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Profusion of transition pathways for interacting hysterons
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The response, pathways, and memory effects of cyclically driven complex media can be captured by hysteretic
elements called hysterons. Here we demonstrate the profound impact of hysteron interactions on pathways and
memory. Specifically, while the Preisach model of independent hysterons features a restricted class of pathways
which always satisfy return point memory, we show that three interacting hysterons generate more than 15 000
transition graphs, with most violating return point memory and having features completely distinct from the
Preisach model. Exploring these opens a route to designer pathways and information processing in complex
matter.
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I. INTRODUCTION

A rugged landscape governs the intermittent response
of complex materials, which features sequences of tran-
sitions between metastable states that constitute pathways
[1–18]. Under cyclical driving, these pathways form hystere-
sis loops which may encode return point memory (RPM),
the widespread ability of complex materials to revisit a pre-
vious state when the driving reaches a previous extremal
value [15–21]. Microscopically, localized bistable entities
such as spins or rearranging zones play a crucial role
[13,15,19–23]. These can be modeled as hysterons, two-
state elements which switch between phases “0” and “1”
when the global driving field U passes through the up-
per and lower “bare” switching fields u+

i or u−
i (Fig. 1)

[13,15–21,24–27]. Indeed, collections of noninteracting
hysterons—the well-studied Preisach model—describe sur-
prisingly complex sequences of transitions and satisfy RMP
[13,16,17,20,21,27].

Here we probe the rich physics of interacting hysterons. In-
teractions are physically expected [13,17,22,25,26] and while
noninteracting hysterons switch their phases indepedently of
each other, in sequences determined by the order of their
bare switching fields, interactions scramble and entangle these
switching orders. To characterize the response of coupled
hysterons we use transition graphs (t-graphs), a recently intro-
duced representation that captures all pathways of a complex
system and aids in probing memory effects [13,20–27].

We investigate t-graphs of n interacting hysterons, focusing
on n=2 and n=3. We show that interactions mushroom the
number of t-graphs, which feature transitions (avalanches,
pseudoavalanches, multiedges) and topological structures
(subharmonic cycles, breakdown of RPM) completely distinct
from the Preisach model. Besides providing a fresh perspec-
tive on the response of complex media, we show that our
study paves the way for materials with designer pathways
[27–31].

II. MODEL AND T-GRAPH CONSTRUCTION

In this section we describe the model of linearly interacting
hysterons in detail. We first describe the models elementary
state transitions (Sec. II A). We then introduce a recursive
algorithm to obtain t-graphs for arbitrary realizations of the
model (Sec. II B), and for reference briefly show the t-graphs
for the Preisach model (Sec. II C).

A. Model

We model interactions via a linear dependence of the
switching fields U ±

i of hysteron i on the phases s j of all other
hysterons (Fig. 1):

U +,−
i (S) = u+,−

i − � j �=i ci js j, (1)

where S denotes the state {s1, s2, . . . } and u+,−
i and ci j are

the bare switching fields and interactions constants [25,26].
We take 0<u−

i <u+
i <1, require u+

1 >u+
2 >. . . and assume

no degeneracies to occur [20,21]. Furthermore, we choose a
gauge where cii = 0; note that nonzero diagonal interaction
constants cii only affect the values of U −

i and can readily be
absorbed in the bare switching fields u−

i .
The upper and lower switching fields for a given state S

follow from the minimum (maximum) value of the switching
fields of each hysteron:

U +(S) = min
i0

U +
i0

(S), (2)

U −(S) = max
ii

U −
i1

(S), (3)

where i0 (i1) runs over the hysterons that are 0 (1). State S
becomes unstable when U exceeds U +(S) or decreases below
U −(S), which initiates an up or down transition at critical
driving value U c = U ±(S) (note that extremal states have only
one transition).

Interactions can induce avalanches that proceed via inter-
mediate, unstable states. For example, consider the case where
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FIG. 1. Hysteresis diagrams for three interacting hysterons
driven by a global field U . A single hysteron features internal phase
si = 0, 1 and bare switching fields u+,−

i (blue, full line). Interac-
tions lead to multiple state-dependent switching fields U +,−

i (S) (gray,
dashed) for each hysteron.

S initially transitions to a state S′ at value of U where S′ is not
stable, and then transitions to a stable landing state S′′. We
call this an avalanche of length two, denote it as S →S′′, and
ignore the intermediate states which in experiments would not
be observable. By considering the stability of all hysterons in
the transition state S′ at U = U c, the following scenario’s can
arise (Fig. 2).

(i) The transition state S′ is a stable landing state when
U −(S′)<U c <U +(S′) yielding a transition between state S
and S′ [Fig. 2(a)]. While S′ is always stable at U = U c when
ci j = 0, interactions may cause state S′ to be unstable, leading
to avalanches.

(ii) When one “0” hysteron of S′ is unstable, there is an
additional up transition from S′ to S′′ [Fig. 2(b)], while when
one “1” hysteron is unstable, there is an additional down
transition from S′ to S′′ [Fig. 2(c)]. If state S′′ is stable, then
we obtain an avalanche of length two between state S and S′′
in which two hysterons change their phase at fixed U =U c; if
state S′′ is unstable, we iterate and may find longer avalanches.

(iii) Occasionally more than one hysteron may be unstable
in a given state [Fig. 2(d)]. Despite not having been discussed
before to the best of our knowledge, such scenario can readily
be constructed. In fact, we have observed that such conditions
can arise for arbitrarily weak interactions, and have a signif-
icant statistical weight for stronger interactions (see Secs. III
and IV). Hence, they are not a mathematical subtlety, but are
an intrinsic feature of arbitrarily linearly coupled hysterons.
We note that extensions of the model could be considered

S'
(a)

S'
(d)

S'
(c)

S'
(b)

FIG. 2. Four scenario’s after an up-transition reaches the state S′

at U =U c (red incoming arrow coming from below), depending on
the stability of each hysteron in state S′ at U =U c; unstable hysterons
in the 0 (1) phase are visualized as (purple) dots at the top (bottom) of
the node S′. (a) The transition terminates at S′ when all hysterons are
stable at U =U c. (b) If one phase 0 hysteron is unstable at U =U c,
then this hysteron switches to phase 1, defining an additional step
of the transition that now forms an avalanche (outgoing arrow, red).
(c) If one phase 1 hysteron is unstable at U =U c, then this hysteron
switches to phase 1, defining an additional step of the transition that
now forms an avalanche (outgoing arrow, blue). (d) If more than
one hysteron is unstable at U = U c, then we consider the model
ill-defined.

so that the “most unstable” hysteron would switch and define
state S′′. However, here we choose to consider the correspond-
ing t-graph to be ill-defined whenever a state with multiple
unstable hysterons arises.

