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Materials which feature bistable elements, hysterons, exhibit memory effects. Often these hysterons are
difficult to observe or control directly. Here we introduce a mechanical metamaterial in which slender elements,
interacting with pushers, act as mechanical hysterons. We show how we can tune the hysteron properties
and pathways under cyclic compression by the geometric design of these elements and how we can tune the
pathways of a given sample by tilting one of the boundaries. Furthermore, we investigate the effect of the
coupling of a global shear mode to the hysterons, as an example of the interactions between hysteron and
non-hysteron degrees of freedom. We hope our work will inspire further studies on designer matter with
targeted pathways.

I. INTRODUCTION

Hysteretic elements commonly occur in complex mate-
rials and play a key role in the understanding of memory
effects1–17. Intuitively, when cyclically driving a com-
plex system, one imagines these elements to undergo
sequences of flipping transitions associated with hop-
ping between metastable states. To understand these
sequences, it is often possible to model these elements
as hysterons: hysteretic elements which which flip their
internal state s from ’0’ to ’1’ when the local driving ex-
ceeds the upper switching field ε+, and which flip from
’1’ to ’0’ when the driving falls below the lower switching
field ε− (Fig. 1a)2,3,6–9. By specifying the values of the
switching fields of a collection of hysterons, and poten-
tially their interactions, one can determine the transitions
between all collective states S := {s1, s2, . . . }, and repre-
sent these in a transition graph (t-graph) which takes the
form of a directed (multi)graph1,2,6–8,11,18. The (topolog-
ical) organization of such t-graphs characterize the com-
plex response of complex media and in particular memory
effects such as Return Point Memory (RPM), transient
memories, and subharmonic response1,2,4–8,12,18–20.

Controlling, characterizing and manipulating such hys-
terons is challenging in disordered systems such as crum-
pled sheets and amorphous media10,11,21–25. Here we
propose instead to leverage the design freedom of me-
chanical metamaterials to embed hysterons into a flex-
ible metamaterial13–17,26,27. This allows to control and
tune their switching fields and to directly observe the
sequences of hysteron flippings that constitute the de-
formation pathways and yield the t-graph. Developing
such metamaterial platforms is an important step to-
wards achieving materials with deformation pathways
on demand28,29, with targeted memory properties and
specific responses to cyclical driving, and with advanced
pathways that include elementary computations. More-
over, such metamaterials allow to explore generality and
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robustness of the hysteron picture, and to more closely
explore the material properties (e.g. sensitivity to bound-
ary conditions) of multistable materials. Finally, meta-
materials allow to explore the interactions between non-
discrete degrees of freedom, for example given by visco-
plastic relaxation and solid-on-solid friction, which may
lead to additional timescales and continuous degrees of
freedom not considered in simple hysteron models10.

Here we introduce a simple metamaterial platform in
which mechanical hysterons with controllable switching
fields can be embedded. We start from the well-known
biholar metamaterials, which translate global uniaxial
compression to local rotation and compression30–32. We
then leverage the hysteretic snapping of beams between
left- and right buckled states to locally replace slender
elements of the metamaterial by hybrid pusher-beam
elements13–17,27,33. We show that tuning their design
parameters allows to access qualitatively different path-
ways. Moreover, we use gradients in the boundary condi-
tions to independently tune the effective switching fields
of the hysterons, thus obtaining multiple pathways from
a single sample11. Finally, we show how subtle frictional
effects allow to slowly evolve the switching fields, giving
rise to a history dependent response beyond that cap-
tured by simple hysteron models. Together, our work
opens new directions for the experimental study and con-
trol of multistable materials.

II. (UN)SNAPPING IN BIHOLEY METAMATERIAL

We use quasi-2D biholey metamaterials, in which we
embed one or more structures which act as mechanical
hysterons. The biholey design consists of alternating
smaller and larger holes, separated by alternating pre-
curved beams which are connected in groups of four in
diamond shaped islands (Fig. 1a)30–32,34–40. Under ver-
tical compression, the vertical beams curve even more,
and the diamond shaped islands exhibit counter-rotating
motion30–32,34–40. We focus here on biholey metamateri-
als of consisting of 9 × 5 holes (Fig. 1a).

