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Imposing chirality on a physical system en-
genders unconventional energy flow and re-
sponses, such as the Aharonov-Bohm effect1
and the topological quantum Hall phase for elec-
trons in a symmetry-breaking magnetic field.
Recently, great interest has arisen in combin-
ing that principle with broken Hermiticity to
explore novel topological phases and applica-
tions.2–16 Here, we report unique phononic
states formed when combining the controlled
breaking of time-reversal symmetry with non-
Hermitian dynamics, both induced through time-
modulated radiation pressure forces in small
nano-optomechanical networks. We observe chi-
ral energy flow among mechanical resonators in a
synthetic dimension and Aharonov-Bohm tuning
of their eigenmodes. Introducing particle-non-
conserving squeezing interactions, we discover
a non-Hermitian Aharonov-Bohm effect in ring-
shaped networks in which mechanical quasipar-
ticles experience parametric gain. The resulting
complex mode spectra indicate flux-tuning of
squeezing, exceptional points, instabilities and
unidirectional phononic amplification. This rich
phenomenology points the way to exploring new
non-Hermitian topological bosonic phases and
applications in sensing and transport that ex-
ploit spatiotemporal symmetry breaking.

From the Zeeman to the quantum Hall effect, mag-
netic fields biasing electronic systems alter their spec-
trum and imprint chirality on their eigenstates. Non-
reciprocal interference underlies these phenomena, as
electrons travelling along a closed path gain a phase
proportional to the enclosed magnetic flux that de-
pends on direction — evidencing broken time-reversal
(T ) symmetry. Such geometrical phases1 and the re-
sulting synthetic magnetism were recently brought to
bosonic systems in photonics, acoustics, and cold atoms
to explore nonreciprocal functionality17–20 and various
topological insulators.21,22

In a parallel, largely unconnected development, re-
searchers turned to non-Hermitian systems such as
parity-time- (PT -)symmetric systems, featuring dy-
namical phase transitions linked to spectral singularities
such as exceptional points (EPs).23,24 Here, controlled
gain and loss lead to unique eigenmode symmetries

and tuning of complex eigenfrequencies ε. Bosonic sys-
tems form the natural realm for these phenomena, with
lasing and self-oscillation ubiquitous in photonics and
mechanics. In particular, bosonic squeezing is described
by Hamiltonians that do not conserve excitation num-
ber, and engender distinct phases showing stable or
unboundedly growing dynamics.25,26

Very recently, the combination of topology and non-
Hermiticity attracted strong interest.2,3 Tailoring gain
and loss in topological insulators showed lasing into pro-
tected states6,7,12 and topological phase transitions.8
In principle, states with symmetries, dynamics, and
spectra that are altogether different from Hermitian
chiral systems are expected.4,5 Indeed, various non-
Hermitian topological phases were predicted, with asso-
ciated chirally-amplified and unstable edge modes,9–11
quadrature-dependent chiral transport27,28 and anoma-
lous bulk-boundary correspondence with extreme sensi-
tivity to boundary conditions.2,13–16 However, the rich
combination of squeezing interactions and geometrical
phases remained experimentally unexplored so far.

Here we demonstrate Aharonov-Bohm (AB) interfer-
ence and chirality of nanomechanical states in multi-
resonator networks where both T -symmetry-breaking
geometrical phases and non-Hermiticity are induced
through radiation pressure. Since suitable laser drives
stimulate frequency-converting transitions, optomechan-
ical control29 allows parametric amplification and syn-
thetic magnetism for photons18,19 and phonons.30,31
We combine both here, using squeezing interactions in
addition to particle-conserving interactions to create
non-Hermitian dynamics without dissipation25,32 and
uncover new geometrical phases. Using light to sensi-
tively actuate and detect nanomechanical motion, we
reveal the unique effects of this merger on chiral trans-
port, dynamical phases, and squeezing — and actively
control them in space and time.

Phononic circulation

We first induce phononic chirality by breaking T symme-
try in a network with Hermitian closed-system dynam-
ics, henceforth simply called Hermitian. We disregard
the small intrinsic mechanical dissipation in the systems’
most basic description, while including it in all rele-
vant calculations (Methods). A sliced photonic crystal
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nanobeam31 supports multiple non-degenerate MHz-
frequency flexural mechanical modes coupled to the
optical field of a nanocavity. Each mode (‘resonator’)
i changes the cavity frequency by g(i)

0 xi through dis-
placement xi (normalised to the zero-point amplitude)
and experiences a force ∝ g(i)

0 nc, with g
(i)
0 the vacuum

optomechanical coupling rate and nc the intracavity
photon number. Figure 1a shows distinct mechanical
resonances in the thermomechanical noise spectrum,
read out as modulations of a detuned probe laser re-
flected from the cavity (Methods).
While the (uncoupled) mechanical resonators have

well-separated eigenfrequencies ωi, interactions are es-
tablished by temporal modulation of the intensity of a
control laser detuned from cavity resonance. For opti-
mal laser detuning ∆ = −κ/(2

√
3), with cavity decay

rate κ, mechanical displacement modulates the intra-
cavity intensity instantaneously at phononic timescales
(κ � ωi). Mixing of a control laser intensity modula-
tion at the difference frequency ωj − ωi of resonators i
and j with the radiation pressure force sideband of res-
onator i creates a sideband at ωj . The resulting ‘cross-
mode optical spring effect’31 induces particle-conserving
beamsplitter coupling between the resonators at rate
Jij = cmgigj∆/(∆

2 + κ2/4), with gi = g
(i)
0

√
n̄c scal-

ing with average cavity population n̄c and modulation
depth cm (Methods).

Three resonators are coupled in a ring network by si-
multaneously applying three modulation tones (Fig. 1b).
Describing the resonators in frames rotating at ωi, the
phonon-number-preserving Hamiltonian for this ‘beam-
splitter trimer’ (BST) reads

HBST =

3∑
i=1,j 6=i

Jije
−iϕija†iaj , ϕji = −ϕij , (1)

without intrinsic dissipation. This Hamiltonian impor-
tantly imprints the modulation phase ϕij in a non-
reciprocal fashion on phonons transferred along the
loop – precisely like the Peierls phase imprinted by a
magnetic vector potential.31 The gauge-invariant geo-
metrical phase Φ = ϕ12 + ϕ23 + ϕ31 around the loop
then represents a synthetic flux threading the resonator
plaquette.
Setting equal Jij = J , Hamiltonian (Eq. (1)) is

translationally invariant in a gauge with equal Peierls
phases, and therefore diagonal in the discrete mo-
mentum basis ãk =

∑3
j=1 e

−i2πkj/3aj/
√

3 for k =
{−1, 0, 1}. Through AB interference along the loop,
the enclosed flux shifts the eigenfrequencies εk =
2J cos ((2πk + Φ)/3). Figure 1c reveals these states
in the thermomechanical spectrum, for each resonance
splits into a (Floquet) triplet due to strong coupling
J > γi, with mechanical damping rates γi. This demon-
stration of nanomechanical flux-tuning is paralleled in
spectra of quantum rings under magnetic fields.33 Note
that with homogeneous dissipation (γi = γ) closed-
system behaviour is recovered for transformed modes

a′i = aie
γt/2.24

The flux-tuning manifests AB interference over a
given rotation – the mechanism ultimately responsible
for chirality of quantum Hall edge states22 and non-
reciprocal dynamics.33 Figures 1d,e show evolution of
a mechanical excitation with chirality controlled by
the flux. For Φ ∈ {0, π}, the BST is time-reversal
symmetric (Methods) and energy simultaneously hops
to both other resonators. Any other flux breaks T
symmetry, lifting the degeneracy of opposite momen-
tum eigenstates and enabling chiral energy transport,
manifested for Φ = π/2 (Φ = −π/2) as a clockwise
(counterclockwise) circulation.

Non-Hermitian Aharonov-Bohm effect

We thus demonstrated a chiral phononic circulator34
using light-induced nanomechanical beamsplitter inter-
actions, with scaling potential to topological lattices.31
Still, vastly richer phenomenology is uncovered by intro-
ducing squeezing interactions in the nodes and links of
the network, which were not considered in earlier work.
We implement single-mode (i = j) or two-mode (i 6= j)
mechanical squeezing by optical modulation at sum-
frequency ωi + ωj . The Hamiltonian reads (Methods)

Hsq =
∑
i,j

ηij
2

(eiθijaiaj + e−iθija†ia
†
j), (2)

with interaction strength ηij = cmgigj∆/(∆
2 + κ2/4)

and modulation phase θij now imprinted on the creation
or annihilation of phonon pairs. Squeezing angles θij
form a powerful control resource, as the Peierls phases
ϕij before. Indeed, spatially patterned squeezing yields
anomalous pairing terms, enabling topological bosonic
states unparalleled by their fermionic (e.g. topologi-
cal superconductor) counterparts and is essential for
proposed topological amplifiers.11

We first consider a ‘squeezing dimer’ (SD, Fig. 2a)
consisting of two resonators, each single-mode squeezed
through 2ωi modulation, and coupled through driving at
ω2−ω1 (Hamiltonian HSD = η1e

iθ1a2
1/2 + η2e

iθ2a2
2/2 +

Jeiϕ12a†2a1+H.c.). Remarkably, we find that the level of
squeezing of thermal fluctuations is not only determined
by the interactions’ magnitude ηi, J , but also by their
phases θi, ϕ12. Figure 2b shows single-mode squeezing
is maximal when ϕ12 = π/2 and disappears when ϕ12 ∈
{0, π} if θ1 = θ2 = π/2 and η1 = η2 = η.

