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Receptor time integration via discrete sampling
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Living cells can measure chemical concentrations with remarkable accuracy, even though these measurements
are inherently noisy due to the stochastic binding of the ligand to the receptor. A widely used mechanism for
reducing the sensing error is to increase the effective number of measurements via receptor time integration. This
mechanism is implemented via the signaling network downstream of the receptor, yet how it is implemented
optimally given constraints on cellular resources such as protein copies and time remains unknown. To address
this question, we employ our sampling framework [Govern and ten Wolde, Proc. Natl. Acad. Sci. USA
111, 17486 (2014)] and extend it here to time-varying ligand concentrations. This framework starts from the
observation that the signaling network implements the mechanism of time integration by discretely sampling
the ligand-binding state of the receptor and storing these states into chemical modification states of the readout
molecules downstream. It reveals that the sensing error has two distinct contributions: a sampling error, which
is determined by the number of samples, their independence, and their accuracy, and a dynamical error, which
depends on the timescale that these samples are generated. We test our previously identified design principle,
which states that in an optimally designed system the number of receptors and their integration time, which
determine the number of independent concentration measurements at the receptor level, equals the number of
readout proteins, which store these measurements. We show that this principle is robust to the dynamics of the
input and the relative costs of the receptor and readout proteins: these resources are fundamental and cannot
compensate each other.

DOI: 10.1103/PhysRevE.105.054406

I. INTRODUCTION

It is becoming increasingly clear that living systems can
measure chemical concentrations with extraordinary preci-
sion. Some animals can smell single molecules [1], swimming
bacteria can respond to the binding of a handful of molecules
[2,3], and eukaryotic cells can respond to a difference in 10
molecules between the front and the back [4]. An open ques-
tion is not only what the fundamental limit to the precision of
chemical concentration measurements is, but also how cells
can reach this limit.

Cells measure chemical concentrations via receptors,
which are often located on the cell surface. These measure-
ments are corrupted by noise from the stochastic, diffusive
arrival of the ligand molecules at the receptor and from the
stochastic binding of the ligand molecules to the receptor
proteins, raising the question how cells extract information
from the receptor state on the ligand concentration. In re-
cent years different mechanisms have been proposed [5]. One
mechanism is that of time integration, first proposed by Berg
and Purcell in the context of cellular sensing [2]. In this
mechanism cells do not estimate the concentration from the
instantaneous ligand binding state of the receptor, but rather
from its average over some integration time [2,6–8]. Another
mechanism is that of maximum-likelihood sensing [5,9–12],
which is based on the idea that the information on the ligand
concentration is contained in the receptor time series, and in
particular in the duration of the unbound states of the receptor,
not the bound states. A related scheme is that of Bayesian
filtering [13].

These mechanisms for extracting information from the re-
ceptor on the ligand concentration have to be implemented by
the signaling network downstream of the receptor. A signaling
motif that is very common in both prokaryotes and eukaryotes
is the push-pull network. It consists of a cycle of protein
activation and deactivation and is often located immediately
downstream of the receptor [14] [see Fig. 1(a)]. Examples are
GTPase cycles, as in the Ras system, phosphorylation cycles,
as in MAPK cascades, and two-component systems like the
chemotaxis system of Escherichia coli. In the linear regime,
the output of these networks depends on a time average of the
receptor state. These networks thus allow the cell to imple-
ment the mechanism of time integration. In this manuscript,
we will study, following our earlier work [15,16], the optimal
design of these networks that maximizes the sensing precision
given constraints on cellular resources such as protein copies
and time.

Ultimately, the cell estimates the ligand concentration from
the output of the push-pull network [Fig. 1(a)]. One approach
to elucidate the design logic of these systems would be to
derive the sensing precision based on this output, for example,
by computing the mutual information between the output and
the ligand concentration. However, this approach does not
naturally elucidate the design logic of this system, because
it treats signal transmission from the input L to the output
x∗ as a black box. The central quantity in this calculation is
the covariance σ 2

L,x∗ between the ligand L and the readout x∗,
which does not reveal how the signal is relayed from the input
to the output. To elucidate the system’s design principles, we
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FIG. 1. The precision of estimating a time-varying ligand concentration L(t ). (a) The cell signaling network measures the ligand
concentration via receptors on its surface. (b) The dynamic input-output relation pτr (L). The cell employs the push-pull network to estimate
the average receptor occupancy pτr over the past integration time τr [see (b)] and then infers the current ligand concentration L(t ) by inverting
pτr (L). The error in the estimate of the concentration (δL̂)2 = σ 2

p̂τr
/g̃2

L→pτr
depends on the variance σ 2

p̂τr
in the estimate of the average receptor

occupancy p̂τr and the dynamic gain g̃L→pτr
, the slope of pτr (L), which determines how the error in p̂τr propagates to that in δL̂. The input

distribution has width σ 2
L . (c) The push-pull network as a sampling device. The network discretely samples the ligand-binding state of the

receptor via the readout molecules x [15] and the fraction of modified readout molecules gives the estimate of pτr ; see Eq. (5). The sensing
error has two contributions [Eq. (26)]: the sampling error and the dynamical error. The sampling error arises from the noise in the sampling
of the receptor and depends on the number of samples, their independence, and their accuracy. (d) Origin of the dynamical error. The current
ligand concentration L(t ) is estimated via the average receptor occupancy pτr in the past τr [see (a)], but the latter depends on the ligand
concentration in the past τr , which deviates from the current concentration that the cell aims to estimate. Two different input trajectories (L1 in
blue, L2 in green) ending at time t at the same value L(t ) (red dot) yield different estimates of L(t ) because of their different average receptor
occupancies pτr over the past τr . Figure and caption are adapted from Ref. [16].

have to open the black box: we need to recognize that the input
signal is transduced to the output via the receptor, and that
the cell does not estimate the ligand concentration from x∗

directly, but rather via its receptor [see Fig. 1(a)].
In this paper, we will adopt the sampling framework intro-

duced in Ref. [15], which precisely starts from the observation
that the cell uses its push-pull network to estimate the recep-
tor occupancy from which the ligand concentration is then
inferred. As we will show, this framework makes it possi-
ble to arrive at a much more illuminating form of the same
result for the sensing precision. The central idea is that the
push-pull network is a discrete sampling device. It imple-
ments the mechanism of time integration, not by continuously
integrating the state of the receptor, but rather by discretely
sampling it, via collisions of the readout molecules with the
receptors [Figs. 1(b) and 1(c)]. During each collision, the
ligand-binding state of the receptor molecule is copied into
the chemical modification state of the readout protein [17].
The readout molecules therefore serve as samples of the re-
ceptor molecules, and the fraction of active (modified) readout
molecules yields an estimate of the average receptor occu-
pancy. The readout molecules have, however, a finite lifetime,
because they can decay or be overwritten via new collisions
with the receptor. The estimate of the receptor occupancy is
thus an estimate of the average receptor occupancy over this
timescale, which is indeed the receptor integration time.

Here we extend the sampling framework of Ref. [15] to
time-varying signals and firmly integrate it with our work
of Ref. [16]. In Ref. [16] we introduced the concept of the
dynamic input-output relation for signal transduction via time-
varying signals. It gives the mapping between the average

receptor occupancy over the past integration time and the
current ligand concentration; see Fig. 1(b). The sensing error
is then given by the error in the estimate of the receptor
occupancy and the slope of the dynamic input-output relation,
called the dynamic gain, which determines how the error in
the estimate of the receptor occupancy propagates to the error
in the estimate of the ligand concentration. In Ref. [16] we
derived the dynamic gain, but the error in the estimate of the
receptor occupancy was obtained via a route that involved
the linear-noise approximation. Here we derive the latter rig-
orously via the sampling framework of Ref. [15], originally
formulated for sensing static concentrations. We show that
while in the current paper we focus on push-pull networks
in the irreversible limit, the expression for the sensing error
has the same form as that for the fully reversible system of
Ref. [16]

The benefit of our sampling framework is not only that it
provides an illuminating perspective on how cells implement
the mathematical operation of time integration via discrete
molecules employing a stochastic sampling protocol, but also
that it naturally reveals the optimal design that maximizes
the sensing precision given constraints on cellular resources,
such as protein copies and time. Specifically, this framework
predicts that in an optimally designed system the number of
receptors and their integration time, which determines the
number of independent concentration measurements at the
receptor level, equals the number of readout molecules, which
store these measurements [15,16]. In Sec. III we will revisit
this allocation principle and study how its predictive power
depends on the dynamics of the input and the relative costs of
the receptor and readout proteins. As we will show, the design

054406-2



RECEPTOR TIME INTEGRATION VIA DISCRETE … PHYSICAL REVIEW E 105, 054406 (2022)

principle is robust, which comes from the fact that these re-
sources are fundamental and cannot compensate each other.
In an optimally designed system, each resource is equally
limiting, and resources that are in excess can hardly improve
the sensing precision.

II. THEORY

A. Model system

Following Ref. [16], we analyze a living cell that measures
a ligand concentration that varies in time. The concentration
is detected via receptors that drive a push-pull network; see
Fig. 1(a). The model is identical to that of Ref. [16], except
that the push-pull network operates in the irreversible limit.
This is a reasonable assumption for living systems, since these
push-pull networks are typically driven out of thermodynamic
equilibrium via the turnover of ATP and inside the living cell
the free energy of ATP hydrolysis is about 20kBT . While
the model is indeed very similar to that of Ref. [16], we
briefly summarize its main elements, which are necessary to
understand our theory and the results.