Each hysteron is composed of a ’defect’ beam with cur-
vature opposite to that expected in the biholar design,
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and two adjacent pushers (Fig. 1b). This design ensures
that under compression the defect beam will be pushed
by these pushers from a left curved to a snapped, right
curved state. Under decompression, the defect beam then
snaps back to its left curved state. As the defect beams
are strongly pre-curved, they do not exhibit buckling.
We label the unsnapped and snapped states of the defect
beam as ’s = 0’ and ’s = 1’, to stress that the defect
beam acts as a mechanical hysteron5,11.

The properties of the mechanical hysterons depend on
the design of both the defect beam and the triangular
pushers, as well as on its location in the metamaterial
(Fig. 1a-b). The defect beam is specified by the length
L, its dimensionless radius of curvature r := R/L, di-
mensionless thickness t := tb/L, and dimensionless hori-
zonal location u := u1−u2

u1+u2

= 0, where the defect beam

is closer to the smaller (larger) holes when u > 0 (u
< 0). The pushers are characterized by the angle A,
the width of their bases wt and wb, their dimensionless
height h := hD/L, and the gap g between pusher and
beam (Fig. 1a-b). Based on exploratory experiments and
finite element simulations, we fix the beam parameters
{L, r, t} = {6 mm, 0.8, 0.13 } , fix the pusher parameters
{g,A,wt, wb} = {0.7 mm, 60◦, 0.3 mm, 1.6 mm }, and
vary the dimensionless pusher height h and horizontal
beam location u.

We now first explore the behavior of a single mechani-
cal hysteron (Fig. 1(b-c)). We apply cyclic loading using
a (de)compression rate of 0.2 mm/sec, which leads to
nearly quasistatic behavior — much faster rates lead to
inertial effects, while much lower rates lead to creep ef-
fects. Under compression by a strain Ey/H, where Ey

denotes the displacement of the compression plate, the
defect beam shown in Fig. 1c will initially (ε . 0.18) bend
left. In contrast, the rotation of the diamond shaped is-
lands makes the tips of the pushers move right, so that
they eventually come into contact with the defect beam.
Further compression then causes a hysteretic transition of
the defect beam into a right-snapped state at ε+ = 0.18.
To detect this transition we use difference imaging, which
is sensitive to sudden motions, and define ∆ as normal-
ized difference of the snapshots of the defect snappers
(see Supplementary Material). We use a window around
each defect beam of 10×20 mm to determine ∆. We note
that the snapping behavior, visible as a small but sharp
drop in the compressive stress σ := F/(WT ), where F
is the compressive force, can be seen very clearly in the
image differences, and indicates that the hysteron state,
s, switches from 0 to 1, as shown by the orange curve in
Fig. 1(c). Under decompression, the defect beam then
snaps back to its left curved state at ε− = 0.13, which
can be seen in both the stress signal and the image differ-
ences (note that we have offset the image differences of
the downsweep for clarity). We note that the ε+ is larger
than ε−, so that there is a bistable region, as expected
for a hysteretic transition (Fig. 1c).

We can modify the characteristic (un)snapping strains,
ε±, by modifying the design of the snappers, and focus
on the role of the height of the pusher h and beam po-

sition u. We observe that ε+ increases for lower heights
h — more compression is needed to induce a snapping
event with smaller pushers — whereas ε− is essentially
independent of h — which makes sense, as before un-
snapping, the defect beam and pusher are not in contact
(Fig. 1(d)). We note that our numerical results show
a discontinuity for h ∼ 0.32 — here the pushers are so
high that two opposing pusher come into contact, hin-
der rotation of the diamonds above and below the defect
beam, and delay the unsnapping transition. As a func-
tion of the relative defect beam position u, we observe
that ε+ is nearly constant, while ε− increases with u
(Fig. 1(e)). We interpret this trend as follows: due to
rotation of the diamonds, the effective distance between
top and bottom of the defect beam decreases when u is
decreased; such defect beams are thus more compressed,
and unsnap for lower values of ε. Finally we note that
for extreme parameter choices, instead of snapping, the
beam undergoes smooth deformations and stops acting
as a hysteron; this occurs for example when u > 0.5. We
conclude that the geometric parameters of the snapping
beam allow to tune the upper and lower switching fields
ε± of the corresponding hysteron.