B. Recursive algorithm and transition graphs

We collect all transitions between states that can be reached
from the extremal states 0 = {0, 0, . . . } or 1 = {1, 1, . . . } into
a t-graph via an iterative algorithm. Starting from state {0},
we determine its up transition and landing state, and then
iteratively determine the transitions from all fresh landing
states, until no new fresh states can be found. The result-
ing t-graph contains all N nodes that are reachable from the
extremal states and 2N − 2 directed edges which represent
the transitions, where each edge is labeled by its character
(up or down), its critical field U + or U −, and the number of
intermediate steps.

We collect transitions between states that can be reached
from the ground state 0 = {0, 0, . . . } into a t-graph via an
iterative algorithm. This algorithm initiates a t-graph by node
0 and determines its up transition to a state S1 following the
procedure outlined above. Node S1 is then added to the graph,
as well as the edge 0 → S1. Node 0 is than labeled as “stale,”
as all its transitions have been determined, and S1 is labeled
as a “fresh” node. The up (provided S1 �= 1 = {1, 1, . . . }) and
down transitions from the fresh state S1 to states S2 and S3

are determined, state S1 is labeled as stale, and states S2 and
S3 are added to the t-graph and labeled as fresh provided they
have not been visited before. This procedure is repeated until
no more new fresh states are found.

Occasionally, loop-like avalanches of the form S →
S′ · · · → S occur: we consider the corresponding t-graphs
ill-defined. Again, we note that such cases can readily be
constructed (we give an explicit example in Sec. III B) and
carry a significant weight. We suggest that more elaborate
models, which for example would have an energy functional
and dissipation, could be constructed to avoid such self-loops;
for simple linearly coupled hysterons, they are an intrinsic
feature of the model.

The resulting t-graph contains all N nodes that are con-
nected to state 0 and the 2N − 2 directed edges which
represents the transitions, where each edge is labeled by its
character (up or down transition), its corresponding criti-
cal field U c, and its length, i.e., the number of steps in an
avalanche (one for an ordinary transition). Graphically, we
order the nodes from bottom to top as function of their mag-
netization m = �si, and from left to right lexicographically.
Up and down transitions are colored red and blue, and the
thickness of the edges represents the length of the avalanche.

T-graph construction involves evaluating “design” inequal-
ities on the parameters which govern each transition. These
inequalities are not independent and vary strongly with the
t-graph topology. Moreover, certain parameters, in particular
for strong interactions, may yield avalanches that return to
their initial state (self-loops), or contain states where more
than one hysteron is unstable; we consider the corresponding
t-graphs ill-defined. Together, this makes finding and classify-
ing all t-graphs complex.
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FIG. 3. T-graphs for the n = 3 Preisach model (no interactions),
for u+

1 > u+
2 > u+

3 . Up and down transitions are represented by red
(light gray) and blue (dark gray) arrows, respectively. The ordering
of the lower switching fields determines each graph [20,21]: (a) u−

1 >

u−
2 > u−

3 . (b) u−
1 > u−

3 > u−
2 . (c) u−

2 > u−
1 > u−

3 . (d) u−
2 > u−

3 > u−
1 .

(e) u−
3 > u−

1 > u−
2 . (f) u−

3 > u−
2 > u−

1 .

C. Physical relevance

The model that we discuss here is perhaps the simplest
model in which hysterons are interacting, and as such is a
natural choice, also studied in Refs. [25,26]. One might won-
der if in physical systems, the interaction coefficients are free
or are subject to additional constraints, such as reciprocity.
While more work is needed, experiments on crumpled sheets
in which such interactions can be measured do not find any ev-
idence for such constraints [13,32]. In fact, these experiments
suggest that the coupling coefficient ci j may take on dif-
ferent values—including with different signs—for the upper
and lower switching field, so that twice as much interactions
coefficients might be needed to describe the full experiments
[13]. Nevertheless, the current model, despite having less free
parameters, contains t-graphs of similar complexity as found
experimentally. Finally, we stress that bistable elements are a
work horse of mechanical metamaterials, and we are already
finding that coupling these appropriately yields experimental
realizations of interacting hysterons with accompanying com-
plex t-graphs [33]. Hence, while much more work is needed,
the model studied here provides a solid jumping point for both
experimental and more advanced theoretical studies.

1. Preisach t-graphs

In the absence of interactions, the model is exactly the
Preisach model, whose t-graphs and properties have recently
received renewed attention [20,21]. Under the assumed or-
dering of the upper switching fields, each permutation of the
ordering of the lower switching fields yields a unique t-graph,
that we include here (for n=3) to gain familiarity with our
representation of the t-graphs and for comparison (Fig. 3). We
note that the two n = 2 Preisach t-graphs are equivalent to the
subgraphs of Fig. 2 obtained by pruning the {1xx} states.

