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We revisit the field-free Ising model on a square lattice with up to third-neighbor (NNNN) interactions, also
known as the J1-J2-J3 model, in the mean-field approximation. Using a systematic enumeration procedure,
we show that the region of phase space in which the high-temperature disordered phase is stable against
all modes representing periodic magnetization patterns up to a given size is a convex polytope that can be
obtained by solving a standard vertex enumeration problem. Each face of this polytope corresponds to a set
of coupling constants for which a single set of modes, equivalent up to a symmetry of the lattice, bifurcates
from the disordered solution. While the structure of this polytope is simple in the half-space J3 > 0, where
the NNNN interaction is ferromagnetic, it becomes increasingly complex in the half-space J3 < 0, where the
antiferromagnetic NNNN interaction induces strong frustration. We then pass to the limit N → ∞ giving a
closed-form description of the order-disorder surface in the thermodynamic limit, which shows that for J3 < 0,
the emergent ordered phases will have a “devil’s surface”-like mode structure. Finally, using Monte Carlo
simulations, we show that for small periodic systems, the mean-field analysis correctly predicts the dominant
modes of the ordered phases that develop for coupling constants associated with the centroid of the faces of the
disorder polytope.

DOI: 10.1103/PhysRevE.106.014105

I. INTRODUCTION

A few years back, Jacobs et al. [1], inspired by the
advances in creating nanoparticles that interact highly specifi-
cally by leveraging the extreme selectivity of the base-pairing
interaction in DNA, introduced the notion of self-assembling
systems with “addressable complexity,” i.e., the creation of
regular structures in which one has full control over the spatial
arrangement of different particle types. Stylized prototypes of
such systems are multicomponent lattice gases with isotropic
interactions in which one is free to choose the strength, sign,
selectivity, and range(s) of the interparticle interactions.

Arguably the simplest system of this type is the equal mole
fraction binary lattice gas, which can be mapped onto the
field-free (i.e., equal chemical potential) Ising model. If only
nearest-neighbor (NN) interactions with coupling constant J1

are taken into account, the results strongly depend on the un-
derlying lattice structure. On the triangular lattice, when J1 >

0, we obtain a homogeneous ferromagnetic low-temperature
phase (F), corresponding to a complete demixing of the par-
ticles, while for J1 < 0, no long-range order develops and
the system is caught in a finite-entropy ground state [2]. The
square lattice, however, is bipartite and hence not frustrated
by a J1 < 0 coupling, and exhibits a regular antiferromagnetic
(AF) checkerboard phase at low temperatures.

Thus, if one wishes to observe more complex ordering
patterns on the square lattice, longer-range interactions are

*Current address: Debye Institute for Nanomaterials Sciences,
Utrecht University, Princetonplein 5, 3584 CC Utrecht, The
Netherlands.

required, and specifically those that introduce frustration,
effectively preempting the period-2 repeat of the AF state.
Hence, starting in the 1970s, a long line of authors has studied
the so-called frustrated Ising models obtained by introducing
antiferromagnetic (J2 < 0) next-nearest-neighbor (NNN) in-
teractions on the square lattice. These additional interactions
were either isotropic [3–9], with more recent work appearing
in the past decade or so [10–14], or anisotropic, as in the
case of the highly influential anisotropic next-nearest neighbor
ising (ANNNI) model (for a comprehensive review, see [15]),
which, due to its quasi-one-dimensional nature, allowed for
a far more detailed analysis of its properties. As this type of
interaction penalizes equal spins across the diagonal of the
square unit cell, it frustrates the NN interactions indepen-
dently of their sign.

However, increasing the range of interactions even fur-
ther allows the degree of frustration to also be increased.
Indeed, very general arguments suggest that in order to ob-
tain the maximum complexity periodic patterns on a given
lattice structure, all symmetries implied by the point group
of the lattice must be suppressed by the interactions [16]. For
the square lattice, this implies that next-next-nearest-neighbor
couplings (NNNN) also need to be taken into account, as
shown in Fig. 1. Clearly, an antiferromagnetic NNNN in-
teraction (J3 < 0) adds yet another level of frustration as
it potentially frustrates both the NN and NNN bonds inde-
pendently of the sign of their interaction. In fact, this latter
extension was already actively studied a couple of decades
ago, purely for its theoretical interest [8,17,18]. Strikingly, in-
terest in this NNNN model, also known as the J1-J2-J3 model,
was revived in the past decade with a few theoretical studies

2470-0045/2022/106(1)/014105(17) 014105-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1338-5803
https://orcid.org/0000-0002-8620-5749
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.014105&domain=pdf&date_stamp=2022-07-07
https://doi.org/10.1103/PhysRevE.106.014105


RODOLFO SUBERT AND BELA M. MULDER PHYSICAL REVIEW E 106, 014105 (2022)

FIG. 1. The interaction neighborhoods of the origin site (0: gray
site) in the range-3 Ising model on the square lattice. N1: red sites;
N2: green sites; N3: blue sites. An antiferromagnetic NNNN bond
(blue line) between two sites frustrates the spin arrangement both
along the shortest NN paths (red lines) and NNN paths (green lines)
that connect them.

appearing [19,20], as well as a significant paper showing that
a model with up to third-neighbor coupling is actually relevant
to understanding the magnetic origin of high-Tc superconduc-
tivity in a class of iron chalcogenides [21].

Reviewing these works, however, reveals that we are far
from having a complete picture of the phase behavior of these
systems. Most of the effort was devoted to understanding the
structure of the ground states, using either the method of in-
equalities introduced by Kanamori [22] or direct enumeration.
These analyses are, however, all limited by implicit or explicit
assumptions on the size of the considered repeating patterns.
Characteristically, Landau and Binder [8] remark “Since the
phase diagram is expected to be very complicated (“devil’s
staircase” of phases), no attempt to include these phases has
been made.” Where the behavior at finite temperature is con-
cerned, the main tool has been Monte Carlo simulations, but
again the attention was mostly devoted to the nature of the
transitions towards certain specific states or to the behavior in
response to external fields.

Driven by the question to what extent one can “design”
specific magnetization patterns on the square lattice, our aim
here is to provide a fresh perspective on the phase behavior
of the field-free NNNN model in a way that systematically al-
lows the consideration of phases of increasing complexity. We
do this in the framework of mean-field theory, which allows
us to exactly formulate the criteria if and when the high-
temperature disordered phase becomes unstable to magnetiza-
tion modes belonging to periodicities with increasing unit cell
size N . This analysis reveals that the region in phase space
where the disordered phase is stable is a convex polytope
whose complexity increases as we increase N . Each of the
faces of this polytope defines the values of the coupling con-
stants for which a specific equivalence class of magnetization
modes is spontaneously excited. We probe the structure of this
polytope as a function of the unit cell size of the periodicities
included, which provides a fingerprint of the complexity of

the predicted phase space. On the basis of this analysis, we are
able to analytically pass to the limit N → ∞ to give a closed-
form description of the order-disorder surface in the ther-
modynamic limit. This shows that in the strongly frustrated
region of phase space J3 < 0, the mean-field theory predicts
a “devil’s surface”-like structure for the modes developing
from the disordered phase, in which in an arbitrarily small
neighborhood of any set of coupling parameters, one can find
phases of arbitrary spatial complexity becoming stable.