III. TRANSITION PATHWAYS AND STATES

We now explore the transition pathways in a metama-
terial with three defect beams under cyclic compression
(Fig. 2). We label the defects beams as 1, 2, and 3 (left to
right), their individual states as s1, s2 and s3, and their
collective state as S := {s1, s2, s3}. In the absence of
interaction, the pathways are determined by the relative
ordering of the upper and lower switching strains of each
hysteron1,12, which we denote by ε±i , where the subscript
i labels the switching hysteron; if there are interactions,
the situation can become more complex, and we denote
the switching fields as ε±i (S), where S is the state just
before the transition6–8,11.

We first aim to design a metamaterial with the sim-
plest possible pathway, such that under compression we
observe a pathway {000} → {001} → {011} → {111},
and we visit the same states in opposite order under
decompression. Assuming that interactions can be ig-
nored, this requires ε+1 > ε+2 > ε+3 and ε−1 > ε−2 >
ε−3

6–8. We thus chose design parameters for our hys-
terons consistent with this ordering — the upper switch-
ing fields are mostly controlled by h and decrease for
increasing h (Fig. 1(d)), and we choose dimensionless
heights {h1, h2, h3} = {0.23, 0.28, 0.33}; the lower switch-
ing fields are mostly controlled by u and increase with u,
and we chose {u1, u2, u3} = {0.2, 0,−0.1}. We refer to
this as sample ’A’.

Performing cyclic compression and decompression, we
observe the targeted pathway in sample A (Fig. 2(b)).
We can collect the states and their transitions in a very
simple transition graph (t-graph), where we denote the
different states as nodes, and the ’up’ transitions under
compression, and ’down’ transitions under decompres-
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sion by red and blue arrows (Fig. 2(c))1,2,8,12,18. Finally,
each transition is associated with a specific value of the
compression strain. We denote these as ε±i (S), where the
superscript ± denotes up or down transitions, the sub-
script i the label of the switching hysteron, and S the
initial state, just before the transition, and show these
in Fig. 2(d). We note that although ε−3 (111) ≈ 0.154
and ε−2 (110) ≈ 0.149 are quite close, the ordering of the
switching fields is consistent with our targeted ordering,
and our observed pathway is robust.

IV. TUNING PATHWAYS BY TILTING

Spatial gradients in the driving can modify the rela-
tion between local and global driving magnitude, and
allow a relative shift of the switching fields of adjacent
hysterons11. Here we use tilting of the bottom boundary
in our experiments to modify the transition pathways of
a given sample (Fig. 3a-b). To do so, we employ a bottom
plate with an adjustable tilt angle α (Fig. 3).

We have performed cyclic sweeps of the compression
strain ε and determined the corresponding pathways and
switching fields of sample A over a range of tilt angles α
(Fig. 3c-d). We observe three distinct pathways, labeled
i, ii and iii, in the range −0.57◦ ≤ α ≤ 2.86◦ (Fig. 3c).
For tilt angle outside this range (which we label regime
’iv’) one or more of the defect beams no longer exhibit
sharp snapping transitions, but instead smoothly deform.
Hence, they do not act as hysterons. We can detect this
loss of sharp transitions and hysteresis by the absence of
sharp peaks in the image differences, ∆, and attribute
it to the increasing presence of shear deformations when
|α| is large — for more discussion on shear, see below.
We note that all three t-graphs are of the Preisach type,
meaning that there are no avalanches, and that the se-
quence of hysterons switches is state independent1,8,12.
In particular we note that for all pathways, the snapping
sequence is the same: first hysteron 3 flips 0→ 1, then
hysteron 2, and finally hysteron 1, yielding a sequence
of states S: {000}→ {001}→ {011}→ {111}. However,
decompressing from state {111}, we observe different un-
snapping sequences in regime i, ii and iii (Fig. 3c). We
note that while in regime i, a single sweep allows to deter-
mine all transitions, in regime ii and iii additional driving
cycles are needed to establish all transitions.

