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Energetic constraints on filament-mediated cell polarization
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Cell polarization underlies many cellular processes, such as differentiation, migration, and budding. Many
living cells, such as budding yeast and fission yeast, use cytoskeletal structures to actively transport proteins to
one location on the membrane and create a high-density spot of membrane-bound proteins. Yet, the thermody-
namic constraints on filament-based cell polarization remain unknown. We show by mathematical modeling that
cell polarization requires detailed balance to be broken, and we quantify the free-energy cost of maintaining
a polarized state of the cell. Our study reveals that detailed balance cannot only be broken via the active
transport of proteins along filaments but also via a chemical modification cycle, allowing detailed balance to
be broken by the shuttling of proteins between the filament, membrane, and cytosol. Our model thus shows that
cell polarization can be established via two distinct driving mechanisms, one based on active transport and one
based on nonequilibrium binding. Furthermore, the model predicts that the driven binding process dissipates
orders of magnitude less free energy than the transport-based process to create the same membrane spot. Active
transport along filaments may be sufficient to create a polarized distribution of membrane-bound proteins, but
an additional chemical modification cycle of the proteins themselves is more efficient and less sensitive to the
physical exclusion of proteins on the transporting filaments, providing insight in the design principles of the
Pom1/Tea1/Tea4 system in fission yeast and the Cdc42 system in budding yeast.

DOI: 10.1103/PhysRevE.105.064406

I. INTRODUCTION

Cell polarization, in which a cell generates a distinct front
and back, is vital to many cellular processes. For example,
cells that perform unidirectional movement need to polarize
along a single axis [1]. Lophotrichous bacteria require the
placement of multiple flagella on one side of the cell, and
crawling eukaryotic cells need to polarize their cytoskeleton to
create a protrusive leading edge on one side and a contractile
trailing edge on the opposite side of the cell [2,3]. Moreover,
epithelial cells are polarized to distinguish the apical and
basal sides [1,2], and asymmetric cell division requires cell
polarization along the division axis to create different fates for
the daughter cells [1,4]. For instance, budding yeast requires
the formation of a bud on one spot on its cell membrane
[5]. Similarly, fission yeast remains polar after cell division,
primarily growing at the old pole initially [5].

Because cell polarization is an essential cellular feature,
many different biological processes exist that induce cell
polarization [6]. A large class of such processes involves
the cytoskeletal filaments [7], because both microtubules and
actin filaments have an intrinsically polar structure by which
they can act as tracks for the directional transport of cargoes
by motor proteins. Because the cytoskeleton itself is often
asymmetrically organised, for example in the mitotic spindle,
these structures can be used to guide other proteins into a
polarized state [2]. For example, motor proteins that walk on
central spindle microtubules can transport proteins such as the
RHO activator ECT2 [3] toward the membrane, where they
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can promote the formation of the cytokinetic ring. In budding
yeast, the small GTPase of the Rho family Cdc42 is bound to
the membranes of vesicles that are delivered to the membrane
along actin cables [5,8], which may produce cell polarization.
Furthermore, fission yeast uses microtubule-based transport
to place the proteins Tea4 and Tea1 at the membrane, where
Tea4 forms a complex with Dis2 and dephosphorylates the
DYRK family kinase Pom1, which subsequently binds to
the membrane [5,9]. Once Pom1 is on the membrane, it au-
tophosphorylates and unbinds again, leaving a steady-state
distribution of Pom1 on the membrane in the neighbourhood
of the microtubule tips [9].

The transport of vesicle-bound Cdc42 in budding yeast
shows that active transport can play a role in creating a high
density of proteins in one spot on the membrane [5,8]. In
contrast, the organism fission yeast does not directly transport
Pom1, but it uses (de)phosphorylation to drive the protein
through a chemical modification cycle where it binds to the
membrane preferably near the positions of the microtubule
tips where Dis2 is present [5,9]. Here, we investigate which
of these two mechanisms, active transport along a filament
or the chemical driving of a binding cycle catalysed by
the cytoskeleton, is more efficient in creating a polarized
distribution of proteins on the membrane. Because a polar-
ized state corresponds to a nonequilibrium distribution of
the protein, the maintenance of this distribution requires the
constant dissipation of chemical free energy, usually in the
form of NTP hydrolysis. To assess the efficiency of both
active transport and driven chemical modification in creat-
ing a polarized protein distribution, we take into account
the chemical free-energy dissipation of each process. Such
energetic constraints are typically excluded when discussing
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cellular pattern formation, but they are important because they
provide a quantitative measure by which we can compare
different mechanisms for polarising a cell. Using a minimal
model in which both transport along a filament and nonequi-
librium binding can lead to cell polarization, we will show
that transport alone can be sufficient for creating a polarized
spot on the membrane, but that a chemical modification cycle
of the protein itself can dissipate orders of magnitude less
free energy to achieve the same quality of polarization. This
may explain why many cell polarization systems, including
the Cdc42 system in budding yeast and the Pom1 system in
fission yeast, contain a chemical modification cycle.

II. MINIMAL MODEL FOR MEMBRANE
SPOT FORMATION

Inspired by the cell polarization systems in fission yeast
and budding yeast, we create an analytically solvable min-
imal model in which a filament can transport proteins and
where the proteins bind to a membrane patch at the end
of the filament. We consider a single stable filament that is
perpendicular to the cell membrane, as shown in Fig. 1. All
model parameters are shown and explained in Fig. 1. We do
not model the entire cell, but only a finite volume around
the filament, because diffusion will smooth out the protein
distributions sufficiently far from the filament. By choosing
a cylindrical shape for this volume, we can find analytical so-
lutions for the probability densities in each part of the system.

The membrane patch is located on one side of the cylinder,
so the proteins can be on the membrane, on the filament, or
in the cytosol (bulk). Crucially, the particles are transported
along the filament toward the membrane, and because the
filament is in direct contact with the membrane, particles can
transition between the membrane and the filament. Addition-
ally, we include transitions between bulk and the filament and
between the bulk and the membrane. Hence, a particle flux
can exist that moves from the bulk along the filament to the
membrane, and from there back to the bulk. The transition
pathways between the three system parts are memoryless, and
we include the microscopic reverse reaction for each transition
such that the free-energy dissipation in the system remains
finite. These transitions can be out of equilibrium by cou-
pling the chemical reactions to a nonequilibrium NTP bath,
such that the binding rates alone break detailed balance and
cause a flux of proteins from the bulk to the filament, to the
membrane, and back to the bulk again. This mechanism can
act independently from and concurrently with active trans-
port to create a polarized distribution of membrane-bound
proteins. In the following sections, we will first keep the
binding reactions in equilibrium to assess how efficiently the
nonequilibrium distribution on the membrane is maintained
by active transport along the filament. Subsequently, we will
also take into account the effects of a nonequilibrium binding
cycle.

