to a negatively charged surface and a reorientation of interfacial water molecules. The rate of surface accumulation strongly increases when the bulk concentration of low-molecular-weight hyaluronan is increased. In contrast, high-molecular-weight hyaluronan (>1 MDa) cannot be detected at the surface, even hours after the addition of the polymer to the aqueous solution. The strong dependence on the polymer molecular weight can be explained by entanglements of the hyaluronan polymers. We also find that for low-molecular-weight hyaluronan the migration kinetics of hyaluronan in aqueous media shows an anomalous dependence on the pH of the solution, which can be explained from the interplay of hydrogen bonding and electrostatic interactions of hyaluronan polymers.

The Netherlands Organisation for Scientific Research (NWO) , Unilever
Ultrafast Spectroscopy

Moll, C.J, Giubertoni, G, van Buren, L, Versluis, J, Koenderink, G.H, & Bakker, H.J. (2021). Molecular Structure and Surface Accumulation Dynamics of Hyaluronan at the Water–Air Interface. Macromolecules, 54(18), 8655–8663. doi:10.1021/acs.macromol.1c00366