In each pathway, we have determined the values of the
switching fields, and plot these as function of α (Fig. 3d).
We find that the critical switching fields of a given hys-
teron vary smoothly with α, and that the ordering of the
upper switching fields ε+i remains the same in regime i-iii,
as expected. Hence, the ordering of the switching fields
is consistent with the existence of the three pathways
shown in Fig. 3c. Moreover, the lower switching fields ε−i
cross at the boundaries between regime’s i-iii. Here, two
hysterons change state at the same strain, which could
look like an avalanche. However, we notice that such
“avalanches” are not robust to small changes in the tilt
angle, and thus can be seen as degeneracies11.

We note that the broad trends in the variation of the
switching fields can be understood geometrically: in low-
est order one expects an increase in α to increase the
switching fields of hysteron 1, and lower those of hysteron
3. Moreover, the actual trends are more complex, due to
the increasing role of shear (see right panel Fig. 3b) that
becomes coupled to compression for α 6= 0, and which we
have observed to have a strong impact on the hysterons.
Moreover, we also note that the sample is prone to global
buckling, which breaks left-right symmetry, and that tilt-
ing couples to this instability and leads to shearing in the
center region, which affects the behavior of the beams in
each hysteron.

We measured the switching field for a given hys-
teron starting from two distinct states (e.g., ε+2 (001) and
ε+2 (101)) in regimes ii and iii, and these give insight into
the presence of hysteron interactions. In the absence of
hysteron interactions, the switching fields for a given hys-
teron should be state independent; the small but system-
atic deviation between ε+2 (001) and ε+2 (101) indicates the
presence of hysteron interactions, which however do not
lead to t-graphs that are more complex than Preisach
graphs (Fig. 3d)1,8,12.

We conclude that tilting of one of the boundaries al-
lows to elicit multiple pathways from a single sample, and
that the variation of the individual switching fields both
gives an interpretation to the emergences of these path-
ways, as well as an experimental tool to probe hysteron
interactions.

V. NON-HYSTERON DEGREES OF FREEDOM

For a system to be described as a collection of (inter-
acting) hysterons, the switching fields can only depend
on the current collective state, but not on other aspects
of the driving history6–8. However, many materials when
driven repeatedly can evolve in different manners, for ex-
ample as they suffer from fatigue and plastic aging or
exhibit visco-elastic effects9,10,25,41–43. The presence of
such additional degrees of freedom can for example be
seen in the pathways of crumpled sheets that are cycli-
cally driven10. As we show below, our samples also fea-
ture such additional degrees of freedom, with the relative
simplicity of our system allowing us to control, reset and
understand these effects.

We probe the presence of additional degrees of free-
dom by cyclic driving protocols, where we vary the min-
imum strain, εm over time, while probing the switch-
ing of each hysteron by monitoring the image differ-
ences. To visualize potentially slow evolution, we plot
the traces of ∆ as function of strain, offsetting each
up and down sweep by one, as in Fig. 1c. We in-
troduce a new sample B, with {u1, u2, u3, h1, h2, h3} =
{0.2, 0,−0.1, 0.333, 0.300, 0.267}, i.e., with the same val-
ues of ui as sample A, but different values of hi. The
larger values of h means pushers come into contact
at lower strains than in sample A, which leads to the
emergence of an additional frictional degree of freedom.
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Indeed, sample B is prone to deviations from purely
hysteron-driven behavior, and we study it now in detail.

A first example of such a sweep is shown in Fig. 4a.
Here we increase εm while keeping the maximum strain
εM constant. We can clearly observe evolution of the up-
per switching fields ε+1 and ε+2 , which are lowered in later
cycles, and which even interchange their ordering. We
stress that this happens in cycles where εm is low enough
so that we return to state {000}; hence the evolution of
ε+1 and ε+2 goes beyond simple hysteron interactions, and
evidences additional degrees of freedom.