We model the ligand concentration as a stationary Marko-
vian signal, obeying Gaussian statistics [18]. The signal is
characterized by the mean (total) ligand concentration L, the
variance σ 2

L , and the correlation time τL.
We imagine that the receptor proteins R bind the ligand

molecules L independently [5], L + R
k1�
k2

RL. The correlation

time of the ligand-binding state of the receptor is given by
τc = 1/(k1L + k2), and it sets the timescale on which inde-
pendent concentration measurements can be taken. Denoting
the total receptor copy number by RT and the average num-
ber of ligand-bound receptors as RL, the receptor occupancy
is p = RL/RT = k1Lτc. Hence, for a given occupancy p the
correlation time τc = p/(k1L) is constrained by the average
ligand concentration L and its diffusion constant, which limits
the binding rate k1 [2,5–7].

The push-pull network measures the ligand-binding state
of the receptor [14]. In this network, fuel turnover is
used to drive the chemical modification of a downstream
readout protein x, for example, phosphorylation via the hy-
drolysis of adenosine triphosphate (ATP). The receptor, or
its associated enzyme like CheA in the E. coli chemo-
taxis system, catalyses the modification of the readout,
x + RL + ATP � x∗ + RL + ADP. The active readout x∗ de-
cays naturally or via an enzyme, like CheZ in the E. coli
chemotaxis system, x∗ � x + Pi. The cellular metabolism
keeps the signaling network out of thermodynamic equilib-
rium by fixing the concentrations of ATP, ADP (adenosine
diphosphate), and Pi (inorganic phosphate). In this manuscript
we will exploit that inside the living the cell the concentrations
of ATP, ADP, and Pi are kept so far out of thermody-
namic equilibrium that the microscopic reverse reactions of
receptor/kinase catalyzed phosphorylation, i.e., the dephos-
phorylation reaction x∗ + RL + ADP → x + RL + ATP and
(phosphatase-catalyzed) dephosphorylation, i.e., the phos-
phorylation reaction x + Pi → x∗, do not happen. The con-
centrations of ATP, ADP, and Pi and the activities of the
enzymes are absorbed in the (de)phosphorylation rates, coarse
graining the (de)modification reactions into instantaneous

second-order reactions. The network is therefore described
by x + RL

kf−→ x∗ + RL, x∗ kr−→ x. The relaxation time of
this network is τr = 1/(kf RL + kr ), and it is the timescale
on which the readout correlation function decays when the
ligand concentration is constant [15]. This relaxation time
determines the lifetime of the active readout molecules, and
hence the timescale on which the readout can carry informa-
tion on the ligand binding state of the receptor in the past. The
relaxation time τr is indeed the receptor integration time.

B. The cell sensing precision

1. Overview and relation to earlier work

The derivation of the central result, Eq. (26), is based on the
dynamic input-output relation; see Fig. 1(b). Below we first
describe that relation. We then show that the sensing error is
given by two factors: (1) the slope of this input-output relation,
called the dynamic gain, and (2) the error in estimating the
receptor occupancy; see Eq. (1). The concept of the dynamic
input-output relation was first introduced in Ref. [16] and
the dynamic gain was first derived in Ref. [16]. To keep the
paper self-contained, we will briefly describe these elements
of our theory, but for their mathematical derivation we refer
to Ref. [16]. The second factor, the error in estimating the
receptor occupancy, was also derived in Ref. [16], yet via a
route based on the linear-noise approximation. Here we show
that it can be rigorously derived via the sampling framework
first introduced in Ref. [15] in the context of sensing static
signals; indeed, the novelty in the derivation of the central
result, Eq. (26), is the extension of the sampling framework
to time-varying signals.

2. Dynamic input-output relation

As first proposed in Ref. [16], the cell uses the signaling
network to estimate the average occupancy pτr of the receptor
over the past integration time τr, and then uses this estimate
p̂τr to obtain an estimate for the current concentration L by
inverting the mapping pτr (L). The function pτr (L) is the dy-
namic input-output relation, and it gives the mapping between
the average receptor occupancy pτr over the past integration
time τr and the current value of the input signal L = L(t ); see
Fig. 1(b). The average is taken not only over the fluctuations in
receptor-ligand binding and readout (de)activation [Fig. 1(c)],
but also over the ensemble of ligand trajectories in the past that
all end at the same current ligand concentration L [Fig. 1(d)]
[18–20]. The dynamic input-output relation reduces to the
static input-output relation when the input timescale τL is
much longer than the receptor correlation time τc and inte-
gration time τr .

3. Sensing error

Linearizing the dynamic input-output relation pτr (L)
around the mean ligand concentration L [see Fig. 1(b)] and
employing the rules of error propagation yields, as shown in
Ref. [16], the expected error in the concentration estimate:

(δL̂)2 =
σ 2

p̂τr

g̃2
L→pτr

. (1)
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The quantity g̃L→pτr
is the dynamic gain. It is the slope of the

dynamic input-output relation pτr (L) and describes how an
error in the estimate of pτr translates to an error in the estimate
of L. The quantity σ 2

p̂τr
is the variance in the estimate p̂τr of

the average receptor occupancy over the past τr given that the
current input signal is L; see Fig. 1(b).

The signal-to-noise ratio (SNR) is then given by

SNR ≡ σ 2
L

(δL̂)2
= g̃2

L→pτr

σ 2
p̂τr

σ 2
L . (2)

Here σ 2
L is the variance of the ligand concentration L; it is

a measure for the total number of input states. The signal-
to-noise ratio thus quantifies the number of distinct ligand
concentrations that the system can resolve. The signal-to-
noise ratio also yields the mutual information I (L; x∗) =
1/2 ln[1 + SNR)] between the input L and output x∗ [18].

4. Dynamic gain

As derived in Ref. [16], the dynamic gain is given by

g̃L→pτr
= p(1 − p)

L

(
1 + τc

τL

)−1(
1 + τr

τL

)−1

(3)

= gL→p

(
1 + τc

τL

)−1(
1 + τr

τL

)−1

. (4)

The dynamic gain depends on the timescales of both the
input signal and the system. Only when τL � τr, τc is the
average ligand concentration over the subensemble of trajec-
tories ending at δL(t ) equal to the current concentration δL(t )
[see Fig. 1(d)], and does g̃L→pτr

become equal to its maximal
value, the static gain gL→p = p(1 − p)/L.

5. The error in estimating the receptor occupancy

To arrive at an illuminating expression for the error in the
estimate of pτr , σ 2

p̂τr
, we adopt the perspective of Ref. [15],

which views the push-pull network as a sampling device,
taking samples of the receptor state in a discrete fashion
[see Fig. 1(c)]. Below we first briefly describe the principal
ideas of the sampling framework [15]. This not only serves to
keep our paper self-contained, but also to introduce the new
elements in extending this framework to time-varying signals.

The sampling framework. Samples are created via the
activation reaction x + RL → x∗ + RL, which copies the
ligand-binding state of the receptor in stable modification
states of the readout molecules [Fig. 1(c)]. The readout
molecules thus constitute samples of the receptor molecules,
and together they encode the occupancy of the receptor in the
past. The effective number of independent samples depends
not only on the creation of samples, but also on their decay and
accuracy. The deactivation reaction x∗ → x erases samples,
which means that the samples only contain information on the
receptor state over the past τr. In addition, both the activation
and the deactivation reaction could in principle happen in their
microscopic reverse direction, which would reduce the accu-
racy of the samples by corrupting the coding. However, since
push-pull networks are typically driven far out of equilibrium,
we will ignore this here. All of the receptor samples x∗ will
thus be fully accurate. Furthermore, for signals that vary in

time, we also need to recognize that the samples correspond
to the ligand concentration over the past integration time τr,
and not the current concentration, which is the concentration
that the cell aims to estimate. A finite τr is necessary for
reducing the receptor sampling noise via time integration, but,
as we will see, it will also yield a systematic error in the
concentration estimate that the cell cannot reduce by taking
more receptor samples.

Specifically, recognizing that the current number of ac-
tive readout molecules x∗(L(t )) = x∗(L) equals the number
of samples of receptors that are bound to ligand in the past
integration time τr, it becomes clear that the cell estimates
the average receptor occupancy pτr over the past τr from the
fraction [15]:

p̂τr = x∗(L)

N
, (5)

where N is the average total number of samples obtained
during τr, corresponding to both ligand-bound and ligand-
unbound receptors. The number of active readout molecule
x∗(t ) at time t is given by

x∗(t ) =
N∑

i=1

ni(ti ), (6)

where ni is the state of the ith sample, corresponding to
the state of the receptor involved in the ith collision at time
ti < t : ni(ti) = 1 if the receptor is ligand bound and ni(ti ) = 0
otherwise. The total rate at which inactive readout molecules
interact with the receptor—the sampling rate—is given by
r = kf xRT and the average number of samples obtained during
the integration time τr is

N = kf xRTτr. (7)

We also note here that the flux of readout molecules is ṅ = r p.
Moreover, noting that f = kf pRTτr , the sampling rate is also
given by r = f (1 − f )XT/(pτr ) while the average number of
samples obtained during the integration time can be written as
N = f (1 − f )XT/p. As we will show below, the variance in
the estimate of pτr in Eq. (5), σ 2

p̂τr
[Eq. (1)], can be understood

in terms of the error of a sampling protocol: it depends on
the number of samples, their independence (their accuracy, al-
though that is not derived here, but see [16]), and the timescale
on which they are generated.