While the mean-field results are quantitatively, at best, a
strong approximation of the true phase boundaries, the pre-
dictions regarding the possible symmetry-breaking patterns,
however, are potentially more robust. We explore this latter
premise by performing Monte Carlo (MC) simulations with
the appropriate finite periodic boundary conditions along rays
in phase space, corresponding to decreasing temperature at
fixed coupling constants, that pass through the centers of
the predicted mode instability faces. These show that the
mean-field analysis consistently correctly predicts the domi-
nant mode first appearing in the ordered region in the cases
considered.

The structure of the paper is as follows: In Sec. II, we
set up the model. The mean-field treatment is discussed in
Sec. III. The stability analysis of the high-temperature dis-
ordered phase is presented in Sec. IV, which introduces our
main object of interest, the disorder polytope and its surface.
In Sec. V, we first discuss the phenomenology of the disor-
der polytope for finite N (Sec. V A) and then take the limit
N → ∞ (Sec. V B), leading to our major result, the prediction
of the full order-disorder surface. Finally, in Sec. VI, we show
using Monte Carlo simulations that for finite N , implemented
through periodic boundary conditions, the mean-field analysis
correctly predicts the bifurcating modes. After the discussion
given in Sec. VII, Appendices A–F gather some more detailed
technical results needed in the main text.

II. MODEL

We consider the two-dimensional square lattice, L = {z =
(z1, z2)|z1, z2 ∈ Z}. Throughout, we will use lowercase ro-
man letters to denote the sites of the lattice, and uppercase
roman letters to denote sets of sites. We also make use of
the fact that the square lattice forms a group under vector
addition, which is generated by the basis vectors e1 = (1, 0)
and e2 = (0, 1) and can be equipped with an inner product
〈z, z′〉 = z1z1′ + z2z2′. The sites of the lattice are occupied
by Ising spins, σz ∈ {−1, 1}. To denote a spin configuration
on a set of sites C, we use the notation σC. We define the
range r(z, z′) between two distinct sites as the index of the
Euclidean distance |z − z′| in the ordered list of distances
between sites of the lattice, with r = 1 denoting nearest neigh-
bors (|z − z′| = 1), r = 2 next-nearest neighbors (|z − z′| =√

2), r = 3 next-next-nearest neighbors (|z − z′| = 2), and so
on. We focus on the field-free range-3 Ising model, defined by
the Hamiltonian

H(σL) = −J1

∑
r(z,z′ )=1

σzσz′ − J2

∑
r(z,z′ )=2

σzσz′

− J3

∑
r(z,z′ )=3

σzσz′ , (1)
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where the minus sign in front of the coupling constants J1, J2,
and J3 is conventional. Further on, we will make regular use
of the the range-r neighborhoods of the origin,

N1 = {e1,−e1, e2,−e2}, (2)

N2 = {e1 + e2,−e1 − e2, e1 − e2,−e1 + e2}, (3)

N3 = {2e1,−2e1, 2e2,−2e2}, (4)

which we show in Fig. 1.

III. MEAN-FIELD THEORY

Our approach to understanding the phase behavior of the
model (1) is through mean-field theory (MFT). Although
MFT is a drastic approximation, and a fortiori so in lower
dimensions, it nevertheless generically is a good guide into
the possible phases a system can display, as these are, to
a large extent, determined by universal symmetry relations
(see, e.g., [23,24]). MFT is typically formulated as a set of
self-consistent equations for the single-site spin probabilities,

Pz(σz) = e−βVz (σz )∑
σz

e−βVz (σz )
, (5)

where β = 1/kBT is the inverse temperature and the effective
mean field Vz(σz) itself depends on the spin probabilities on
all the sites with which the spin σz interacts,

Vz(σz) = −σz

⎧⎨⎩J1

∑
n1∈N1

∑
σz+n1

σz+n1 Pz+n1 (σz+n1 )

+ J2

∑
n2∈N2

∑
σz+n2

σz+n2 Pz+n2
(σz+n2 )

+J3

∑
n3∈N3

∑
σz+n2

σz+n3 Pz+n3
(σz+n3 )

⎫⎬⎭. (6)

The averages over the spin values in this expression can
all be succinctly summarized using the definition of the site
magnetization,

m(z) =
∑
σz

σzPz(σz), (7)

which allows us to reformulate (5) as

m(z) =
∑

σz
σze−Wz (σz )∑

σz
e−Wz (σz )

, (8)

with

Wz(σz) = −σz

{
K1

∑
n1∈N1

m(z + n1) + K2

∑
n2∈N2

m(z + n2)

+K3

∑
n3∈N3

m(z + n3)

}
, (9)

where we have absorbed the common positive prefactor β into
the now dimensionless coupling constants Kr = βJr .

In anticipation of the further developments below, it will
turn out to be convenient to consider the triplets of possible

values of the coupling constants K1, K2, and K3 as a linear
vector space, whose elements we will denote by bold symbols,
viz., K = (K1, K2, K3). To further compactify the notation, we
also introduce summed neighborhood magnetizations,

Mr (z) =
∑

nr∈Nr

m(z + nr ), (10)

and define M(z) = [M1(z), M2(z), M3(z)], so that Wz(σz) =
−σzK · M(z), where the center dot is the Euclidean inner
product. Using these definitions, we can simplify Eq. (8) to
take on the familiar form

m(z) = tanh [K · M(z)], (11)

which constitutes an (infinite) set of coupled nonlinear self-
consistency equations for the magnetizations {m(z)}z∈L.

IV. STABILITY ANALYSIS OF THE DISORDERED PHASE

A. Bifurcation equation

We do not attempt to solve Eqs. (11) in all generality,
but focus on understanding the phases that develop from
the high-temperature disordered phase upon a temperature
quench. First note that infinite temperature (β = 0) corre-
sponds to the origin K = 0 of the three-dimensional phase
space of the model. It is easy to see that in this point, all spins
are decoupled as the effective field vanishes, and we have
m(z) = 0. Moreover, by the same token, the disordered state
with m(z) = 0 for which M(z) = 0 is in fact a solution for any
value of K. We now inquire at which values of K Eq. (11) can
support a nonzero solution. To that end we expand Eq. (11) to
first order in the magnetizations, yielding

m(z) = K · M(z). (12)

The values of the coupling constants K for which this set
of equations admits a nonzero solution defines the set of
order-disorder points, in which an ordered solution to the
self-consistency equation branches off from the disordered
solution.

Since M(z) [cf. Eq. (10)] involves the magnetization of
all sites in the interaction neighborhood of z, even in the
linear approximation defining the bifurcation equation, the
magnetizations of all sites remain coupled. To proceed, we
therefore take the Fourier transform of (12) with respect to
lattice compatible wave vectors, which generically are of the
form

q = 2π
( j1

n1
,

j2
n2

)
, ji ∈ Z, ni ∈ N+, (13)

to obtain

m̂(q) = K · F(q) m̂(q), (14)

where F(q) ≡ [F1(q), F2(q), F3(q)] is the set of Fourier trans-
forms of the indicator functions of the neighborhood clusters
defined through

Fr (q) =
∑

nr∈Nr

e−i〈nr ,q〉. (15)
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For the range-3 model on the square lattice, the relevant lattice
neighborhood transforms are

F1(q) = 2 cos q1 + 2 cos q2, (16)

F2(q) = 2 cos (q1 − q2) + 2 cos (q1 + q2), (17)

F3(q) = 2 cos 2q1 + 2 cos 2q2. (18)

An important property of these functions is that they are
invariant with respect to the point symmetry group of the
lattice—here, the dihedral group D4 is the symmetry group
of a square. Let G be the real unitary two-dimensional (2D)
matrix representation of D4; then, for any element g ∈ G,

Fr (gq) =
∑

nr∈Nr

e−i〈nr ,gq〉 =
∑

gnr∈Nr

e−i〈gnr ,gq〉

=
∑

nr∈Nr

e−i〈nr ,q〉 = Fr (q), (19)

where we have used the fact that g simply permutes the sites of
the lattice neighborhoods Nr . This implies that instead of in-
dividual modes, it suffices to consider the equivalence classes
of modes defined by the orbits Gq ={gq|g ∈ G}. In passing,
we also note that (14) is in fact readily generalized to other
lattices and models with longer-range pair interactions, as the
lattice structure enters only through the functions F(q), and
increasing the range of the pair interactions simply requires
increasing the dimensionality of the phase space spanned by
the coupling-constant vectors K.