A closer inspection of the traces shows that the peak in
∆ corresponding to the switching of hysteron 2 splits in
two peaks — hence instead of a single snapping event, the
beam undergoes two discontinuous deformations at two
nearby yet distinct values of ε. To see this in more detail,
we have monitored the configuration of beam 2 at given
fixed ε = 0.181 at various sweeps (Fig. 4a inset). These
show a clear snapping in the first sweep (frames F1, F2),
and that the state of the beam in the second and first
up sweep (F1, F3) are very close, as further evidenced by
the absence of a clear signal in the image difference (F1-
F3). However, the state of the beam on the upsweep at
ε = 0.039 slowly evolves when the sweeps are repeated,
and indeed F4 is visibly different from F1, as clearly evi-
denced in their image difference. In particular, we notice
the emergence of shear: while the top and bottom pusher
are vertically aligned in the first sweep (F1), after a few
sweeps we observe misalignment and shear (F4). We find
that the snapping of such a sheared beam breaks up in
two events (F5 and F6), as also evidenced by the splitting
of the relevant peak of ∆ in two separate peaks. We be-
lieve that this shear is the main driving force between the
shift of ε+1 and ε+2 that occurs long before such splitting
occurs. Consistent with this, experiments performed at
a lesser tilt angle show a similar but weaker evolution of
the switching fields (Fig. 4b).

We now investigate whether shearing is slaved to the
amount of compression, and potentially the hysteron
state, or whether it represents (a set of) independent de-
grees of freedom. Moreover, we will disentangle the role
of visco-plastic effects, friction and stickyness. To con-
trol the latter, we cover the samples in (baby) powder,
which virtually eliminates sticking and lowers the fric-
tion, and subject the sample to a large number of sweeps
with slowly varying εm (Fig. 4c). The behavior of the
sample depends sensitively on the value of εm, and we
define two critical values, εa = 0.11 ± 0.01 ≈ ε−3 and
a smaller value εb = 0.08 ± 0.01, where the errorbar is
caused by the increment of εm (Fig. 4c). The first strik-
ing observation is that the evolution of ε+1 and ε+2 is vir-
tually absent for sweeps where εm < εa. This suggests
that visco-plastic effects are not the sole or main driv-
ing force, and that lowering the stickyness and friction
is important. Then, when εm is increased beyond εa, we
observe a rapid change in the switching fields ε+1 and ε+2 ,
which eventually cross, after which the peak for hysteron
2 splits into two peaks, as shown before in Fig. 4a. One
could easily interpret the shifting of the switching fields

as hysteron interactions, as when εm > εa ≈ ε−3 , the sys-
tem does not relax to state {000} but instead is in state
{001} when hysteron 1 and 2 flip from zero to one. How-
ever, the situation is more complex. First, the switching
fields ε+1 and ε+2 evolve with the number of sweeps, with-
out further changes in the hysteron states. Most strik-
ingly, when we lower εm again, the evolution of ε+1 and
ε+2 from their ’baselevel’ only stops when εm = εb < ε−3 ,
and indeed continues for a few sweeps where the system
periodically returns to its {000} state at εm. Hence, the
evolution of the switching fields ε+1 and ε+2 evidences the
presence of an additional degree of freedom, rather than
direct hysteron interactions.

To clarify further that the shift of the switching fields
is not visco-plastic and not a direct function of the hys-
teron states, we perform additional experiments where
we, in succession, perform one sweep where εm = 0,
so that the system can relax, and four sweeps where
εm = 0.099 < ε−3 , so that the system is driven nonlinearly
but always resets to state {000} at minimum driving.
We clearly observe a different behavior of the switching
fields: in the latter cycles, the peak of hysteron 2 has split
and lies below that of hysteron 1, whereas in the former,
the single peak of hysteron 2 lies above that of hysteron
1. Repeating these cycles evidences very little additional
evolution; the behavior of the hysterons depends on εm,
but not on the deeper history of the sample.

Based on the data in Fig. 4, we interpret the existence
of non-hysteron degrees of freedom as follows. First,
without powder, friction forces and adhesive forces intro-
duce memory dependent contact forces between beams
and pushers. For moderate εm these contacts, which
break left-right symmetry, drive the persistent emergence
of shear in the sample, as seen in the snapshots in Fig. 4a,
which modify the switching fields and snapping behavior.
When εm is small enough, all such contacts are broken,
the shear is eliminated and the sample relaxes. For pow-
dered samples, stickiness and friction are reduced, and
the attractive and frictional forces between beam and
pusher are much reduced, leading to a larger range of εm

where the switching fields are independent of εm. How-
ever, for sufficiently large εm, opposing pushers come into
contact and stay in contact over a substantial part of the
sweep, with their contacts acting as a frictional memory
that directly couples to shear. Hence, in this case the
switching fields ε+1 and ε+2 depend on εm (Fig. 4c-d). We
note that different designs might be explored to minimize
such ’memory within memory’ effects. However, in many
physical systems one would expect additional degrees of
freedom to play a role, and so we consider our specific
example of the coupling between a friction/shear degree
of freedom and the hysterons to provide a testing ground
for investigating such effects.