We use cylindrical coordinates (s, z), where the radial dis-
tance s runs from the filament radius r to the container radius
R, and the longitudinal coordinate z runs from 0 to the filament
length L. Because the system is rotationally symmetric, the
resulting concentration profiles will be too, and we do not
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FIG. 1. Minimal model to investigate how protein transport
along a filament can create a polarized distribution of membrane
bound proteins. We consider a subvolume of a cell in the shape of a
closed cylinder with radius R, with a circular patch of the membrane
on one side (blue). A finite filament (red) with a radius r and a length
L is located in the center of the cylinder, perpendicular to the mem-
brane. We consider a single protein species that can be membrane
bound (M), dissolved in the bulk (B), or connected to the filament by
motor proteins (F ). In each of these parts, the particles diffuse with
diffusion constants DM , DB, and DF , respectively, and on the filament
the motor proteins provide an average drift velocity vF toward the
membrane. The particles can unbind from the membrane and the
filament with the Markovian rates kMB and kFB. The corresponding
reverse binding transitions can occur when a particle that is dissolved
in the bulk is in contact with the membrane or the filament, and the
transition rates uBM and uBF have the dimensions of a velocity, not of
a rate. Finally, a particle that is bound to the filament and in contact
with the membrane can transition to the membrane with a rate uFM

that is possibly different from uBM , and similarly the particle can
bind from the membrane to the filament with a rate uMF that can be
different from uBF . We define a coordinate system with z longitudinal
to the filament, such that the membrane is at z = 0, and with s as the
radial distance, with the microtubule surface at s = r.

require the azimuth. Having a finite microtubule radius eases
the mathematics of membrane-filament transitions compared
to a one-dimensional microtubule, by avoiding unphysical
divergences of the protein densities. We model the dynamics
of the system in time t by a set of coupled Fokker-Plank equa-
tions for the protein densities f (z, t ), m(s, t ) and b(z, s, t ),
which cover the filament, the membrane and the bulk, respec-
tively.

To make the equations analytically tractable, we first con-
sider a system with a large bulk diffusion constant DB → ∞,
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which smears out density fluctuations and turns the bulk field
into a single concentration,

b(z, s, t ) = b(t ). (1)

The partial differential equations for the protein concentra-
tions read

∂t f (z, t ) = DF ∂2
z f (z, t ) + vF ∂z f (z, t )

− kFB f (z, t ) + 2πruBF b(t ), (2)

∂t m(s, t ) = DM
1

s
∂s(s∂s)m(s, t )

− kMBm(s, t ) + uBMb(t ), (3)

V ∂t b(t ) =
∫ L

0
[kFB f (z, t ) − 2πruBF b(t )] dz

+
∫ R

r
2πs[kMBm(s, t ) − uBMb(t )] ds, (4)

where we define volume of the bulk V ,

V = π (R2 − r2)L. (5)

Here, the filament density f (z, t ) represents the protein con-
centration per unit length along the filament, which is the
density per unit surface area of the filament multiplied by
the angular factor 2πr. Hence, we will use units µ−1m for
f , µ−1 m2 for m, and µ−3m for b. The boundary conditions of
the partial differential equations are set by the conservation
of the number of particles and by the transition rates be-
tween the filament and the membrane, which provide relations
for the fluxes on the filament and on the membrane at their
edges,

[DF ∂z f (z, t ) + vF f (z, t )]z=0

= uFM f (0, t ) − 2πruMF m(r, t ), (6)

[DF ∂z f (z, t ) + vF f (z, t )]z=L = 0, (7)

[DM2πs∂sm(s, t )]s=r

= −uFM f (0, t ) + 2πruMF m(r, t ), (8)

[DM2πs∂sm(s, t )]s=R = 0. (9)

The system is greatly simplified by studying it in steady state,
setting all time derivatives in Eqs. (2), (3), and (4) to zero
and eliminating t as a variable. In steady state, integrating
over Eqs. (2) and (3) and applying the boundary conditions
shows that Eq. (4) becomes linearly dependent on Eqs. (2)
and (3). The linear dependence is a consequence of the con-
servation of particles, which imposes that steady-state fluxes
have to loop back to their origin. Hence, we omit Eq. (4)
from the steady-state equations. Additionally, it is helpful to
make the equations nondimensional by defining the following

dimensionless parameters:

α = vF√
DF kFB

, β = uFM√
DF kFB

, γ = uMF√
DMkMB

,

δ = uMF kFBuBM

uFMuBF kMB
, λ =

√
kFB

DF
z, 	 =

√
kFB

DF
L,

σ =
√

kMB

DM
s, ρ =

√
kMB

DM
r, P =

√
kMB

DM
R. (10)

We also rescale the density fields to make them dimensionless,

ϕ(λ) = kFB

2πruBF b
f

(√
DF

kFB
λ

)
,

μ(σ ) = kMB

uBMb
m

(√
DM

kMB
σ

)
. (11)

Using these definitions and the steady-state condition, Eqs. (2)
and (3) become

∂2
λϕ(λ) + α∂λϕ(λ) − ϕ(λ) + 1 = 0, (12)

1

σ
∂σ (σ∂σ )μ(σ ) − μ(σ ) + 1 = 0. (13)

Using the dimensionless variables, the boundary conditions
become

[∂λϕ(λ)]λ=0 + αϕ(0) = β[ϕ(0) − δμ(ρ)], (14)

[∂λϕ(λ)]λ=	 + αϕ(λ) = 0, (15)

[∂σμ(σ )]σ=ρ = −γ

δ
[ϕ(0) − δμ(ρ)], (16)

[∂σμ(σ )]σ=P = 0. (17)

The general solutions of the ordinary differential Eqs. (12)
and (13) are found by solving the homogeneous equations,
and adding the particular solutions ϕ(λ) = 1 and μ(σ ) = 1.
The full solutions read

ϕ(λ) = 1 + C1 exp

[
− λ

2
(
√

4 + α2 + α)

]

+ C2 exp

[
λ

2
(
√

4 + α2 − α)

]
, (18)

μ(σ ) = 1+C3K0(σ ) + C4I0(σ ). (19)

Here, I0(σ ) and K0(σ ) are the modified Bessel functions of the
first and second kind, respectively. The integration constants
C1, C2, C3, and C4 are determined by Eqs. (14)–(17), and are
listed in Sec. S.I of the Supplemental Material [10]. We can
simply recover the protein density fields in the dimensionful
representation by using the dimensionless exact solutions and
substituting back the expressions listed in Eq. (10), providing
exact solutions for the protein densities and for the protein flux
in the case of DB → ∞.

Instead of the 14 parameters of the full model, the dimen-
sionless model with fast bulk diffusion only contains seven
independent parameters. Three of those parameters set the
system size (ρ, P, and 	), and the four remaining independent
parameters (α, β, γ , and δ) set the system dynamics. Of these,
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β and γ determine how fast the particles transition between
the membrane and the filament.

The parameters α and δ describe the nonequilibrium nature
of the system. When α = 0 and δ = 1, we find that C1 = C2 =
C3 = C4 = 0, and the particle densities reach their equilibrium
values

ϕeq(λ) = 1, (20)

μeq(σ ) = 1. (21)

When the system is out of equilibrium, a steady-state flux
can exist that on average brings particles from the bulk to the
filament, from the filament to the membrane, and from the
membrane back to the bulk. Equations (14)–(16) show that
this flux is proportional to

Jss ∝ ϕ(0) − δ μ(ρ). (22)

Using the exact solution, it can be shown that this flux van-
ishes if and only if α = 0 and δ = 1, so these parameters
determine whether detailed balance holds.

Because α and δ can be varied independently, the model
contains two essential processes by which detailed balance
can be broken. First, a positive value of α represents a drift
velocity on the filament, as shown in Eq. (10). Here, mo-
tor proteins on the filament drive the particles and create a
flux through the system, where particles bind from the bulk
to the filament, are driven toward the membrane to which
they bind, diffuse on the membrane moving away from the
filament, and finally fall off into the bulk again. Second, the
value of δ, defined in Eq. (10), describes the extent to which
membrane and filament binding are in or out of equilibrium.
The particle itself can undergo a chemical modification step
along the cycle filament → membrane → bulk → filament,
which is driven by the dissipation of chemical free energy
and leads to a value δ < 1. For example, a protein may exist
in several phosphorylation states, such as fission yeast Pom1
which has a high affinity for the the membrane when it is de-
phosphorylated at microtubule tips, but quickly unbinds from
the membrane when it is rephosphorylated there [9]. If an NTP
molecule is hydrolyzed at any step in the forward direction of
the filament → membrane → bulk → filament cycle, then
the model shows that a membrane spot is formed indepen-
dent of whether particles are actively transported along the
filament. There are thus two distinct mechanisms that can act
independently to create a polarized distribution of membrane
proteins.

