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Abstract. Inspired by the recent observation of memory effects in the
nonlinear optical response of a coherently-driven micro-cavity, we in-
vestigate the effects of varying the memory time on the dynamics of
optical and mechanical resonators. For a memory time that is commen-
surate with the inverse dissipation rate, both optical and mechanical
resonators display stable limit cycles. In this regime, we evidence a
cascade of period-doubling bifurcations as the memory time increases.
For longer memory times, the mechanical resonator displays a regime
of chaotic dynamics associated with a double scroll attractor. We also
analyze the effects of the memory time on the spectrum and oscillation
amplitude of the oscillator. Our results point to new opportunities for
nonlinear energy harvesting, provided that a nonlinearity with memory
can be implemented in mechanical systems.

Despite what Newton’s laws suggest, physical systems do not respond instanta-
neously. Real systems generally have a non-instantaneous response, which can be
mathematically described by a time-delayed term in the equation of motion repre-
senting them [1,2,3,4,5,6,7,8]. Already a simple constant time delay can result in
complex behavior, such as delay-induced bifurcations [9,10,11] and chaos [12,13].
The more general classes of distributed time delays [14,15,16,17,18], time-varying
delays [19,20,21,22,23] and state-dependent delays [24,25] can also lead to a rich
phenomenology. Beyond their fundamental relevance, time-delayed systems are also
relevant to many applications in computation and machine learning [26,27,28,29,30,
31,32], sensing [33,34,35], and chaos-based communication [36,37,38]. While a num-
ber of systems with nonlinear time delay have garnered strong interest [39,40,41,22,
42], most efforts in the field have focused on systems with time delay in their linear
response.

Optical systems, and particularly lasers, have enabled numerous studies of the
physics emerging from a time-delayed response [43,44,45,46,47,48,49,50,51,52]. Re-
cently, coherently-driven thermo-optical nonlinear cavities have also attracted strong
interest in this context. They offer a convenient platform for probing the effects of a
distributed time delay, or memory, in the nonlinear optical response [53,54,55,56].
In this case, the nonlinear optical response is time-delayed because it is coupled to
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a slow variable, i.e., the temperature of the nonlinear medium in the cavity. From
the perspective of the full system (optical plus thermal degrees of freedom), the evo-
lution is local in time. Nonetheless, the slow dynamics of the temperature can lead
to a rich phenomenology for the optical degrees of freedom. For instance, recent ex-
periments with a thermo-optical nonlinear cavity revealed a universal scaling law for
hysteresis phenomena [55], and an enlarged bandwidth for noise-assisted amplifica-
tion of periodic signals [56]. Motivated by these recent findings of fundamental and
practical relevance, we hereby explore the physics emerging as the memory time of
the system is varied. We do this for a thermo-optical nonlinear cavity as well as for
a noise-driven mechanical oscillator with memory in its nonlinear response. In both
cases, we demonstrate the emergence of stable limit cycles when the delay time is
commensurate with the inverse dissipation rate of the oscillator. For the mechanical
oscillator, we also discover a chaotic regime associated with a double scroll attractor,
occurring for larger delay times. Our results have implications for nonlinear vibration
energy harvesters [57], which can be improved by a nonlinear response with memory.
We stress that the type of distributed time delay, or memory, we consider can be ex-
plained fully in terms of an instantaneous response of a higher-dimensional dynamical
system. However, the dynamical variable of interest (optical or mechanical) displays
effective memory effects due to its coupling to a slow variable.

Let us first demonstrate, experimentally, the existence of a distributed time-
delayed optical response of an oil-filled optical microcavity. Figure 1(a) illustrates
our experimental setup: a tunable Fabry-Pérot cavity filled with macadamia oil and
driven by a 532 nm continuous wave laser. The cavity [Fig. 1(b) inset] is made by a
planar and a concave mirror. The planar mirror comprises a 60 nm silver layer on a
glass substrate. The concave mirror has a diameter of 7 µm and a radius of curvature
of 12 µm. It is fabricated by milling a glass substrate with a focused ion beam [58],
and then coating it with a distributed Bragg reflector (DBR). The DBR has a peak
reflectance of 99.9% at the center of the stopband, located at 530 nm. Thanks to
micron-scale dimensions of the concave mirror strongly confining the optical modes,
we can probe a single mode when scanning the cavity length across a wide (> 10 nm)
range.