Decomposing the sampling error. Figure 2 gives an
overview of our scheme to compute the variance in the es-
timate of the receptor occupancy, σ 2

p̂τr
. Using the law of total

variance, the error σ 2
p̂τr

in the estimate of the receptor occu-
pancy pτr over the past integration time τr is given by

σ 2
p̂τr

= var
[
E

(
p̂τr

∣∣N)] + E
[
var

(
p̂τr

∣∣N)]
. (8)

The first term reflects the variance of the mean of p̂τr given the
number of samples N ; the second term reflects the mean of the
variance in p̂τr given the number of samples N [15]. As we
show next, these terms can be decomposed and recombined
such that the error in estimating pτr can be written as

σ 2
p̂τr

= σ
2,samp
p̂τr

+ σ
2,dyn
p̂τr

. (9)

Error from stochasticity in number of samples. The first
term of Eq. (8) describes the noise that arises from the
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FIG. 2. Overview of the decomposition of the variance σ 2
p̂τr

in the estimate p̂τr of the receptor occupancy pτr over the past integration

τr given that the current ligand concentration L(t ) = L. The error in the estimate of pτr can be decomposed into the sampling error σ
2,samp
p̂τr

,

denoted in blue, and the dynamical error σ
2,dyn
p̂τr

, denoted in green [see Eq. (9)]. The sampling error is a statistical error, arising from the finite
cellular resources to sample the state of the receptor; see Eq. (22). The dynamical error is a systematic error that arises from the input dynamics
and depends only on timescales; see Eq. (24). To arrive at this decomposition, σ 2

p̂τr
is split into a contribution from the stochasticity in the

number of samples (“variance of the mean”) and one from the error for a fixed number of samples (“mean of the variance”); see Eq. (8). The
first is given by Eq. (10). The latter consists of three contributions and is given by Eq. (12). The second of these three, the receptor covariance,
contributes both to the sampling error [see Eq. (17)] and the dynamical error [see Eq. (23)].

stochasticity in the number of samples. It can be written as
(see Appendix A)

var
[
E

(
p̂τr

∣∣N)] = p2

N
. (10)

This contribution reflects the fact that with a push-pull net-
work as considered here, the cell cannot discriminate between
those readout molecules that have collided with an unbound
receptor, and hence provide a sample of the receptor, and
those that have not collided with a receptor at all; this term
is zero for a bifunctional kinase where the unbound receptor
catalyzes readout deactivation [15]. This term contributes to
σ

2, samp
p̂τr

in Eq. (9).
Error for fixed number of samples. The second term of

Eq. (8) describes the error in the estimate of pτr that arises
for a fixed number of samples. It is given by

E [var( p̂τr |N )] = E

[
N2

N
2 var

(∑N
i=1 ni(ti )

N

∣∣∣∣N
)]

. (11)

In Appendix B we show that

var

(∑N
i=1 ni(ti )

N

∣∣∣∣N
)

= p(1 − p)

N
+ E〈δni(ti )δn j (t j )〉δL(t )

− g̃2σ 2
L , (12)

where δni(ti ) = ni(ti ) − p, E denotes an average over the sam-
pling times ti, and the overline an average over δL. As we
show next, the receptor covariance E〈δni(ti )δn j (t j )〉δL(t ) splits
into two contributions, one that together with the first term of
Eq. (12) and with Eq. (10) forms the sampling error, and one
that together with the last term of Eq. (12), −g̃2σ 2

L , forms the
dynamical error of Eq. (23); see Fig. 2.

The receptor covariance. To derive the receptor covariance
E〈δni(ti )δn j (t j )〉δL(t ), the second term of Eq. (12), we note that
the deviation δni(ti ) = ni(ti ) − p of the receptor occupancy
ni(ti ) from the mean p is

δni(ti ) =
∫ ti

−∞
dt ′e−(ti−t ′ )/τc [ρn δL(t ′) + ξi(t

′)], (13)

where ξi(t ′) models the ligand-binding noise of the receptor i
at time t ′. The covariance for a given δL(t ) is then given by
the sum of two contributions,

〈δni(ti )δn j (t j )〉δL(t ) = ρ2
n

∫ ti

−∞
dt ′

∫ t j

−∞
dt ′′e−(ti−t ′ )/τc〈δL(t ′)δL(t ′′)〉δL(t )e

−(t j−t ′′ )/τc

︸ ︷︷ ︸
covS

+
∫ ti

−∞
dt ′

∫ t j

−∞
dt ′′e−(ti−t ′ )/τc〈ξi(t

′)ξ j (t
′′)〉e−(t j−t ′′ )/τc

︸ ︷︷ ︸
covR

. (14)

Hence, the receptor covariance averaged over δL(t ) and the sampling times is

E〈δni(ti )δn j (t j )〉δL(t ) = E [covS(ni(ti ), n j (t j ))] + E [covR(ni(ti ), n j (t j ))]. (15)
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The first term on the right-hand side of Eq. (15) describes
the receptor covariance due to the ligand concentration dy-
namics. Together with the third term of Eq. (12), −g̃2σ 2

L , it
forms the dynamical error in estimating pτr ; see Fig. 2. The
second term of Eq. (15) characterizes the correlations in the
receptor switching that arise from the stochastic ligand bind-
ing and unbinding. This term forms, together with Eq. (10)
and with the first term of Eq. (12), the sampling error in
estimating pτr ; see Fig. 2. We will now first show how these
three terms yield the sampling error. We will then return to the
first term on the right-hand side of Eq. (15) and show how that
with −g̃2σ 2

L it forms the dynamical error.
Receptor switching noise. In Eq. (14), 〈ξi(t ′)ξ j (t ′′)〉 =

〈ξ 2〉δi jδ(t ′ − t ′′) where the noise amplitude 〈ξ 2〉 = 2p(1 −
p)/τc and the Kronecker delta δi j captures our assumption that
the ligand molecules bind the receptors independently, thus
ignoring spatiotemporal correlations [5]. The second term of
Eq. (14) then yields

covR(ni(ti ), n j (t j )) = p(1 − p)δi je
−|t j−ti|/τc . (16)

We now perform the averaging over the sampling times, de-
noted by E . In Appendix C we show that this yields

E [covR(ni(ti ), n j (t j ))] = p(1 − p)

RT

τc

τr
. (17)

The above expression is the same for each signal value δL(t )
and hence also equals E [covR(ni(ti ), n j (t j ))].

The sampling error. Equation (17) forms with the first term
of Eq. (12) the sampling error for a fixed number of samples
N (see Ref. [15]):

var

(∑N
i=1 ni(ti )

N

)samp

= p(1 − p)

N

(
1 + 2Nτc

2RTτr

)
(18)

= p(1 − p)

fI N
, (19)

where

fI = 1

1 + 2τc/�
(20)

is the fraction of independent samples with � = 2RTτr/N
being the spacing between the receptor samples. Clearly, if
the sampling interval � is much larger than the receptor
correlation time τc, all samples are independent and fI → 1.

We now have to average Eq. (19) over the different number
of samples N [see Eq. (11)], which finally gives

E [var( p̂τr |N )]samp = p(1 − p)

fI N
= p(1 − p)

N I
. (21)

This equation has a very clear interpretation: it is the error
in the estimate of the receptor occupancy based on a single
measurement—given by the variance of the receptor occu-
pancy p(1 − p)—divided by the total number of independent
measurements N I ≡ fI N .

Equations (10) and (21) together yield the sampling error
in estimating the receptor occupancy

σ
2,samp
p̂τr

= p2

N
+ p(1 − p)

fI N
. (22)

Both contributions to σ
2,samp
p̂τr

are governed by the nature of
the receptor sampling process and do not depend on the input
statistics. They are indeed the same as those for sensing static
concentrations, derived previously [15].

Dynamical error. In estimating a time-varying ligand con-
centration, the sensing error arises not only from the stochastic
sampling of the receptor state, but also from the fact that the
current ligand concentration corresponds to an ensemble of
ligand trajectories in the past, which each give rise to a differ-
ent integrated receptor occupancy. This effect is contained in
the first term of Eq. (15). In Appendix D we show that

E [covS(ni(ti ), n j (t j ))]

= g̃2σ 2
L

(
1 + τc

τL

)(
1 + τr

τL

)(
1 + τcτr

τL(τc + τr )

)
. (23)

Importantly, the above expression is not the dynamical er-
ror in the estimate of the receptor occupancy. It is the receptor
covariance that arises from the signal dynamics, but this con-
tains a contribution from the dynamical error [i.e., the variance
in pτr due to different past ligand trajectories ending at the
same L(t ); see Fig. 2(c)] and the signal variations of interest,
g̃2σ 2

L [i.e., the variance in pτr resulting from variations in L(t )].
To obtain the dynamical error in the receptor occupancy, we
have to subtract from the above expression g̃2σ 2

L , which is
indeed the third term of Eq. (12)—the term that we had not yet
taken care of (see also Fig. 2). This procedures directly yields
the dynamical error in the receptor occupancy, because the
above expression does not depend on the number of samples
N , so there is no need to average over N in Eq. (11). We thus
immediately find

σ
2, dyn
p̂τr

= g̃2σ 2
L

[(
1 + τc

τL

)(
1 + τr

τL

)(
1 + τcτr

τL(τc + τr )

)
− 1

]
.