III. TWO INTERACTING HYSTERONS

In this section, we determine all possible t-graphs for two
interacting hysterons by exhaustively sampling the parameter
space span by the four bare switching fields u+,−

i and two

(a) (b)

)i()f( )h(

(c) (d) (e)

(j) (k)(g)

FIG. 4. Distinct transition graphs for n = 2 coupled hysterons.
(a, b) For ci j = 0 we recover the well-known Preisach t-graphs
[20,21]. (c–e) For ci j < 0, “horizontal” avalanches of length two
(thick arrows) may occur. (f–i) For ci j > 0, four additional t-graphs
with vertical avalanches may occur. (j, k) For ci j of mixed sign, two
additional t-graphs featuring pseudoavalanches of length three (thick
arrows) are observed.

coupling coefficients c12 and c21 (Sec. III A). We then work
out the precise constraints on these parameters for each t-
graph to occur (Sec. III B). Finally, we present their statistical
likelihood as function of interaction strength and uncover
powerlaw scaling (Sec. III C).

Our results show that the underlying inequalities on the
design parameters already become numerous and have an
intricate structure for n = 2, reflecting the complexity of the
underlying problem. Crucially, our results clarify and quantify
how even weak interactions lead to a significant growth in the
number and variety of t-graphs.

A. Novel t-graphs due to interactions

Without interactions, there are only two distinct t-graphs
[Figs. 4(a) and 4(b)], selected by the sign of u−

1 −u−
2 [20,21].

For antiferromagnetic interactions, where ci j � 0 and the
flipping of hysteron j from 0→1 suppresses the flipping
of hysteron i from 0→1, we obtain three additional t-
graphs which feature avalanches ({01}→{10}) of length
two [Figs. 4(c)–(e)], while for purely ferromagnetic interac-
tions (ci j � 0), there are four additional t-graphs featuring
avalanches {00}→{11} [Figs. 4(f)–(i)]. For interactions of
mixed sign, two additional t-graphs that both feature pseu-
doavalanches of length three occur [Figs. 4(j) and 4(k)]—e.g.,
the transition {00}→{10} in t-graph (j) proceeds via interme-
diate states {01} and {11}. We note that for strong coupling,
approximately 6% of parameters yield ill-defined t-graphs
(see Sec. II A). We conclude that for two hysterons, inter-
actions yield qualitatively new transitions—avalanches and
pseudoavalanches—and signficantly increase the number and
diversity of t-graphs.

B. Design inequalities for n = 2 interacting hysterons

One advantage of studying the case of only two interact-
ing hysterons is that this allows to summarize the full set
of conditions on the design parameters u±

i , c12 and c21 for
each of the 11 t-graphs of n = 2 interacting hysterons. These
inequalities give insight into the nature of the design problem
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FIG. 5. (a) Switching fields of each hysteron in each potential
state of two interacting hysterons. Up and won arrows indicate up and
down transitions; left and right positioning indicates switching fields
for hysteron 1 and 2, respectively. (b) Decision tree summarizing the
conditions for transitions starting from state {00}.

and the statistics as discussed in Sec. III C. Unfortunately,
obtaining these inequalities is slightly tedious; after providing
the general idea we focus on a single subcase to guide the
reader (Fig. 5), before stating the final results in Table I.

We recall the following design constraints on the bare
switching fields:

u+
2 < u+

1 , (4)

u−
1 < u+

1 , (5)

u−
2 < u+

2 . (6)

To systematically determine the conditions for all potential
(2 × 2n − 2) up and down transitions, we first determine the
n · 2n switching fields of each hysteron [Fig. 5(a)]. We then

TABLE I. Top: Nine conditions xi on the design parameters.
Bottom: Necessary and sufficient conditions for each n = 2 t-graph
(a–k) as well as for ill-defined t-graphs.

Condition

x1 −u+
1 +u+

2 +c12 > 0
x2 −u−

1 +u−
2 +c12 > 0

x3 +u−
1 −u−

2 −c12 +c21 > 0
x4 +u−

1 −u−
2 +c21 > 0

x5 −u+
2 +u−

2 −c21 > 0
x6 +u+

1 −u−
2 −c12 +c21 > 0

x7 −u−
1 +u+

2 > 0
x8 +u+

1 −u−
1 −c12 > 0

x9 +u−
1 −u+

2 −c12 > 0

t-graph Condition

(a) ¬x1 ∧ ¬x3 ∧ ¬x4 ∧ x6 ∧ x7

(b) ¬x1 ∧ ¬x2 ∧ x3 ∧ x6

(c) ¬x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x6 ∧ x7 ∧ x8

(d) ¬x1 ∧ ¬x3 ∧ ¬x4 ∧ x6 ∧ ¬x7 ∧ x8

(e) ¬x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x6 ∧ ¬x7 ∧ x8

(f) ¬x1 ∧ ((x2 ∧ x3) ∨ (¬x3 ∧ x4)) ∧ ¬x5

(g) x1 ∧ ¬x2 ∧ x3 ∧ ¬x5 ∧ x6 ∧ ¬x9

(h) x1 ∧ ¬x3 ∧ ¬x4 ∧ ¬x5 ∧ x7 ∧ ¬x9

(i) x1 ∧ ((x2 ∧ x3) ∨ (¬x3 ∧ x4)) ∧ ¬x5

(j) x1 ∧ ¬x3 ∧ ¬x4 ∧ x5 ∧ x7

(k) ¬x1 ∧ ¬x3 ∧ x4 ∧ x5 ∧ x6

ill ¬x3 ∧ x5 ∧ ¬x6 ∧ ¬x7 ∧ ¬x8

choose an initial state S and proceed via a three step process:
(i) We determine the conditions for the switching hysteron and
the concommitant switching field U c(S). (We note that while
for n = 2 only the down transition from state {11} yields a
nontrivial condition, for larger n the situation is more elabo-
rate.) (ii) We consider the stability conditions of the transition
state S′ at U c. If S′ is stable, then it is a landing state, and
we have found an S → S′ transition. (iii) When one stability
condition for S′ is not met it is unstable, an avalanche occurs
with a new switching hysteron and towards the next transition
state S′—the critical U remains as determined in the first step.
For this new state, we repeat steps (ii)–(iii). When more than
one stability condition is not met, the avalanche is ill-defined.
Similarly, when S′ = S, the system is ill-defined as this causes
a loop.