As Eq. (14) shows, close to a bifurcation, all magnetization
modes are decoupled. Also, it is clear that the loci in phase
space at which the state with zero magnetization becomes un-
stable to the mode q lie on the plane Lq = {K|K · F(q) = 1}.
Since at infinite temperature, where K = 0, the system is
surely disordered, we infer that the disordered phase is sta-
ble against this mode in the half space containing the origin
bounded by Lq, i.e.,

Hq = {K|K · F(q) < 1}. (20)

B. Enumerating the lattice modes

The problem we now face, however, is that there are, in
principle, an infinite number of modes in the Brillouin zone of
the square lattice Û∞ ≡ [0, 2π ) × [0, 2π ) ⊂ R2 to consider.
In order to tackle this problem, we choose to systematically
enumerate the potential modes, ordering them by a natural
measure of the “size” of the periodicity they represent. Each
periodically repeating pattern on the lattice L is characterized
by two basis vectors p1 = (p1

1, p2
1), p2 = (p1

2, p2
2) ∈ Z2 con-

veniently presented in matrix form,

P =
(

p1
1 p2

1

p1
2 p2

2

)
, (21)

where we choose the order of p1 and p2 such that det P = N >

0. It is easy to see that N is just the number of sites in the
unit cell UP of the periodic pattern. We call it the index of
the periodicity, following the mathematical nomenclature that
associates it with the size of the quotient group L/P when
P is interpreted as a subgroup of L [25]. In Appendix A,

FIG. 2. Geometry of the irreducible Brillouin zone Û∞ = Û∞/G,
depicted as the shaded triangle. Multiplicities: M = 1: the points
(0,0) and (π, π ); M = 2: the point (π, 0); M = 4: all boundary
points, excluding the vertices; M = 8: all interior points. Also
shown are three representative orbits in the embedding space, Û∞ =
[0, 2π ) × [0, 2π ). The dotted antidiagonal is the unique line of the
mirror symmetry of Û∞.

we review the construction of periodic patterns on L, their
corresponding discrete sets of Brillouin vectors ÛP , and their
enumeration. An important result is that the structure of the
set,

ÛN =
⋃

{P||ÛP |=N}
ÛP =

{
q =2π

N
(l1, l2)|0 � l1, l2 < N

}
, (22)

which includes the wave vectors of all patterns of index N ,
is simply a square array and equal to the set of Brillouin
vectors of the square N × N periodicity P�N = diag(N, N ).
For any lattice mode q, we can define its complexity as
the smallest square periodicity to which it belongs [26]. If

FIG. 3. Modes in ÛN for N = odd and N = even. Multiplici-
ties are color coded: M = 1: green; M = 2: brown; M = 4: purple;
M = 8: blue. ÛN is mirror symmetric with respect to the dotted
antidiagonal for even N .
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Edge Modes Interior Modes
Modulated Stripe Diagonal StripeStripe

Vertex Modes

FIG. 4. Visualization of ordering patterns for different modes. Leftmost column: The major modes with from top to bottom, qF = (0, 0),
qAF = (π, π ) and qAS = (π, 0). Middle three columns: Multiplicity M = 4 edge modes, with in the top row striped modes q = π

6 (1, 0),
q = π

6 (3, 0) and q = π

6 (5, 0), in the middle row modulated stripe modes q = π

6 (6, 1), q = π

6 (6, 3) and q = π

6 (6, 5), and in the bottom row
diagonal stripe modes q = π

6 (1, 1), q = π

6 (3, 3) and q = π

6 (5, 5). Rightmost column: Multiplicity M = 8 interior modes with, from top to
bottom q = π

6 (2, 1), q = π

6 (3, 2) and q = π

6 (5, 3).

q = (2πn1/d1, 2πn2/d2) with ni and di relatively prime, then
the complexity is simply given by C(q) = lcm(d1, d2).

In view of the invariance (19) of the neighborhood trans-
forms Fr (q), however, the proper degrees of freedom for the
mode analysis are the elements of the orbit space,

Û∞ ≡ Û∞/G = {Gq|q ∈ Û∞}, (23)

where G = D4 is the point group of the lattice. The set
ÛN is commonly called the irreducible Brillouin zone (IBZ).
Throughout, we will use a gothic-style font to denote ele-
ments of the IBZ, e.g., q. Different q ∈ Û∞ behave differently
under the action of the point-symmetry group G, depending
on their location within Û∞. To each irreducible mode q, we
can associate a multiplicity M(q) = |Gq|, the length of the
orbit under the action of G to which it belongs, which will
play an important role in the further analysis. According to
the fundamental theorem of group actions, the possible mul-
tiplicities under the group D4 are given by the four divisors
{1, 2, 4, 8} of its order |D4| = 8. The structure of the IBZ,
including the multiplicities associated with the orbits of some
of its elements, is illustrated in Fig. 2.

For finite N , we are interested in the discrete set of irre-
ducible modes, ÛN = ÛN ∩ Û∞. The structure of these sets
depends on the properties of N and is illustrated in Fig. 3. The
number of modes in ÛN is discussed in Appendix B.

The nature of the magnetization patterns corresponding
to the irreducible modes depends on their multiplicity and
location within Û∞. We distinguish three classes. First are the

modes associated with the vertices of Û∞, which we will call
major modes. These are qF = (0, 0) (M = 1), qAF = (π, π )
(M = 1), and qAS = (π, 0) (M = 2). These are visualized in
Fig. 4 and correspond to ferromagnetic (F), antiferromagnetic
(AF), and alternating stripe (AS) ordering patterns, respec-
tively. In this and the following visualizations, the index of the
periodicity is N = 12 and the amplitude of the modes is nor-
malized by setting the value of the origin site to 1, represented
by the color red. The other amplitude values are then shown on
a temperature-type scale, with dark blue corresponding to the
minimum value −1. Next are the M = 4 edge modes located
on the boundary of Û∞. Here we distinguish the modes on the
horizontal edge qS (λ) = (λπ, 0), the vertical edge qMS (λ) =
(π, λπ ), and the hypotenuse qDS (λ) = (λπ, λπ ), where, in all
cases, λ ∈ [0, 1]. We visualize these in Fig. 4, showing that
these correspond to stripe (S), modulated stripe (MS), and
diagonal stripe (DS) magnetization patterns, respectively. The
wavelength of these patterns obviously depends on N . The
final class is formed by the M = 8 modes from the interior
of the IBZ. We visualize some of these in Fig. 4, noting that
these are lower-symmetry patterns that are hard to character-
ize generically.