We now show that this observation is associated with
a non-Hermitian version of AB interference. Even
though the coupled-mode picture Fig. 2a shows no pla-
quette, we can recognise a loop along which excitations
experience a geometric phase when combining graph
representation with Bogoliubov-de Gennes (BdG) for-
malism.26 Treating ai and a

†
i as separate degrees of free-

dom – ‘particles’ and ‘holes’ – and squeezing (Eq. (2))
as particle-hole conversion, this representation (Fig. 2c)
reveals for SD a conjugate pair of superimposed loops in
particle-hole space, threaded by gauge-invariant fluxes
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Φ = 2ϕ12 − θ1 + θ2 and −Φ. As these fluxes govern
interference in the loop, they control the connection
between the resonators’ quadratures (defined such that
Xi = (ai + a†i )/

√
2 (Yi = i(a†i − ai)/

√
2) are squeezed

(anti-squeezed) for J = 0): While Φ = π connects the
squeezed quadratures, maximizing squeezing, Φ = 0 con-
nects squeezed quadrature X1 to anti-squeezed quadra-
ture Y2 and vice versa, cancelling the overall squeezing
(Fig. 2d, Methods).

Flux-controlled PT symmetry

This geometric phase again impacts normal mode fre-
quencies. These are now generally complex – given by
the eigenvalues of the BdG dynamical matrixHSD defin-
ing the closed-system equations of motion i~̇α = HSD~α,
where ~α = (a1, a2, a

†
1, a
†
2) (Methods). Even without

dissipation (γi = 0), squeezing makes HSD necessarily
non-Hermitian, preserving only Σz-pseudo-Hermiticity
(Σz = diag(1,−1), H†SD = ΣzHSDΣz) to satisfy bosonic
commutation relations.26 AB-like interference in the
BdG loop thus acquires a non-Hermitian character,
where now frequency and linewidth evolve with flux. In
the strongly coupled, dynamically stable regime (J > η,
2η < γi, Fig. 2e,f), Φ strongly tunes linewidth and
thermal amplitude of the hybridised eigenmodes, in
unison with squeezing. The squeezed and antisqueezed
partners recognised for Φ = π in Fig. 2d correspond to
broad and narrow resonances, respectively,35 with the
latter dominating the spectrum (Methods).
The complex eigenvalues define surfaces in J/η − Φ

space (Fig. 3a), with varying degeneracy, indicating
distinct dynamical phases. Their physical properties
are appreciated by studying the dynamical matrix in
the quadrature basis HXYSD . For Φ = 0, HXYSD respects
PXiYjT -symmetry for the two degenerate “quadrature
dimers” XiYj 6=i (Fig. 2d), where PXiYj exchanges Xi ↔
Yj . We thus demonstrate PT -symmetric physics by
means of squeezing dynamics, instead of coupling to
dissipative baths.25,32 The SD features a pair of complex
eigensurfaces, two-fold degenerate in real and imaginary
parts. The only effect of non-zero but equal dissipation
is a uniform displacement of the dynamical matrix
HXYSD → HXYSD − iγ1/2 (Methods), manifesting PT
symmetry in the basis a′i = aie

γt/2, i.e. ‘passive’ PT
symmetry in the corresponding open system.24

The thermomechanical spectra in Fig. 3b evidence
the distinct dynamic phases. Along Φ = 0, we recognise
behaviour of the conventional PT -symmetric dimer:24
Eigenmodes (hosted by quadrature dimers) respect PT
symmetry for J > η, with equal linewidths and split-
ting increasing with J . For J < η, PT symmetry is
spontaneously broken, with degenerate frequencies in-
dependent of J , while linewidths split (Extended Data
Fig. 2). HSD becomes defective at a degenerate pair
of second-order EPs (one per quadrature dimer), when
J = η. Finite fluxes break the PXiYjT symmetry of
HXYSD explicitly, eliminating EPs for any J or η (Fig. 3b,

bottom). The effect of flux is striking for J ≈ η (Fig. 3c),
where we find strong tuning of both frequency and
linewidth, with eigenmodes coalescing at the degener-
ate EPs Φ ∈ {0, 2π}.

Higher-order EPs and chiral amplification

The SD behaviour is intrinsically quadrature-dependent,
as the paths in quasiparticle space link conjugated el-
ements ai and a

†
i directly or indirectly. The response

to any real excitation (a superposition of ai’s and a
†
i ’s)

then depends on the particle-hole phase difference, i.e.
the excited quadrature. Another example is phase-
dependent amplification in the bosonic Kitaev chain
(without synthetic flux).26,27 One can, however, con-
ceive loops without such links, expecting quadrature-
independent nonreciprocity and chirality (Methods).
The Hermitian BST represents a trivial example, com-
prising two disjoint loops connecting all particles and
holes, respectively (Fig. 4a).
We find a non-Hermitian system encompassing dis-

joint loops by ‘conjugating’ one resonator in the BST,
i.e. swapping a3 ↔ a†3. We implement this ‘singly con-
jugated trimer’ (SCT) by modulating at ω2−ω1, ω1+ω3

and ω2 + ω3. The latter induce two-mode squeez-
ing, specifically HSCT = Jeiϕ12a†2a1 + η23e

iθ23a3a2 +

η13e
−iθ13a†1a

†
3 + H.c., and loops threaded by fluxes

Φ = ϕ12 + θ23 − θ13 and −Φ (Fig. 4a).
The disjoint loop topology of the quasiparticle net-

work implies block-diagonality of the BdG dynamical
matrix HSCT, with non-Hermitian blocks governing
each loop’s dynamics. The interplay of AB interference
and non-Hermiticity in SCT induces dynamical stability
transitions, unmatched by BST. Figure 4b shows these
as surfaces in J/η − Φ space for η13 = η32 = η and
equal dissipation γi = 0. We identify a stable phase
with real eigenfrequencies and an unstable phase with
three distinct imaginary parts.
Interestingly, for J = 2

√
2η the (real) eigenvalues of

a single loop of HSCT coincide with those of a homo-
geneous BST (Jij = J) for all Φ. The thermal spectra
in Fig. 4c show, however, that the response around
ω3 associated with the ‘conjugated’ resonator (3) ap-
pears frequency-reflected, since particles (holes) evolve
with positive (negative) frequencies in the non-rotating
frame. Moreover, we observe asymmetries between res-
onators 1 and 2 in the middle band’s thermal amplitude
at Φ ∈ {π/2, 3π/2}. These asymmetric, flux-controlled
localisation of fluctuations — unattainable in the BST
if J31 = J23 — arise from the combination of chirality
and squeezing and persist even for vacuum fluctuations
(Supplementary Information sec. IIF). These asymme-
tries, akin to chiral, incoherently pumped dynamics in
PT -symmetric trimers,36 suggest the SCT functions
like a phononic nonreciprocal amplifier.11,17,18,20

We see the SCT features an exceptional contour
in the J/η − Φ parameter space (Fig. 4b), linked to
the spontaneous breaking of parity-time (PglT ) sym-
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metry. Here, the effective mirror symmetry, Pgl, ex-
changes ‘gainy’ and ‘lossy’ eigenmodes ag,l for J = 0,
namely ag,l = (a+ ∓ ia†3)/

√
2 with εg,l = ±

√
2iη

where a+ = (a1 + a2)/
√

2 (gauge θij = 0). When
Φ ∈ {0, π}, a beam-splitter interaction J > 0 cou-
ples ag ↔ al, constructing a PglT -symmetric dimer
with a second order EP at J = 2

√
2η (Fig. 4d, top).

However, for Φ ∈ {π/2, 3π/2}, a third, neutral mode
a− = (a1 − a2)/

√
2 — uncoupled when Φ ∈ {0, π} —

couples to al,g in a loss-neutral-gain chain configuration.
Interestingly, this trimer features spontaneous PglT
symmetry breaking at a third-order EP at J =

√
2η

(Fig. 4d bottom). Indeed, the presence of a higher-order
EP sitting at the nexus of two second-order excep-
tional contours37 is mandated by eigensurface topology
(Fig. 4b).

The flux-induced breaking of P12 (mirror) symme-
try impacts specifically the PglT -symmetry-broken
phase. In a three-site, gainy-neutral-lossy chain, PT -
symmetry-broken states delocalise non-uniformly over
central and boundary sites (here the pairs ag − a− and
a− − al).38 Crossing the third-order EP at Φ = ±π/2
thus biases gain towards the bare oscillator a1 (Φ = π/2)
or a2 (Φ = −π/2). This flux-tunable chiral gain be-
comes striking in the transient, unstable dynamics of
the SCT, as shown in Fig. 4e for gain exceeding dis-
sipation. There, an initial excitation in resonator 1
(2) is amplified coherently – above initial amplitudes
– towards 2 (1) for flux Φ = π/2 (Φ = −π/2), and at-
tenuated quickly in the opposite direction. Conversely,
for Φ = 0, gain distributes evenly over resonators 1 and
2 showing reciprocal dynamics. Linear analysis breaks
down as the system crosses the instability threshold
(Im(ε) = 0), where we see optomechanically-induced
Duffing nonlinearities cause amplitude saturation and
self-oscillations, even at only a few times the thermal
amplitude. Indeed, this points the way to investigating
strongly nonlinear systems with broken Hermiticity and
time-reversal symmetry.