(24)

This error corresponds indeed to the variation in pτr that
arises from the different concentration trajectories in the past
τr that each end at δL(t ); see Fig. 1(d). It does depend on the
statistics of the input signal: it increases with the width of the
input distribution, σ 2

L , and decreases with the input timescale
τL.

Together, the sampling error [Eq. (22)] and the dynamical
error [Eq. (24)] determine the total error in estimating the
receptor occupancy [Eq. (9)]:

σ 2
p̂τr

= p2

N
+ p(1 − p)

fI N
+ g̃2σ 2

L

[(
1 + τc

τL

)

×
(

1 + τr

τL

)(
1 + τcτr

τL(τc + τr )

)
− 1

]
. (25)

6. Central result

Equation (25) gives the error in the estimate of the average
receptor occupancy pτr , and to understand how this error
propagates to the error (δL̂)2 in the estimate of the ligand
concentration, we divide σ 2

p̂τr
by the dynamic gain g̃L→pτr
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given by Eq. (3) [see Eq. (2)]:

SNR−1 =
(

1 + τc

τL

)2(
1 + τr

τL

)2
[ (

L/σL
)2

p(1 − p)N I
+

(
L/σL

)2

(1 − p)2Neff

]
︸ ︷︷ ︸

sampling error

+
(

1 + τc

τL

)(
1 + τr

τL

)(
1 + τcτr

τL(τc + τr )

)
− 1︸ ︷︷ ︸

dynamical error

. (26)

This expression gives the signal-to-noise ratio for the irre-
versible push-pull network in terms of the total number of
receptor samples, their independence, and the timescale on
which they are generated. The expression is the same as
that obtained from a straightforward calculation based on the
linear-noise approximation (see Appendix E), but it is much
more illuminating. It shows that the sensing error SNR−1

can be decomposed into two distinct contributions. One is
the sampling error, which arises from the stochasticity in the
sampling of the receptor state, i.e., the first two terms on the
right-hand side of Eq. (25). The other is the dynamical error
and originates from the dynamics of the input signal, i.e., the
last term of Eq. (25).

Interestingly, this result is identical to that of the fully
reversible system, derived in Ref. [16]. The only difference
is in the expressions for Neff , which is the total number of
effective samples, and N I, which is the number of these that
are independent [15,16]. For the fully reversible system they
are given by

N I = 1

1 + 2τc/�︸ ︷︷ ︸
fI

q︷ ︸︸ ︷
(eβ�μ1 − 1)(eβ�μ2 − 1)

eβ�μ − 1

N̄︷︸︸︷
ṅτr

p︸ ︷︷ ︸
N̄eff

. (27)

The quantity ṅ is the net flux of x around the cycle of acti-
vation and deactivation, which for the fully reversible system
is given by ṅ = kf pRTx − k−f pRTx∗, yet for the irreversible
system reduces to ṅ = kf pRTx. The quantity ṅ/p is thus the
sampling rate r of the receptor, be it ligand bound or not.
The principal difference between the result for the reversible
system of Ref. [16] and that for the irreversible system studied
here concerns the accuracy of sampling, which is quantified
by the quality factor q, where �μ = �μ1 + �μ2 and �μ1

and �μ2 quantify, respectively, how much the modification
and demodification reactions are driven out of thermodynamic
equilibrium. For the irreversible system �μ1,�μ2 → ∞, and
the quality factor q reaches unity: when a receptor sam-
ple is taken, the ligand-binding state of a receptor protein
is accurately copied into the modification state of a read-
out molecule. For the irreversible system studied here, all
samples are thus effective, such that the average number of
effective samples Neff equals the average number of total
samples N , Neff = N . The factor fI describes for both the
reversible and the irreversible system as discussed above [see
also Eq. (20)], the fraction of samples that are independent,
with � = 2τr/(Neff/RT) the average receptor sampling in-
terval. For the irreversible system studied here, the average
number of independent samples is indeed N I = fI N [see also
Eq. (21)].

While the first term inside the square brackets of Eq. (26)
describes how the sampling error depends on the number of

samples, their independence, and their accuracy, the second
term describes how the sampling error depends on their distin-
guishability. This term stems from Eq. (10), which quantifies
the error that arises from the fact that with the push-pull
network considered here the cell cannot discriminate between
readout molecules that have interacted with an unbound re-
ceptor and those that have not interacted with a receptor at all.
This term is indeed zero for a readout system based on a bi-
functional kinase, where phosphorylated readout proteins do
not decay spontaneously but only via reactions catalyzed by
unbound receptors—such that, in the irreversible limit studied
here, a phosphorylated readout molecule always constitutes a
sample of a bound receptor and an unphosphorylated readout
molecule always forms a sample of an unbound receptor. This
distinguishability enhances the sensing precision.

The second distinct contribution to the sensing error, the
dynamical error [16], depends only on timescales and not
on the accuracy of sampling. Indeed, when the number of
samples becomes infinite and the sampling error goes to zero,
the sensing error remains nonzero because of the dynami-
cal error. The latter is a systematic (as opposed to random)
error in estimating L, which only reduces to zero when the
receptor correlation time τc and the integration time τr are
much smaller than the timescale τL on which the ligand
fluctuates.

Equation (26) also highlights that the integration time τr

affects the sensing precision via three distinct mechanisms.
Increasing the integration time increases the number of sam-
ples N—this is indeed the mechanism of time integration.
Yet increasing τr also increases the dynamical error and re-
duces the dynamic g̃L→pτr

, corresponding to the prefactor of
the sampling error in front of the square brackets. As we
will see, the interplay between these three factors gives rise
to an optimal integration time that maximizes the sensing
precision.

In summary, the principal result of Ref. [16], Eq. (26), can,
at least for the irreversible system studied here, be rigorously
derived from the idea that the push-pull network is a system
that samples the state of the receptor by copying its ligand-
binding state into chemical modification states of readout
proteins. It elucidates how the sensing precision depends on
the number of samples, their accuracy, their independence,
their distinguishability, and the timescale on which they are
taken compared to that of the input signal.

III. RESULTS

A. Optimal allocation principle revisited

Figure 3(a) shows the sensing precision as quantified by
the mutual information I (x∗; L) between the number of ac-
tive readout proteins x∗ and the ligand concentration L as a
function of the number of receptors RT and the total number
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FIG. 3. Design of the optimal sensing system. (a) Sensing precision of the optimal system, as quantified via the mutual information I (x∗; L),
as a function of the number of receptors RT and the number of readout proteins XT, where I (x∗; L) has been optimized over the integration time
τr and the receptor occupancy p. The gray line shows one contour line of a constant total protein cost C = RT + XT. The black point on this
line is the combination of the number of receptors RT and readout proteins XT that maximizes the sensing precision I (x∗; L) along this contour
line of constant protein cost C. The black line shows the optimal design (RT, XT) that maximizes the sensing precision (I (x∗; L) for a given
protein cost C, as a function of C. The red dashed line is the same parametric plot but then for a system that is constrained to obey the optimal
allocation principle XT = RT(1 + τr/τc ). (b) The optimal integration time that maximizes the mutual information as shown in (a) as a function
of the number of receptors RT and readout proteins XT. (c) Sensing precision I (x∗; L) as a function of RT and XT for a system that obeys the
resource allocation principle XT = RT(1 + τr/τc ), where I (x∗; L) has been optimized over the receptor occupancy p (and the integration time
τr is set by the allocation principle). The red point shows the combination of RT and XT that maximizes I (x∗; L) along the shown contour line
of constant protein cost C = RT + XT. The red line shows the parametric plot of (RT, XT) that maximizes I (x∗; L) for a given C, as a function
of C. For ease of comparison, this line is shown as a red dashed line in (a); similarly, the black solid line of panel (a), showing the optimal
design (RT, XT) as a function of protein cost C, is shown here as black dashed line. Since the minimal integration time τr is zero, no system
obeying the allocation principle XT = RT(1 + τr/τc ) exists for which XT < RT. The receptor correlation time is τc/τL = 10−2, and the relative
width of the signal distribution is σL/L = 10−2.

of readout proteins XT. Here we have optimized, for each RT

and XT, over the receptor occupancy p and the integration
time τr , while keeping the receptor correlation time τc and
the input statistics given by σL and τL constant. It is seen
that the sensing precision increases when RT and XT are in-
creased together. In contrast, when either XT or RT is increased
while keeping the other component constant, the mutual in-
formation will first rise but then saturate, as described in
Refs. [15,16]. This shows that both resources are fundamen-
tal, and cannot compensate each other in reaching a desired
sensing precision [15,16].

Figure 3(b) shows the optimal integration time τr
opt that

maximizes the sensing precision as a function of RT and
XT. It is seen that for a given RT, τr

opt first rises with XT

but then reaches a plateau. Conversely, the optimal integra-
tion time τr

opt decreases to zero when RT is increased at
fixed XT.