C. The disordered region and the order-disorder surface

We now define our main object of interest, the region DN

around the origin in phase space in which the disordered solu-
tion is stable against all modes in ÛN . This region is formed by
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FIG. 5. The order-disorder surface of the NNNN-Ising model for modes with periodic unit cell with size N = 4 in the space of coupling
dimensionless coupling constants (K1, K2, K3). Each of the faces of this polytope is labeled by the wave vector q = 2π ( i

4 ,
j
4 ) of the mode in

the irreducible Brillouin zone that becomes unstable at this face, and the corresponding periodic pattern of magnetizations is visualized.

the intersection of all the half spaces of the type Hq defined in
Eq. (20) in which the system is stable against the irreducible
mode q, i.e.,

DN =
⋂
q∈ÛN

Hq. (24)

Generically, the intersection of a finite number of half
spaces is a so-called convex polytope, a bounded polyhe-
dron [27]. Our main goal here is to understand the structure
of these disorder polytopes and their behavior as a func-
tion of N . The surface of the disorder polytopes is the
locus in phase space where the disordered high-temperature
solution becomes unstable, which we will call the order-
disorder surface. Note that not all modes in ÛN necessarily
contribute a face to DN : These “faceless” modes are pre-
empted by other modes whose instability surface lies closer
to the origin. The problem of determining the structure of
a polytope from the set of defining half spaces is known as
the vertex enumeration problem. Intriguingly, the computa-
tional complexity of the vertex enumeration problem in its
most general form is as yet undecided [28]. However, sev-
eral well-developed algorithms exist that are both polynomial
in time and memory when the polytopes are known to be
bounded [29].

In Fig. 5, we illustrate the relationship between the faces
of order-disorder surface, the boundary of the polytope D4,
the modes q ∈ ÛN in the IBZ which become unstable at
these faces, and the periodic magnetization patterns that these
modes represent.

Ultimately, we are, of course, interested in the limit N →
∞, where all restrictions on the periodicity of the bifurcation
modes are lifted, to obtain the full domain of stability of the
disordered phase, i.e.,

D∞ = lim
N→∞

DN . (25)

We will show below how D∞ can be fully constructed in part
based on the results for finite N .

V. THE GEOMETRY OF THE ORDER-DISORDER
SURFACE

A. Finite N

We first present an overview of the results on the disorder
polytopes for finite N . These results were obtained using
the vertex enumeration package lrs based on the algorithm
developed by Avis and Fukuda [30,31], with bespoke post-
processing to remove rationalization artifacts (for details, see
Appendix C), and rendered with Mathematica [32]. As we go
along, we point out a number of features that are dealt with in
more detail in Appendix D.

We start off by noting that D1, D2, and D3 are unbounded
convex polyhedra, as they lack the requisite number of con-
straints to create a bounded domain, and we therefore do not
display them. In Fig. 6, we show the disorder polytopes D4

through D9. Throughout, we will use a color code to indicate
the multiplicity of the mode corresponding to each face of
the polytope: M = 1: green; M = 2: brown; M = 4: purple;
M = 8: blue. Two features immediately stand out. First, the
polytopes with even N appear symmetric upon changing the
sign of K1, whereas those with odd N are clearly asymmetric
in this respect. We discuss the origin of this symmetry in
Appendix D 1. Second, the top of the polytope in the half
space K3 > 0 is bounded by just three faces, which moreover
appear to be the same ones for all even N . In the even-N
case, three faces are associated with the previously introduced
three major modes located in the vertices of the IBZ, with the
ones associated with qF and qAF forming a symmetric pair
facing in the positive-K2 direction, and the face associated
with qAS , itself mirror symmetric in the K2-K3 plane, facing
in the negative-K2 direction. The geometry of the top of the
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FIG. 6. The disorder polytopes D4 through D9. Faces are color coded for the multiplicity M of the associated unstable mode: M = 1: green;
M = 2: brown; M = 4: purple; M = 8: blue.

disorder polytope is examined in more detail in Appendix D 2.
An important result is the identification of the topmost vertex
KT = (0, 0, 1/4) of DN in the limit N → ∞. We also notice
that as N increases, the difference between the successive even
and odd polytopes appears to decrease. As we will explicitly
show later on, this difference indeed disappears in the limit.

Next, in Figs. 7(a)–7(d), we show the even polytopes from
N = 10 to N = 16. Again a number of features stand out. As
N increases, the complexity of the bottom of the polytope
in the half space K3 < 0, where as we argued the system
is strongly frustrated, increases. Moreover, we see a marked
clustering of the faces corresponding to modes with multi-

plicity M = 4 into fan-like structures, while those belonging
to modes with multiplicity M = 8 seem to string out along
a curve, which we will call the ridge. These structures are
brought into focus in Figs. 7(e) and 7(f), where we show a
view of D16 and D32 “from below” with a viewpoint on the
negative K3 axis. The detailed analysis of the fan modes in Ap-
pendix D 3 identifies the apices of these structures in the limit
N → ∞ as KS = (1/2,−1/4, 0), KMS = (−1/2,−1/4, 0),
and KDS = (0, 1/2,−1/4) for the fans associated with stripe,
modulated stripe, and diagonal stripe modes, respectively. The
analysis of the ridge in Appendix D 4 yields the explicit form
of the ridge in the limit N → ∞ as

KR(a) = 1

4 cos(2πa) + cos(4πa) + 5

[
4 sign(1/2− a) cos2(πa),−1,−1

2

]
, a ∈ [0, 1], (26)

with its lowest point labeled as KB = KR(1/2) =
(0,−1/2,−1/4).

TABLE I. Number of faces of the disorder polytopes as function
N compared to |ÛN |.

N 4 5 6 7 8 9 10 12 14 16

Faces 6 6 10 10 14 15 20 26 34 42
|ÛN | 6 6 10 10 15 15 21 28 36 45

Finally, in Table I, we list the number of faces of the disor-
der surface as a function N compared to the maximal number
of modes available, which indicates that for even N , a number
of modes does not contribute a face to DN . In Appendix D 5,
we characterize these faceless modes.

B. The limit N → ∞
1. The natural coordinate frame

As F is a vector-valued mapping from the two-dimensional
domain Û∞ to R3, it is clear that there must be a dependency
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FIG. 7. The even disorder polytopes D10 through D16 and the “bottom” view of D16 and D32. Faces are color coded for the multiplicity M
of the associated unstable mode: M = 1: green; M = 2: brown; M = 4: purple; M = 8: blue. D16 and D32 further show the fans of striped,
modulated stripe, and diagonal stripe M = 4 modes (purple) emanating from the vertices KS , KMS , and KDS , respectively, as well as the M = 8
modes (blue) that cluster around the so-called ridge. Note the decrease in area of the wedgelike M = 8 modes that interdigitate the diagonal
stripe fan as N increases.

between the elements of F(q). Indeed, we find that

F1(q)2 = (2 cos q1 + 2 cos q2)2

= 2[2 cos (q1 − q2) + 2 cos (q1 + q2)]

+ 2 cos 2q1 + 2 cos 2q2 + 4

= 2F2(q) + F3(q) + 4. (27)

This allow us to define a new coordinate frame with orthonor-
mal basis vectors n̂1 = (1, 0, 0), n̂2 = (0, 1/

√
5,−2/

√
5),

and n̂3 = (0, 2/
√

5, 1/
√

5), which represents a clockwise ro-
tation of the original frame by an angle χ = arctan 2 around
the K1 axis. Defining the coordinates with respect to this frame
through ϕ j = F(q) · n̂ j , we find that ϕ3 = 1√

5
(ϕ2

1 − 4), so that
we are left with the simple representation

F(ϕ1, ϕ2) = ϕ1n̂1 + ϕ2n̂2 + 1√
5

(
ϕ2

1 − 4
)
n̂3. (28)

The details of this transformation, as well as the shape of the
IBZ in the new coordinates, are presented in Appendix E.