In conclusion, we observed chiral, non-Hermitian
phonon dynamics in nano-optomechanical networks
with fully-controlled beamsplitter and squeezing inter-
actions. New geometrical phases act on excitations in
particle-hole space that control PT symmetry through
a non-Hermitian Aharonov-Bohm effect. The resulting
phenomena of tunable squeezing, (higher-order) EPs
and nonreciprocal amplification point to applications
in nanomechanical sensing,39, signal processing,11, and
Ising machines.40 These mechanisms will be equally
powerful in other bosonic domains, from photonics to
cold atoms. While the effects were probed with thermal
and coherent excitations, they persist down to the quan-
tum domain, forming essential ingredients to explore
new linear and nonlinear non-Hermitian topological
phases.
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Figure 1: Aharonov-Bohm interference in a Hermitian nano-optomechanical network. a Thermomechanical
fluctuation spectrum of the sliced photonic crystal nanobeam, imprinted on a laser reflected from a nanocavity with
linewidth κ/(2π) = 320 GHz. Resonances forming a synthetic dimension correspond to mechanical flexural modes at
frequencies ωi/(2π) = {3.7, 5.3, 12.8, 17.6} MHz with loss rates γi/(2π) ≈ 1−4 kHz and estimated vacuum optomechanical
coupling rates g(i)

0 /(2π) = {5.3, 5.9, 3.3, 3.1} MHz. b The modulated cavity field c couples the three lowest-frequency
resonators in a loop with rates Jij/(2π) = 8 kHz and Peierls phases ϕij , adding up to flux Φ. These coupling strengths are
achieved with modulation depths cm between 0.32 and 0.42, at mean photon number n̄c ≈ 343. c Thermomechanical noise
spectra imprinted on the detection laser around each resonator’s sideband versus flux. Hybridised Floquet modes tune
with synthetic flux. d Time evolution of resonator amplitudes |〈ai〉| ≡ |ai| for unbroken T symmetry (Φ = 0) and broken
(Φ = π/2). Resonator a1 is coherently driven until t = 0 ms through resonantly modulated radiation pressure, when
excitation is stopped and modulation tones implementing the couplings are established. e Time evolution of resonator
amplitudes for varying flux, showing crossover from helical to non-helical transport through an intermediate regime with
generally aperiodic dynamics, and reversal of chirality with flux sign (Φ 7→ −Φ). ESD, energy spectral density. For
reference, the optomechanical coupling routinely reaches experimental cooperativities Cij = (4J2

ij/(γiγj)) > 80, allowing
two-mode transfer efficiencies ≈ 70% (Extended Data Fig. 1).

Figure 2: AB interference along non-Hermitian squeezing loops: a The squeezing dimer encompasses two
resonators driven at 2ωi and ω2 − ω1. These introduce single-mode nanomechanical squeezing (blue self-loops) and
beam-splitter coupling (red). We employ the modes labeled (3) and (4) in Fig. 1a as resonator 1 and 2, respectively. b
Histograms of the steady-state phase space distribution of resonator 1 for varying beamsplitter Peierls phase ϕ12, showing
its effect on thermomechanical squeezing. Dashed ellipses depict the standard deviation of the principal components
of the quadrature covariance matrix. Here θ1 = θ2 = π/2. c Graph associated to the Hamiltonian matrix (Methods
Eq. 3), unwrapping self-loops in a over particles (annihilated by ai) and holes (annihilated by a†i ). The clockwise
loop is threaded by synthetic flux Φ, the counterclockwise by −Φ. d Coupling diagram for resonator quadratures,
where Φ controls coupling between squeezed (green) and anti-squeezed (orange) quadratures of the two resonators. e
Thermomechanical spectra for the SD around ω1. f Sweeping flux continuously tunes the fitted apparent resonance
linewidths γI,II (blue and red circles), compared to the theoretical loss rate of the lowest-loss eigenfrequency of HSD (solid
black). g Flux-dependent level of squeezing, measured as the ratio of the variances ∆R2

sq. and ∆R2
a. of the quadratures

squeezed and antisqueezed along the principal axes of the covariance matrix, respectively, in experiment (green) and
theory (dashed, Supplementary Information sec. II A and sec. II B). Here, J/(2π) = 5.37 kHz, η1/(2π) = η2/(2π) = 1.34
kHz, and loss rates γ1/(2π) ≈ γ2/(2π) = 3.7 kHz. ESD, energy spectral density. Error bars in f (g) are dominated by
fitting (statistical) uncertainties, with a small contribution from control parameter fluctuations (Methods).

Figure 3: Flux-control of non-Hermitian dynamical phases. a Complex eigenfrequency surfaces of the SD in
J − Φ space for γi = 0, tuned by the non-Hermitian AB effect acting on its beamsplitter and squeezing links. For
Φ ∈ {0, 2π} and η = J , PT symmetry breaks spontaneously and the eigenspectrum coalesces into two second order
EPs. b Fingerprints of complex degeneracies in the thermomechanical spectra for resonator 1 at η/(2π) = 1.34 kHz and
varying J . Nonzero flux breaks PXiYjT symmetry explicitly, precluding EPs. c Flux-tuned spectra for resonator 1 when
J/(2π) ≈ η/(2π) = 1.34 kHz, showing mode coalescence at the EP at Φ ∈ {0, 2π}. For b and c, theory eigenvalues Re(ε)
are shown as dashed lines. In this experiment, resonances 3 and 4 have been used, employing dynamical backaction to
equilibrate damping rates to γi/(2π) = 3.7 kHz (Methods). Fits of frequencies and linewidths are shown in Extended
Data Fig. 2.

Figure 4: Chirality in a non-Hermitian network. a Sketch of the networks in particle-hole space corresponding to
the BST (left) and the SCT (right), manifesting their topological resemblance. b Complex eigensurfaces for the SCT
(γi = γ) depicted from Φ = 0 to Φ = π for clarity. Imaginary parts are referenced to γ. A black dotted line highlights
an exceptional contour separating stable and unstable dynamical phases. c Thermomechanical spectra of the three
resonators (label denoted in the plot) for η/(2π) = 1 kHz, J = 2

√
2η. Feedback is employed to equalise mechanical

loss rates γi/(2π) = γ/(2π) = 4 kHz. The sideband of the ‘conjugated’ resonator 3 is reflected in frequency compared
to the other two. Localisation of eigenstates is observed, including 1-2 asymmetry indicated by arrows. Theoretical
eigenfrequencies are shown as dashed lines. d Spectra for resonators 1 and 3 for η/(2π) = 0.75 kHz for a trivial flux
Φ = 0, and in the maximally chiral case Φ = π/2. The flux-dependent coupling topology for resonators 1 and 2 morphs a
second order EP into a third order one (see text). Insets show the effective PglT symmetric dimer/trimer structure for
both flux values. e Ratio between instantaneous and initial coherent amplitudes (normalized to phonon number), in the
unstable and nonlinear regime η/(2π) = J/(2π) = 5 kHz, without feedback (mechanical loss rates γi/(2π) = {2.5, 1.6, 4.1}
kHz). Resonator 1 (left) or 2 (right) is driven for t < 0, and couplings are established when t > 0. This induces chirally
amplified transport to the other resonator and self-oscillation bounded by nonlinear dynamics.
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Methods

Effective mechanical Hamiltonian

We present a comprehensive theoretical model for
the optomechanically-mediated nanomechanical inter-
actions in our platform. A cavity mode with frequency
ωc and photon loss rate κ is coupled to an ensem-
ble of mechanical modes with frequencies ωi (index
i ∈ {1, 2 · · · , N}) with vacuum optomechanical cou-
pling rates g(i)

0 , according to the Hamiltonian

H̃s =
∑
i

ωiã
†
i ãi −∆c†c−

∑
i

g
(i)
0 c†c(ãi + ã†i ). (3a)

Here, mechanical annihilation operators in the lab frame
are denoted by ãi and we set ~ = 1. Operators ãi corre-
spond to distinct mechanical eigenmodes (‘resonators’),
which form a synthetic dimension along which we study
mode hybridisation and excitation transport.41,42 The
cavity field annihilation operator c is expressed in the
rotating frame of a control field at frequency ωL de-
tuned by ∆ = ωL − ωc from the cavity resonance. We
operate in the regime of large detuning and bandwidth
(∆, κ � ωi). With cavity in-coupling rate κin, a con-
trol field with slowly-varying amplitude cin(t) addresses
the intracavity photon population instantaneously, dis-
placing the cavity mode by a steady-state amplitude
approximated by the g(i)

0 = 0 solution

c̄(t) ≈
√
κinχccin(t), (3b)

with bare cavity susceptibility χc = (κ2 − i∆)−1. Typi-
cal values for κin and average optical power 〈P 〉t =
~ωL〈|cin(t)|〉2t lie in the range of κin ≈ 0.03κ and
〈P 〉t = 1.0 mW, respectively.
We linearise the radiation-pressure interaction

Eq. (3a) by displacing the cavity amplitude around
Eq. (3b), i.e. c(t) → c̄(t) + δc(t) and neglecting
termsO((δc)2), assuming small cavity fluctuations δc(t).
In a subsequent step, we find an effective phononic
Hamiltonian by carrying out a second-order pertur-
bation treatment to the linearised interaction, con-
sisting of adiabatic elimination of the fluctuations δc
through the approach in [43]. This approximation
is valid provided cavity fluctuations reach a steady-
state of low amplitude at the fastest timescale of the
system, as prescribed by κ,∆ � ωi. The detailed
procedure can be found in Supplementary Informa-
tion Sec. IA. In rotating frames at ωi, accessed via
unitary transformation UF = e−it

∑
i ωiã

†
i ãi , mechan-

ical operators read ai = UF ãiU
†
F = eiωitãi. More-

over, the effective phononic Hamiltonian UF H̃effU
†
F =

Heff = Hg + H int
eff , decomposes into a displacement

term Hg = −|c̄(t)|2(
∑
i g

(i)
0 (aie

−iωit + H.c.)) and the
interaction Hamiltonian

H int
eff ≈∆κin|χc|4|cin(t)|2

[∑
i

g
(i)
0 (aie

−iωit + H.c.)

]2

.