Starting out at state S, these three steps yield a set of
inequalities for all transitions starting out at S which span a
decision tree. We note that the number of inequalities quickly
grows with the number of steps in an avalanche (i.e., deeper
into the three) and also with the number of hysterons, consis-
tent with the explosive growth in the variety of t-graphs with
n. Repeating this exercise for all states S, and collecting the
inequalities in all corresponding threes, while tedious, yields
a complete set of necessary and sufficient conditions on the
design parameters for each t-graph, as well as conditions for
the t-graph to be ill-defined.

1. Example

To illustrate this approach, we explicitly consider the up
transitions from state {00} towards all other states following
the three step process. (i) The design constraint Eq. (4) deter-
mines that the second hysteron will switch, so that U c = u+

2
and S′ = {01}. (ii) For S′ to be stable at U c, we require

U c = u+
2 < u+

1 − c12, (7)

U c = u+
2 > u−

2 , (8)

where we note that the second condition is trivially satisfied
due to the design constraint Eq. (6). Hence, we can conclude
the following necessary and sufficient condition:

{00} → {01} : u+
2 < u+

1 − c12. (9)

We note that for noninteracting hysterons, where c12 = 0, this
condition is trivially satisfied due to design condition Eq. (4).
Moreover, this constraint can only be violated for positive
c12 > u+

2 − u+
1 . More generally, “vertical” and “horizontal”

avalanches require positive and negative coupling coefficients.
We now iterate this process, by considering the case when

the transition state {01} is not stable, i.e., when Eq. (9) is not
satisfied. We then obtain a new transition state S′ = {11}, and
we check the stability of S′:

u+
2 > u−

1 − c12, (10)

u+
2 > u−

2 − c21. (11)

We note that Eq. (10) is automatically satisfied because of
the design constraint Eq. (5) and the fact that Eq. (9) is not
satisfied. Inequality (10) is thus redundant and can be re-
moved from our considerations—such dependencies between
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inequalities on the design parameters frequently occur. Hence,
the necessary conditions for an avalanche from {00} to {11}
are

{00} → {11} :

u+
2 > u+

1 − c12, (12)

u+
2 > u−

2 − c21. (13)

We now consider whether these equations are sufficient. For
an avalanche, we do not keep track of the intermediate tran-
sition states and only monitor the initial and final state. In
principle, the {00} → {11} avalanche might also have pro-
ceeded differently, e.g., via the {10} state; in this specific
case, the design constraint Eq. (4) blocks this possibility. For
larger systems, finding sufficient and necessary conditions
for avalanches becomes much more involved. However, in
this specific case, Eqs. (12) and (13) are both sufficient and
necessary conditions for the {00} → {11} avalanche.

We repeat this procedure again in case that state {11} is
unstable at U = u+

2 , which happens when Eq. (12) is satisfied,
and Eq. (13) is violated, and which leads to a new transition
state {10}. Checking the stability of this state yields

u+
2 < u+

2 − c21, (14)

u+
2 > u−

1 . (15)

We note that c21 has to be negative to violate Eq. (13), which
implies that Eq. (14) is satisfied and can be removed from our
consideration. Hence, the conditions for the pseudoavalanche
of length three {00} → {10} of the t-graph shown in Fig. 4(j)
are

{00} → {10} :

u+
2 > u+

1 − c12, (16)

u+
2 < u−

2 − c21, (17)

u+
2 > u−

1 . (18)

Finally, we note that violating the last equality Eq. (18)
yields a cycle {00} → {00}, which yields the t-graph to
be ill-defined; this indeed can happen (a concrete realiza-
tion would be u+

1 = 0.5, u−
1 = 0.8, u+

2 = 1, u−
2 = 0.7, c12 =

0.1, c21 = −0.4). We summarize these findings in a decision
three [Fig. 5(b)], where we stress that for other states and for
more hysterons, the situation generally is much more com-
plex, featuring multiple conditions and outcomes per branch
point, and cases where different branches yield the same tran-
sition.

After collecting all inequalities for all possible n = 2
transitions, and removing redundant inequalities, we obtain
necessary and sufficient conditions for each of the 11 possible
t-graphs, as well as precise conditions for the occurrence of
ill-defined graphs. We can express these by combining nine
inequalities xi, and we have checked these conditions numer-
ically. We note that these inequalities xi are not independent
- for example, x1 ∧ x8 ⇒ x7 - and we have checked that only
78 different combinations of {x1, . . . , x9} arise.

FIG. 6. Probability of each t-graph shown in Fig. 4 as function of
magnitude of the interactions C; fractions are for well-defined cases
only (the fraction of ill-defined cases grows from 0% at small C to
6% at large C). Thin gray lines indicate integer powerlaw scalings.

The rather impenetrable nature of these sets of inequali-
ties reflect the intrinsic complexity of the relation between
design parameters and t-graphs. Nevertheless, we stress here
that obtaining these inequalities is straightforward and could
be automated. Solving these inequalities, i.e., finding design
parameters for a given t-graph (potentially with additional
constraints such as weak interactions, or with a number of
interactions constants zero) can straightforwardly be imple-
mented using linear programming. Finally, as we will see in
the next section, these inequalities give crucial insight into the
statistical properties of t-graphs.

C. Statistics

We have sampled the probability for each t-graph to occur
as a function of C (ensemble size 108), for the “mixed interac-
tion” case where |ci j |�C [Fig. 2(l)]. While the interactions
constants ci j are flatly sampled, only restricted by simple
independent constraints such as |ci j | < C, the bare switching
fields have to satisfy two sets of constraints: First, we require
u−

i < u+
i so that independent hysterons are well-defined, and

second, we require the ordering of the upper switching fields
(u+

1 > u+
2 > . . . ) which limits the number of t-graphs by sup-

pressing trivial permutations of the hysterons. To numerically
sample the switching fields that satisfy these constraints, we
use an algorithm that guarantees that, for ci j ≡ 0, all different
orderings of the lower switching fields, and thus all Preisach
t-graphs, occur with equal probability.