2. Surface reconstruction

We now ask, given the relatively simple parametrization
given by Eq. (28), whether it is possible to reconstruct D∞
from the definition F(ϕ1, ϕ2) · K(ϕ1, ϕ2) = 1, the relation that
characterizes the boundary points; cf. Eq. (14). To that end,
we introduce û(ϕ1, ϕ2) = F(ϕ1, ϕ2)/|F(ϕ1, ϕ2)| and note that
this is the unit normal to the surface K(ϕ1, ϕ2). The defining
equation then reads

û(ϕ1, ϕ2) · K(ϕ1, ϕ2) = 1

|F(ϕ1, ϕ2)| ≡ h(ϕ1, ϕ2), (29)

which introduces the support function h. It is a standard
result of convexity theory (see, e.g., [33]) that a con-
vex body is fully determined by its support function. As
the domain of our parametrization of the body is a com-
pact set with only piecewise smooth boundary, we will
need to perform the necessary inversion in the interior,
the smooth boundary components, and the extreme points
separately.

Interior: The ridge.. For notational brevity, we omit the
explicit dependence of all dependent variables on the coordi-
nates ϕ j , and denote the partial derivatives ∂/∂ϕ j simply by
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∂ j . The vectors ∂iK are, by definition, tangent to the surface,
so we have that

∂i(û · K) = ∂iû · K + û · ∂iK = (∂iû) · K = ∂ih. (30)

Also, as û · û = 1, we have ∂iû · û = 0, so that ∂iû are also
vectors in the tangent plane. This implies that

K = hû + γ1∂1û + γ2∂2û. (31)

To obtain the unknown coefficient functions γi, we consider

(∂1û) · K = γ1∂1û · ∂1û + γ2∂1û · ∂2û = ∂1h, (32)

(∂2û) · K = γ1∂2û · ∂1û + γ2∂2û · ∂2û = ∂2h, (33)

which is readily solved by(
γ1

γ2

)
= 1


(û)

(
∂2û · ∂2û −∂1û · ∂2û

−∂2û · ∂1û ∂1û · ∂1û

)(
∂1h
∂2h

)
,

(34)

where the determinant is given by 
(û) = (∂1û · ∂1û)(∂2û ·
∂2û) − (∂1û · ∂2û)2. The explicit calculation is performed us-
ing Mathematica and yields the curve

KR(ϕ1) = 2ϕ1

4 + ϕ2
1

n̂1 −
√

5

4 + ϕ2
1

n̂3. (35)

This result implies that for fixed ϕ1, the mode instability
surfaces with different values of ϕ2 are all tangent to a sin-
gle ridgelike structure. Substituting ϕ1 = sign(ϕ1) 4 cos2 (aπ )
and transforming back to the original frame then shows that
this is, in fact, the ridge given by Eq. (26) as calculated in
a limit procedure in Appendix D 4. This proves the perhaps
surprising fact that as we already hypothesized on the basis
of the finite-N results, all the M = 8 modes that make up the
interior of the IBZ become unstable on a set of measure zero
in phase space.

The boundary: The fans.. Referring to Fig. 10 and
Eqs. (E4) and (E5), we see that for each ϕ1, there are two
limiting tangent planes whose orientations are determined by
F(ϕ1, ϕ

max
2 (ϕ1)) and F(ϕ1, ϕ

min
2 (ϕ1)), respectively. The former

corresponds to a diagonal stripe mode, whereas the latter
corresponds to striped (ϕ1 > 0) and modulated stripe (ϕ1 < 0)
modes. Thus, from each location on the ridge, there are two
straight lines with given orientation that end up in the already
identified apices of the fans, i.e., the points KS , KMS , and
KDS . Hence, in this limit, the fans become sectors of a gen-
eralized cone with, as base, (a segment of) the ridge. These
cone sectors are ruled surfaces, which we can conveniently
parametrize as

KX (ϕ1, l ) = KR(ϕ1) + l[KX − KR(ϕ1)], l ∈ [0, 1], (36)

where X labels the specific apical vertex of the cone sector.
The extreme points: The major modes.. The three extreme

points of the IBZ simply yield the major modes already
discussed in Sec. IV B that dominate the phase diagram for
K3 > 0 already for finite N . It is now straightforward to verify
that the faces of the major modes meet the fans along a set
of four straight edges, KS − KDS , KS − KB, KMS − KDS , and
KMS − KB.

TABLE II. The components of the surface of the order-disorder
surface ∂D∞. Here, conv(K1, K2, . . .) denotes the convex hull of the
set of points in the argument list. The free parameters a and l take on
values on the interval [0, 1].

Type Symbol Mode(s) M Specification

F (0,0) 1 conv(KT , KS, KDS )
Major modes AF (π, π ) 1 conv(KT , KMS, KDS )

AS (π, 0) 2 conv(KT , KS, KMS, KB )

S (aπ, 0) 4 KR(ϕ1) + l[KS − KR(ϕ1)]
Fans MS (π, aπ ) 4 KR(ϕ1) + l[KMS − KR(ϕ1)]

DS (aπ, aπ ) 4 KR(ϕ1) + l[KDS − KR(ϕ1)]

Ridge R all others 8 KR(ϕ1) ϕ1 ∈ [−4, 4]

3. The geometry of D∞ and its implications

With all these components in place, we can now give
the full description of D∞ analytically, by enumerating the
components of its boundary ∂D∞ in Table II, and visually, in
Fig. 8.

Two features immediately stand out. First, roughly half of
the surface area of the order-disorder surface is formed by the
three planar facets associated with the major modes qF and
qAF , the two front-facing triangles, and qAS , the back-facing
quadrilateral. These three modes represent the simplest possi-
ble magnetization patterns consistent with the lattice structure,
being either homogeneous or, at most, of period 2 in any direc-
tion. The flatness of the faces implies that the corresponding
states can be robustly selected by choosing a suitable set of
coupling constants. Let K ≡ κK̂, with |K̂| = 1 a unit vector
in coupling space and κ the corresponding inverse temperature
variable. Consider choosing K̂ such that there is a κ∗ so that
κ∗K̂ lies in one of these faces, and hence locates the transition
from the disordered state to a state with order described by the
corresponding major mode. Clearly, by continuity, it is always
possible to choose a neighboring unit vector K̂′ such that the

FIG. 8. The disordered region D∞. The top region consist of
three facets corresponding to transitions towards the ferromagnetic
phase (front), the antiferromagnetic phase (hidden behind), and the
alternating striped phase (back). The bottom region consists of three
generalized cones, shown with a shading that highlights their cur-
vature, with apices at the vertices KS , KMS , and KDS , which are
the locus of transitions characterized by the (quasi)-one-dimensional
M = 4 unstable modes. These cones are separated by the ridge
KR(ϕ1) [see Eq. (35)], which is the locus of the more complex M = 8
unstable modes.
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ray κK̂′ also intersects the same face, and hence also leads to
a transition into the same state.