(3c)

We introduce modulation of the control field
intensity |cin(t)|2 using multiple harmonic driving
tones l with frequencies ω

(l)
m , modulation depths

c
(l)
m and phases φ

(l)
m . The homogeneous intracav-

ity intensity responds linearly as (Eq. (3b)) nc(t) ≈
|c̄(t)|2 = n̄c

[
1 +

∑
l c

(l)
m cos

(
ω

(l)
m t+ φ

(l)
m

)]
, where n̄c =

κin|χc|2|C̄in|2 is the average photon number.
In the next step, we apply the Rotating Wave Ap-

proximation (RWA), which only retains the co-rotating
terms with slow evolution in the rotating frame. The
RWA assumes moderate couplings compared with nat-
ural oscillation frequencies and narrow mechanical
linewidth γi � ωi. Considering dynamical modu-
lations are not resonant with any vibrational mode
(ω(l)

m 6= ωi), the relevant contributions in Eq. (3c) thus
read H int

eff ≈
∑
i,j H

(i,j)
eff with i, j ∈ {1, 2, · · ·N},

H
(i,j)
eff = g(t)(aie

−iωit + H.c.)(aje
−iωjt + H.c.), (3d)

and g(t) = ∆|χc|2g(i)
0 g

(j)
0 nc(t). The static component

of nc(t) is responsible for an optical shift of the mechan-
ical spring constant by ωi 7→ ωi+δωi that is reabsorbed
in the definition of ωi, where δωi = 2g2

i∆/(∆2 + κ2/4)

and gi = g
(i)
0

√
n̄c denotes the cavity-enhanced optome-

chanical coupling rate.29 Crucially, the time-dependent
part in Eq. (3d) corresponds to mechanical interactions
which can be selected by suitably resonant modula-
tion tones l, while imprinting φ(l)

m as a Peierls phase
on the interaction.31, 44 Within a subsequent RWA,
the remaining interaction terms in Eq. (3d) corre-
spond to the modulation frequencies ω(l)

m either ap-
proaching a i) frequency sum Σω〈ij〉 = ωi + ωj or
a ii) frequency difference ∆ω〈ij〉 = ωi − ωj , with
i, j ∈ {1, 2 · · · , N}. The RWA is valid for moderate
effective coupling strengths Jij , ηij � ωi, defined be-
low (in the experiment, Jij/ωi, ηij/ωi ∼ 10−3 − 10−2),
resolved-mechananical sidebands (in the experiment,
γi/ωi ∼ 10−3 − 10−2) and moderate detuning of the
control tones, as well as no commensurable frequency
scales (ωi ± ωj 6= ωk for all modes i, j, k). Equation 3a
finally approximates to

Heff ≈
∑

ω(l)
m ≈∆ω〈ij〉

Jija
†
iaje

−i[(ω(l)
m −∆ω〈ij〉)t+ϕij ] + H.c.

+
∑

ω(l)
m ≈Σω〈ij〉

ηija
†
ia
†
je
−i[(ω(l)

m −Σω〈ij〉)t+θij ]/2 + H.c., (4a)

where the sums run over the tones l and indices 〈i, j〉
that satisfy the specified resonance condition. Note that
a single pair of indices 〈i, j〉 satisfies resonance with a
difference frequency ∆ω〈ij〉, while resonance with a sum
frequency Σω〈ij〉 is satisfied by both 〈i, j〉 and 〈j, i〉.
The hopping (squeezing) amplitudes, denoted Jij

(ηij), are proportional to the modulation depth c(l)m of
the corresponding drive tone l 31, 45 and read

{Jij , ηij} = c(l)m

gigj∆

(∆2 + κ2/4)
= c(l)m

√
δωiδωj

2
. (4b)
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In the fast-cavity limit photon losses thus simply
renormalise the coupling amplitudes Jij , ηij . Similarly,
the hopping (squeezing) phases, denoted ϕij (θij), are
equal to the corresponding modulation phase φ(l)

m .
Besides moderate effective coupling, the RWA relies

on the assumption that the modulated drive is quasi-
resonant with each relevant process. In the large detun-
ing and parametric drive limit, significant deviations are
expected.46 Parametric resonators are more naturally
treated in this case in terms of the natural amplitudes
x47,48 or employing quadratures in a generalised rotat-
ing frame.49 For modulation frequencies resonant with
∆ω〈ij〉,Σω〈ij〉, Eq. (4a) is exactly time-independent.
In this limit, we encode the beam-splitter interactions
that conserve the phonon number nph =

∑N
i=1 a

†
iai in

the elements Aij = Jije
−iϕij , Aji = A∗ij of the Her-

mitian hopping matrix A. Subsequently, we define
the symmetric squeezing matrix B that encodes the
particle-non-conserving squeezing interactions in its el-
ements Bij = ηije

iθij , Bji = Bij . Eq. (4a) then writes
succinctly as the general quadratic form

Heff ≈
∑
i,j

a†iAijaj +
1

2
(a†iBija

†
j + aiB∗ijaj). (4c)

The matrices A and B are provided for the example
systems studied in the main text explicitly in Supple-
mentary Information Sec. IC.

Bogoliubov-de-Gennes framework and symmetries

The effective (time-independent) Hamiltonian in the
rotating frame Eq. (4c) allows for a straightforward ap-
plication of the toolbox of quadratic bosonic Hamiltoni-
ans. After defining the Nambu-like vector ~α = (~a,~a†)T ,
with ~a = (a1, · · · , aN ), Eq. (4c) is rewritten as

Heff =
1

2
~α†H~α, H =

(
A B
B∗ A∗

)
. (5)

To faithfully model the ubiquitous mechanical dissipa-
tion and thermal fluctuations in the experiment, we in-
troduce coupling toN independent environmental baths
in a Heisenberg-Langevin formalism.50 The correspond-
ing equation of motion for mechanical modes, namely
~̇α(t) = −iM~α(t) + ~αin(t), depends on the open-system
dynamical matrixM = H− iΓ/2, containing the dis-
sipation matrix Γ = diag(γ1, · · · , γN , γ1, · · · , γN ), and
the BdG dynamical matrix51,52

H = ΣzH =

(
A B
−B∗ −A∗

)
, (6)

where Σz = diag(1,−1) = [~α, ~α†] encodes bosonic com-
mutation relations. Note that treating creation and
annihilation operators, ai and a

†
i , as separate entities in

H and H shows closed dynamics in particle-hole space.
Cavity-mediated corrections to mechanical dissipation
(γiκ/(∆2 + κ2)� 1)43 will be neglected. The rotating

(scaled) source terms ~αin = (ain, a
†
in)T represent baths

with Bose occupations n̄i ≈ kBT/ωi. These fulfil the
same Markovian correlations as their lab-frame coun-
terparts, i.e. 〈~αin(t)~α†in(t′)〉 = Dδ(t− t′) with diffusion
matrix D = diag(γ1(n̄1 + 1) · · · , γ1n̄1 · · · ).53

When squeezing interactions – which inter-convert
particles and holes – are absent (B = 0), the dynamics
of ai and a

†
i are independent, and simply governed by

the Hermitian matrices A and −A∗ respectively. On
top of this, if Γ = γ1, the dynamics can be simply
mapped to the closed system via a rigid displacement
of the imaginary parts of eigenvalues by γ/2. This
displacement is equivalent to a dynamically-offset basis
transformation ᾱ′(t) = e

γ
2 t~α(t), relating solutions of

ideal and dissipative harmonic oscillators.54 Therefore,
whenever B = 0 is zero, we say that the mechanical
modes undergo Hermitian dynamics. However, even
for Γ = 0, M and H are non-Hermitian if squeezing
is present (B 6= 0). We state mechanical modes thus
manifest non-Hermitian dynamics in that case.
The time evolution of the mechanical amplitudes

~α′(t) can be expressed in terms of the spectral decom-
position of H (Supplementary Information sec. IC). A
non-Hermitian H can host eigenvectors with complex
eigenfrequencies ε. The different character of eigenfre-
quencies or dynamical phases in parameter space links
to generalised parity-time (GPT ) symmetries of H and
the associated eigenvectors fulfilling or spontaneously
breaking the symmetry.26 For example, purely oscilla-
tory eigenmodes (real eigenfrequencies) indicate a stable
phase (eigenvectors fulfil GPT symmetry), while pos-
itive imaginary eigenfrequencies indicate an unstable
phase (eigenvectors break GPT symmetry). We note
that GPT symmetry coexists with other built-in sym-
metries of H that reflect ai-a

†
i splitting redundancies

and must be always fulfilled by eigenvectors (Supple-
mentary Information Sec. IC).
For homogeneous dissipation (γi = γ), the symme-

tries of the open-system dynamical matrixM are triv-
ially related to those of H, sinceM 7→ H in the dynam-
ically offset basis ~α′(t). The symmetry classification of
H thus offers insight on dynamical phases, eigensurface
topology and symmetry breaking in the open-system.
As an example, PT symmetry in H55,56 corresponds
to ‘quasi’ or ‘passive’ PT symmetry inM.24, 57,58 Sim-
ilar dynamical mode offsets are also of service in the
generalisation to non-symmetric cases (Supplementary
Information Sec. IIC).
In our systems, a dynamical phase transition (i.e.

spontaneous symmetry breaking) is often accompanied
by an EP,38,59 where eigenvalues and eigenvectors simul-
taneously coalesce and H is non-diagonalisable. Alter-
natively, eigenvalues can split off the real axis without
diagonalisability loss26. Coalescences are analysed in
the studied systems by analytical diagonalisation (see
Supplementary Information sec. II B,C,D,E). Defective
eigenvector subspaces of H can also be detected by
large numerical values of the condition number for the
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inverse of the eigenvector matrix.60

Graph representation of quadratic bosonic Hamilto-

nians and quadrature-independent transport

The existence of a nontrivial gauge field is equivalent to
the breaking of time-reversal symmetry (i.e. under the
operation T ), which signifies the Hamiltonian matrix
H can not be rendered real (H 6= H∗) via U(1) gauge
transformations. This statement is equivalent to having
a gauge-invariant synthetic flux in the system.61 We
introduce a powerful graphical representation for the
Hamiltonian in Eq. (5) in the main text, revealing loops
and nontrivial U(1) synthetic fluxes in particle-hole
(Bogoliubov) space. Our graphical framework avoids
self-loops in the dynamical matrix representation, previ-
ously introduced to describe on-site parametric gain.62
We consider A and A∗ as the adjacency matrices for net-
work graphs Ga and Ga† , disposed in two layers, where
nodes correspond to ai and a