As shown in Fig. 6, our data shows that all t-graphs can
be realized for arbitrary weak interactions. This can be under-
stood from the invariance of the t-graph topology under shifts
of the switching fields and multiplications of all parameters:
The t-graph for c̄i j = λci j , ū±

i = λ(u±
i + 1/λ) maintains its

topology for arbitrarily small interaction constants (λ→0).
Hence, for any set of parameters, we can find other parameters
with arbitrarily small ci j such that the t-graph topology is
maintained. Crucially, this shows that weak interactions can
break the Preisach phenomenology when the switching fields
are close to each other.

Moreover, we find that these probabilities grow and decay
as powerlaws ∼Cn

i for small and large C, with integer ex-
ponents ni. This is because some of the design inequalities
are “critical” and require the fine tuning of parameters when
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ci j is large or small. As an example, consider condition x1 :
u+

2 − u+
1 > −c12. As the design constraint Eq. (4) stipulates

that u+
2 < u+

1 , x1 can only be satisfied when c12 is positive,
and when c12 ↓ 0 requires the difference between u+

1 and
u+

2 to become vanishingly small, which statistically happens
with probability O(|c|) - hence, x1 is a critical condition for
small |c|. Similarly, conditions x5, ¬x6 and ¬x8 also are sat-
isfied with probability O(|c|). Moreover, some combinations
of condition may only occur with probability O(|c|). When
m independent critical conditions occur, t-graphs can only
arise with probability O(|c|m). Similarly, when |c| becomes
very large, some (combinations) of the inequalities xi can
only be satisfied when the coupling constants are of order
one, which happens with probability O(|c|−1). Together, these
considerations explain the power law behavior seen in Fig. 6,
with the number of independent critical conditions controlling
ni.

We finally note that while the details of the scaling of
each t-graph may be intricate, the data in Fig. 6 suggests that
understanding both the small C Preisach limit, as well as the
large C limit is sufficient to capture more of the trends. For
large C, the interaction coefficients, c12 and c21 completely
dominate all state switching fields U ±

i , with the bare switching
fields acting as perturbations; while it’s physical interpretation
is not immediately clear, studying this limit in tandem with the
small C limit may provide insight into the statistical properties
of (groups of) t-graphs.

IV. THREE INTERACTING HYSTERONS

The number and qualitative diversity of t-graphs mush-
rooms with n. We determined t-graphs for 108 systems of n=3
hysterons for C =1. We stress that in absence of interactions,
there are only n! = 6 distinct t-graphs [20,21]. Strikingly, in
the presence of interactions we obtain more than 15,000 dis-
tinct t-graphs. To categorize the topology of these t-graphs, we
focus on three characterizations: the nature of the transitions,
the nature of pairs of transitions, and global topological mea-
sures of the t-graph. In particular, individual transitions can
feature avalanches, where more than one hysteron changes
state simultaneously, and pairs of transitions can be scram-
bled, meaning that the switching order of hysterons becomes
state dependent. These “local” features can lead to global
t-graph topologies absent in the Preisach model, including
the break-down of loop-Return Point Memory, subharmonic
cycles, and t-graphs that are multigraphs. Together, these new
features open up a large space of essentially unexplored be-
havior.

A. Main features of t-graphs of coupled hysterons

To illustrate the main new features of t-graphs due to inter-
actions, we present nine examples of t-graphs that together
illustrate the essential features [Figs. 7(a)–(i)] (see Supple-
mental Material [35]).

(i) Scrambling. In the Preisach model, the switching order
is independent of state. We define two nonavalanche transi-
tions as scrambled when they are inconsistent with such a
state-independent ordering. For example, consider the pair of
transitions {011}→ {001} and {111}→ {110} in the t-graph

FIG. 7. (a–c) Examples of scrambled t-graphs, featuring either
l-RPM (a), a subharmonic-cycle (b), or neither (c). (d–f) Examples
of t-graphs with avalanches (thick arrows), featuring either l-RPM
(d), a subharmonic-cycle (e), or neither (f). (g) t-graph featuring a
dissonant avalanche. (h, i) Multigraphs with (h) and without (i) a
subharmonic cycle. (j) Venn-diagram for properties of n=3 t-graphs;
letters refer to the examples in earlier panels, while Preisach t-graphs
are indicated by “(p).”

in Fig. 7(a). The presence of the first transition implies that
U −

2 (011) > U −
3 (011), and the second implies that U −

2 (111) <

U −
3 (111). Such a pair of inequalities of the form U ±

i (S1) >

U ±
j (S1) and U ±

i (S2) < U ±
j (S2) can only occur due to hysteron

interactions, and we label the pair of corresponding transi-
tions as scrambled. We note that when avalanches are present,
their intermediate steps are “hidden,” hindering to establish
whether such a transitions are part of a scrambled pair of
transitions—for the notion of scrambling, we therefore focus
on pairs of direct (i.e., nonavalanche) transitions.

(ii) Avalanches. Without interactions, each transition cor-
responds to a single hysteron switching its phase, but in the
presence of interactions many t-graphs feature avalanches
where more than one hysteron changes phase simultane-
ously [Figs. 7(d)–(f)]. We note that ferromagnetic interactions
promote “vertical” avalanches, where multiple hysterons col-
lectively switch up or down. The magnetization m(S) := �isi

then increases or decreases by more than one. In contrast, an-
tiferromagnetic interactions promote “horizontal” avalanches,
where the magnetization remains constant or changes at most
by one. Mixed interactions in addition can lead to more com-
plex avalanches, such as the “pseudoavalanches” shown in
Figs. 4(j) and 4(k).

(iii) Dissonance. So far, up and down transitions, initiated
by an increase or decrease of the global driving U , lead to the
increase (respectively, decrease) of the magnetization m. Re-
markably, mixed ferro/antiferromagnetic interactions allow
for dissonant avalanches, where an up (down) avalanche leads
to a decrease (increase) of the magnetization [Fig. 7(g)].