Finally, we consider how to describe this additional
memory effect. We distinguish between two aspects.
First, depending on the driving history, and in partic-
ular the value of εm with respect to εa and εb, we find
that either the switching fields ε+1 and ε+2 are constant,
or start to slowly evolve. Hence our data evidences the
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presence of a ’metabit’; when it is in state ’0’, ε+1 and ε+2
are constants, when it is in state ’1’, ε+1 and ε+2 contin-
uously evolve with εm, in a manner which is beyond a
hysteron description as it requires a continuous degree of
freedom.

We now focus on finding a minimal model for the
switching on and off of this metabit. We summarize the
key features of our data in Fig. 5a, which summarizes our
observations of the on (M = 1) or off (M = 0) state of
the metabit for a sequence of five driving cycles (1)-(5).
First, we note that our data can only detect a sensitivity
to the value of M during upward sweeps of ε in the range
of ε+1 and ε+2 , which we take as εM1 ≤ ε ≤ εM2 (indicated
with a thick bar). Second, we note that a single bit-like
degree of freedom is not sufficient to describe the evolu-
tion of M : both εa and εb must play a role, but we see
that for ε larger than both εa and εb, M can be both
zero or one. In other words, since a single sweep is not
sufficient to reach M = 1 — rather, we need to sweep
up, sweep down, and then sweep up again - capturing
the evolution of the metabit requires more than a single
binary degree of freedom.

We now show that our data is consistent with the sce-
nario sketched in Fig. 5b, where we use four additional
states {S̃} = {A,B,C,D}, where M = 1 in state C and
D. We stress that these states are independent from the
state of the hysterons 1, 2 and 3. The initial state A
has M = 0, and this is where the system returns for
small ε. The transition from state A to B at εX needs
to happen on the up-sweep. We assume that state B has
M = 0, which requires εX > εM2 (otherwise M could be
one in the relevant region for all upsweeps). We then
assume that there is a transition from state B to state
C with M = 1 on the down sweep at εY , which implies
that εa < εY < εX . We stress that while in this sce-
nario M = 1 on (part of) the down sweeps, this does
not modify ε+1 and ε+2 , which only play a role on the up-
sweeps. Now two things can happen: if ε falls below εa,
the system resets and returns to state A (sweep 2); but
if ε remains above εa, state C must switch to a state D
with M = 1, with state D only resetting back to state A
for ε < εb. Hence, εZ > εY . Following the transitions,
we find that M = 1 on sweeps 3 and 4, and only resets
to M = 0 on sweep 5, as required. Hence, the presence
of two distinct state C and D which have M = 1 encode
the observed scenario (Fig. 5).

To clarify the connection of states A − D with the
presence of the metabit M , we can also denote them as 0,
0̄, 1, and 1̄ respectively; both states 1 and 1̄ have M = 1,
but they differ in the value of ε where they relax to state
A. We then can interpret the presence of the bar as an
additional binary switch, which shows that a combination
of two binary degrees of freedom is sufficient to describe
the evolution of the metabit M with ε. We believe that
this is the simplest possible scenario consistent with our
data, showing the complexity of these memory effects.

VI. CONCLUSION

In this paper we have introduced a strategy to em-
bed mechanical hysterons into a metamaterial, and stud-
ied the ensuing pathways under cyclic compression. We
showed how the hysteron properties and pathways can be
tuned by the geometric design of the hysterons, and how
the pathways of a given sample can be modified by tilting
one of the boundaries. We investigated beyond-hysteron
degrees of freedom that modify the switching fields of
the hysterons. Our work is a step towards rational de-
sign of hysterons and pathways into metamaterials8,11,28,
and moreover highlights the importance of additional de-
grees of freedom10. Further work may extend these ideas
into metamaterials where such additional degrees of free-
dom can be controlled, suppressed or leveraged. More-
over, we suggest that alternative designs of mechanical
hysterons may allow to tune their switching fields over a
wider range. Finally, we are working on methods to tune
the interactions between hysterons, which can extend the
range of realizable pathways dramatically8. We hope our
work will inspire further studies on designer matter with
targeted pathways.