†
i operators respectively

(Extended Data Fig. 3).
In this representation, particle-conserving systems

(B = 0, Hermitian Eq. (6)) feature disjoint network
layers, while parametric gain (B 6= 0, non-Hermitian
Eq. (6)) introduces links between Ga and Ga† through
B and back via B∗. We note that graph representations
for the Hamiltonian and the BdG matrices are similar,
as they allow recognising loops in particle-hole space
with geometrical phases differing by π. Namely, H
graphs contain layers with adjacency matrices A and
−A∗, connected with each other through B and −B∗.
This graph representation gives insight into general

features of energy transport. In particular, quadrature-
independent excitation dynamics is found in networks
that feature disjoint graphs (e.g. loops), which do
not contain direct or indirect links between particles
ai and their corresponding holes a†i (Fig. 4). This
sublattice symmetry implies pairs of uncoupled blocks
in H, which govern the nodes ~αL = (ai, · · · , a†j) and ~α

†
L

in (independent) graphs L,L∗. For M disjoint graph
pairs, the permutation of the modes ~α into each of the
graphs, ~α 7→ Π~α = (~αL1 , ~α

†
L1
, . . . , ~αLM , ~α

†
LM

)T , block-
diagonalises H:

H 7→ H′ = ΠHΠ = diag(L1,−L∗1, · · ·,LM ,−L∗M ). (7)

Due to charge conjugation symmetry C, particle-hole
loops come in pairs. If such loops are disjoint, their as-
sociated dynamical matrices Lm,−L∗m (m = 1, · · · ,M),
will never mix particles and their corresponding hole
excitations as they propagate through the graphs. In a
single loop pair (Fig 4), dropping the index m,

~n(t) = eiL
∗t~n(0)e−iLt, ni = a†iai, (8)

having formally integrated i∂t~αL = L~αL and i∂t~α
†
L =

−L∗~α†L, i.e. employing conjugated blocks. Population
dynamics in Eq. (8) are independent of the relative
phases between ai(0) and a†i (0), i.e. the resonator i
quadrature.

Non-Hermitian Aharonov-Bohm effect

The SD shown in Fig. 2 presents the minimal instance
of a plaquette in particle-hole space permeated by a
nontrivial flux, and illustrates the contrast between the
Hermitian and non-Hermitian Aharonov-Bohm (AB)
effects. Here we describe how the latter is manifested
in the flux-dependent coupling of gainy/lossy quadra-
tures, while we focus on effects in the complex “energy”
eigenbasis in Supplementary Information secs. ID, IIB.
The combination of particle-hole conversions with a

geometrical AB phase along two superimposed loops L
and L∗ leads to a redistribution of gain and squeezing
in the dimer hybrid quadratures. We choose the gauge
θi = π/2, for which the local resonator quadratures
Xi = (ai + a†i )/

√
2 (Yi = i(a†i − ai)/

√
2) experience

loss (gain) in the beam-splitter-uncoupled limit (J = 0).
The flux in this gauge reads Φ = 2ϕ12. Quadrature
interactions can be decomposed in terms of particle-hole
conversions along the two loops, i.e. HSD = HLSD +HL∗SD

(loop order {a1, a2, a
†
2, a
†
1}), with

HLSD =


0 J̄ 0 0
0 0 −iη 0
0 0 0 −J̄
−iη 0 0 0

 , HL
∗

SD =(ΣzHLSDΣz)
†,

(9a)

where J̄ = Je−
iΦ
2 . HLSD and HL∗SD reflect clockwise and

counterclockwise propagation of excitations.
The dynamical matrix HXYSD = Q†HLSDQ+Q†HL∗SDQ

is obtained by applying the mapping to the quadrature
basis Q (order {X1, X2, Y1, Y2}):

HXYSD =


−iη −iJ‖ 0 iJ⊥
iJ‖ −iη iJ⊥ 0
0 −iJ⊥ iη −iJ‖
−iJ⊥ 0 iJ‖ iη

 , (10)

The combination of clockwise and counter-clockwise
processes with nontrivial Peierls phases then leads to
the flux-dependent couplings J‖ = J sin(Φ/2) and J⊥ =
J cos(Φ/2) between quadratures.

Gain-loss bases and effective PT symmetries

Adequate bases for the SD and the SCT can be de-
termined for which one easily recognises an inver-
sion plane separating gain and loss at either side,
and therefore potentially a PT symmetry. For the
SD, such symmetry is found using the local quadra-
tures ~RSD = (X1, Y2, X2, Y1)T . In a θi = π/2 gauge,
Eq. (10) is block-diagonal for Φ = 0 and reads HXYSD =
diag(HX1,Y2 ,HX2,Y1) with the blocks

HX1,Y2 = i

(
−η J
−J η

)
= HX2,Y1 . (11a)

governing the dynamics of the independent “quadrature
dimers” X1Y2 and X2Y1. Their closed-system equations
of motion read ~̇RSD = −iHXYSD

~RSD.
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Each of the blocks Eq. (11a) is PXiYjT -symmetric,
with parity operation PXiYj : Xi ↔ Yj and T equivalent
to complex conjugation: i 7→ −i. The eigenfrequencies
for each block Eq. (11a), namely εXiYj = ±

√
J2 − η2,

are real within the PXiYjT -symmetric region J > η, in
which the corresponding eigenstates respect the sym-
metry of the dynamical matrix. This is no longer true
if J ≤ η, where PXiYjT is spontaneously broken, with
a second order EP at J = η indicating the transition.

The recognition of this PT symmetry allows explain-
ing why non-zero fluxes imply complex, non-real eigen-
values and the disappearance of the EP: they induce
coupling between the sub-blocks Eq. (11a) and the ex-
plicit breaking of PXiYjT symmetry. This dynamical
phase transition along Φ ≥ 0 from real to complex
eigenvalues can equivalently be characterised in terms
of spontaneous GPT symmetry breaking without loss
of diagonalisability.26 An extended theoretical analysis
shows that asymmetries in SD shift negligibly the lo-
cation of degeneracies in the experiment, and lead in
general to the expansion of EPs into contours in param-
eter space (Supplementary Information, sec. IIC).
Similarly, the dynamical phases of the SCT can be

classified by GPT symmetries. The maximum degree
of symmetry and degeneracy order corresponds to equal
dissipation rates (γi = γ). In experiment, we match
dissipation rates by applying feedback control. The
SCT’s dynamics can be integrated, recognising dynami-
cal phase transitions, via a single block of H′ (Eq. (7)):
The block acting on {a1, a2, a

†
3} (gauge θ23 = θ13 = 0,

where the flux simply reads Φ = ϕ12),

L =

 0 Je−iΦ η
JeiΦ 0 η
−η −η 0

 . (12)

A GPT symmetry is straightforwardly recognised by
switching to the eigenbasis of Eq. (12) for vanishing
beam-splitter coupling (J = 0), via the unitary trans-
formation

Ugl =
1√
2


i√
2
− i√

2
−1

i√
2
− i√

2
1

1 1 0

 . (13)

The corresponding eigenmodes Ugl~α are denoted as
al = (a†3 + ia+)/

√
2 (where a+ = (a1 + a2)/

√
2 is the

symmetric superposition of resonator 1 and 2 states),
ag = (a†3− ia+)/

√
2, and a− = (a2−a1)/

√
2. Adopting

the order {al, ag, a−}, the transformed matrix Lgl =

U†glLUgl = Ξ + Θ splits into a gain/loss contribution

Ξ ≡ U†glLUgl|J=0 = diag(−i
√

2η, i
√

2η, 0), (14)

and an interactions/frequency shifts contribution

Θ =


1
2J cos(Φ) − 1

2J cos(Φ) J sin(Φ)√
2

− 1
2J cos(Φ) 1

2J cos(Φ) J sin(Φ)√
2

−J sin(Φ)√
2

J sin(Φ)√
2

−J cos(Φ)

 .

(15)

Equation 13 regroups gain and loss into effective sites
al, a− and ag, revealing an effective gain-loss mirror
plane with parity operation Pgl : ag ↔ al.
Lgl respects PglT symmetry for arbitrary flux, where

T : i 7→ −i,Φ 7→ −Φ. The coupling topology, however,
is flux-dependent (main text). In particular, when
Φ = 0, the dynamical matrix reads

Lgl|Φ=0 =

 J
2 − i

√
2η −J2 0

−J2
J
2 + i

√
2η 0

0 0 −J

 , (16a)

i.e. it leaves the mode a− uncoupled from the remaining
PglT -symmetric dimer for ag and al (see inset in Fig.
4d). Conversely, a linear trimer structure follows at
Φ = ±π/2, where the dynamical matrix reads

Lgl|Φ=±π/2 =

 −i
√

2η 0 ∓ J√
2

0 i
√

2η ± J√
2

∓ J√
2

± J√
2

0

 . (16b)

From Eq. (16a) and Eq. (16b), we can directly ob-
serve that flux affects the nature of the arising EPs,
which can be either second or third order. Note that
while finite synthetic fluxes retain PglT symmetry of
L, they break the mirror symmetry P12 : a1 ↔ a2,
affecting the localisation transition above the EP (see
main text, Extended Data Fig. 4). The full expressions
for the eigenspectra and population dynamics that illus-
trate this behaviour can be found in the Supplementary
Information Sec. IID,E.