These three features significantly extend the space of pos-
sible t-graphs in comparison to those found in the Preisach
model. Scrambling breaks the notion of a unique switching
ordering, avalanches break the notion of nearby states, and
dissonance blurs the connection between (in)decrease of the
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driving field, and in(decrease) of the number of hysterons in
state “1.” Collectively, these features lead to a range of new
global behaviors of the t-graphs:

(iv) Multigraphs. The presence of avalanches and disso-
nant transitions leads to cases where two states are connected
both by an up and down transition—e.g., a pair of “horizon-
tal” avalanches that both preserve the magnetization, or an
ordinary transition paired with a dissonant avalanche. The
t-graphs then become directed multigraphs [Figs. 7(h) and
7(i)]. We stress here that it is essential for the algorithm that
constructs t-graphs to allow for such multigraphs, which are
surprisingly common for intermediate coupling coefficients.

(v) Breakdown of loop—Return point memory. Return point
memory (RPM) occurs in a range of physical systems and
in particular has been widely studied for the Preisach model
[17,20,21]. Loosely speaking, a system exhibits RPM when
it revisits a previous state when the driving revisits a previous
minimum or maximum of the driving. A t-graph satisfies RPM
when one cannot escape a subloop without the driving passing
through some previously established extremal values [20,21].
While the presence of strict RPM may depend on the precise
values of the switching fields [13], a recent definition of so-
called loop-RPM (l-RPM) focusses on the topology of the
t-graph [20,21]. Essentially, l-RPM requires that each loop,
given by a pair of “top” and “bottom” states connected by two
sequences of purely up and a down transitions, is “absorbing”:
this requires that any orbit starting from a state in this loop
escapes the loop by going to either the top or bottom state,
and not differently (see Supplemental Material [35] for the
precise definition). This definition is clearly analogous of that
of RPM, and we note here that although RPM implies l-RPM,
the converse is not necessarily true [13]. The t-graphs of the
Preisach model all satisfy both properties, and ferromagnetic
interactions have long been known to preserve RPM due to
the so-called no-passing property [17,20,21].

Figures 4(a), 4(d) and 4(g) satisfy l-RPM: (antiferromag-
netic) interactions frequently break l-RPM. For example, in
Fig. 7(c) the transitions {100}→{110}→{111} escape the
subloop between nodes {000} and {101} (in the SI we describe
for all other t-graphs the precise transitions that break l-RPM).
We finally note that the presence of either scrambling or
avalanches is a necessary, but not sufficient condition to break
l-RPM.

(vi) Subharmonic cycles. Scrambling may also lead to
subharmonic cycles (S-cycles), where under cyclic driving
the system revisits earlier states only after more than one
driving cycle. Similar to the discussion on l-RPM, we require
here a definition in terms of the t-graphs topology, without
regard to the precise switching values. Hence, we say the
graph has an S-cycle if there are sequences of up and down
transitions where one returns to the beginning state under
more than one up/down subsequence. Figures 7(b), 7(e) and
7(h) show t-graphs with such S-cycles; for example, the t-
graph of Fig. 7(b) contains an S-cycle of period two: {001}↑
{011}↑{111}↓{110}↓{100}↑{101}↓{001} . . . where ↑ and
↓ denote up and down transitions.

(vii) Absence of l-RPM and S-cycles. While we observe that
l-RPM and the presence of S-cycles are mutually exclusive for
n = 3, we stress here that it is also possible to break l-RPM
without having a S-cycle, as shown in Figs. 7(c), 7(f) and 7(i).

The presence of scrambling or avalanches is necessary,
but clearly not sufficient to break l-RPM or obtain S-cycles.
Beyond that, we find that, at least for n = 3, the “local”
measures—scrambling, avalanches, multigraphs—can occur
concurrently with the “global” measures, l-RPM and the pres-
ence of S-cycles, except that multigraphs can never satisfy
l-RPM [Fig. 7(j)]. This can easily be understood by noting
that a multiedge in a given loop implies that an up-boundary
contains a down transition, or a down-boundary contains an
up-transition, which allows to establish an orbit that violates
l-RPM.

In Table II we present examples of switching fields and
coupling coefficients that produce t-graphs with the same
topologies as shown in Fig. 7. These parameter values have
been selected after some manual optimization steps, setting
some small interactions to zero and rounding of all values to
at most two significant digits. While these parameters are not
optimal in any well-defined sense, they may serve as specific
starting points for further studies, as well as to guide the
reader in the construction of t-graphs by providing specific
examples. Moreover, we have numerically checked that for
these parameters, small changes of O(10−3) do not change
the topology of the t-graph, thus demonstrating that even rare
graphs are robust.

In summary, these examples illustrate how hysteron inter-
actions generate a host of new features of the t-graphs. In
particular, scrambling breaks the state independent ordering
of transitions seen in Preisach t-graphs, avalanches and dis-
sonance enlarge the types of transitions between states, and
together these can yield multigraphs, breakdown of l-RPM
and subharmonic cycles.

B. Statistics

For C = 1, more that 62% of distinct t-graphs break l-
RPM. However, not all of these t-graphs are statistically
equally likely. To probe the statistical properties, we have
sampled the probability of l-RPM, avalanches, scrambling,
S-cycles, multigraphs and ill-defined cases as function of C
for an ensemble size 105 (Fig. 8). Strikingly, the majority of
random parameters yield t-graphs that satisfy l-RPM (mini-
mum fraction ∼0.93 for C ≈ 0.4). Hence, while a fraction
of all t-graphs dominates the statistics, interactions produce
a wide variety of t-graphs.

The probabilities of each class of t-graphs vary similarly to
the probability of individual t-graphs, with integer powerlaws
∼Cn, and also point to well defined behavior in the C → ∞
limit. Most interesting behavior occurs for C between 0.1 and
1, where the probability of scrambled transitions, S-cycles
and multigraphs peaks. For large C the number of ill-defined
t-graphs plateaus at 57%, and explorations for larger n indicate
even larger percentages. This suggests that additional rules
that avoid ill-defined transitions and/or loops are necessary to
study the behavior of larger systems with strong interactions.
Finally, for the remaining 43% of parameters that yield well-
defined t-graphs, most lead to t-graphs with avalanches and
which satisfy l-RPM.