Second, the remaining part of the surface area, which in
its entirety lies in the region K3 < 0 where frustration effects
are dominant, is curved. Apart from a set of measure zero,
i.e., the ridge, this area corresponds to transitions to states
with ordering governed by the three one-parameter families
of (quasi)-one-dimensional modes with multiplicity M = 4.
By construction, a specific mode selected remains constant on
any straight line connecting one of the fan apices KS , KMS ,
and KDS to the ridge. However, when moving away from any
point on the surface corresponding to a critical mode in any
direction not along one of these “rules” of the surface, one
inevitably probes the curvature and traverses points at which
there is a transition to other neighboring modes. Specifically,
consider q(λ) = λ(π, 0), (π, λπ ), or λ(π, π ), with λ ∈ (0, 1),
i.e., an interior point of one of the three edges of the IBZ.
Now choose a set of coupling constants K∗ = κ∗K̂ such that
K∗ · F(q(λ)) = 1 and hence marks the location of the transi-
tion to the state with dominant mode q(λ). By continuity, we
now have that there are neighboring sets of coupling constants
K̂′ whose ray κK̂′ will intersect the order-disorder surface at
a point marking the transition to a mode q(λ′), where λ′ is any
arbitrary point in the neighborhood of λ. As the rationals are
dense in the reals, this means that by perturbing the coupling
constants, the system can undergo a transition to states with
dominant modes of arbitrary finite wavelength, but also, in
case λ′ is irrational, to essentially random aperiodic structures.
This implies that the part of the phase diagram beyond what
we could perhaps aptly call this “devil’s surface” is irreducibly
complex, consisting of a dense array of measure zero sheet-
like domains, with the dominant unstable mode changing in
complexity essentially arbitrarily as one moves from sheet
to sheet.

VI. COMPARISON WITH SIMULATIONS

It is clearly infeasible to test the predicted devil’s-surface-
like complexity of the mode structure of the nascent phases
at parts of the order-disorder boundary by numerical means.
However, our analysis of finite periodicities with fixed index
N , which led to the definition of the disorder polytopes DN ,
showed that these are all realized on the common N × N
square periodicity. The latter condition is readily realized by
imposing periodic boundary conditions in a standard single
spin-flip Metropolis simulation. This allows us to assess how
including fluctuations up to a certain wavelength impacts the
predictions of the mean-field approximations, in which these
fluctuations are, by definition, neglected.

To be able to limit ourselves to a finite number of sim-
ulations, we make the following choice. For fixed N , we
consider the set of bifurcating modes {q f }, where f indexes
the set of faces of DN . For each mode q f , we determine a
representative coupling vector K∗

f as the centroid of the face
it belongs to. We then perform a series of simulations along
the ray in phase space, βK∗

f , β ∈ [0,∞). The scaled inverse
temperature β is thus chosen so that the predicted transition
occurs at β = 1, which allows for easy comparison with the
simulations independent of the details of each face.

In order to analyze the results of the simulation, we need
a suitable order parameter to signal the presence (or nonpres-

ence) of certain modes. As we will perform multiple replicates
of the simulations at each inverse temperature, this order
parameter has to be insensitive to any of the possible global
symmetries that link different replicates. Defining the Fourier
transform of the site magnetization pattern by

m̂q = 1

N

∑
z∈UP

mze−i〈q,z〉, (37)

we can define

μq ≡ 1

|D4|
∑
g∈D4

m̂∗
gqm̂gq. (38)

By virtue of being square in the magnetizations, this expres-
sion divides out the up-down symmetry of the Hamiltonian.
By multiplying complex conjugates, the translation symme-
tries, which generate unitary phase factors, are divided out.
Finally, the explicit “averaging” over the point group symme-
tries divides out the remaining symmetries.

We performed simulations for N = 4, 6, 8, 12. As a proof
of principle, we show the order parameter values for the emer-
gent modes beyond each of the 10 faces of D6 in Fig. 9. The
results for the other N values were similar (data not shown).

For ease of reference, these plots are organized to mimic
the geometry of the salient IBZ, Û6. In all cases, the observed
dominant mode is the one predicted by our mean-field analy-
sis. Moreover, in all cases, the other modes, which have fairly
significant amplitudes due to inevitable finite-size effects in
the disordered phase, appear to be suppressed in the ordered
regime. Strikingly, the shape of the order parameter curves
also obeys the predicted symmetry in the antidiagonal of
the IBZ (see Appendix D 1). Finally, and as expected, the
mean-field analysis appears to underestimate the value of the
inverse temperature at which the ordering transition occurs.
In Appendix F, we provide a few more technical details about
the simulations.

VII. DISCUSSION

Our analysis of the order-disorder transitions of the field-
free NNNN Ising model on the square lattice shows that
the observation by Landau and Binder, in their seminal pa-
per on this topic almost four decades ago [8], that “Using
mean-field theory, we also find indications of interesting be-
havior for T > 0,” was prescient. Our results indicate that
in this approximation, the strong frustration induced by an-
tiferromagnetic NNNN interactions produces fully developed
complexity already at the level of the high-temperature order-
disorder transition. Indeed, a large part of the order-disorder
surface in the half space K3 < 0 represents a devil’s surface,
where bifurcating modes of arbitrary complexity are densely
interspersed.

Our results also bring to the fore a hitherto perhaps less ap-
preciated role for the lattice symmetry group and its action on
the space of lattice modes by showing that the multiplicity M
of these modes under the point group is a strong determinant
of whether and where in the phase space these modes become
unstable. Strikingly, the K3 > 0 part of the order-disorder
surface is entirely determined by the three major modes at
the extreme points of the IBZ, while the three one-parameter
families of M = 4 modes associated with the edges of the IBZ,
all located in the half space K3 < 0, make up the remaining
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FIG. 9. Order parameter μq as function of the reduced inverse temperature β for all possible modes on a 6 × 6 periodic lattice, for coupling
constants corresponding to the centroid of each of the 10 possible faces of D6, here visualized in the upper left corner. In all cases, the predicted
bifurcating mode is the sole dominant one.

surface area. Thus a set of measure zero in the IBZ accounts
for all the bifurcation modes, except for a set of measure zero,
i.e., the ridge, to which all the M = 8 modes, which represent
the full measure of the IBZ, are compressed. It is our intu-
ition that these results can possibly be interpreted within the
setting of the so-called equivariant branching lemma [34,35],
a cornerstone of the theory of bifurcations with symmetry,
which identifies a role for solutions with “maximal” residual
symmetry with respect to the symmetry group being broken.

All together, these results provide a somewhat paradoxical
answer to our original question of the designability of com-
plex patterns in binary lattice gases. On the one hand, the
antiferromagnetic NNNN interactions enable a vast array of

patterns to become accessible directly from the disordered
phase. On the other hand, the ultrasensitive dependence on
the precise values of the coupling constants, implied by the
devil’s surface for the M = 4 modes and the collapse onto a
set of zero measure of the M = 8 modes, effectively precludes
a requisite degree of control in selecting specific patterns. It is
an interesting question whether it is possible to circumvent
the latter defect, perhaps through multispin interactions, and
construct a system with a more robust, yet sufficiently rich,
phase behavior.

Obviously, the mean-field approach is a serious approxi-
mation, and one may well ask whether any of these features
survives the inclusion of the inevitably strong correlations

014105-11



RODOLFO SUBERT AND BELA M. MULDER PHYSICAL REVIEW E 106, 014105 (2022)

in a low-dimensional system such as the 2D square lattice.
Here, we were able to provide limited evidence using Monte
Carlo simulations that at least some of the predictions remain
valid when we include these correlations up to cutoff imposed
by periodic boundary conditions. Specifically, we correctly
predict the dominant mode developing from the disordered
phase along rays in phase space that pass through the center
of the faces of the calculated disorder polytopes DN . The
“optimistic” view suggests that we can expect that results
on the nature of symmetry-breaking events, which are, to a
large extent, constrained by purely group-theoretical proper-
ties, may be more universal, and hence transcend the specific
approximation chosen.