The parameter α describes how fast the particles are driven
on the filament,

α = vF

kFB

/√
DF

kFB
= lv/lD. (23)

Here, lv is the average distance that a particle travels on the
filament before it unbinds when it moves with a drift velocity
vF , and lD sets a length scale over which diffusion smooths out
the profile of the particle density on the filament f (z). Hence,
α measures how much the particle density is shaped by the
drift velocity. In Fig. 2, we show that the particle distribution
on the filament is reshaped more strongly when α increases.
Particles are transported from the right to the left, where the
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FIG. 2. The dimensionless particle density along the filament
ϕ(λ) is shaped by the dimensionless drift velocity α = vF /

√
DF kFB.

The driving force moves particles away from the right border at
λ = 	 toward the membrane at λ = 0, lowering the particle density
close to λ = 	. Due to this reduced density on the right, the binding
of new particles exceeds the unbinding as the particles move to
the left, and the binding and unbinding balance out after a length
scale λbinding. On the opposite side, particles are crowded against the
membrane, which leads to a peak in the distribution with a size of
λcrowding. For low drift velocities (α = 0.1), the distribution is close
to the equilibrium shape ϕ(λ) = 1, but for larger values (α = 1) the
shape becomes more pronounced. When the drift velocity increases
even more (α = 10), the amplitudes of the density deformations
increase further, but are now accompanied by a decrease of the length
scale λcrowding and an increase of the length scale λbinding. For α ≈ 	,
the full filament acts as an antenna for the adsorption of particles
from the bulk, and roughly all those particles reach the membrane.
If α < 	, many particles fall off the filament before they reach the
membrane. We use the parameter values listed in Table S.2 of the
Supplemental Material [10], except for α and 	 = 10.

membrane is located at λ = 0. In the center of the filament,
the rate at which particles bind from the bulk equals the rate
at which particles unbind from the filament, and transport of
particles coming in from the right equals the transport out to
the left. Hence, the particle density is simply the equilibrium
density there. However, within a distance λbinding from the
end of the filament (λ = 	), the particle density decreases
because no particles can be transported from beyond 	 while
particles are still transported toward the left. Similarly, within
a distance λcrowding from the membrane (λ = 0), the particle
density peaks because transport brings in particles from the
right while they cannot be transported further to the left. As
shown in Eq. (18), the two dimensionless length scales are
given by

λbinding = 2√
4 + α2 − α

, (24)

λcrowding = 2√
4 + α2 + α

. (25)
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FIG. 3. The dimensionless length scales λbinding and λcrowding are
roughly equal for α < 1, but when the driving velocity increases
(α > 1) the particles can be transported for longer distances, which
increases λbinding ≈ α. Furthermore, particles are pushed against the
membrane more strongly, decreasing λcrowding ≈ 1/α. The exact ex-
pressions are given in Eqs. (24) and (25), while the approximations
are given in Eqs. (26)–(29).

These length scales can be approximated in both the small and
large limits of α, showing that up to leading order

λbinding
α�1−−→ 1, (26)

λcrowding
α�1−−→ 1, (27)

λbinding
α�1−−→ α, (28)

λcrowding
α�1−−→ 1

α
. (29)

These approximations are plotted in Fig. 3 along with the
exact length scales from Eqs. (24) and (25). The figure shows
that for α < 1, the length scales λbinding and λcrowding barely
change with α, and increasing the driving velocity only in-
creases the absolute slopes of the particle densities at both
ends of the filament, as seen in Fig. 2. But when α > 1,
the larger drift velocity crowds the proteins tighter against
the membrane, creating a peak with a small λcrowding close
to λ = 0. Furthermore, the slope at the back of the filament
becomes longer as the average distance that particles travel
before they unbind increases. This is known as the antenna
effect [11,12], since the microtubule acts as an antenna that
transports particles over a distance that equals the motor
protein processivity length lv [see Eq. (23)]. Hence, protein
transport to the membrane is the most efficient when the
length of the filament equals the antenna length, 	 = λbinding.
If the filament is shorter, then the protein concentration at the
membrane will decrease. However, if the filament is longer,
then many proteins will fall off the filament before they arrive
at the membrane, wasting the chemical energy that was spent
on driving them forward.
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FIG. 4. The dimensionless particle density on the membrane
μ(σ ) becomes more peaked when the dimensionless drift velocity
α increases. There is a peak in the particle density on the fila-
ment as shown in Fig. 2, which is connected to the membrane at
σ = ρ ≈ 1.8 × 10−3. Some of these particles are deposited on the
membrane, after which they diffuse away and finally unbind to the
bulk. This diffusion and unbinding sets a length scale that equals 1
in the dimensionless representation. If the particles are driven along
the filament to the membrane faster (increasing α), the height of
the particle density on the membrane increases, but the width of the
high-density spot does not change. This width equals

√
DM/kMB, or

1 in the dimensionless system. The parameters are the same as in
Fig. 2.

Because the motor drift on the filament creates a high pro-
tein density on the filament end that is close to the membrane,
the interaction between the membrane and the filament will
also lead to a higher protein density on the membrane. As
shown in Fig. 4, this leads to the formation of a high-density
spot on the membrane close to the filament. The density of the
spot increases with α, as the steady-state particle flux around
the cycle increases, but the size of the spot ls is set by the
unbinding rate and the diffusion constant,

ls =
√

DM

kMB
. (30)

Hence, the size of the spot is roughly constant, and the dimen-
sionless density on the membrane close to the filament μ(ρ)
fully measures how pronounced the membrane spot is. If there
is no spot, then μ(ρ) = 1, and a value larger than unity shows
how much higher the protein density is in the membrane spot
compared to the density on the membrane far away from the
filament, which is set by the equilibrium dynamics between
the bulk and the membrane. Therefore, we will use μ(ρ) to
assess the quality of polarization, which allows us to measure
the impact that different parameters have on cell polarization.

The dimensionless parameter β quantifies how fast the
particles move from the microtubule tip to the membrane, and
the parameter γ quantifies the speed of the reverse transition.
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FIG. 5. The measure for the height of the membrane spot, μ(ρ ),
changes when varying the dimensionless parameters β and γ , which
describe the rate of hopping from the filament to the membrane and
vice versa, respectively. Here we vary these parameters and keep
δ = 1, such that there is no free-energy drop associated with the bind-
ing and unbinding around the full cycle filament → membrane →
bulk → filament, and detailed balance is only broken by active
transport (α ≈ 11). We vary either β = β0 exp(q) and γ = γ0 (dark
blue), or β = β0 and γ = γ0 exp(q) (light red), where β0 and γ0 are
the values shown in Table S.2 of the Supplemental Material [10].
We see that if we increase the rate β to move from the filament
to the membrane while keeping δ = 1, the height of the spot de-
creases. Similarly, if we increase the rate γ to move back from the
membrane to the filament while keeping δ = 1, then the polarization
of the membrane distribution improves. Hence, when binding is in
equilibrium, the affinity for the membrane should be low compared
to the affinity for the microtubule, such that the particles that are
deposited on the membrane by the microtubule have a large impact
on the membrane distribution.