We have further explored differences between purely
ferromagnetic, purely antiferromagnetic, and mixed interac-
tions. First, we demonstrate that the statistical weight of
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TABLE II. Examples of switching fields and coupling coefficients that produce the t-graphs shown in Fig. 7.

Panel u+
1 u+

2 u+
3 u−

1 u−
1 u−

1 c12 c13 c21 c23 c31 c32

(a) 0.9 0.6 0.5 0.2 0.4 0.1 0 0 0 0 −0.2 −0.2
(b) 1 0.8 0.6 0.55 0 0.4 −0.1 −0.4 −0.75 −0.45 −0.4 −0.45
(c) 1 0.9 0.8 0.2 0.8 0 0 0 0 −0.15 −0.3 0
(d) 1 0.7 0.5 0.3 0.6 0.4 0.0 −0.15 0 0.25 0 0
(e) 1 0.9 0.8 0.3 0.2 0.5 0.25 −0.2 0 0.2 0 0
(f) 0.9 0.7 0.6 0 0.1 0.3 0.1 −0.3 0.3 −0.25 0 −0.6
(g) 0.9 0.7 0.5 0.1 0.4 0.35 0.3 −0.4 −0.7 0 −0.7 0.1
(h) 1 0.95 0.9 0.55 0.6 0.7 0.23 −0.3 0.1 0.4 0.3 −0.18
(i) 0.75 0.6 0.3 0.35 0.39 0.28 −0.05 −0.30 0 −0.4 0.05 −0.6

individual t-graphs is broadly distributed, by studying 108

t-graphs realized for interactions strengths C = 0.3 and C =
1 and for mixed (−C <ci j <C), ferromagnetic (0<ci j <C),
and purely antiferromagnetic (−C <ci j <0) interactions. By
ordering each t-graph by its probability (from high to low),
we observe that the probabilities for a given t-graph span
many decades, with the majority of t-graphs spanning a small
fraction of parameter space [Fig. 9(a)].

Second, and consistent with the profusion of rare t-graphs,
we find that the number of distinct t-graphs as function of
the number of samples grows slowly [Fig. 9(b)]. In particular,
while for 108 realizations the number of t-graphs for purely
ferromagnetic and antiferromagnetic appears has (nearly) sat-
urated around 198 and O(4050), the number of t-graphs for
mixed interactions is still growing [Fig. 9(b)]. Hence, exhaus-
tive sampling, or smarter techniques to map out the space of
t-graphs can be expected to yield even more, rare t-graphs.

Third, we observe purely ferromagnetic interactions do
not generate S-cycles, multigraphs or dissonant avalanches
and only produce t-graphs that satisfy l-RPM (possibly with
“vertical” avalanches). This is completely consistent with
earlier observations that ferromagnetic interactions preserve
the no-passing property, severely restricting the t-graphs and
pathways [16–21]. In contrast, purely antiferromagnetic can
break l-RPM, generate S-cycles, and yield multigraphs, but

l-RPM
Avalanches
Scrambled
S-cycles
Multigraphs
Ill-defined

FIG. 8. Probabilities of n=3 t-graph types, where ci j ∈ [−C,C].
These probabilities grow and decay as integer power-laws (dashed
lines). While scrambling, S-cycles, and multigraphs most likely
arise for intermediate interactions, the fraction of t-graphs featuring
avalanches increases with C and plateaus at 80%. The fraction of
parameters that yield ill-defined t-graphs also increases with C and
plateaus at 57%; fractions are for well-defined cases only.

cannot create dissonant avalanches. Together, this shows that
while antiferromagnetic interactions are essential to obtain
exotic behavior, mixed interactions produce the largest variety
of t-graphs.

Together, interacting hysterons lead to a large space of es-
sentially unexplored t-graphs. Three features stand out. First,
while statistically, l-RPM is the most likely global behavior,
even for strong coupling, a large number of t-graphs with
qualitatively different features can be found. Second, scram-
bling breaks and avalanches can break the unique ordering in
the switching sequences, and this is a necessary, although not
sufficient property to break l-RPM, and as such can be seen as
the first step in a hierarchy of increasing complexity. Third,
dissonant avalanches break the link between up and down
transitions in increase and decrease of the magnetization, and
open up the possibility of multigraphs, which never satisfy
l-RPM and lead to even more strongly nonclassical behavior.

V. DESIGNER PATHWAYS

We suggest that the complex pathways of interacting
hysterons naturally can be described in the language of
computing. In particular, the directed graphs that encode
sequential computations in finite state machines [34] are
strongly reminiscent of t-graphs, where the labels of each
edge (“up transition at U = 0.5”) play the role of the input to
the “hysteron machine.”

As a first example of such a hysteron machine we exploit
dissonant avalanches to realize t-graphs that contain all eight
states in a single pathway of up (or down) transitions. In
our dataset, 740 realizations representing 51 distinct t-graphs
contain such pathways. We select an example where both the
up and down pathways between 0 and 1 follow the ordered
binary numbers 000-111, and which acts as an analog-digital
converter (ADC) [Fig. 10(a)]. The design inequalities specify
a linear programming problem [25], and a judicious choice of
parameters (see Table III) allows to tune the critical switching
fields of the seven up and seven down transitions exactly
to values 0.1, 0.2, . . . , 0.7, respectively, 0.65, 0.55, . . . , 0.05,
making all states easily addressable and all transitions be-
tween states hysteretic (as required for ADCs). We have in
addition verified that for the this design the t-graph’s topology
is stable to random perturbations of the design parameters
of at least magnitude 10−3. As a second example, we
explore the breakdown of l-RPM and select an “accumula-
tor” t-graph that contains the pathway {001}↑{011}↓{010}↑
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(a) (b)

FIG. 9. Statistical measures of n = 3 t-graphs, for two different interactions strengths and for mixed, ferromagnetic, and purely antiferro-
magnetic interactions. (a) Individual t-graphs occur with probabilities that can span at least four orders of magnitude. (b) As a function of the
number of realizations, the number of t-graphs grows slowly, and for mixed interactions has not saturated for 108 samples.