There are several directions of further research suggested
by our results. First, it would be interesting to study this
system beyond the mean-field approximation, perhaps using a
variant of the cluster variation method [36]. Obvious questions
are as follows: (i) does the order-disorder surface remain a
convex polytope and, (ii) if so, which of its features remain
invariant. Next, one could explore the immediate general-
izations of the bifurcation conditions given by Eq. (12) to
different lattices and/or longer-range interactions. The analy-
sis framework we set up here can readily be extended in these
directions, albeit that as we increase the interaction range,
we also increase the dimensionality of the disorder polytopes
with a concomitant increase of geometrical complexity. So
far, we have also limited our analysis to the order-disorder
surface. What happens beyond it is an open question. We
have indications that at least for finite N , the dimensionality
of the solution spaces associated with the bifurcating modes
is significantly smaller than N , which would possibly make
it tractable to at least numerically track these solutions to
possible lower-temperature transitions. We certainly expect
that secondary transitions are likely to occur, as most of the
bifurcating modes only partially break the symmetry of the
underlying lattice. Although we did not dwell on this here, our
simulations also point to the occurrence of such transitions.

It would also be interesting to see what, if anything,
the present analysis reveals about the ground-state phase
diagram. Here, the recently developed method of mapping
the ground-state problem of arbitrary spin models into a
maximum-satisfiability problem [37], or other recent ap-
proaches to the ground-state problem in frustrated systems
such as tensor network analysis [38] or the so-called cluster
tree optimization algorithm [39], may prove useful.

Finally, on a much more abstract level, there recently has
been a series of papers that focuses on the universality and
complexity of classical spin models from the perspective of
the theory of computation [40–42]. It would be fascinating to
explore what these insights could contribute to understanding
the present system and frustrated systems in general.
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APPENDIX A: PERIODIC PATTERNS ON Z2

A magnetization pattern m(z) is periodic if there exist two
basis vectors p1 = (p1

1, p2
1), p2 = (p1

2, p2
2) ∈ Z2 such that

∀k1, k2 ∈ Z : m(z+k1p1 + k2p2) = m(z). (A1)

It is convenient to parametrize the periodicity through the
matrix

P =
(

p1
1 p2

1
p1

2 p2
2

)
, (A2)

where, without loss of generality and by convention, we
choose the order of the basis vectors such that the index of
the periodicity det(P) = N ≡ p1

1 p2
2 − p2

1 p1
2 > 0. The unit cell

associated with this pattern is then defined as

UP =
{

z ∈ Z2

∣∣∣∣∣0 � 〈z, p1〉〈p2, p2〉 − 〈z, p2〉〈p1, p2〉 < N2,

0 � 〈z, p2〉〈p1, p1〉 − 〈z, p1〉〈p1, p2〉 < N2

}
.

(A3)
Note that the number of lattice points in the unit cell is given
by the index |U | = N. The set ÛP of wave vectors compatible
with this periodicity must satisfy

〈q, p1〉 = 2πk1, (A4)

〈q, p2〉 = 2πk2, (A5)

for some k = (k1, k2) ∈ Z2, so that exp(i 〈q, z+l1p1 +
l2p2〉) = exp(i 〈q, z〉) for all l1, l2 ∈ Z. Writing (A4) and (A5)
as

Pq = 2πk, (A6)

we have

q =2πP−1k. (A7)

We now introduce the dual basis p̂1 = (p1
1, p1

2) and
p̂2 = (p2

1, p2
2), and note that P−1p̂1 = e1 and P−1p̂2 = e2.

Thus, q′ = 2πP−1(k + l1p̂1 + l2p̂2) = q + 2π l1e1 + 2π l2e2,

and hence Pq′ = 2πk+2π l1Pe1 + 2π l2Pe2 ≡ 2πk′. So,
adding integer multiples of the dual basis vectors to k does
not yield additional information, and we can restrict ourselves
to solutions in the dual unit cell (discrete Brillouin zone),

ÛP =
{

q = 2πP−1k

∣∣∣∣∣k ∈ Z2,
0 � 〈k, p̂1〉〈p̂2, p̂2〉 − 〈k, p̂2〉〈p̂1, p̂2〉 < N2

0 � 〈k, p̂2〉〈p̂1, p̂1〉 − 〈k, p̂1〉〈p̂1, p̂2〉 < N2

}
, (A8)

where we have used that det(PT ) = det(P) = N , which also
shows that there are |ÛP | = |UP| = N independent wave vec-
tors that are compatible with the periodicity.

In the following, we would like to enumerate all possible
periodicities, classifying them according to their index N. This
problem is equivalent to enumerating all the subgroups of
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Z2 of index N. This can be performed employing a theorem
due to Hermite [43], which states that for any matrix with
integer entries P ∈ GL2(Z) and determinant N , there is a uni-
modular (determinant-preserving up to sign) transformation
J ∈ GL2(Z), such that P∗ = PJ, where P∗ is of the form

P∗ =
(

d1 0
0 � s1 < d1 d2 = N

d1

)
, (A9)

the so-called lower-triangular Hermite normal form. These
matrices thus fall into equivalence classes, which are enu-
merated by considering that for any divisor d1|N , there are
exactly d1 inequivalent forms, and hence |{P| det P = N}| =∑

d1|N d1 ≡ σ1(N ). This implies that one can simply choose
as the basis of our desired pattern the vectors p∗

1 = (d1, 0) and
p∗

2 = (0 � s1 < d1, d2 = N/d1). Note, however, that these
vectors need not be the set of minimal length basis vectors
that generate the same periodic sublattice. If necessary, these
so-called Minkowski bases can be obtained from the Hermite
normal form basis, through an algorithm due to Lagrange [44].

Next, we introduce

ÛN =
⋃

{P||ÛP |=N}
ÛP , (A10)

i.e., the set of all lattice wave vectors compatible with periodic
patterns with index N. We can now prove the following, as far
as we can tell, nontrivial lemma:

Lemma 1. ÛN = {q = 2π
N (l1, l2)|0 � l1, l2 < N} and hence

|ÛN | = N2.

We prove this lemma in two steps. First, consider the pe-
riodicity �, with basis vectors π1 = (N, 0) and π2 = (0, N ),
i.e., a square N × N unit cell. We have U� = {z|0 � z1, z2 <

N}. Also, Û� = 2π
N U�. Let the periodicity P with index N

be given by the basis vectors p1 = (d, 0) and p2 = (s, d̄ ),
where d ∈ [N] (the set of divisors of N) and the comple-
mentary divisor is defined as d̄ ≡ N/d. Now, π1 = d̄p1 and
π2 = −sp1 + dp2. It follows that any P periodic pattern is also
� periodic, and hence ÛP ⊂ Û� and

ÛN =
⋃

{P||ÛP |=N}
ÛP ⊂ Û�. (A11)

We then need to prove the reverse inclusion by showing that
for every q = 2π

N (l1, l2), there is a P with det P = N such
that q ∈ ÛP . Recall that P−1p̂1 = e1 and P−1p̂2 = e2, so that
k = l1

N p̂1 + l2
N p̂1 would be a valid solution provided k ∈ Z2.