In Fig. 5, we show that the height of the membrane spot de-
creases if we increase the rate of binding from the filament to
the membrane or decrease the reverse rate, while keeping δ =
1. This counterintuitive result holds true precisely because
δ = 1, such that there is no net free-energy drop along the
cycle filament → membrane → bulk → filament. Increas-
ing β or decreasing γ increases the affinity for the membrane
relative to that for the filament, but the constraint that there
is no free-energy drop around the cycle means that this must
be accompanied by a decrease of the relative affinity for the
filament compared to the bulk or by an increase of the rela-
tive affinity for the membrane compared to the bulk. In the
former case, the density of particles at the tip of the filament
decreases, which reduces the height of the membrane spot
because the flux from the filament tip to the membrane is
decreased. In the latter case, the equilibrium density on the
membrane increases, reducing the contrast between the mem-
brane spot and the density far away. The absolute equilibrium
probability that the particle is found in the bulk does not
influence the relative likelihoods of finding the particle on
the membrane or on the filament when the binding cycle is
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FIG. 6. The measure for the height of the membrane spot relative
to the equilibrium density on the membrane, μ(ρ ), decreases when
δ increases while the driving velocity remains constant (α ≈ 11). To
achieve a value δ 	= 0, the binding cycle filament → membrane →
bulk → filament needs to be coupled to the dissipation of chemi-
cal free energy. For example, performing an NTP hydrolysis each
time the particle moves through the cycle leads to δ < 1, and the
steady-state flux through the cycle increases. Increasing this flux has
a positive effect on the protein density in the membrane spot, and
increases the polarization independent of the driving velocity on the
filament α. The scenario δ > 1 corresponds to a system where the
binding cycle is in the opposite direction of the transport cycle, sup-
pressing the flux and hence polarization. Apart from δ, the parameter
values are given in Table S.2 of the Supplemental Material [10].

in equilibrium, explaining why the details of the transition
rates to and from the bulk become irrelevant in the nondimen-
sional representation. Hence, increasing β and decreasing γ

decreases μ(ρ) because the binding affinity for the filament
should be high compared to the binding affinity for the mem-
brane to create a polarized membrane spot.

Finally, we focus on how δ affects the formation of a
steady-state membrane spot. If δ < 1, then there is a free-
energy drop each time a particle moves from the bulk to the
filament, from the filament to the membrane, and from the
membrane back to the bulk. The protein density in the mem-
brane spot depends on the flux that runs through this cycle,
so we expect μ(ρ) to increase when δ decreases. Figure 6
shows that the height of the membrane spot indeed increases
when δ < 1. Furthermore, the shape of the density profile on
the filament barely changes, only slightly reducing the size of
the density peak ϕ(0) when δ < 1 (data not shown). Hence,
breaking detailed balance through a chemical modification cy-
cle in the binding cycle filament → membrane → bulk →
filament has a strong effect on the formation of a polarized
protein distribution on the membrane.

III. BIOLOGICALLY RELEVANT PARAMETER VALUES

The dimensionful model presented in Sec. II contains
fourteen parameters, including one that sets the average
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concentration b. To focus the model analysis, we find a set
of biologically relevant parameter values, which also provide
values for the dimensionless parameter set. Then, we vary
individual parameters to investigate how they influence the
polarization of the membrane and the free-energy dissipation.

Because microtubules are roughly 25 nm in diameter [13],
we choose a filament radius r = 12.5 nm. Furthermore, we
choose a filament length of L = 10 µm, which is a typi-
cal microtubule length. For the container radius, we choose
a value of R = 10.0125 µm, which will be large enough
to show the full membrane spots that are created by a single
microtubule, and which ensures that R − r = 10 µm, simpli-
fying the creation of histograms that cover the entire radial
space of the membrane. This leads to a container that is large
compared to the typical size of a fission yeast cell, which
is roughly 10 µm long [14]. However, the exact size of the
spot, and thus the required container size, does not influence
the conclusions of this chapter. Furthermore, we will discuss
in the following paragraphs that we expect that the diffusion
constant of proteins on the membrane is effectively lower in
vivo compared to in vitro, creating a smaller spot that would
fit on a yeast cell.

The dynamical parameters on the filament describe how
a cargo moves on a microtubule under the influence of
motor proteins. Single kinesin motors can move between
0.01 microms−1 and 1 µms−1 depending on the ATP concen-
tration, the load, and the kind of kinesin protein [15,16].
Since we consider low load single protein cargoes, we set the
average drift velocity to vF = 0.5 µms−1. The dynamics on
the filament is defined by this drift velocity in combination
with the diffusion constant of kinesin motors running along a
microtubule, which has been measured to be roughly between
0.002 µm2 s−1 [17] and 0.005 µm2 s−1 [18]. Hence, we set
DF = 0.004 µm2 s−1.

The diffusion constant on the membrane depends on the
diffusing protein and the type of lipid bilayer. For a simple
membrane in vitro, the diffusion constant of proteins with a
radius of roughly 2 nm equals around 8 µm2 s−1 [19]. Because
we employ a minimal model, we ignore the compartmental-
ization of the membrane [20], and choose a diffusion constant
on the membrane of DM = 5 µm2 s−1. In the bulk, we require
the diffusion constant of proteins in the cytosol, which was
measured to be on average DB = 60 µm2 s−1 [21].

We assume that the rate at which the cargo unbinds from
the microtubule is limited by the unbinding rate of kinesin,
which is roughly kFB = 0.5 s−1 when no external force pulls
on the motor [22]. For the rate at which the particles unbind
from the membrane, we use the experimental off-rate that was
measured for the Rho-GTPase Cdc42, which sets a value of
kMB = 0.1 s−1 [23]. Together with the membrane diffusion
constant DM , this rate sets a typical length scale for the mem-
brane spot size of

lM =
√

DM

kMB
≈ 7 µm. (31)

The same experiments also provide an order of magnitude for
the binding rate of particles from the bulk to the membrane by
observing the Cdc42 association with liposomes. In equilib-

rium, the total binding rate from the solution equals

kon = uBMAb, (32)

where A is the area of the membrane on spherical liposomes.
Taking a concentration of b = 50 nM, a liposome radius of
0.5 µm (giving A ≈ 3.1 µm2 ), and a kon = 1 s−1 [23], we find
uBM ≈ 0.01 µms−1.

The binding rate of cargo proteins from the cytosol to the
filament is affected by the binding rate of motor proteins to
the microtubule and the binding rate of the cargo to motor
proteins. We assume that this binding is relatively strong,
such that the equilibrium affinity for the microtubule is much
higher than for the membrane, which allows the driving on
the microtubule to have a pronounced effect on the membrane
concentration. Because the rate of unbinding from the fila-
ment to the bulk is larger than that from the membrane to
the bulk, kFB = 5kMB, this means that uBF must be several
orders of magnitude larger than uBM to guarantee a higher
equilibrium affinity for the filament. Furthermore, because the
area of the microtubule is much smaller than the area of the
membrane, the affinity for the microtubule needs to be very
large to find a significant fraction of particles on the filament.
Hence, we choose uBF = 100 µms−1. We can compare our
values of kFB and uBF to the reported dissociation constant
KD,BF of a kinesin subunit binding to microtubules, which
was found to be lower than KD,BF < 50 nM ≈ 30 µ−1 m3 [24].
This dissociation constant should equal

KD,BF = kFB

uBF Atub
, (33)

where Atub is the surface area of a single tubulin dimer on
the microtubule, which we take to be roughly 50 nm2 . Using
the previously mentioned values of kFB and uBF , we find
KD,BF ≈ 100 µ−1 m3 . Hence, the experimental value of the
dissociation constant suggests that we slightly underestimate
the binding to the microtubule, but our value is of the right
order of magnitude.

Once the particles are driven to the tip of the filament,
and are in contact with the membrane, the rate to bind to the
membrane uFM is related to the rate uBM . If the mechanism of
binding from the filament is the same as from the bulk, then
we assume uFM = uBM = 0.01 µms−1. However, the cell may
implement a different mechanism for transporting the cargo
from the tip of a microtubule to the membrane, in which case
this value could be larger. Hence, it will be interesting to see
how the prominence of the membrane spot changes with uFM .