These observations can be understood using the optimal
resource allocation principle uncovered in Refs. [15,16]. This
principle is derived from the identification of the fundamental
resources for sensing. As explained in in Refs. [15,16], a
fundamental resource is a collective variable Qi that, when set
to a constant value, puts a nonzero lower bound on SNR−1,
irrespective of how the other variables are changed. Mathe-
matically, it is defined as MINQi=const (SNR−1) = f (const) >

0. These collective variables can be identified by numerically
or analytically minimizing SNR−1, constraining (combina-
tions of) variables yet optimizing over the other variables.
Applying this procedure reveals that the sensing precision of

the irreversible system studied here is bounded:

SNR−1 �
(

1 + τr

τL

)2 4(L̄/σL )2

RT(1 + τr/τc)
+ τr

τL
(28)

�
(

1 + τr

τL

)2 4(L̄/σL )2

XT
+ τr

τL
. (29)

The first bound corresponds to the limit in which RT is limiting
and XT is abundant, while the second bound corresponds to
the opposite regime. Crucially, these bounds differ only in the
expressions in the denominator in the first term. This indicates
that in an optimally designed system the following resource
allocation principle is obeyed [15,16]:

RT(1 + τr/τc) ≈ RTτr/τc ≈ XT, (30)

where we have exploited that the receptor integration time τr

is typically larger than the receptor correlation time τc, which
is indeed a prerequisite for time integration; for the E. coli
chemotaxis system, τr/τc is about 5–50 [16]. The prediction
of Eq. (30) has a clear interpretation: RTτr/τc is the number
τr/τc of independent concentration measurements per receptor
times the total number of receptors RT. This product RTτr/τc

equals the total number of independent concentration mea-
surements at the receptor level, since we have assumed here
that the receptors measure the concentration independently
(for the effect of receptor correlations, see [5]). In an optimally
designed system, the number of independent measurements at
the receptor level, RTτr/τc also equals the number of readout
proteins XT that are needed to store these measurements.
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The design principle Eq. (30) can perhaps be best un-
derstood by focusing on the receptor sampling interval �.
For any system, the sampling interval is � = 2RTτr/N while
the average number of samples equals N = f (1 − f )XT/p, as
discussed above. Moreover, an inspection of Eq. (26) reveals
that in the optimal system that maximizes the sensing preci-
sion, the active readout fraction f → 1/2, while the allocation
principle Eq. (30) predicts that XT ≈ RTτr/τc, such that the
sampling interval of the optimal system is predicted to be

�opt ≈ 8τc popt. (31)

A numerical optimization of Eq. (26) over p, imposing the
allocation principle XT = RTτr/τc, reveals that popt ≈ 0.23,
such that �opt ≈ 2τc. Interestingly, this is what Eq. (20) pre-
dicts: In an optimally designed system each receptor molecule
should be sampled roughly twice every correlation time τc.
Increasing XT beyond that given by Eq. (30) means that the
sampling interval becomes shorter than the receptor corre-
lation time, creating redundant samples of the receptor state
that do not provide any additional information on the average
receptor occupancy from which the ligand concentration is
inferred.

These observations indeed explain Figs. 3(a) and 3(b). To
capitalize on the mechanism of time averaging, multiple in-
dependent concentration measurements per receptor must be
taken, meaning τr > τc; in addition, to be able to store these
measurements XT must at least be RTτr/τc. Consequently,
when XT is increased at fixed RT, the sensing precision first
rises with XT because XT limits the number of independent
concentration measurements [Fig. 3(a)]; at the same time, to
allow for an increase in the number of independent measure-
ments with XT, τr must also rise [Fig. 3(b)]. Yet, to maintain
the dynamic gain g̃L→pτr

[Eq. (3)] and to contain the dynam-
ical error [Eq. (26)], τr cannot rise indefinitely, which means
that at some point the number of independent concentration
measurement is no longer limited by XT but rather by RTτr/τc.
The sensing precision now saturates and the system has en-
tered the Berg-Purcell regime, where the optimal integration
time arises from a trade-off between time averaging, the dy-
namic gain, and the dynamical error. Conversely, when RT is
increased at fixed XT, the sensing precision first rises because
it is initially limited by RT. Yet the optimal integration time
now decreases because per receptor less readout molecules
become available and hence less receptor states can be stored:
XT/RT ≈ τr/τc decreases.

Still, a number of questions remain: What is the optimal
design in terms of protein copies and time, i.e., RT, XT, and
τr? The resource allocation principle Eq. (30) predicts XT for a
given RT and τr, but does not predict what τr should be. In fact,
it merely constitutes one constraint on three variables, RT, XT,
and τr (we assume that τc is set by the ligand concentration).
To uniquely determine the optimal design that maximizes the
sensing precision, we need to impose a second constraint,
namely, on the costs of these cellular resources. Second, how
accurate is the prediction of the allocation principle Eq. (30)?
To what extent does the globally optimal system that is al-
lowed to relax the constraint of the allocation principle still
obey this principle?

B. Optimal design

To uniquely determine the optimal design, i.e., specify
RT, XT, and τr, we need to impose a constraint that is deter-
mined by the cellular costs associated with these resources.
What the relevant constraint is, and what the costs associated
with these resources are, ultimately needs to be determined
experimentally. Yet we can ask how sensitive the optimal
design is to the precise nature of the constraint and the degree
to which the allocation principle can predict it.

To address these questions, we here assume that the dom-
inant cost of the sensing machinery is the production of the
proteins, not the power to run it. We thus assume that the cost
function is given,

C = RT + cX XT, (32)

where cX sets the relative cost of making a readout versus a
receptor protein. To determine the optimal design, we then
maximize the sensing precision I (x∗; L) for a given resource
constraint C. The black dot in Fig. 3(a) shows the design
(Ropt

T , X opt
T ) that maximizes the sensing precision along the

gray line of a given resource constraint C = RT + XT, with
cX = 1; it is the point where a contour line of I (x∗; L) runs par-
allel to the constraint C. The black line in Figs. 3(a) and 3(b)
is then a parametric curve of the optimal design (Ropt

T , X opt
T )

for different values of C. The black lines in Fig. 4 show the
same data: the sensing precision [Fig. 4(a)], the number of
receptor (Fig. 4(b), solid line) and readout proteins [Fig. 4(b),
dashed line], and the integration time [Fig. 4(c)] in the optimal
system, as a function of the resource cost C.

As expected, the sensing precision increases with the total
number of proteins C. Moreover, as predicted by the optimal
allocation principle, RT and XT rise together in the optimal
system [Fig. 3(a), Fig. 4(b)]. In fact, τr

opt remains constant
as a function of C up to C ∼ RT, XT ≈ 104–105 before it
drops to zero [Fig. 4(c)]. This can be understood by noting
that until this crossover point, the sensing error is dominated
by the sampling error. In this regime, the optimal integration
time arises from a trade-off between the need to minimize the
sampling error via time averaging and the competing demand
to maximize the dynamic gain. This antagonistic interplay in-
deed gives rise to a constant optimal integration τr. However,
at around C ∼ RT, XT ≈ 104–105, the increase in RT and XT

has caused the sampling error to go down so much that it
becomes comparable to the dynamical error, and from this
point onwards both are reduced together by decreasing τr.

The resource cost C at which the dynamical error becomes
dominant over the sampling error depends on σL/L and the
receptor correlation time τc. As Eq. (26) shows, increasing the
width of the signal distribution, σL/L, increases the magnitude
of the dynamical error, such that the crossover point shifts to
lower C. Specifically, while, as Fig. 4 shows, for σL/L = 10−2

the crossover is at C ∼ 104–105, for σL/L = 1 the crossover
point reduces to C ∼ 102–103; see also Ref. [16], where a sim-
ilar result was shown. Increasing the receptor correlation time
τc makes time integration harder, which increases the optimal
integration time, and raises the sampling error. Yet, as Eq. (26)
reveals, increasing τc also increases the dynamical error, such
that, perhaps surprisingly, the crossover point is hardly af-
fected (with C changing less than twofold when τc is varied
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FIG. 4. The optimal resource allocation principle accurately describes the optimal system. The panels compare as a function of the protein
cost C = RT + XT, the sensing precision I (x∗; L), and design (RT, XT, τr ) of the globally optimal system (black lines), where I (x∗; L) has been
optimized over RT, XT, τr , and p, to the precision and design of the optimal system that is constrained to obey the resource allocation principle
XT = RT(1 + τr/τc ) (red lines); here I (x∗; L) is also optimized over p and RT, XT, τr , but the allocation principle imposes a constraint that
removes one degree of freedom between the latter three. See also Figs. 3(a) and 3(c). (a) The sensing precision I (x∗; L) as a function of the
protein cost C = RT + XT for the globally optimal system (black line) and the optimal system that obeys the resource allocation principle (red
line). (b) The number of receptors RT (solid line) and the number of readout proteins XT (dashed line) as a function of protein cost for for
the globally optimal system (black lines) and the optimal system that obeys the resource allocation principle (red lines). (c) The integration
time τr for the globally optimal system (black line) and the optimal system that obeys the resource allocation principle (red line). The receptor
correlation time is τc/τL = 10−2 and the relative width of the signal distribution is σL/L = 10−2.

tenfold). The concentrations of signaling proteins are typically
in the micromolar range, such that the typical copy numbers
scale with the size of the cell. For the chemotaxis system of
E. coli, the copy numbers of the messenger protein CheY and
the receptors and their associated kinase CheA are in the range
103–104, depending on the strain and the growth medium [21].
For eukaryotic signaling proteins, copy numbers are often in
the range 104 − 105, although some signaling proteins are
also present at higher copy numbers of even 106 [22–24].
Clearly, while the precise crossover between the sampling-
error-dominated regime and the dynamical-error-dominated
one depends on the strength of the signal fluctuations σL/L,
which depends on the environment [16], our results show that
the different regimes are likely to be biologically relevant.