Subdominant and non-Lorentzian spectral features

in the squeezing dimer

In the thermomechanical noise spectra of the SD
in Fig.2e,f, we expect narrow and broad, frequency-
degenerate, resonances. We show this in the ideal SD
(γi = γ), whose spectrum is obtained in a closed form
using the relationship via the quantum regression theo-
rem (Supplementary Information IE)

S(ω) = 〈~α†(ω)~α(ω)〉 = χ†m(ω)Dχm(ω), (17)

with mechanical susceptibility matrix χm(ω) = i/(ω1−
HSD) and diffusion matrix D, given earlier. The noise
spectrum of resonator i ∈ (1, 2) is given by the diagonal
element Sii(ω). An explicit calculation for the SD shows
that even in the simplified limit of equal resonator
bath occupations n̄i = n̄, the spectrum consists of 4
superimposed Lorentzian responses located at the real
parts of the eigenfrequencies of HSD for Φ = π, where
two pairs of resonances split by 2J and

Sii(ω) ∝ γ
∑

Ω=±J

(
n̄+ 1

(γ + 2η)2 + 4(ω − Ω)2

+
n̄

(γ − 2η)2 + 4(ω − Ω)2

)
. (18)
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From Eq. (18), it is apparent that the spectral weight
in the rotating frame at ±J in the stable regime (γ >
2η) is concentrated in a dominant, narrow resonance
with linewidth γ − 2η, on top of an additional, heavily
damped contribution with linewidth γ + 2η.
In contrast, the branch-cut topology mandated by

the EP at Φ = 0 results in a non-Lorentzian thermal re-
sponse. If Φ = 0, the spectrum contains non-Lorentzian
contributions

Sii(ω) ∝
2γ
[
(2n̄+ 1)

(
γ2 + 4

(
η2 + J2 + ω2

))
− 4γη

]
d(ω)

,

d(ω) = 8ω2
(
γ2 + 4

(
η2 − J2

))
+
(
γ2 − 4

(
η2 − J2

))2
+ 16ω4. (19a)

Equation 19a reduces at the EP (J = η) to the ex-
pression which shows directly a double-Lorentzian re-
sponse:63

Sii(ω) ∝ γ

2

(2n̄+ 1)
(
2J2 + γ2/4 + ω2

)
− γJ

(γ2/4 + ω2)
2 . (19b)

This functional form implies deviations in the exper-
imental linewidths in the vicinity of an EP obtained
from Lorentzian spectral fitting (Extended Data Fig. 2
and Supplementary Information sec. IIIA).

Design and fabrication

The device, shown in Extended Data Fig. 5a, was de-
signed as a sliced photonic crystal nanobeam with two
beam halves of different mass to create non-degenerate
mechanical modes. The cavity was defined away from
the beams’ centres to optically access flexural modes
with even as well as odd symmetries. The cavity is
designed as a single-site defect, by locally varying hole
pitch in the one-dimensional photonic crystal. This
creates a cavity with significant optical coupling to
light normally incident from free space.64 It also results
in a relatively large optical linewidth (κ ≈ 320 GHz),
ensuring that the cavity responds linearly to thermal
excitations (at the optimal detuning), such that non-
linear transduction65 and detrimental reduction of the
optical spring shift are insignificant. Devices were fabri-
cated from a silicon-on-insulator substrate, with a 220
nm device layer and 3 µm buried oxide layer (BOX). A
50 nm layer of diluted hydrogen silsesquioxane resist
(1:2 in methyl isobutyl ketone) was spin-coated, and
electron-beam lithography (Raith Voyager) was used
to write patterns on the sample. After developing in
tetramethylammonium hydroxide, an anisotropic etch
of the exposed device layer was done using inductively
coupled plasma–reactive ion etching with HBr and O2

gases. The nanobeams were suspended in a wet etch
of the underlying BOX layer with hydrofluoric acid
followed by critical point drying.

Experimental setup

A schematic of the experimental setup is presented in
Extended Data Fig. 5b. The sample was placed, with
the devices rotated by 45◦ relative to the vertical polar-
isation of the incoming light, in a vacuum chamber at
room temperature at a pressure of ∼ 2× 10−6 mbar. A
tunable laser (Toptica CTL 1500) connected through a
Thorlabs LN81S-FC intensity modulator (IM) was used
as the drive laser (power incident on device Pdrive = 1.0
mW). A small part of the modulated drive laser light
was split using a fibre-based beam splitter and fed onto
a fibre-coupled fast photodetector (New Focus 1811,
DC-coupled) to monitor the drive signal. A second
laser (New Focus TLB-6328 or Toptica CTL 1550) far
detuned from the cavity resonance (ωdet − ωc ≈ −2.5κ)
was used as the detection laser (power incident on de-
vice Pdet = 2− 4 mW). The lasers were combined on a
fibre-based beam combiner and launched using a fibre
collimator into the free-space setup.
Control signals were generated by a Zurich Instru-

ments UHFLI lock-in amplifier. One output of the
lock-in amplifier carried signals to generate interactions,
while the other output carried coherent excitation sig-
nals. Both outputs were routed through individual
radio-frequency (RF) switches (Mini-Circuits ZYSWA-
2-50DR+), combined, amplified (Mini-Circuits ZHL-
32A+ with 9 dB attenuation) and connected to the RF
port of the IM to drive and modulate the nanobeam me-
chanics. For time-resolved experiments, a synchronised
two-channel signal generator (Siglent SDG1062X) was
used to generate pulses to actuate both RF switches
and trigger the lock-in amplifier acquisition.
Reflected detection laser light that interacted with

the cavity was filtered using a cross-polarised detection
scheme, fibre coupled, separated from the drive laser
using a tunable bandpass filter (DiCon), and detected
on a fast, low-noise photodetector (New Focus 1811,
AC-coupled). Intensity modulations of the detection
laser encoding resonator displacements were analysed
using the lock-in amplifier.

To generate a feedback signal, the electronic displace-
ment signal was split and filtered using a digital signal
processor (DSP, RedPitaya STEMlab 125-14) that im-
plemented a configurable electronic bandpass filter with
tunable gain and phase shift (using the PyRPL suite).
The output of the DSP was combined with the control
signals just before the RF amplifier.

Experimental procedure

Resonator characterisation

The intrinsic, optically unmodified resonator frequen-
cies ω̃i and linewidths γ̃i were obtained by switch-
ing off the drive laser and recording a thermome-
chanical spectrum with the detection laser. A power
sweep of the detection laser verified that the detec-
tion laser did not induce a noticeable optical shift in
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frequency or linewidth. The vacuum optomechanical
coupling for the resonators g(i)

0 is estimated from non-
linear transduction,65 with fitted values g(i)

0 /(2π) =
{5.30± 0.14, 5.86± 0.17, 3.29± 0.30, 3.12± 0.89} MHz
for the four resonators, respectively. The linewidth
of the optical cavity was estimated from the detuning
dependence of the spring shift (Extended Data Fig. 6).
To compensate for variations in incoupling and out-

coupling efficiency, caused by position drift of the
sample stage, the following reference procedure was
performed immediately before every experiment: A
thermomechanical spectrum was taken to obtain the
spring-shifted resonator frequencies ωi, linewidths γi,
and root-mean-square (rms) displacement voltage levels
zrms,i. From the rms level, the displacement voltage
corresponding to a single phonon was calculated using
z2
ph,i = z2

rms,i/ (n̄iγ̃i/γi), where n̄i = kBT/~ωi is the
occupation of the resonator’s phonon bath at room
temperature T = 295 K. The ratio γ̃i/γi compensates
for thermo-optically induced dynamical backaction66

that changes the effective bath temperatures29 (see Ex-
tended Data Fig. 6d). Control over dynamical backac-
tion is also employed in the SD experiments to equalise
loss rates for the two resonators. Fine-tuning the laser
intensity allows to match the two linewidths of modes 3
and 4 specifically, as they exhibit different scaling with
mean photon number.

Calibration of control signals

To find the linear operation point of the IM, a sinu-
soidal modulation voltage was applied while sweeping
its amplitude and monitoring the modulated drive laser.
The IM bias voltage was varied to minimise the vari-
ation in DC transmission as a function of modulation
amplitude. To compensate for frequency-dependent
transmission in the RF chain, the relation between con-
trol signal voltage amplitude Vm and modulation depth
cm was measured individually for every tone using the
DC-coupled modulation monitor detector.
For the BST experiments in Fig. 1, a linear rela-

tion between modulation amplitude Vm and the beam-
splitter coupling Jij induced by sinusoidal modulation
at ωm = ωi−ωj , i 6= j was established by sweeping Vm,
recording thermomechanical spectra of resonators i and
j and fitting the frequency splitting of the hybridized
modes.

Spectral estimation of the strength of a squeezing in-
teraction is less precise due to the spectral superposition
of gain and loss (see Extended Data Fig. 7). There-
fore, in the other experiments, the squeezing and beam-
splitter interaction strengths ηij , Jij induced by a sinu-
soidal drive laser modulation at frequency ωm = ωi±ωj
(for i 6= j or i = j) and modulation depth cm were ob-
tained using the relationship

{ηij , Jij} = cm
√
δωiδωj/2, (20)

where δωi = ωi − ω̃i is the optical spring shift of res-
onator i. Note that δωi and δωj always have the same
sign. Using this relation avoids the need to know the
photon-phonon coupling rates g(i)

0 and cavity incoupling
efficiency precisely. To verify, the effective beam-splitter
interaction strength obtained above was compared to
the frequency splitting observed in thermomechanical
spectra for a sweep of the modulation depth cm (see
Extended Data Fig. 1). From this, a difference between
calculated and actual interaction strength of about 10%
was obtained, presumably due to a difference in the
modulation detector sensitivity at DC or a limited mod-
ulation range of the IM. This difference was applied as a
correction factor to all calculated interaction strengths.
For the SD experiments (Fig. 2 and 3), performed

with high modulation depths cm > 0.5, a relation be-
tween cm and Vm was established using the first order
Bessel function J1(x), derived from a Jacobi-Anger ex-
pansion of the IM cosine response. In addition, a linear
correction on the scaling of the beam-splitter coupling
J was obtained by fitting the linear frequency splitting
for Φ = π (as shown in Fig. 3b) as a function of cm.

In the BST experiments, the flux offset Φ0 = ϕ23+ϕ31

was obtained by extracting eigenfrequencies from ther-
momechanical spectra as a function of ϕ12 and fitting
those to the eigenfrequencies εk = 2J cos((2πk + Φ)/3)
of the Hamiltonian HBST in Eq. (1) indexed by k =
{−1, 0, 1}, where Φ = Φ0 + ϕ12. In the other exper-
iments, to circumvent spectral estimation of the flux
and to facilitate the analysis of (anti)squeezed quadra-
tures, the phases of the control tones are referred to
an effective time origin internal to the lock-in amplifier,
which allows to define a deterministic gauge in which
the modulation phases are set and the response is anal-
ysed. This method was verified by applying it to the
BST and comparing it to the flux offset fitting method
outlined above.