Finally, detailed balance provides a relation for the reverse
rate uMF at which particles that are on the membrane and
close to the filament bind to the filament. If the binding and
unbinding is in equilibrium, then we have

δ = uMF kFBuBM

uFMuBF kMB
= 1. (34)

Using the previously mentioned values for all other
(un)binding rates, we find uMF = 1 µms−1. In Table S.1 of the
Supplemental Material [10], we give an overview of all pa-
rameter values, and in Table S.2 of the Supplemental Material
[10] we list the values that the dimensionless parameters take
in the biologically relevant regime.
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IV. A FINITE BULK DIFFUSION CONSTANT IS
BENEFICIAL FOR CELL POLARIZATION

In steady state, Eqs. (2)–(4) provide a set of ordinary dif-
ferential equations that can be solved analytically, as shown in
Eqs. (18) and (19). However, these equations are valid when
the diffusion constant in the bulk is very large, DB → ∞.
When DB is finite, we could modify the steady-state differ-
ential equations and the corresponding boundary conditions,
leading to a set of coupled partial differential equations for
f (z), m(s), and b(z, s) that cannot be solved analytically.
While these equations could be solved numerically using con-
tinuum techniques like finite-element methods, we decided
to find the density profiles computationally by performing
simple time-step-based Monte Carlo simulations of a single
particle moving through the system. We do not require mul-
tiple particles since we model an “ideal gas” of proteins that
never interact. The benefit of the simulations is their ease of
implementation, and the possibility to “measure” the power
consumption in two different ways, as we will describe below.

Because of the radial symmetry of the system, we only
keep track of the longitudinal position z and the radial distance
s. To model the particle diffusion, we implement a discrete
time random walk in which particles move by a stochastic
longitudinal step δz or radial step δs each time step δt . On
the filament, δz follows a Gaussian distribution with mean
−vF δt and standard deviation

√
2DF δt , while in the bulk

the mean of δz vanishes and the standard deviation equals√
2DBδt . For the diffusion in the radial direction, we draw

two Gaussian random numbers δx and δy with zero mean and
standard deviation

√
2DMδt (membrane) or

√
2DBδt (bulk).

Then, we calculate (s + δs)2 = (s + δx)2 + δy2, where we use
that the x-axis can always be chosen to point in the radial
direction. When either δz or δs brings the particle outside of
the container, we reflect the particle position back across the
boundary. The algorithm to reflect the particles in a flat or
circular surface without breaking detailed balance is described
in Sec. S.II of the Supplemental Material [10].

To simulate the particle transitions between the three sys-
tem parts, we use the same kinetic Monte Carlo algorithm that
we used previously [25]. In summary, we integrate the tran-
sition rates until a stochastically chosen threshold is passed
upon which we perform a reaction [26]. Since the binding
rates uBF , uFM , uMF , and uBM contain a spatial dimension as
well, we define the reaction length scales llong and lrad. When
a particle is in the bulk and within a distance llong from the
membrane, it can bind to the membrane with a transition rate

kBM = uBM

llong
. (35)

This definition ensures that if the bulk concentration is
roughly constant within the reaction volume, then the
flux is modeled correctly, kBMllongb ≈ uBMb. Hence, this equa-
tion is only valid when llong is much smaller than the size of
typical density fluctuations. Similarly, we have

kFM = uFM

llong
. (36)

In the radial direction close to the filament, the reaction vol-
ume has a tubular form, and we must have that kBF π [(r +
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FIG. 7. The probability density f (z) that a particle is at position
z on the filament, where the membrane is located at z = 0 and motor
proteins drive the particles from the right to the left. We use the
biologically relevant parameters of Table S.1 of the Supplemental
Material [10]. The dark blue line gives the exact result for DB → ∞,
showing that the filament acts as an antenna over a length lbinding ≈
1.0 µm. After this distance, the unbinding of particles balances out
the binding of new particles. When the particles reach the membrane,
they are crowded over a length scale lcrowding ≈ 8 nm. In light blue,
we show a histogram of the particle density in simulations using
the parameters of Table S.3 of the Supplemental Material [10], in
which the bulk diffusion constant DB = 60 µm2 s−1, which nearly
perfectly coincides with the theoretical result. Simulations with a
lower bulk diffusion constant DB = 10 µm2 s−1 are shown in green,
revealing that the antenna effect acts over a longer length scale when
the bulk diffusion constant is lower. The lower diffusion constant
allows some particles that unbind from the filament to rapidly re-
bind to the filament, increasing the effective distance over which
the particles can be transported. The density peak in the leftmost
bin is predicted to be 2.1 × 10−2 µ−1m (DB → ∞), and the simula-
tions find 2.2 × 10−2 µ−1m (DB = 60 µm2 s−1) and 2.4 × 10−2 µ−1m
(DB = 10 µm2 s−1), indicating that the particle density at the filament
tip increases when the bulk diffusion constant decreases.

lrad )2 − r2]b ≈ 2πruBF b. Therefore, we choose

kBF = uBF

lrad + l2
rad/2r

(37)

and

kMF = uMF

lrad + l2
rad/2r

. (38)

When a reverse reaction occurs, we place the particle uni-
formly within the reaction volume. For example, when a
particle unbinds from the filament to the bulk, it will be
placed at a radial position r < s < r + lrad, which is uniformly
distributed over the area π [(r + lrad )2 − r2]. This mechanism
ensures that detailed balance holds when α = 0 and δ = 1.

We show the simulated protein concentration profiles on
the filament and on the membrane in Figs. 7 and 8, respec-
tively, and compare them to the exact solutions for f (z) and
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FIG. 8. The probability density m(s) that a particle is at a ra-
dial position s on the membrane, where the filament is located
at s = r = 0.0125 µm. We use the same parameters and simula-
tion as in Fig. 7. The dark blue line gives the exact result for
DB → ∞, which predicts a spot size of

√
DM/kMB = 7.1 µm. The

difference between the simulations with a high bulk diffusion con-
stant (DB = 60 µm2 s−1) and the exact solution are likely caused by
insufficient sampling. The particle density in the leftmost bin is pre-
dicted to be 2.7 × 10−4 µ−1 m2 (DB → ∞), and the simulations find
2.8 × 10−4 µ−1 m2 (DB = 60 µm2 s−1) and 2.9 × 10−4 µ−1m (DB =
10 µm2 s−1). The higher density for the lower bulk diffusion constant
persists inside the whole membrane spot (green bins), showing that a
lower bulk diffusion constant can slightly improve cell polarization.

m(s) that are valid at DB → ∞. We use the biologically rele-
vant parameters listed in Table S.1 of the Supplemental Mate-
rial [10], and the figures show that the simulations with DB =
60 µm2 s−1 agree with the analytical solutions. In contrast,
additional simulations with a bulk diffusion constant DB =
10 µm2 s−1 exhibit small, but statistically significant, devia-
tions from the predicted behavior for DB → ∞. Specifically, it
appears that the length scale lbinding on the filament increases,
improving the antenna effect caused by the motor proteins.
Furthermore, the density peak on the filament close to z = 0
is higher when the bulk diffusion constant is lower. This
subsequently causes a larger flux of particles to be deposited
on the membrane, leading to a slight increase of the particle
density in the membrane spot as shown in Fig. 8.