C. Accuracy of optimal allocation principle

To assess the accuracy of the resource allocation principle,
we compute the sensing precision I (x∗; L) as a function of
RT and XT for the optimal system that is forced to obey this
principle: we thus optimize for each (RT, XT) the sensing
precision over the receptor occupancy p while the integration
time τr is set by the allocation principle XT = RT(1 + τr/τc).
Figure 3(c) shows the result. As before, we also compute
for each resource constraint C = RT + cX XT, with cX = 1,
the combination of RT and XT that maximizes the sensing
precision, and plot this as a function of C (red line). It is
seen that both the sensing precision and the optimal design
(RT, XT) of the system that is constrained to obey the resource
allocation principle are similar to those of the globally optimal
system, shown in Fig. 3(a).

Figure 4 compares in more detail the characteristics of the
system that obeys the allocation principle (red lines) to those
of the globally optimal system (black lines). It is clear that
the allocation principle predicts the optimal system remark-
ably well. This is because the number of receptors and their
integration time, RTτr/τc, and the number of readout proteins

XT limit sensing like weak links in a chain. The sensing pre-
cision is limited by the limiting resource, and in an optimally
designed system, obeying Eq. (30), each resource is equally
limiting. This simple principle explains why these resources
cannot compensate each other, and why the contour lines of
the sensing precision as a function of RT and XT in Fig. 3(a)
and Fig. 3(c) have this distinct kneelike shape. The sensing
precision can be raised only by increasing RT and XT together.

D. Dependence on resource costs

While the allocation principle gives a good description of
the optimal system, a close inspection of Fig. 4 reveals that
there are small but noticeable differences between the globally
optimal system and the system that is forced to obey the
allocation principle. In particular, while the contour lines have
a kneelike shape, which stems from the fact that RT and XT

limit sensing like links in a chain, the bend in the contour
lines is still smooth. This is because the receptor occupancy
p differs in the two limits of the sensing precision in Eqs. (28)
and (29): while in the limit that the receptors are limiting the
optimal receptor occupancy p → 1/2, in the regime that the
readouts are limiting p → 0. Second, in the globally optimal
system the optimal integration time τr

opt is larger than that
of the system that obeys the allocation principle [Fig. 4(c)].
This can be understood by noting that, for the parameter
settings of Figs. 3 and 4, the sampling error dominates over the
dynamical error (unless C becomes very large, in which case
the differences between these systems disappear because time
integration is no longer needed). This means that reducing the
sampling error via time averaging is key. To make optimal
use of the expensive readouts for time averaging, it is vital
to ensure that they store receptor states and concentration
measurements that are independent. This can be achieved by
increasing the integration time, which makes it more likely
that the sampling interval � is larger than the receptor cor-
relation time τc. However, increasing the integration time too

054406-10



RECEPTOR TIME INTEGRATION VIA DISCRETE … PHYSICAL REVIEW E 105, 054406 (2022)

(a) (b) (c)

(d) (e) (f)

FIG. 5. The predictive power of the resource allocation principle improves further when the readout cost decreases or the input varies more
rapidly, containing the integration time. The panels compare as a function of the protein cost C = RT + cX XT the sensing precision I (x∗; L) and
design (RT, XT, τr ) of the globally optimal system (black lines), where I (x∗; L) has been optimized over RT, XT, τr , and p, to the precision and
design of the optimal system that is constrained to obey the resource allocation principle XT = RT(1 + τr/τc ) (red lines); here I (x∗; L) is also
optimized over p and RT, XT, τr , but the allocation principle imposes a constraint that removes one degree of freedom between the latter three.
Top row (a–c) Relative cost of readout compared to receptor is decreased tenfold, cX = 0.1. Bottom row (d, e) Input timescale τL is decreased
tenfold compared to τc. (a, d) The sensing precision I (x∗; L) as a function of the protein cost C = RT + XT for the globally optimal system
(black line) and the optimal system that obeys the resource allocation principle (red line). (b, e) The number of receptors RT (solid line) and
the number of readout proteins XT (dashed line) as a function of protein cost for for the globally optimal system (black lines) and the optimal
system that obeys the resource allocation principle (red lines). (c, f) The integration time τr for the globally optimal system (black line) and the
optimal system that obeys the resource allocation principle (red line). The receptor correlation time is τc/τL = 10−2, and the relative width of
the signal distribution is σL/L = 10−2.

much will increase the sensing error because the dynamic gain
becomes too low (and for large C also the dynamical error too
large).

These observations suggest that the predictive power of the
allocation principle improves further if the readout proteins
become less costly so that the cost of redundant receptor
sampling becomes milder, or if the pressure to contain the
integration time becomes larger, for example when the input
varies more rapidly. Figure 5 confirms these predictions. The
top row shows the comparison between the optimal system
and that constrained to obey the resource allocation principle
when the readout cost is reduced tenfold, and the bottom
row shows the comparison when the input timescale τL is
decreased tenfold. Clearly, the predictive power of the optimal
allocation principle has improved even further.

IV. DISCUSSION

In this paper, we have extended the sampling framework
of Ref. [15] to time-varying signals. This framework views

the signaling network as a device that discretely samples the
receptor state. It reveals that the sensing error consists of two
distinct contributions: the sampling error and the dynamical
error. The benefit of viewing the network as a sampling device
is that the results are intuitive. The important quantities in any
sampling protocol are the number of samples, their spacing,
their accuracy, and the dynamics of the signal to be sampled.
The larger the number of samples, the lower the sampling
error; the further apart they are, the more independent they
are, which also lowers the sampling error; the higher their
accuracy, the lower the sampling error [15]. Here we show
then when the input signal fluctuates in time, the timescale on
which the samples are taken also becomes important. More re-
cent samples provide more reliable information on the current
concentration which the cell aims to estimate than samples
taken further back into the past. In particular, the lifetime of
the samples, set by τr , should be shorter than the timescale
τL on which the ligand concentration fluctuates. If not, a
systematic error arises, the dynamical error, which cannot be
eliminated by taking more samples.
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While the sampling framework explicitly takes into ac-
count that the information from the ligand concentration is
relayed to the readout via the receptor, the cell does ultimately
infer the concentration from the readout. Our final result,
Eq. (26), is indeed identical to that obtained by a straight-
forward linear-noise calculation of the mutual information
I (L; x∗) between the ligand concentration and the readout,
as described in Appendix E. This can also be understood
as follows: Because the average number of samples N is a
constant, it follows from Eq. (5) that the variance in x∗ given
an input L is σ 2

x∗|L = σ 2
p̂τr

N
2

while the gain from L to x∗ is

g̃2
L→x∗ = g̃2

L→pτr
N

2
. Consequently, the absolute error (δL̂)2 in

estimating the concentration via x∗, (δL̂)2 = σ 2
x∗|L/g̃2

L→x∗ , is
the same as that of Eq. (1). In summary, because the instan-
taneous number of active readout molecules x∗ reflects the
average receptor occupancy pτr over the past τr , estimating
the ligand concentration from x∗ is no different from inferring
it from the average receptor occupancy p̂τr = x∗/N .

In Ref. [16] we derived the same principal result, Eq. (26),
but via a different route, appealing to the linear-noise approx-
imation. The added value of the current approach, based on
the sampling framework of Ref. [15], is twofold. First, the
fact that the principal result can be rigorously derived via the
sampling framework demonstrates unambiguously that cells
implement the mathematical operation of time integration via
molecules that execute a stochastic and discrete sampling
protocol. Second, this framework naturally reveals the origins
of the distinct contributions to the sensing error: the sampling
error and the dynamical error; Fig. 2 sums up the origins of
these contributions. The framework elucidates these sources
not only intuitively, but derives them also rigorously. For
example, it shows how the dynamical error emerges from
the variance in the estimate of the receptor occupancy that
arises from the fact that a given current ligand concentration,
which the cell aims to estimate, corresponds to an ensemble
of past ligand trajectories, from which the cell actually infers
the current concentration [see Fig. 1(d)]. Understanding these
contributions not only provides insight into the origins of
the sensing error, but also naturally gives rise to the optimal
resource allocation principle.

The optimal resource allocation principle states that in
an optimally designed system the number of independent
concentration measurements at the receptor level, RTτr/τc,
equals the number of readout proteins that are necessary and
sufficient store these measurements, XT [15]. However, this
principle as such does not specify the integration time τr.
There does exist an optimal integration time that maximizes
the sensing precision, which arises from a trade-off between
time averaging, the dynamic gain, and the dynamical error
[16]. Yet its value, as well as RT and XT in the optimal system,
depends on the dynamics of the input signal and the (relative)
costs of making the receptor and readout proteins.