In a frame rotating at the frequency of the driving laser ω, the light field α in our
cavity satisfies:

iα̇(t) =

[
−∆− iΓ

2
+ U

∫ t

0

dsK(t− s)|α(s)|2
]
α(t) + i

√
κLF +

D√
2

[ξR(t) + iξI(t)] .

(1)

∆ = ω−ω0 is the laser-cavity detuning, with ω0 the cavity resonance frequency. Γ =
γ+κL+κR is the total dissipation rate, with γ the intrinsic loss rate, and κL (κR) the
input-output coupling rate through the left (right) mirror. U quantifies the strength
of the cubic nonlinearity, corresponding to effective photon-photon interactions in
optical systems. The memory kernel K(t) = exp (−t/τ) /τ accounts for the non-
instantaneous nonlinear response of our cavity, with memory time τ . τ is the time in
which the temperature of the oil relaxes to a steady state when the laser amplitude
F changes. The term Dξ(t) = D[ξR(t) + iξI(t)]/

√
2 represents Gaussian white noise

with variance D2 in the laser amplitude and phase. ξR,I(t) each have zero mean [i.e.,
〈ξR,I(t)〉 = 0], and are delta-correlated with unit variance [i.e., 〈ξR,I(t)ξR,I(t + t′)〉 =
δ(t′)]. Moreover, ξR(t) and ξI(t) are mutually uncorrelated. While (shot) noise with
these properties is inherent to laser light, a controlled amount of noise with the
same characteristics can be added by passing the laser through amplitude and phase
electro-optical modulators (EOMs) [56]. The spectral density of the amplitude noise
can be directly assessed by Fourier transforming a time-resolved measurement of the
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Fig. 1. (a) Schematic of our optical setup. Two electro-optical modulators (EOM) add
noise to the laser amplitude and phase. The laser light is then focused on an oil-filled optical
microcavity using microscope objectives. The transmitted light is measured using a photode-
tector (PD). (b) Transmitted intensity while opening and closing the cavity (black circles),
averaged over 20 cycles, for a laser power of 7.8 mW at the excitation objective. Yellow solid
(dashed) curves show stable (unstable) steady-state solutions of Eq. 1. Green solid curve
shows a dynamical simulation while scanning ∆/Γ , with F = 10.7

√
Γ . Inset: Schematic of

an oil-filled optical microcavity. (c) Transmitted intensity (black) when the input laser is
modulated by a chopper, creating a step function in the intensity (yellow). Inset: Zoom of
overshoot. Green line indicates the full-width half-maximum of the overshoot, which is 5 µs.
(d) Simulation of Eq. 1 when increasing F from 0 to 7

√
Γ at Γt = 5000, with ∆ = 1.4Γ .

Inset: Zoom of the overshoot. Green line indicates the width of the overshoot, which is τ/2.

laser intensity. Meanwhile, the phase noise can be similarly assessed by interfering
the laser light with itself at the detector, with the help of a beam splitter. Such
an interferometric approach translates phase fluctuations into intensity fluctuations,
thereby allowing for a full characterization of the noise.

The time integral in Eq. 1 implies that the nonlinear optical response of our cavity
is non-local in time. This temporal non-locality arises because we are restricting
our attention to the optical degrees of freedom, e.g., amplitude and phase of light.
However, Eq. 1 can also be written as a three-dimensional (3D) system of ordinary
differential equations (ODEs). Thus, by increasing the dimensionality of our system
by one and accounting for the dynamics of a new variable (the temperature of the oil
in our case), the response of the full system becomes instantaneous. Writing Eq. 1 as
a 3D system of ODEs is also convenient for numerical simulations. Hence, we rewrite
Eq. 1 as follows:

α̇R(t) = −Γ
2
αR(t) + [w(t)−∆]αI(t) +

√
κF +DξR/

√
2

α̇I(t) = −Γ
2
αI(t)− [w(t)−∆]αR(t) +DξI/

√
2

ẇ(t) =
{
U
[
α2
R(t) + α2

I (t)
]
− w(t)

}
/τ.

(2)

αR and αI are the real and imaginary parts of α, respectively, such that α = αR+iαI .

w =
∫ t

0
dsK(t− s)|α(s)|2 is the new variable, which accounts for the temperature of

the oil in our cavity. Eq. 2 can now be solved numerically using standard techniques
for stochastic ODEs. We used the xSPDE Matlab toolbox [59] and a fourth-order
Runge-Kutta algorithm for solving Eq. 2 and other equations ahead.