The steady-state particle density in the bulk b(z, s) is al-
most homogeneous when DB = 60 µm2 s−1 (data not shown),
explaining why the exact solution for DB → ∞ is nearly
identical to the simulation results. To visualize the effects of
a lower bulk diffusion constant, we plot how the proteins are
distributed in the cytosol for DB = 10 µm2 s−1 in Fig. 9. Close
to the filament, which is located at s = r, the bulk density
profile resembles the shape of the density on the filament
shown in Fig. 7. The transport along the filament removes
particles from the back of the container, lowering the protein
density in a region that extends several microns into the bulk.
Furthermore, Fig. 9 shows that the particles are concentrated
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FIG. 9. The probability density b(z, s) that a particle is at a lon-
gitudinal position z and a radial position s in the bulk, where the
membrane is located at z = 0 and the filament is located at s = r =
0.0125 µm. We show the histogram produced by simulations with
a lower diffusion constant in the bulk, DB = 10 µm2 s−1, because
DB = 60 µm2 s−1 results in a nearly flat density profile. Otherwise,
all parameters are the same as listed in Table S.1 of the Supplemental
Material [10]. With a lower diffusion constant, the density profile on
the filament shown in Fig. 7 persists for some distance into the bulk,
improving the effects of active transport on the polarized particle
distribution.

more densely close to z = 0 and s = r, which is close to the
density peak on the filament and on the membrane. Since
a finite diffusion constant does not smear out the protein
distributions instantly, lowering the diffusion constant in the
bulk is beneficial for the formation of a strongly polarized
nonequilibrium distribution on the membrane.

V. FREE ENERGY IS DISSIPATED TO FORM A
MEMBRANE SPOT

Using the exact solutions of the protein densities on the
filament and the membrane in Eqs. (18) and (19), we saw that
the flux through the system vanishes if and only if δ = 1 and
α = 0. The parameter δ can break detailed balance when the
particles undergo a driven chemical modification cycle when
they revolve through the filament, membrane, and bulk. On
the other hand, a nonzero value for the parameter α is caused
by motor proteins driving the movement of the particles along
the filament. Both processes dissipate free energy, and we can
find lower bounds for the free-energy dissipation caused by
each process.

On the filament, the particles have a drift velocity vF and a
diffusion constant DF . Using the Einstein relation [27], these
two parameters define the average drift force FF that acts on
particles bound to the filament,

FF = kBT
vF

DF
. (39)
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We can calculate the work performed on a particle by multi-
plying this force with the net distance that the particle travels
on the filament.

For the binding reactions, we make use of the local detailed
balance relation [28]. Because the individual transitions can
also involve the changing of dimensions, for example from the
bulk to the membrane, it is nonsensical to assign free-energy
differences between particle states on the membrane or in the
bulk,

FBM 	= kBT log

[
uBM

kMB

]
. (40)

In this expression, we would take the logarithm of a factor that
has a dimension of length. Still, because a particle that moves
through a loop has to pass the dimensional transitions along
the z and s axis in both directions, these length scales have
to cancel in the ratio δ. Only a multiplicative constant c may
survive because the length scales of the transitions from the
filament to the membrane and from the bulk to the membrane,
or the length scales in the transitions from the membrane to
the filament and from the bulk to the filament could differ.
Hence,

FFMB = kBT log

[
uFMkMBuBF

uMF uBMkFB

]
+ kBT log[c]

= −kBT log[δ] + kBT log[c]. (41)

Here, we take the dissipated free energy to be positive, such
that a positive free-energy drop around the loop FFMB drives
a flux through the loop filament → membrane → bulk →
filament. Because we have shown that detailed balance holds
if and only if δ = 1, and we require FFMB = 0 in that case,
we see that the length scale c = 1, showing that

FFMB = −kBT log[δ]. (42)

We can use Eqs. (39) and (42) to define free-energy dif-
ferences, but to compare the two we require the average
dissipated power per particle. In the simulations, we can keep
track of the net distance traveled on the filament dnet, which
increases if motor proteins drive the particle toward z = 0, but
decreases again if the diffusion with diffusion constant DF

increases z. Hence, we take into account that motor proteins
that hydrolyze ATP have a small chance of moving back,
reattaching a phosphate group to an ADP molecule. Similarly,
we record the net number of times the particle moves forward
in the transition filament-membrane NFM . We run the simu-
lations for a time t , after which the total average dissipated
power Psim equals

Psim = FF dnet + NFMFFMB

t
. (43)

If the simulated time t is long enough, we will find a reliable
measurement of the power.

Using the steady-state versions of Eqs. (2)–(9) and their
analytical solutions, we can also calculate the exact dissi-
pated power per particle for DB → ∞. First, we see that the

steady-state flux that moves through the filament →
membrane → bulk → filament cycle equals

Jss = uFM f (0) − 2πruMF m(r). (44)

Then, the power dissipated by the binding dynamics equals

Pexact,FMB = JssFFMB. (45)

Then, the power dissipated by the driving on the filaments
follows from the flux along the filament,

Pexact,F =
∫ L

0
[DF ∂z f (z) + vF f (z)]FF dz, (46)

where the diffusive term includes the free energy that is
returned if a motor protein makes a backward step. By inte-
grating over the differential equations Eqs. (2)–(4), we can
find expressions for the number of particles in each part of the
system,

NF =
∫ L

0
f (z) dz

= 1

kFB
(2πrLuBF b − Jss), (47)

NM =
∫ R

r
m(s)2πs ds

= 1

kMB
(π (R2 − r2)uBMb + Jss), (48)

NB =
∫ L

0

∫ R

r
b2πs ds dz

= π (R2 − r2)Lb, (49)

Ntot = NF + NM + NB. (50)

Using these definitions, we find the power per particle to equal

Pexact = DF [ f (L) − f (0)] + vF NF

Ntot
FF

+ Jss

Ntot
FFMB. (51)

This solution is exact, but only valid when the diffusion con-
stant in the bulk is very large, DB → ∞.

In Sec. IV, we showed that lowing the bulk diffusion
constant slightly improves the quality of polarization, but
we also expect that it improves its efficiency. Particles that
are transported along the filament and fall off before they
reach the membrane instantly diffuse away when DB → ∞.
Hence, the free energy that is dissipated in transporting these
particles is wasted as soon as they fall off the filament. How-
ever, a lower bulk diffusion constant allows the particles to
rebind to the filament, reducing the number of wastefully
transported particles. For the parameter values listed in Table
S.1 of the Supplemental Material [10], we predict that the
power of active transport equals 2.61 kBT s−1 for DB → ∞,
and we find a power of 2.6 kBT s−1 in simulations with DB =
60 µm2 s−1 and a power of 2.4 kBT s−1 in simulations with
DB = 10 µm2 s−1. Hence, simulations show that lowering the
bulk diffusion constant can indeed improve the efficiency of
active transport by increasing the quality of polarization and
decreasing wasteful free-energy dissipation.
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VI. DRIVEN BINDING KINETICS IS MORE EFFICIENT
THAN MOTOR TRANSPORT

Using the results of Sec. V, we can quantify both the
dissipated power by the motor proteins and by the binding
kinetics of the cargo proteins. Furthermore, we showed in
Sec. II that the quality of the polarized protein distribution
on the membrane can be quantified by μ(ρ), which compares
the protein density in the center of the membrane spot to the
density on the periphery of the membrane. Starting from the
biologically relevant set of parameter values listed in Table
S.1 of the Supplemental Material [10], we investigate how
varying some parameters influences the membrane spot. First,
we vary the drift velocity on the filament vF between 0 and
1 µms−1, and calculate both the dissipated power Pexact [see
Eq. (51)] and the quality of the membrane spot μ(ρ) for each
value of vF . The results of the exact solutions are plotted
in Fig. 10 (dark blue line) together with the values obtained
in simulations with DB = 60 µm2 s−1 (dark blue dots). We
see that the membrane spot becomes more pronounced if we
increase vF , but that the dissipation per particle also increases
strongly. Combined, the quality of the membrane spot appears
to increase with the dissipated power as a power law when it
is only driven by active transport.