VII. SUPPLEMENTARY MATERIAL

See supplementary material for experiment procedure
and numerical process.
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FIG. 1. (a) Quasi-2D biholey metamaterial of height H =

50mm, width W = 100mm and thickness T = 18mm. The
hole pattern has pitch P = 10mm, the holes have diameters
D1 = 11mm and D2 = 7mm. The unit cell (i) of the biholey
metamaterial consists of four diamond shaped islands that
highlighted in black and red and hinges connecting islands.
Zoom-in: geometry of the defect beam (not to scale). Here,
L = 6mm, and we fix the dimensionless radius of curvature
r := R/L = 0.8, dimensionless thickness t := tb/L = 0.13,
and dimensionless location u :=

u1−u2

u1+u2

= 0. The pushers are

characterized by {g,A,wt, wb, h := hD/L} = {0.7 mm, 60◦,
0.3 mm, 1.6 mm, 0.28 }. (b) Example of the evolution of
the defect beam geometry under cyclic compression, showing
the pushers getting into contact of the beam and initiating a
snapping towards the right. (c) Stress σ, image differences ∆

and hysteron state s as function of strain ε for the sample in
(a-b). Note that the image differences for compression and
decompression are offset by one for visibility. (d-e) Critical
switching strains ε± as function of the dimensionless pusher
height h and beam position u. We have performed three in-
dependent runs on two samples, and calculated our errorbar
based on these six datasets.
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FIG. 2. Robust pathways in sample A. (a) Sketch of
the sample with three defects labeled 1, 2 and 3 respec-
tively. (b) Snapshots of the defect beams during a compres-
sion/decompression cycle, showing the distinct states. (c) The
transition graph of the sample A. (d) The switching fields ε±

A ordered from large to small.
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FIG. 3. Tuning pathways by tilting. (a) Sketch of a sample
where the bottom boundary is tilted over an angle α. (b)
Snapshots of the sample A tilted by α = 1.7◦ at strains as
indicated; notice the emergence of shear in the inset of the
right panel. (c) As function of α, we observe three distinct
pathways; gray dots indicate tilt angles where we determined
the pathways, and the boundaries are estimated by bisection.
(d) Corresponding critical switching fields as function of α
and state S. As the switching fields vary weakly with state,
the corresponding symbols nearly overlap. The error bar is of
the order of the symbol size and denotes the spread of ε±

i
of

repeat compression.
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εb

εε

ε

ε

FIG. 4. Snapping in sample B and additional degree of freedom. (a) The traces of the image difference ∆ for multiple driving
cycles where we increase the minimal compression εm as 0.019, 0.039, 0.059, 0.079, 0.099, 0.119 (traces offset for clarity). Here
α = 0.57◦. The location of the spikes on the upsweeps indicates the values of ε+

i
, and we observe the variation of ε+1 and ε+2 in

later cycles. The labels F1 − F6 indicate the strains and sweeps where we took snapshots (insets). The figures F3 − F1 and
F4 − F1 are difference images, which confirm that while F1 and F3 are nearly identical, F1 and F4 are distinct. (b) Image
differences for α = -0.29◦ shows a weaker evolution of the switching fields ε+1 and ε+2 . (c-d) Sample B, now covered in powder
to reduce friction and sticking, and α = 0.57◦. Slow sweeps of εm evidence the presence of two critical compressions, εa and εb
(c), while repeated driving at low and high values of εm evidences the absence of plasticity, and the presence of an additional
degree of freedom with complex dynamics (d). For details, see text.
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FIG. 5. (a) Scenario for the switching on and off of the mod-
ifying state M . The value of M in the range εM1 < ε < εM2
(bold) is indicated for upsweep (1)-(5). (b) Tentative state di-
agram for additional degrees of freedom beyond hysteron 1-3.
The system starts out in state A, and only after a sequence of
up, down and up transitions, the system can reach the mod-
ifying state D, which leads to changes in the switching fields
of hysterons 1 and 2.
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