For strong driving (large F ), the cavity supports optical bistability: two stable
steady states with different intra-cavity intensity |α|2 at a single driving condition. To
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evidence bistability, we measure the transmitted intensity while scanning the cavity
length (and hence ∆) forward and backward. The black curve in Fig. 1(b) shows
the result when the laser power is 7.8 mW at the excitation objective. We observe a
large optical hysteresis, and bistability occurs in the 1.5 . ∆/Γ . 5 range. We also
observe a large overshoot around ∆/Γ = 1.5, which is due to the non-instantaneous
thermo-optical nonlinearity of the oil-filled cavity. The solid (dashed) yellow curve
in Fig. 1(b) shows stable (unstable) steady-state solutions, obtained by setting α̇ =
0 in Eq. 1. These steady-state calculations reproduce the bistability, but not the
overshoot. In contrast, dynamical simulations of Eq. 2, shown as solid green curves
in Fig. 1(b), reproduce our experimental observations including the overshoot. The
overshoot arises when the duration of the scan is similar to or less than the thermal
relaxation time of the oil [55], which is the case in our experiments.

Figures 1(c,d) further evidence the non-instantaneous nonlinear optical response
of our cavity. The black curve in Fig. 1(c) represents the transmitted intensity when
modulating the laser power in a step-like fashion, as shown by the yellow curve. Prior
to the step, the laser is blocked and the transmission is zero. Immediately after the
step, the transmission first increases to a low intensity state. Then, the nonlinearity
gradually builds up due to the laser-induced heating of the oil. This results in a slow
increase of the transmitted signal. Finally, after the nonlinearity has sufficiently built
up, the transmitted intensity displays a large overshoot followed by relaxation to a
high intensity steady state. In Fig. 1(d) we numerically reproduce our experimental
observations using Eq. 2. From our calculations we find that the full-width at half-
maximum of the overshoot, indicated by the green line in the Fig. 1(c) inset, is τ/2
regardless of the cavity parameters. Based on this finding, we deduce that τ = 10 µs
in our cavity.

Next we explore the effect of changing the thermal relaxation time τ in our optical
cavity. This is much more easily done numerically than experimentally. Hence, we
leverage the good agreement between our model and experiments to investigate this
effect numerically. Fig. 2(a) shows a bifurcation diagram for Eq. 2 as we vary Γτ for

fixed ∆ = 6Γ and F = 56
√
Γ . We plot the values of αR = < [α] where the phase

space trajectory crosses the manifold αI = = [α] = 0 with α̇I > 0. For Γτ � 1 the
nonlinearity is effectively instantaneous and the intracavity field quickly relaxes to
its steady state. However, for Γτ ∼ 1 stable limit cycles emerge. For Γτ < 0.25 we
observe a single point for all Γτ , indicating a period-1 limit cycle [see Fig. 2(c)]. Near
Γτ = 0.25 and Γτ = 0.5 we observe a period-doubling bifurcation leading to period-2
[Fig. 2(d)] and period-4 [Fig. 2(e)] limit cycles, respectively. For Γτ � 1 the system
effectively behaves linearly and no limit cycles are observed. Figure 2(b) shows a

bifurcation diagram as function of F/
√
Γ . Stable limit cycles are only observed above

the bistability range, indicated by the gray area in the inset.

The results presented above and in References [55,56] motivate us to explore more
generally, beyond the realm of optics, the effects of a non-instantaneous nonlinearity.
In this spirit, we consider a mechanical oscillator with non-instantaneous Duffing-type
nonlinearity. The Duffing oscillator is a cornerstone of nonlinear dynamics. While
the Duffing oscillator has a cubic nonlinearity identical to the one of our thermo-
optical cavity in the τ → 0 limit, there are important differences between the two
models worth to explore. These differences lead to qualitatively different behavior, as
explained below.

Our nonlinear mechanical oscillator with memory satisfies the following equation
of motion:

mẍ(t) =

(
a− b

∫ t

0

ds K(t− s)x(s)2
)
x(t)− γẋ(t) +Dξ(t). (3)
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Fig. 2. (a) Bifurcation diagram as function of Γτ . Vertical yellow lines indicate the phase
space trajectories in (c)-(e). Vertical green line corresponds to the value of Γτ used in (b).
Bifurcation diagram as function of F/

√
Γ for Γτ = 1. Inset: |α|2 as function of F/

√
Γ in

the limit τ → 0. Solid (dashed) line corresponds to stable (unstable) steady-state solutions.
Gray area corresponds to range wherein limit cycles are observed. Parameters: U = Γ/40,
F = 56

√
Γ , ∆ = 6Γ , D = 0.

m is the mass of the oscillator and γ its dissipation. a and b define the potential
V (x) = −ax2/2 + bx4/4 in the limit τ → 0. We set a > 0 and b > 0, such that V (x)
is a double-well potential. We describe the memory with the same kernel function
K(t) = exp (−t/τ) /τ (memory time τ) used to describe our oil-filled cavity.