Instead of increasing the drift velocity, the system may
also break detailed balance in the binding cycle filament →
membrane → bulk → filament, lowering the value of the
nondimensional parameter δ < 1. In Sec. III, we noted that
the rate to bind from the filament to the membrane uFM

may be different from the rate to bind from the bulk to the
membrane uBM . For example, the motor proteins that transport
the particles on the filament may also provide a mechanism
to deliver them to the membrane. Furthermore, the chemi-
cal state of the proteins may be different when they are on
the filament, for example, by strongly favoring the binding
of (de)phosphorylated particles to the motor proteins, or by
packing the proteins on a vesicle before transport. Hence,
we vary the rate uFM while maintaining the driving velocity
vF = 0.5 µms−1, and calculate both μ(ρ) and Pexact. Figure 10
(light blue line and dots) shows that increasing uFM improves
the quality of the polarized spot, but it does not cost more
free energy. In fact, the power per particle caused by the
binding cycle Pexact,FMB becomes nonzero and remains small,
but increasing uFM also reduces the time that particles spend
on the filament, which reduces the probability that a particle
unbinds from the filament to the bulk and wastes the free
energy that was spent in transporting it. Hence, the power per
particle caused by transport on the filament Pexact,F decreases
more strongly than Pexact,F increases when we increase uFM ,
leading to a lower overall power consumption.

The boundary condition Eq. (6) indicates that the deriva-
tive of f (z) at z = 0, the density on the filament near the
membrane, becomes less negative or even positive when uFM

increases. Faster transmission of the particles from the fila-
ment to the membrane lowers the high-density peak on the
filament, which is the spike at z = 0 in Fig. 7. However, if
uFM becomes much larger than vF , then the density f (0)
becomes zero, and the flux to the membrane becomes limited
by the speed at which new particles are transported by the
motor proteins. Figure 11 shows that the quality of membrane
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FIG. 10. The quality of polarization, given by the protein density
at the center of the spot relative to the equilibrium density on the
membrane, μ(ρ ), as a function of the dissipated power in the system.
The black point corresponds to the biologically relevant parameter
values shown in Table S.1 of the Supplemental Material [10], pro-
viding a baseline from where to change parameters. We vary the
drift velocity on the filament vF between 0 and 1 µms−1, where the
baseline value is given by vF = 0.5 µms−1, and we keep the binding
in equilibrium (dark blue line, power law). We also vary the binding
rate from the filament to the membrane uFM between 7 × 10−5 µms−1

and 1.5 µms−1 (baseline uFM = 0.01 µms−1, light blue vertical line).
This binding lowers the highly crowded density at the front of the
filament, improving polarization while slightly saving on dissipated
power. However, increasing uFM past vF does not influence the
polarization. Hence, we keep the optimal value uFM = 0.5 µms−1

and increase the power dissipated through binding by increasing the
rate to bind to the filament uBF from the baseline value 100 µms−1

to 425 µms−1 (yellow exponential line, 1), or set vF = 0 and vary
uBF between 100 µms−1 and 5250 µms−1 (red vertical line, 2). All
theoretical curves are compared to simulations with a bulk diffusion
constant DB = 60 µm2 s−1 (points), confirming the agreement with
the assumption DB → ∞. We see that the quality of the membrane
polarization can be improved much more efficiently by dissipating
power in the binding cycle than by transporting the proteins on the
filament.

polarization μ(ρ) reaches an asymptote before reaching a
value of uFM ≈ vF . Even though increasing uFM increases
polarization at almost no cost, it is only beneficial as long as
uFM < vF .

To further investigate if increasing the dissipation in the
binding cycle is efficient, we choose to vary the rate to bind
from the bulk to the filament, uBF . In Sec. III, we showed
that there is some freedom in choosing this rate. We increase
the rate from uBF = 100 µms−1 to 350 µms−1, while setting
uFM = vF = 0.5 µms−1. As shown in Fig. 10 (yellow line,
1), the quality of polarization μ(ρ) increases exponentially
with the power dissipated, which is more efficient than simply
increasing the drift velocity on the filament. The dissipa-
tion mainly increases because the number of particles on the
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FIG. 11. The quality of polarization as a function of the rate to
move from the filament to the membrane, uFM . All other parameter
values are listed in Table S.1 of the Supplemental Material [10].
Increasing uFM to a value larger than vF = 0.5 µms−1 has no influ-
ence on the high-density spot on the membrane, only reducing the
crowding at the end of the filament.

filament increases with uBF , and this leads to a larger dissipa-
tion by the motor proteins.

To see if a nonequilibrium binding cycle can cause a po-
larized distribution of particles on the membrane, we also
vary uBF while keeping vF = 0. Figure 10 (red line, 2) shows
the model does show a strong polarization when only the
binding cycle breaks detailed balance, and that the free-
energy dissipation is orders of magnitude lower than with
a finite drift velocity. For uBF = 4300 µms−1 and vF = 0,
we find μ(ρ) = 60 and Pexact = 0.02 kBT s−1, whereas for
uBF = 350 µms−1 and vF = 0.5 µms−1, we find the same po-
larization μ(ρ) = 60 but with a dissipated power of Pexact =
7.8 kBT s−1. Hence, by driving the binding cycle out of equi-
librium, via e.g. a phosphorylation-dephosphorylation cycle
as in the Pom1/Tea1/Tea4 system, the cell can make the
binding from the filament to the membrane more likely with-
out increasing the backward rate from the membrane to the
filament. This process is probably highly efficient in terms of
its free-energy consumption.

In summary, the effect of varying the elementary parame-
ters of the model on cell polarization can be understood via
the dedimensionalized parameters in Eq. (10). Varying uFM

affects both δ and β [see Eq. (10)]. When uFM is increased
such that β is increased while another parameter is changed
too to keep δ = 1 (and the binding cycle is thus in thermo-
dynamic equilibrium), then the quality of cell polarization
decreases (Fig. 5). In contrast, when uFM is increased only,
such that β increases and δ decreases, then the degree of
cell polarization first rises because of the larger protein flux
to the membrane, but then plateaus because the delivery of
proteins to the membrane becomes limited by the binding of
proteins from the bulk to the filament (Fig. 11). The effect of
varying uMF is opposite to that of uFM . Varying kMB affects
both δ and γ [Eq. (10)]. Increasing kMB (and this parameter

only) decreases δ and γ and enhances cell polarization via
two effects: it makes the polarization spot sharper by driving
the particles more rapidly back into the cytoplasm, and it
also lowers the background concentration on the membrane.
The parameter uBM only affects δ; increasing it weakens po-
larization by increasing the background concentration on the
membrane. The parameter uBF also only affects δ. Increasing
uBF enhances cell polarization by increasing the flux from the
bulk onto the filament (Fig. 10); increasing this parameter
is particularlty powerful because the membrane spot is fed
via the particles on the filament, which acts as an antenna.
The parameter kFB affects δ, α, and β, and increasing it is
indeed very detrimental: it lowers the density of the particles
on the filament (the effect of δ); it lowers the distance over
which particles are transported on the filament, thus driving
them back to the cytoplasm earlier (the effect of α); and it
decreases the probability that a particle near the tip of the
filament actually binds the membrane instead of dissociating
back into the bulk (the effect of β).