We have therefore applied our theory to study the op-
timal design that maximizes the sensing precision given a
constraint on the total protein cost and the degree to which
this optimal design obeys the resource allocation principle.
The optimal design as such does depend on the relative
cost of producing readout versus receptor proteins: cheaper
readout proteins make time averaging more beneficial, which

raises the optimal integration time and the ratio of the num-
ber of readout over receptor proteins, precisely as predicted
by our allocation principle [compare Figs. 5(b) and 5(c)
with Figs. 4(b) and 4(c)]. However, these figures also show
that all the optimal systems obey, to a good approxima-
tion, the optimal resource allocation principle. This principle
is thus robust to the relative costs of the cellular resources.
This is because these resources are fundamental and cannot
significantly compensate each other. In an optimally designed
system, each of these resources is equally limiting so that
none resource is in excess. Resources that are in excess cannot
significantly reduce the sensing error, no matter how cheap
they are.

Signaling systems do not always aim to estimate the
current ligand concentration, as we have assumed here. A
prime example is the chemotaxis system of the bacterium
E. coli, which aims to estimate whether the concentration
has changed, by taking a temporal derivative of the input
signal. This derivative is taken by two antagonistic systems,
which operate on two distinct timescales. Ligand binding
rapidly changes the activity of the receptor, which, via a
push-pull network as studied here, then leads to a fast change
in the phosphorylation state of the downstream messenger
protein CheY. This effect is, however, counteracted on longer
timescales via slow (de)methylation of the receptor. These
reactions together allow the system to take a temporal deriva-
tive, essentially subtracting the past ligand concentration from
the current concentration. The accuracy of the estimate of
the current concentration, the topic of our study, provides a
lower bound on the precision of the estimate of this temporal
derivative [16]. For future work it would be of interest to
extend our analysis and study how resources constrain the
performance of signaling systems that need to take a temporal
derivative of the input signal.
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APPENDIX A: ERROR FROM STOCHASTICITY
IN NUMBER OF SAMPLES: Eq. (10)

The first term of Eq. (8) describes the noise that arises from
the stochasticity in the number of samples N . It can be written
as

var[E ( p̂τr |N )] = var

[
1

N̄
E

(
N∑

i=1

n(ti)

∣∣∣∣∣N
)]

, (A1)

where we have dropped the subscript i on ni [compare against
Eq. (6)] because in estimating the average receptor occupancy
we can focus on a single receptor. The above average can be
written as

E

(
N∑

i=1

n(ti)

∣∣∣∣∣N
)

= NE〈n(ti )〉δL(t ) (A2)

= N
(
p + E〈δn(ti )〉δL(t )

)
(A3)
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= N (p + g̃δL(t )) (A4)

= N p. (A5)

Here the angular brackets 〈. . . 〉δL(t ) denote an average over the
ligand binding state of the receptor, with the subscript δL(t )
indicating that the average is to be taken for a given δL(t ). The
expectation E denotes an average over all samples times ti,
and the overline indicates an average over δL(t ). In going from
the second to the third line we have used that δpτr = g̃δL(t )
[16], with g̃ the short-hand notation for g̃ = g̃L→pτr

, as also
used below unless stated otherwise. Hence, Eq. (A1) becomes

var
[
E

(
p̂τr

∣∣N)] = var

[
N

N
p

]
(A6)

= p2

N
2 var[N] (A7)

= p2

N
. (A8)

APPENDIX B: VARIANCE IN AVERAGE RECEPTOR
OCCUPANCY FOR FIXED NUMBER OF SAMPLES: Eq. (12)

Equation (12) gives the variance in the average receptor
occupancy for a fixed number of samples. To derive it, we
note that

var

(∑N
i=1 ni(ti )

N

∣∣∣∣N
)

δL(t )

(B1)

=
E

〈( ∑N
i=1 ni(ti)

)2〉
δL(t ) − E

〈∑N
i=1 ni(ti )

〉2
δL(t )

N2
(B2)

=
E

〈( ∑N
i=1 ni(ti)

)2〉
δL(t ) − N2[p + g̃δL(t )]2

N2
(B3)

= N[p + g̃δL(t )] + N (N − 1)E〈ni(ti )n j (t j )〉δL(t )

N2

− [p + g̃δL(t )]2 (B4)

= N[p + g̃δL(t )] − N[p + g̃δL(t )]2

N2

+ N (N − 1)E〈δ̃ni(ti )δ̃n j (t j )〉δL(t )

N2
(B5)

= p(1 − p) − g̃2σ 2
L

N
+ N (N − 1)E〈δ̃ni(ti )δ̃n j (t j )〉δL(t )

N2
.

(B6)

Here δ̃ni(ti ) ≡ ni(ti )−〈ni(ti )〉δL(t ) = ni(ti ) − [p+〈δni(ti )〉δL(t )]
is the deviation away from the average receptor occupancy
〈ni(ti〉) = p + 〈δni(ti )〉δL(t ) at time ti when the ligand con-
centration at time t is δL(t ). In Eq. (B6), E denotes, as
before, an average over the sampling times of the receptor.
The average of ni(ti ) over the sampling times ti given δL(t ),
is E [〈ni(ti )〉δL(t )] = p + E〈δni(ti )〉δL(t ) = p + g̃δL(t ) (noting
that δpτr = g̃δL(t ) [16]). In addition, σ 2

L = 〈δL(t )2〉 is the
variance of the ligand concentration, and in going from
Eqs. (B3) to (B4) we have exploited that n2 = n. The quantity

E〈δ̃ni(ti )δ̃n j (t j )〉δL(t ) is the covariance of the receptor occu-

pancy given that the ligand concentration at time t is δL(t ),
and then averaged over all values of δL(t ), as indicated by the
overline. This quantity has a contribution from the receptor
switching noise and the dynamical error resulting from the
ligand fluctuations.

While E〈δ̃ni(ti )δ̃n j (t j )〉δL(t ) = E〈ni(ti )n j (t j )〉δL(t ) −
E〈ni(ti)〉δL(t )〈n j (t j )〉δL(t ) is the quantity that we need to
compute, it is difficult to compute straightforwardly. We can,
however, exploit the following trick [20]. Denoting x = ni(ti ),
y = nj (t j ) and z = δL(t ), we can write the quantity of interest

as E〈δ̃ni(ti)δ̃n j (t j )〉δL(t ) = E〈xy〉z − E〈x〉zE〈y〉z. We can then
exploit the following relation:

E〈δxδy〉z = E〈xy〉z − E〈x〉zE〈y〉z + E〈x〉zE〈y〉z

− E〈x〉z E〈y〉z (B7)

= E〈xy〉z − E〈x〉zE〈y〉z + g̃2σ 2
L . (B8)

Importantly, E〈δxδy〉z is the covariance related to the devi-
ation of the receptor occupancy from the mean p, which is
easier to compute that the deviation from p + g̃δL(t ). Insert-
ing the above result into Eq. (B6) yields

var

(∑N
i=1 ni(ti)

N

)
δL(t )

= p(1 − p)

N
+ E〈δni(ti )δn j (t j )〉δL(t )

− g̃2σ 2
L , (B9)

where we have used that N (N − 1) ≈ N2 for N � 1.

APPENDIX C: RECEPTOR SWITCHING NOISE: Eq. (17)

To average Eq. (16) over the sampling times, it is conve-
nient to express and evaluate the integrals in terms of λ =
1/τL, μ = 1/τc, and μ′ = 1/τr . Using that the probability that
a readout molecule at time t has taken a sample of the receptor
at an earlier time ti is p(ti|sample) = e−(t−ti )/τr /τr [15], we
obtain

E [covR(ni(ti ), n j (t j ))]

= p(1 − p)μ′2

RT

∫ t

−∞
dti

∫ t

−∞
dt je

−μ′(t−ti )e−μ′(t−t j )e−λ|t j−ti|

(C1)

= p(1 − p)μ′2

RT
e−2μ′t

∫ t

−∞
dt je

2μ′t j 2
∫ ∞

0
d�̃e−(μ′+μ)�̃

(C2)

= p(1 − p)

RT

τc

τc + τr
� p(1 − p)

RT

τc

τr
, (C3)

where �̃ = |t j − ti| and in the last line we have used that
typically τr � τc. The factor 1/RT arises from the Krokecker
delta δi j in Eq. (16), taking into account that the receptors bind
the ligand independently.