To simulate Eq. 3 it is convenient to define the variables w = b
∫ t

0
ds K(t−s)x(s)2

and v = ẋ. This allows us to write Eq. 3 as a set of 3 ODEs, like we did for the
thermo-optical cavity. Hence, we have

ẋ = v,

mv̇ = (a− w)x− γv +Dξ(t),

ẇ =
(
bx2 − w

)
/τ.

(4)

By comparing the above equations to Eq. 2, we can immediately recognize impor-
tant differences between the two systems. First, notice that Eq. 3 describes a single
underdamped oscillator with memory. Consequently, in Eq. 4, the velocity ẋ = v is
only coupled to the acceleration mv̇ but not to w. In contrast, Eq. 2 shows that a
single optical mode corresponds to two coupled overdamped oscillators. The over-
damped (in a frame rotating at the laser frequency) optical degrees of freedom are
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Fig. 3. Simulations of an oscillator with Duffing-type nonlinearity with memory. γ is the
dissipation rate and τ is the memory time. (a)-(c) show position as function of time for
γτ = 10−2, γτ = 3, and γτ = 20, respectively. (d)-(f) show the phase space trajectories for
trajectories of duration γt = 103. The color plot in the x, v plane is a 2D histogram built
from a trajectory of duration γt = 104. Simulation parameters: γ = 1, a = 1, b = a/10,
m = 10aγ−2, D2 = γ.

the real and imaginary parts of the field α, namely αR and αI . Since αR and αI are
mutually coupled by the nonlinear term containing the slow variable w, all three de-
grees of freedom are directly mutually coupled in the thermo-optical ssytem. Clearly,
the adjacency matrices (connectivity) of the mechanical and thermo-optical systems
are different. Hence, we may expect significantly different phase space structure and
emergent behavior.

Let us now investigate how the dynamics of our nonlinear mechanical oscillator
depend on the memory time τ . In Fig. 3(a) we plot a trajectory of x for γτ � 1, i.e.,
in the limit of an instantaneous nonlinear response. This and all calculations ahead
are obtained by solving Eq. 4 numerically with time increments ∆t = γ−1/100. Fig-
ure. 3(a) shows random transitions between the two minima of V (x), located at

x± = ±
√
a/b. This is the typical behavior of a bistable system. Figure 3(d) shows

the corresponding trajectory in phase space. The projection of that trajectory on the
x, v plane shows the expected behavior for a noise-driven Duffing oscillator without
memory. Figures 3(b) and 3(e) show a typical trajectory in time and phase space,
respectively, when γτ & 1. In that case, we observe stable limit cycles with an am-
plitude far exceeding the distance between the two minima of V (x). The limit cycles
arise due to a Hopf bifurcation near γτ = 1. Finally, for certain ranges of γτ > 1, the
dynamics become chaotic. An example of this chaotic regime is shown in Figs. 3(c,f).
Notice in Fig. 3(f) the characteristic shape of the double scroll attractor, indicative
of chaos [60].

Figure 4(a) shows a bifurcation diagram for our mechanical oscillator as γτ in-
creases, similar to what we showed for the optical cavity. We plot the x-values where
the phase space trajectory crosses the manifold v = 0 with v̇ > 0. For γτ < 13.6
we observe a single point for each γτ , indicating a period-1 limit cycle [Fig. 4(b)].
Near γτ = 13.6 we observe a bifurcation, whereafter a period-2 limit cycle arises
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[Fig. 4(c)]. Finally, for γτ > 16.5 we observe the double scroll attractor characteristic
of deterministic chaos. The figure as a whole (and the inset in more detail) shows the
typical cascade of period-doubling bifurcations leading to chaos. Notice that we also
observe periodic windows in between chaotic regimes, occurring within certain ranges
of γτ . We would like to point out that we did not find chaotic dynamics in the optical
resonator, despite the fact that we searched for them across a wide parameter range
(not shown here). This may be due to the fundamental differences in the equations
of motion of the two systems, as we explained above.