VII. DISCUSSION

Cytoskeletal filaments are often organized in nonhomo-
geneous structures within the cell. For example, the mitotic
spindle is a structure in which microtubules point radially
outward from two microtubule organizing centers. Together
with the intrinsically polarized structure of the filaments, the
cell can use its cytoskeleton to provide directional transport
of other particles and break the symmetry of the distribution
of particles. Fission yeast makes use of microtubule-based
transport of Tea1 and Tea4 to polarize the distribution of Pom1
on its membrane [9], and budding yeast transports vesicles
with membrane-bound Cdc42 along actin cables, leading to
a polarized distribution of Cdc42 on the outer membrane
[5,8]. Hence, if the filaments point toward the membrane and
the transported cargoes bind to the membrane, transport by
motor proteins along filaments offers a mechanism to polar-
ize a distribution of proteins on the membrane of the cell.
Using a minimal model, we showed that transport along a
filament can create a polarized steady-state distribution on the
membrane, and that the motor proteins dissipate a reasonable
amount of chemical free energy to maintain this nonequilib-
rium state. Using biologically relevant parameter values, the
protein concentration on the membrane can increase by a fac-
tor 12 compared to the equilibrium density on the membrane,
forming a high-density spot close to the filament while the
cell dissipates on average 2.6 kBT s−1 of chemical free energy
per particle. In comparison, the hydrolysis of a single ATP
molecule releases roughly 18 kBT [29], so a motor protein
moving at 0.5 µms−1 that hydrolyses one ATP molecule per
8 nm step dissipates more than 1000 kBT s−1. Hence, a po-
larized distribution of filament orientations that is used for
directed transport can be sufficient to create a polarized dis-
tribution of cargo proteins on the membrane.

The model also includes a second mechanism to break de-
tailed balance besides active transport. The particles transition
reversibly between the bulk (cytosol) and filament, between
the filament and membrane, and between the membrane and
bulk. Those reactions can break detailed balance by modifying
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the particles as they pass through the loop. For example,
fission yeast Pom1 is dephosphorylated before it binds to
the membrane, but its autophosphorylation then increases its
dissociation rate from the membrane [5,9]. Furthermore, bud-
ding yeast Cdc42 switches between GDP and GTP bound
states, binding to the membrane as Cdc42-GDP and unbind-
ing after Cdc24 and Bem1 exchange the bound nucleotide
for GTP [8]. The model shows that such a nonequilibrium
binding cycle would dissipate around 7 × 10−3 kBT s−1 per
particle to generate the same level of polarization [μ(ρ) = 12]
as active transport, which dissipates 2.6 kBT s−1 per particle.
Even though a driven binding cycle can thus dissipate orders
of magnitude less free energy than active transport along
the filament to create the same membrane spot, the absolute
dissipation of active transport could still be low compared
to other cellular processes such as protein translation, and
therefore evade evolutionary selection pressure. Previously, it
was estimated that budding yeast experiences selection pres-
sure against genes that require more than 1 × 104 molecules
of ATP per cell cycle [30]. We can make an estimate of
the energy costs of cell polarization via transport alone by
assuming that the polarization machinery is active for 30 min
per cell cycle, which is a quarter of the minimal duration of the
cell cycle of yeast [30]. Furthermore, we assume that 1000
copies of the polarizing protein are involved, similar to the
copy number of Cdc42 in budding yeast [31], and that ATP
hydrolysis releases 18 kBT [29]. Then, the power predicted
by our model in the biologically relevant regime (2.6 kBT s−1)
leads to the estimate that active transport would hydrolyze
around 2.6 × 105 molecules of ATP per cell cycle to create
cell polarization. Hence, ignoring other fitness effects of the
different polarization mechanisms, the energetic requirements
alone can be sufficient to stimulate the formation of a driven
binding cycle.

In fact, our work provides a new perspective on the design
logic of these systems. In particular, experiments indicate that
Pom1 itself is not actively transported along the microtubule
filaments [5,9]. Instead, the filaments only mark the location
where Pom1 is delivered to the membrane by transporting
Tea4 to the microtubule tip, specifying the position where the
phosphatase Dis2 becomes active in dephosphosphorylating
Pom1, allowing Pom1 to bind to the membrane [5,9]. The
filaments could in principle also be used to actively transport
Pom1, but our work suggests that this would only marginally
enhance polarization while it would significantly increase
energy dissipation. When active transport of the polarizing
protein does occur, this transport may be sufficient to create a
polarized protein density on the membrane, but it is still more
efficient to implement an additional driven binding cycle,
which is the case for the Cdc42 system in budding yeast.

The nonequilibrium binding cycle is more efficient because
the particles only dissipate free energy when they participate
in the flux that moves from the filament to the membrane,
and it is this flux that causes the spot on the membrane. In
contrast, the motor proteins drive proteins along the entire
filament, and many unbind from the filament before they reach
the membrane. These cycles waste the free energy that was
invested by the motor proteins, because the high diffusion
constant in the bulk almost immediately homogenizes the
protein distribution in the bulk again. However, the binding

cycle will likely also lead to the wasteful release of chemical
free energy that is not captured by our model. For example,
a phosphorylation cycle will typically include erroneous de-
phosphorylation steps, dissipating the free energy obtained
from hydrolyzing an NTP molecule. Integrating such wasteful
processes in the minimal model presented here, it is likely that
breaking detailed balance in the cycle of binding reactions
also leads to a free-energy cost. In addition, simulations show
that the transport along filaments is less wasteful when the
finite magnitude of the diffusion constant in the bulk is taken
into account, bringing the efficiencies of transport and binding
closer together. Nonetheless, it is fundamentally difficult to
create a membrane spot when binding is in equilibrium, be-
cause detailed balance causes the binding rate from the bulk
to the membrane to be large when the binding rate from the
filament to the membrane is large. This increased binding rate
from the bulk leads to a large homogeneous equilibrium con-
centration of proteins on the membrane, lowering the relative
effect of the proteins deposited by the filament. Furthermore,
we saw in Fig. 7 that transport generates a high-density spot
on the membrane via a direct reversible interchange of parti-
cles between this membrane spot and a strongly compressed
density of particles on the tip of the filament. When exclusion
effects between the proteins on the filament are taken into
account, it may not be possible to create such a high-density
concentration on the tip of the filament [32,33], preventing
the formation of a membrane spot. In Sec. VI, we show that
increasing the rate to bind from the filament to the membrane
reduces the protein density at the front of the filament, but then
an active binding cycle is required to still create a significant
spot on the membrane. Hence, it is theoretically possible to
create a polarized distribution of proteins on the membrane by
active transport alone, but both in cells or in synthetic systems,
membrane polarization would likely be superior using a dissi-
pative mechanism that biases the binding from the filament to
the membrane.

Here we have focused on the scenario δ < 1, which means
that the transport and binding cycle act in concert, driving
the particles in the same direction. The scenario δ > 1 cor-
responds to a system in which the transport cycle drives the
particles against the direction of the binding cycle. Could
in this scenario NTP, e.g., ATP, molecules be generated? In
principle one cycle could be used to drive the other cycle in
reverse, akin to how the FO − F1 ATP synthase employs a
proton gradient over the membrane to make ATP. To enable
fuel production, at least two conditions must be fulfilled: First,
the two cycles should be driven by different fuels, so that
the chemical driving force of one cycle can overcome the
opposing force of the other cycle. Second, the two cycles must
be tightly coupled; the FO − F1 ATP synthase can be driven in
reverse, using ATP hydrolysis to pump the protons out, which
is a hallmark of the tight coupling of the two cycles. The first
condition may be met. Motor proteins are typically fueled by
ATP hydrolysis, but signaling systems either employ ATP or
GTP hydrolysis, as in the Pom1 [5,9] or Cdc42 system [5,8],
respectively. In addition, while we have focused here on active
transport via motor proteins along filaments, many proteins
are also transported actively by tip-tracking growing micro-
tubules [34], fueled by GTP hydrolysis. The second condition
seems harder to satisfy. We do not know of a system with a
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binding cycle that is driven against the transport cycle—this
would impede cell polarization—but such a system could
perhaps be designed synthetically. The key challenge will then
become to tightly couple these cycles, such that the transport
cycle drives the binding cycle backwards efficiently, generat-
ing NTP.
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