{110}�{100} [Figs. 4(b) and 4(c)]. Hence, under cyclic driv-
ing, a system described by such a t-graphs “counts to two.”
This behavior has recently been observed by us in experi-
ments, and may be related to transient memory [13,26].

(a) (b)

(d)

0.5

1 1.05

0.4
0.4

0.75

0

0.150.1

0.6
0.7

0.4

�me

U

0.4

1

0.15

0.5
0.6
0.7

011
001 010

110
100

110
100

(c)

0.6

1 1

0.41
0.405

0.66

0

0.2250.08

0.6
0.6

0.42

FIG. 10. (a) T-graph that sequentially accesses states by sweep-
ing U (we have changed the curvature of the arrows for visibility).
(b) Accumulator t-graph with switching fields as indicated [Table
III(b)]. (c) Response for the t-graphs shown in panel (b), demonstrat-
ing that for 0.7<UM <1, states {110} and {100} are only reached
after two driving cycles. Dashed lines indicate critical switching
fields, and gray regions indicate potential transitions to the extremal
states. (d) Switching fields corresponding to an alternative design for
the accumulator [Table III(d)].

This example is particularly rich, as even for a given
topology, different response can be encoded depending on
the precise values and orderings of the switching field. To
demonstrate this, we first choose parameters such that the
switching fields of the two down transitions {011}↓{010} and
{110}↓{100} are equal to 0.4, while the switching fields for
{001}↑{011}, {010}↑{110}, and {100}↑{110} are equal to
0.5, 0.6, and 0.7, respectively [Table III(b)]. We have verified
that the t-graph’s topology is stable to random perturbations
of the design parameters of magnitude 10−3.

The response of this system when U is cycled
between um >0.15 and uM < 1 evidences different
accumulator/counting behavior. For 0.7<UM <1, the system
reaches state {011} at the first peak, and state {110} at
subsequent peaks: this pathway distinguishes between
one or more cyclical drivings [Fig. 10(c)]. Moreover, for
0.6<UM <0.7, the first cycle reaches {011}, the second {110}
and subsequent cycles remain stuck at {100} (“counting to
three”); for 0.5<UM <0.6, the first cycle reaches {011} and
subsequent cycles remain stuck at {010}. Hence, a collection
of three hysterons with appropriate interactions and switching
fields can accumulate and count to two or three, depending
on driving amplitude.

The parameters in our model offer freedom in the choice
of the critical switching fields, although there are some con-
straints. For example, requiring that all three relevant up
transitions in the accumulator t-graph({001}↑{011}, {010}↑
{110}, {100}↑{110}) are equal, necessitates the two down
transitions ({011}↓{010}, {110}↓{100}) to be unequal. To see
this, we notice that in terms of the design parameters, the
three up transitions are at u+

2 − c23, u+
1 − c12 and u+

2 − c21,

TABLE III. Examples of switching fields and coupling coefficients that produce the t-graphs shown in Fig. 10.

Panel u+
1 u+

2 u+
3 u−

1 u−
1 u−

1 c12 c13 c21 c23 c31 c32

(a) 0.8 0.4 0.1 0.35 0.15 0.05 0 0 0 0 −0.2 −0.2
(b) 0.7 0.45 0.4 0 0.15 0.1 0.1 −0.4 −0.25 −0.05 −0.35 −0.3
(d) 0.7 0.45 0.42 0 0.255 0.08 0.1 −0.4 −0.15 0 −0.15 −0.25 −0.33
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respectively, so that when all are equal, c21 = c23. Similarly,
for the down transitions to have equal switching fields, we
require u−

3 − c32 = u−
2 − c21. Finally, for the down transition

from state {011} land on state {010} and not on {001}, we
require the design inequality u−

3 − c32 > u−
2 − c23. When the

pair of down transitions are equal, this latter inequality can
be rewritten as u−

2 − c21 > u−
2 − c23 ⇒ c21 < c23, which is in

disagreement with the requirement that all three up transitions
are at the same switching field.

Nothwithstanding this constraint, it is easy to find design
parameters so that the three up-transitions are equal [Ta-
ble III(d)], yielding the critical switching fields shown in
Fig. 10(d). As all the relevant up switching fields are equal, the
only counting behavior that is left is “counting to two.” This
example demonstrates that even for a given t-graph topology,
qualitatively distinct responses and finite state machines may
be encoded.

We suggest that a wide variety of more complex functions
may be achievable in t-graphs that encode different topolo-
gies, such as (longer) S-cycles, multiple S-cycles, etc. Paired
with the design options that e.g., tune all relevant up transition
fields to the same value or specifically ordered values, the
design space for complex hysteron “machines” is very large.

VI. DISCUSSION

This work highlights that even small collections of weakly
interacting hysterons exhibit a staggering multitude and

variety of pathways and t-graphs, and suggests that hys-
terons with appropriate thresholds and interactions can act
as information processing devices. We highlight a number
of key questions. First, the types of t-graphs and underlying
computations that can be realized by interacting hysterons is
unknown, with interesting subquestions arising for interac-
tions that are purely ferromagnetic, purely antiferromagnetic,
reciprocal (ci j =c ji [25]), or sparse. Second, in exploratory
studies we have found that the fraction of random param-
eters that yield ill-defined t-graphs increases with n and
C and asymptotes to one. This suggests that strongly cou-
pled systems cannot trivially be described by hysterons, and
more advanced models, that avoid ambiguities due to mul-
tiple unstable hysterons or self-loops, are called for. Third,
metamaterials might yield physical realizations, with serially
coupled mechanical hysterons naturally implementing an-
tiferromagnetic interactions [27,31,33]. Finally, viscoelastic
effects could be leveraged to obtain rate-dependent pathways
and t-graphs and self-learning systems [36–40]. Together,
progress on these questions will realize targeted pathways and
information processing in designer materials.
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