Recently, nonlinear oscillators have attracted great interest for potential applica-
tions to vibration energy harvesting [57,61,62,63,64,65]. Many efforts in this direction
emerged from the seminal work of Cottone and co-workers [57], who demonstrated
the superior energy harvesting capabilities of a Duffing oscillator relative to a linear
oscillator. The enhanced performance was associated with the wider spectral response
of the Duffing oscillator. Indeed, while the linear oscillator only efficiently harvests
energy from noise with frequency close to the resonance frequency, the nonlinear os-
cillator can harvest energy across a larger bandwidth in the regime of bistability. This
suggests that an oscillator with a wide frequency response, as expected for example
in a chaotic regime, could be ideal for energy harvesting. In this vein, we analyze
the spectral response and the root-mean-square (RMS) displacement of our nonlinear
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oscillator with memory. While previous works have considered energy harvesting with
nonlinear oscillators, to the best of our knowledge this is the first time that the effects
of memory in the nonlinearity on energy harvesting are studied.

Figure 5(a) shows the spectral response of our nonlinear oscillator for different
τ . The spectra are obtained by Fourier transforming the time traces in Fig. 3. For
γτ = 10−2, the orange curve shows a single shallow peak near the resonance frequency
ω± for the τ = 0 case. The peak deviates slightly from ω± = a/m because of the
finite τ in our system. Moving on to γτ = 3, the black curve in Fig. 5(a) reveals
a strong peak at f/γ ≈ 0.09. This peak corresponds to the large amplitude limit
cycle oscillations observed in Fig. 3(b). We also notice a peak around f/γ ≈ 0.27,
due to the oscillations not being purely sinusoidal. Moving on to the chaotic regime
(γτ = 20), the green curve in Fig. 5(a) no longer shows any well-resolved resonances.
This is expected based on the fact that chaotic dynamics can involve a wide range
of frequency components. However, Fig. 5(a) shows that the power spectrum for the
chaotic oscillator decays significantly at high frequencies. Thus, it may not necessarily
be the case that chaotic dynamics are advantageous for energy harvesting. To assess
the frequency-integrated effect of the memory time more carefully, let us analyze the
RMS displacement xrms of the oscillator.

Figure 5(b) shows xrms normalized to the average value in the small τ limit,
〈
x0rms

〉
,

as function of γτ . We observe that xrms/
〈
x0rms

〉
≈ 1 in the Markovian limit (γτ � 1),

where memory effects are irrelevant. In contrast, the RMS displacement is greatly
enhanced for γτ & 1, where the limit cycles emerge. As γτ increases beyond 1, the
RMS displacement decreases. For γτ � 1 the RMS displacement remains constant
as function of γτ , since the system is effectively linear in this regime. However, the
RMS displacement is still larger than in the Markovian limit because the system can
intermittently make large amplitude excursions and then relax to the monostable
state again. Thus, in summary, we did not find any advantage for energy harvesting
due to chaotic dynamics. Instead, the regime of large amplitude limit cycle oscillations
seems to be, by far, the most advantageous for energy harvesting. Finally, we would
like to point out that the lack of data points in the range γτ = 0.2 − 3 is due to
lack of numerical convergence. In our simulations, the amplitude of the limit cycle
oscillations diverges in this range. While we believe that more sophisticated numerical
methods may resolve this issue, limit cycle oscillations of very large amplitude are
still likely to be found in that regime.

To summarize, we have demonstrated how a distributed time delay in a Duffing-
type nonlinearity can lead to a rich phenomenology, including the emergence of stable
limit cycles and chaos. Remarkably, the amplitude of the limit cycle oscillations can
be very large when the delay time is commensurate with the dissipation time. If such
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a distributed time delay can be realized in nonlinear energy harvesters [57], our results
could pave the way for massively improving the performance of those systems.
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Intensity instabilities of semiconductor lasers under current modulation, external light
injection, and delayed feedback. Phys. Rev. A, 45(3):1893, 1992.

45. P.M. Alsing, Vassilios Kovanis, Athanasios Gavrielides, and Thomas Erneux. Lang and
Kobayashi phase equation. Phys. Rev. A, 53(6):4429, 1996.

46. Volker Ahlers, Ulrich Parlitz, and Werner Lauterborn. Hyperchaotic dynamics and
synchronization of external-cavity semiconductor lasers. Phys. Rev. E, 58(6):7208, 1998.

47. L.S. Tsimring and A. Pikovsky. Noise-induced dynamics in bistable systems with delay.
Phys. Rev. Lett., 87(25):250602, 2001.
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