To realise the modulation of dissipation rates in the
SCT experiments, a feedback signal was obtained by
filtering the electronic displacement signal around each
resonator’s frequency ωi in parallel (second-order filter
half-width at half-maximum 78 kHz), applying indi-
vidual gains and phase shifts, and digitally combining
the filtered signals. For each mode, the optimal feed-
back phase shift was found by taking thermomechanical
spectra using fixed feedback gain for a full sweep of
the phase shift, fitting the extracted linewidths with
a sinusoidal variation and selecting the shift with the
most significant change in linewidth (see Extended Data
Fig. 8). Subsequently, for the optimal phase shift, ther-
momechanical spectra were taken for various settings
of the feedback gain and a linear relation was fitted
between gain and extracted linewidths.

Analysis of the displacement signal

The electronic displacement signal was demodulated in
parallel at each resonator’s frequency ωi using electronic
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local oscillators internal to the lock-in amplifier that are
referenced to the same time origin as the control tones.
For each resonator, the demodulated in-phase (Ii) and
quadrature (Qi) components were filtered (third-order
low-pass filter, 3 dB bandwidth 50 kHz) and combined
into a complex amplitude zi(t) = Ii(t) + iQi(t) that
is formally equivalent to the resonator amplitude in
the rotating frame. The complex amplitudes of all res-
onators involved were acquired simultaneously, at a rate
between 50 and 500 kSa/s, depending on the experi-
ment. These complex time traces were normalized using
the signal levels obtained in the reference procedure
described earlier and were either i) analysed directly to
yield phase-space distributions; ii) averaged coherently,
i.e. 〈zi(t)〉; or iii) Fourier transformed (Hann window-
ing function), squared and averaged to yield energy
spectral densities (ESD). In the last case, the low-pass
filter was compensated for by dividing spectral den-
sities by the filter frequency response. Time-resolved
experiments were averaged over 1000 runs.
The total signal delay through the setup, from the

LIA control outputs via the sample to the LIA input,
was determined by driving each of the resonators and
measuring the coherent response (see Extended Data
Fig. 9). The phase offset αi between drive tone and co-
herent response of resonator i was extracted and fitted
linearly against the resonator frequencies ωi. The fitted
delay was used to relate the quadratures of the demod-
ulated amplitudes zi(t) to those defined by the control
tones. This relation was verified for resonators 3 and 4
(i.e. the modes that participate in the SD) by turning
on a single-mode squeezing interaction, recording a ther-
momechanical time trace, constructing a phase space
distribution and fitting the angle of the squeezed and
anti-squeezed principal quadrature axes (see Extended
Data Fig. 7).

Error estimation

The error on fitted values like frequencies and linewidths
originates from multiple sources. Error bars in plots
indicate ±2σ, i.e. a 95% confidence interval for a normal
distribution.

The stability of the interaction strength over typical
measurement timescales (∼ 100 s) is controlled by the
stability of the drive laser power (relative standard devi-
ation σPdrive/Pdrive ≈ 2·10−3) entering Eq. (20) through
δωi and the stability of the modulation tone amplitude
(relative standard deviation σcm/cm ≈ 10−3).

In addition, jitter of the spring shift δωi due to vari-
ations in drive laser power and incoupling efficiency
controls the detuning of the control signals. For res-
onators with comparable g(i)

0 (i.e. resonators 1 & 2
and resonators 3 & 4), the effect of detuning jitter on
beam-splitter interactions – which depend only on their
frequency difference – is reduced. To estimate the effect
of detuning jitter on the effective linewidth change in-
duced by squeezing interactions, a Monte Carlo method

is employed.
Finally, the fit uncertainty is estimated using a nu-

merical approximation of the Jacobian matrix.
The standard error of the experimental (co)variances

σ(A,B) of quadratures A and B is estimated us-
ing the statistical relationship Std(σ(A,B)2) ≈√

1
n−1 (σ(A,B)4 + σ(A,A)2σ(B,B)2) where Std de-

notes the standard deviation. Here, n is the number
of thermally independent measurement points, given
by n = Tγi/2, where T = 0.3 s is the duration of the
measurement record and γi is the dissipation rate of
the resonator involved.
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EXTENDED DATA FIG. 1: Estimation of beam-splitter interaction strengths. a Mode splitting induced by a
beam-splitter interaction observed in thermomechanical spectra. Each column corresponds to a beam-splitter interaction
induced between a pair of resonators i↔ j (left: 1↔ 2, middle: 2↔ 3, right: 1↔ 3) by a single drive laser modulation at
frequency ∆ωij = ωi − ωj , where ωi,j is the frequency of resonator i, j. Thermomechanical spectra (top row: resonator i,
bottom row: resonator j) are recorded for increasing modulation depth cm. The linear relationship Jest = cm

√
δωiδωj/2

is used to estimate the coupling strength Jest (top axis) from cm, where δωi,j is the optical spring shift of mode i, j. The
estimated mode splitting (dashed) is slightly larger than observed, presumably due to frequency-dependent transduction
(at DC and ∆ωij) in the measurement of cm. The difference is quantified by extracting Lorentzian peak frequencies from
the spectra and subsequently fitting those linearly against modulation depth, and results in an observed mode splitting
slope that is 78%, 90% and 90% of the estimated slope respectively. The average estimation offset of 86% is applied to all
(beam-splitter and squeezing) interaction strength calculations in our experiments. b Time evolution of the coherent
amplitude (in units of their zero point fluctuations) of a pair of resonators (1, blue and 2, orange) coupled through a
beam-splitter interaction (strength J/(2π) = 5 kHz). Resonator 1 is initially (time t < 0) driven to a high amplitude
steady state by a coherent drive laser modulation. At t = 0, the drive is switched off and the interaction is switched on.
Rabi oscillations induced by the coupling interaction are observed, where energy is transferred back and forth between the
resonators until the coherent energy in the resonators is dissipated. These dynamics illustrate the possibility for a transfer
scheme in the strong coupling regime where couplings are interrupted after a Rabi semi-cycle i.e., a time tπ = π/(2J).
The energy transfer efficiency for this process can be calculated67 to be ≈ 64% for corresponding parameters and 70% for
the coupling rates presented in Fig. 1.

EXTENDED DATA FIG. 2: Frequency and linewidth modulation in the squeezing dimer. a Experimental
resonance frequencies (top) and linewidths (bottom) obtained by fitting a superposition of Lorentzian lineshapes to the
thermomechanical spectra in Fig. 3c,d. Grey curves indicate theoretical values of Re(ε) (top) and Im(ε) (bottom). Two
peaks were fitted to the spectra for Φ = 0 (left), as for that flux both eigenvalues are expected to be doubly degenerate
for all J . The observed branching of frequencies and linewidths is characteristic of an exceptional point. Four peaks were
instead fitted for Φ = π (middle), where the exceptional point behaviour completely vanishes, and spectra are fitted well
with a combination of broad and narrow peaks at two frequencies. When varying flux in the rightmost panel, the grey
shaded areas depict the regions near Φ = 0, π where a fit of two peaks provided better results than a fit of four. Note that
near the exceptional point, the non-Lorentzian nature of the spectrum causes the fitted values of the Lorentzian linewidths
to deviate from the theoretical Im(ε). This origin of the deviation is confirmed by applying the same fit procedure to
theoretically predicted spectra (inset, left bottom panel), which shows the same deviation. Error estimation is described
in Methods. b Thermomechanical spectra for several values of J/η, for Φ = 0 (blue) and Φ = π (red). Solid lines show
Lorentzian fits. c Similar, for different values of Φ at J = η.

EXTENDED DATA FIG. 3: Network graph representation of general quadratic Hamiltonians. Schematic of
an arbitrary dynamical matrix H, acting on a Nambu-like vector ~α = (a1, a2, · · · , aN , a†1, a

†
2, · · · , a

†
N ). Particle annihilation

(hole creation) operators, ai, are represented by blue nodes, whereas hole annihilation (particle creation) operators are
represented by orange nodes. H includes excitation-conserving interactions (matrix A), which link particle operators
(e.g. terms Aija†iaj) and hole operators (e.g. terms A∗jiaja†i ). Squeezing interactions (with complex amplitude matrix
B) contain pairs Bija†ia

†
j which can be visualized to either annihilate two particles i, j or to annihilate a particle in i an

create hole in j, hence the connection between particle and hole networks (green). Mutatis mutandis, terms B∗ijaiaj can
be similarly visualized.

EXTENDED DATA FIG. 4: Calculated eigenstates of the loop a1, a2, a
†
3 in the SCT studied in Fig. 4.

a Phase diagram for the imaginary part of the eigenfrequencies, showing the stability-to-instability boundary in ξ − Φ
space, where ξ = J/(2

√
2η) and γi = 0. Such boundary is associated with a second order exceptional contour. b Cuts of

the eigenfrequency Riemann surfaces along Φ = 0, shown as a red dashed trajectory in the phase diagram, as a function
of the ratio ξ = J/(2

√
2η). The squared weights of the J = 0 eigenstates in the corresponding eigenvectors are shown in

the colorscale. The weights are calculated from the symplectic projections (Σz product) on the gainy/lossy combinations
ag, al and the passive mode a−. A second order exceptional point (denoted EP2), found for J = 2

√
2η, is highlighted.