APPENDIX D: RECEPTOR VARIANCE FROM SIGNAL
VARIATIONS: Eq. (23)

To obtain the variance in the receptor occupancy that arises
from the signal fluctuations δL(t0, E [covS(ni(ti ), n j (t j ))] in
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Eq. (15), we recognize that the averaging over δL(t ) can be
performed before the averaging over the sampling times, such
that E [covS(ni(ti ), n j (t j ))] = E [covS(ni(ti ), n j (t j ))] with

covS(ni(ti ), n j (t j ))

= ρ2
n

∫ ti

−∞
dt ′

∫ t j

−∞
dt ′′e−(ti−t ′ )/τc〈δL(t ′)δL(t ′′)〉δL(t )

× e−(t j−t ′′ )/τc . (D1)

We can now exploit that the correlation function of the in-
put signal is given by 〈δL(t ′)δL(t ′′)〉δL(t ) = 〈δL(t ′)δL(t ′′)〉 =
σ 2

L e−λ|t ′′−t ′|, with λ = 1/τL. Inserting this into Eq. (D1) and
integrating it yields

covS(ni(ti ), n j (t j )) = ρ2
nσ 2

L

λe−μ(t j−ti ) − μe−λ(t j−ti )

μ(λ2 − μ2)
, (D2)

with μ = 1/τc defined as before. Defining μ′ = 1/τr , we now
again average over the sample times

E [covS(ni(ti ), n j (t j ))] (D3)

μ′2
∫ t

−∞
dti

∫ t

−∞
dt je

−μ′(t−ti )covS(ni(ti ), n j (t j ))e−μ′(t−t j )

(D4)

= ρ2
nσ 2

L

μ′(λ + μ + μ′)
μ(μ + λ)(μ + μ′)(μ′ + λ)

(D5)

= ρ2
nμ′2σ 2

L

(μ + λ)2(μ′ + λ)2

(λ + μ + μ′)(μ + λ)(μ′ + λ)

μ′μ(μ + μ′)
(D6)

= g̃2σ 2
L

(λ + μ + μ′)(μ + λ)(μ′ + λ)

μ′μ(μ + μ′)
(D7)

= g̃2σ 2
L

(
1 + τc

τL

)(
1 + τr

τL

)(
1 + τcτr

τL(τc + τr )

)
. (D8)

APPENDIX E: SENSING PRECISION BASED ON OUTPUT
x∗ DERIVED VIA THE LINEAR-NOISE APPROXIMATION

An alternative approach to derive the sensing error„ which,
we argue, is less informative, is to focus directly on the output
x∗, and not explicitly address the fact that the information
on the input concentration is relayed to the output via the
receptor. In this view, the cell thus infer the current ligand con-
centration L(t ) directly from the instantaneous concentration
of the output x∗(t ) and by inverting the input-output relation
x∗(L). Since the ligand concentration fluctuates in time, and
because the system will, in general, not respond instantly
to these fluctuations, the input-output relation that the sys-
tem must employ is the dynamic input-output relation x∗(L),
which yields the average readout concentration x∗ given that
the current value of the time-varying signal is L(t ); here the
average is not only over the noise sources in the propagation
of the signal from the input L to the output x∗—the receptor-
ligand binding noise and the readout-phosphorylation noise
[see Fig. 1(c)]—but also over the ensemble of input trajec-
tories that each have the same current concentration L(t )
[see Fig. 1(d)] [18–20].

Sensing error. Linearizing x∗(L) around the mean concen-
tration L and using the rules of error propagation, the expected
error in the concentration estimate is then

(δL̂)2 = σ 2
x∗|L

g̃2
L→x∗

. (E1)

In this expression, σ 2
x∗|L quantifies the width of the distribution

of the output x∗ given a value of the input signal L, while
g̃L→x∗ is the dynamic gain, i.e., the slope of x∗(L) at L.

Gaussian statistics. We can obtain the variance σ 2
x∗|L and

the dynamic gain g̃L→x∗ within the Gaussian framework of the
linear-noise approximation [18]. The deviations of L and x∗
away from their mean values are, respectively:

δL(t ) = L(t ) − L, (E2)

δx∗(t ) = x∗(t ) − x∗. (E3)

Since the dynamics of both L and x∗ are stationary processes,
we can choose to omit the explicit dependence on time, and
simply write δL(t ) = δL and similarly for x∗. Defining the
vector v with components δL(t ), δx∗(t ), the joint distribution
can be written as

p(v) = 1√
2π2N |Z|

exp

(
−1

2
vTZ−1v

)
, (E4)

where Z−1 is the inverse of the matrix Z, which has the
following form:

Z =
(

σ 2
L σ 2

L,x∗

σ 2
L,x∗ σ 2

x∗

)
. (E5)

From Eq. (E4) it follows that the conditional distribution of
δx∗ given δL is

p(δx∗|δL) = 1(
2πσ 2

x∗|L
)1/2 exp

{
− [δx∗ − δx∗(δL)]2

2σ 2
x∗|L

}
. (E6)

Dynamic gain. In Eq. (E6), δx∗(δL) is the average of
the deviation δx∗(δL) = x∗(δL) − x∗ of x∗ from its mean x∗
given that the input is δL = δL(t ); it describes the dynamic
input relation x∗(L) around L = L. It is given by δx∗(δL) =
σ 2

L,x∗/σ 2
L δL ≡ g̃L→pτr

δL, which defines the dynamic gain:

g̃L→pτr
= σ 2

L,x∗/σ
2
L . (E7)

Here σ 2
L is the variance of the input and σ 2

L,x∗ is the covariance
between L and x∗, which is derived below.

Conditional variance. In Eq. (E6), the variance σ 2
x∗|L is the

variance in x∗ given that the signal is L. It is given by σ 2
x∗|L =

|Z|/σ 2
L [18], such that

σ 2
x∗|L = σ 2

x∗ − g̃2
L→pτr

σ 2
L , (E8)

where σ 2
x∗ is the full variance of x∗. Indeed, in this Gaussian

model, the total variance σ 2
x∗ in the output x∗ can be decom-

posed into a contribution from the variance g̃2
L→x∗σ 2

L due to
variations in the signal itself, and a contribution from the
variance σ 2

x∗|L for a given value of the input L. The conditional
variance σ 2

x∗|L is shaped both by the noise in the propagation
of the input L to the output x∗—stochastic receptor-ligand
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binding and noisy readout activation—and by the dynamics
of the input signal.

LNA description. To compute the (co)variances, we can
employ the linear-noise approximation. The deviations of RL
and x∗ away from their steady-state values are given by:

δṘL(t ) = ρδL(t ) − μδRL(t ) + ηRL, (E9)

δẋ∗(t ) = ρ ′δRL(t ) − μ′δx∗(t ) + ηx∗ . (E10)

In the first equation, μ = k1L + k2 = τc
−1 is the inverse of

the receptor correlation time τc, ρ = RTk1(1 − p) = p(1 −
p)RTμ/L, where p = RL/RT = k1L/(k2 + k1L) = k1L/μ is
the fraction of ligand-bound receptors.. In the second equa-
tion, ρ ′ = kf XT(1 − f ) − k−f XT f and μ′ = (kf + k−f )pRT +
kr + k−r = τr

−1 is the inverse of the integration time
τr, where f = x∗/XT = (kf pRT + k−r )/[kf + k−f )pRT + kr +
k−r] = (kf pRT + k−r )τr is the fraction of phosphorylated read-
out molecules.

The noise functions are given by [25]〈
η2

RL

〉 = 2μRT p(1 − p), (E11)〈
η2

x∗
〉 = 2μ′XT f (1 − f ), (E12)

where the cross-correlations 〈ηLηRL〉 = 〈ηx∗ηL〉 = 〈ηx∗ηRL〉 =
0 are zero because receptor-ligand binding does not affect
the total ligand concentration and the complex RL acts as a
catalyst in the push-pull network [26].

We can then obtain the variances from the power spectra,
σ 2

α,β = 1/(2π )
∫ ∞
−∞ Sαβ (ω), which can be obtained by solving

Eqs. (E9)–(E12) in the Fourier domain:

σ 2
x∗ = f (1 − f )XT + ρ ′2

μ′(μ + μ′)

[
p(1 − p)RT

+ ρ2σ 2
L (λ + μ + μ′)

μ(λ + μ)(λ + μ′)

]
, (E13)

σ 2
RL = p(1 − p)RT + ρ2σ 2

L

μ(μ + λ)
, (E14)

σ 2
L,RL = ρσ 2

L

(μ + λ)
, (E15)

σ 2
L,x∗ = ρρ ′σ 2

L

(λ + μ)(λ + μ′)
, (E16)

σ 2
RL,x∗ = ρ ′

μ′ + μ

[
p(1 − p)RT + ρ2σ 2

L (μ′ + λ + μ)

μ(λ + μ)(λ + μ′)

]
.

(E17)

Signal-to-noise ratio (SNR). Combining the expression for
the definition of SNR, given in Eq. (2), with Eq. (E1) then
yields the sensing error, the inverse SNR:

SNR−1 = σ 2
x∗|L

g̃2
L→x∗σ 2

L

= σ 2
L σ 2

x∗

σ 4
L,x∗

− 1, (E18)

where we have used Eqs. (E7) and (E8). Using the expressions
for the variance for x∗, Eq. (E13), and the covariance between
L and x∗, Eq. (E17), the signal-to-noise ratio reads

SNR−1 = (λ + μ)2(λ + μ′)2

ρ2ρ ′2σ 2
L

f (1 − f )XT

+ (λ + μ)2(λ + μ′)2

σ 2
L μ′(μ + μ′)ρ2

p(1 − p)RT

+ (λ + μ)(λ + μ′)(λ + μ + μ′)
μμ′(μ + μ′)

− 1. (E19)

This expression is identical to the central result of our paper,
Eq. (26), but more difficult to interpret intuitively and impedes
an analysis of the fundamental resources required for sensing.
Yet this analysis does make clear that this SNR also yields
the mutual information I (L; x∗) = 1/2 ln(1 + SNR) between
L and x∗ [18].
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