As J < 2
√

2η, PglT symmetry is spontaneously broken, inducing eigenstate localisation. The antisymmetric 1-2 mode
a− is detached from this mechanism and remains uncoupled. Real and imaginary parts are re-scaled by η. c Similar
data along the cut Φ = π/2 (corresponding to the blue dashed line in a, which shows the third-order exceptional point
(EP3, at J =

√
2η). The PglT symmetry broken states are now hybrid combinations of ag, a− and al, a− modes. Such

combinations break P12T symmetry as well, as explained in the main text.
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EXTENDED DATA FIG. 5: Experimental setup. a Electron micrograph (left; tilt 45◦, inset; top view) showing
a device as used in our experiments. In the top silicon device layer (thickness 220 nm), three suspended beams are
defined with teeth separated by a narrow slit (∼ 50 nm). Between each outer beam and the central beam, a photonic
crystal cavity is defined that hosts an optical mode (right; simulated electric field y-component Ey). The mode’s energy is
strongly confined to the narrow slits, inducing large parametric interaction with flexural mechanical resonances of the two
beams. The cavity’s off-centre position ensures coupling to both even and odd resonances. In the presented experiments,
we only use one of the two cavities. The widths of the outer beams’ straight sections are intentionally made unequal,
such that the mechanical resonances of all beams are detuned. The top layer is supported by pedestals etched out in
the buried silicon oxide layer. b Schematic of the experimental set-up. IM, intensity modulator; LP, linear polariser;
PBS, polarising beamsplitter; BPF, optical bandpass filter; PD1, PD2, photodiode; DSP, digital signal processor; SWs,
microwave switches; LIA, ultrahigh-frequency lock-in amplifier; SG, signal generator. The LIA ports serve to (Out) drive
the IM through an amplification stage (not shown) and to (In) analyse intensity modulations of the drive laser (for
calibration) and detection laser. For time-resolved measurements, the SG is programmed to (Out) actuate the drive signal
switches and trigger the LIA acquisition. The DSP optionally generates a feedback signal to modify resonator damping
rates.

EXTENDED DATA FIG. 6: Optical spring shift and opto-thermal backaction. a Thermomechanical noise
spectra of the first few mechanical modes imprinted on an unmodulated single drive/detection laser, as the laser’s frequency
(ωL) is swept across the cavity resonance. The four most intense peaks around frequencies ωi/(2π) ≈ {3.7, 5.3, 12.8, 17.6}
MHz correspond to flexural modes (labelled i) of the individual beam halves and show frequency tuning characteristic to
the optical spring effect, while the other modes represent non-linearly transduced harmonics of those modes. b Zoomed-in
thermomechanical noise spectra of the first three resonators. c From the spectra in b, resonance frequencies ωi (blue
circles) and linewidths γi (orange circles) are extracted. The resonance frequencies are fitted using the standard optical
spring model (solid blue). Across all resonators, we find agreement in the fitted cavity resonance ωc/(2π) = 195.62 THz
and linewidth κ/(2π) = 320 GHz (Q factor Q ≈ 600). The small sideband resolution ωi/κ ≈ 10−5 suggests very little
change in linewidth due to dynamical cavity backaction (dashed orange). The linewidth modulations we observe suggest
the presence of an opto-thermal retardation effect.66 Displayed errors correspond to fit uncertainty, smaller than symbol
size on the fitted frequencies (Methods). d Drive laser frequency sweep while now using a separate, fixed frequency,
far-detuned detection laser. The fixed transduction of mechanical motion onto this detection laser allows a comparison of
resonance peak area Ai(ωL), versus linewidth γi(ωL) as the drive laser frequency ωL is varied. The resonance peak area of
mode i is proportional to the variance 〈X2

i 〉 of its displacement Xi, which is proportional to its temperature Ti. Dynamical
backaction modifies the effective mode temperature through Ti = T0 (γ̃i/γi)

29, where T0 is the initial temperature and γ̃i
is the mode’s intrinsic linewidth, determined by switching off the drive laser. Our data is well explained by linear fits of
Ai(ωL) versus γ̃i/γi(ωL) (dashed), confirming the effective temperature model.

EXTENDED DATA FIG. 7: Single-mode squeezing and linewidth modulation by parametric driving.
a Parametric gain induced by a single-mode squeezing interaction observed in thermomechanical spectra. Each row
corresponds to a separate experiment where resonator i (1 through 4) is subjected to a single-mode squeezing interaction
of strength η. As η is increased, the resonance transitions from the broad intrinsic linewidth to a narrow parametric
resonance. b The phase-space distribution of the thermal fluctuations of resonator i (left: 3, right: 4) subject to a
single-mode squeezing interaction of strength η/(2π) = 1 kHz with squeezing angle θ = π/2 reveals a squeezed thermal
state. The squeezed (antisqueezed) quadrature X (Y ), measured in units of the thermal equilibrium amplitude

√
n̄i, are

referenced using the propagation delay (Methods). c Fitted Lorentzian full-width at half-maximum linewidths of the
resonances show in a). Even though a superposition of two degenerate resonances is expected – a broadened resonance of
the antisqueezed quadrature and a narrowed resonance of the squeezed quadrature – only a single one can be successfully
fitted in each spectrum. This reflects the fact that the highly populated narrowed resonance dominates the broadened
resonance. As the parametric gain η is increased, each resonator’s squeezed quadrature linewidth is expected to decrease
by ∆γ = −2η (dashed lines), until parametric threshold is reached at η = γi/2, where γi is the intrinsic linewidth of
resonator i. The fitted linewidths follow the expected trend quite closely for intermediate η, while for lower η the narrow
resonance is presumably not yet fully dominant and for larger η high-amplitude non-linear effects are prominent. Error
bars correspond to fit uncertainty, and are smaller than symbol size in most points (Methods).
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EXTENDED DATA FIG. 8: Damping rate adjustment by feedback. Resonator thermomechanical spectra (top
row) and fitted full-width half-maximum linewidths (bottom row) adjusted by feeding back electronically filtered and
phase-shifted resonator displacement signals onto the drive laser modulation (left two columns, resonator 1; right two
columns, resonator 2). The resonator linewidth (circles) and frequency shift (crosses) vary sinusoidally with the feedback
phase φfb (odd columns). By fitting the linewidth variation (solid black), the optimal phase shift to increase the damping
rate is selected. The frequency variation (dashed grey) expected from the fitted linewidth modulation, relative to the
resonator frequency with feedback off (dashed orange), lags by π/2 radians. For the optimal feedback phase shift, an
increase in linewidth is observed for increasing gain G, while the resonator frequency remains unaffected (even columns).
The slope of the linear fit (solid black) can be used when setting a resonator’s linewidth to a desired value. Error bars
reflect fit uncertainty and control parameter stability, and are typically smaller than symbol size (Methods).

EXTENDED DATA FIG. 9: Resonator coherent response. a Amplitude |ai| (blue, left axis) and phase φi
(orange, right axis) of the complex response ai(∆) = ei(φi(∆)+αi)|ai(∆)| of resonators 1 through 4 (resonance frequencies
ωi) to a drive laser modulation at a frequency ωd close to resonance (drive detuning ∆ = ωd − ωi). αi is the phase offset
due to signal delay through the set-up. A Lorentzian response ai = eiαiAi

γi/2
iγi/2−∆

is fitted to the data (dashed). Error
bars in panel (a) reflect the spread in repeated measurement while the error bars in (b) correspond to fit uncertainty and
are smaller than the symbol size (Methods). b Phase offset αi versus resonance frequency ωi/(2π). A linear fit (dashed)
of αi = −ωiτ implies a signal delay τ = 106.7 ns.

EXTENDED DATA FIG. 10: Tunable single-mode and effective two-mode squeezing in the squeezing
dimer. a Intra-resonator squeezing as a function of the beam-splitter coupling J . Two values Φ = 0, π of the flux are
shown for equal single-mode squeezing strengths η1 = η2 = 0.5 kHz. The level of single-mode squeezing is expressed by
the ratio of the smallest (∆R2

sq) and largest (∆R2
a) eigenvalues of the covariance matrix of the quadrature amplitudes

recorded for each resonator. These eigenvalues indicate the amplitude variance along the squeezed and antisqueezed
principal quadrature components, respectively. For Φ = π, where the squeezed (antisqueezed) quadratures Xi (Yi) of
both resonators are coupled (cf. Fig. 2d), the slight initial imbalance in variance ratio is reduced as J increases while the
value of the variance ratio remains low. In contrast, for Φ = 0 – when the squeezed quadrature Xi in one resonator is
coupled to the antisqueezed quadrature Yj in the other – we observe cancellation of single-mode squeezing as the variance
ratio tends to 1 with increasing J . This agrees well with theory (dashed line), where for simplicity we have assumed equal
dissipation rates γ = 2.2 kHz equal to the average of the experimental losses γi = {2.6, 1.9} kHz, as well as equal bath
occupations. Due to dynamical (optothermal) backaction, for this particular experiment the effective bath occupations
n̄1 ≈ n̄2 only differed by a few percent. b Two-mode squeezing observed in the cross-resonator amplitude distribution of
quadratures X1 and Y2 for Φ = 0, J = 3.5 kHz and η1 = η2 = 0.5 kHz. The dashed ellipse depicts the standard deviation
of the principal components of the quadrature covariance matrix and shows positive correlations between X1 and Y2

(covariance σ(X1, Y2) = 0.08). c Covariance of the coupled quadrature pairs X1Y2 and Y1X2 as a function of J , with
η1 = η2 = 0.5 kHz. No correlations are found for flux Φ = π, when single-mode squeezing is strongest and independent
of J (cf. panel a). However, for Φ = 0, positive correlations σ(X1, Y2), σ(Y1, X2) > 0 are found when J is increased,
as predicted in theory (dashed line). A trade-off between the squeezing axes rotation towards the standard two-mode
squeezing limit and the decrease in the overall squeezing level as J is increased leads to a maximum covariance (although
not optimal squeezing level for the rotated quadratures) at a coupling Jopt. For the simple theory model with equal
dissipation and bath occupation that we use it is given by J2

opt = (γ2 − 4η2)/4. Error bars in a and c reflect statistical
uncertainty and control parameter stability (Methods).
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