In the Hermite normal form representation, p̂1 = (d, s) and
p̂2 = (0, d̄ ). Thus the question reduces to whether d ∈ [N]
and 0 � s < d can be chosen such that the congruences

l1d ≡ 0 mod N, (A12)

l1s + l2d̄ ≡ 0 mod N (A13)

hold. We distinguish two cases:
(i) l1 does not divide N (l1 � N): In this case, congru-

ence (A12) can only be solved by taking d = N . This
reduces the second one to l1s ≡ N − l2 mod N . In this case,
m ≡ GCD(l1, N ) = 1 and hence m | N − l2, guaranteeing a
solution [45].

(ii) l1 divides N (l1 | N): In this case, l1 = d1 with
d1 ∈ [N], but d1 �= N , so that (A12) is solved by d = d̄1, and
the second condition reduces to d1s + l2d1 ≡ 0 mod N , which
in turn reduces to s + l2 ≡ 0 mod d̄1. Let l2 = nd̄1 + r2; then
the latter congruence is trivially solved by s = d̄1 − r2.

This shows that

Û� ⊂ ÛP ⊂ ÛN (A14)

and, hence, Û� = ÛN .

APPENDIX B: THE SIZE OF THE SETS ̂UN

Now, let sM (N ) count the numbers of orbits with multi-
plicity M in ÛN . The only two modes which have an orbit of
length M = 1 are (0,0) and (π, π ), and hence s1(N ) = 1 for N
odd and s1(N ) = 2 for N even. (0, π ) is the only mode with
orbit length M = 2; accordingly, s2(N ) = 1 for N even and
zero otherwise. For the remaining two cases, it is convenient
to define Ns = �N−1

2 � for N odd and Ns = �N−2
2 � for N even.

The number of modes with orbit length M = 4 is given by
s4(N ) = 3Ns for N even and s4(N ) = 2Ns for N odd. The
orbits of length M = 8 are, independently of the parity of N,

given by s8(N ) = ∑Ns
n=1 n = 1

2 Ns(Ns + 1). Thus, the size of
ÛN is simply given by

|̂UN | = s1(N ) + s2(N ) + s4(N ) + s8(N )

= 1

2

⌊
N + 2

2

⌋(⌊
N + 2

2

⌋
+ 1

)
. (B1)

This is equivalent to the more intuitive formula

|̂UN | =
� N

2 +1�∑
n=1

n, (B2)

which can also be understood geometrically by referring to
Fig. 3. Note that this analysis also correctly reproduces the
size of ÛN ,

|ÛN | = s1(N ) + 2s2(N ) + 4s4(N ) + 8s8(N ) = N2. (B3)

APPENDIX C: THE VERTEX ENUMERATION
ALGORITHM

The coefficients of the inequalities given by Eq. (20)
defining the half spaces that bound the disorder polytopes
are generically irrational by virtue of the definition of F(q)
[Eqs. (16)–(18)]. However, the vertex enumeration algorithm
lrs that we employed intrinsically uses exact integer arith-
metic. Thus we are forced to rationalize the components F(q)
as input to the program. As a consequence of this approxima-
tion, some artifacts are to be expected, primarily in the form
of spurious vertices. We empirically observed, e.g., that the
resulting polytopes output by lrs are all simple, i.e., all of their
vertices have degree 3, where the degree of a vertex is the
number of edges, and hence also the number of faces, to which
it belongs. The analysis presented in Appendix D 3 below,
however, shows that the vertices at the apex of the so-called
fan modes KS , KMS , and KDS are degenerate as their degree
in fact diverges in the limit N → ∞.

We have identified three sources of spurious vertices and
developed appropriate corrective procedures for all of them.
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First, as already alluded to above, the vast majority of the
spurious vertices appear around the apices of the fans, which
we know analytically and hence readily detected and removed.
In fact, if a fan apex has degree k, we find that exactly k − 1
spurious vertices are generated, which are much closer among
each other than the typical distance d ∼ 0.1 to the nearest
distinct vertex. The second category of spurious vertices is
associated with the faceless modes (Appendix D 5) that are all
tangent to a common edge. We empirically found that each
faceless mode contributed exactly two spurious vertices in the
neighborhood of the common edge, which we subsequently
removed. The final category is composed of spurious vertices
that are “accidental” and only occur for the interior M = 8
modes. They occur when components of F(q) for neighboring
q’s happen to be identical, but because of finite precision
arithmetic are mapped to different rational approximations.
These then have to be dealt with through explicit analytical
recalculation. In practice, we never observed more than four
such spurious vertices for all N’s considered (up to N = 256).
Defining the degree of rationalization 
 as the number of
digits allowed for numerator and/or denominator in the ap-
proximants, we found that it is a useful rule of thumb to
suspect all pairs vertices closer than 
−3 as being spurious.

APPENDIX D: FEATURES OF THE FINITE-N
DISORDER POLYTOPE

1. Odd-even effects

On the square lattice, we can define a unique parity of
each site by defining ‖z‖ = (z1 + z2) mod 2. Considering
Fig. 1, we see that the standard neighborhood set N1 con-
sists of sites with parity 1, while both N2 and N3 only
contain sites with parity 0. This implies that for every so-
lution mz of the bifurcation equation (12) with coupling
constants K = (K1, K2, K3), there is a solution m̄z = (−)‖z‖mz

with coupling constants K̄ = (−K1, K2, K3). Fourier trans-
forming m̄z, we find that q̄ = q − (π, π ). We also find that
F1(q̄) = −F1(q), while F2(q̄) = F2(q) and F3(q̄) = F3(q), so
that if K · F(q) = 1, then K̄ · F(q̄) = 1 and therefore also
solves Eq. (14). Referring to Fig. 2, we see that the mapping
q → q − (π, π ) corresponds to the reflection r with respect
to what we call the antidiagonal, the perpendicular bisec-
tor onto the hypotenuse of the symmetry-reduced Brillouin
zone Û∞. We now ask under what conditions q ∈ ÛN ⇒ rq ∈
ÛN . As q = (2π i

N , 2π
j

N ), 0 � j � i � �N
2 �, we have rq =

( N−2 j
N π, N−2i

N π ), so that rq ∈ ÛN if and only if N is even, as
is also illustrated in Fig. 3. Thus, any facet of D2N associated
with mode q and normal vector F(q) is paired with a facet
with mode q̄ and normal vector F(q) = F(rq), and the whole
polytope is mirror symmetric with respect to the plane K1 = 0
for all even N .

2. The major modes

The three faces that bound the polytope in the half space
K3 > 0 are associated with the modes that are located at the
extreme points of the IBZ ÛN . Defining

qm
N =

⌊N

2

⌋2π

N
, (D1)

these are the modes q0 = (0, 0), q1 = (qm
N , 0), and q2 =

(qm
N , qm

N ). As qm
2k = π , these facets are the same for all even N .

In that case, it is easy to see they represent the ferromagnetic
(qF ), alternating striped (qAS), and antiferromagnetic (qAF )
ordering patterns, respectively. These modes are visualized
in Fig. 4. Also, as qm

2k+1 = π 2k
2k+1 , we see limk→∞ qm

2k+1 =
π , so that as N increases, the odd top facets converge
to the even ones. A direct computation of the location
of the top vertex KT of the polytope, obtained by solv-
ing the conditions K · F(qF ) = K · F(qAS ) = K · F(qAF ) = 1,
then yields, for even N , the vertex KT = (0, 0, 1

4 ), while for
odd N = 2k + 1, we have KT

odd = ( 1
4 {1 + 1/[2 cos(π 2k

2k+1 ) +
1]}, 0,−1/[8 cos(π 2k

2k+1 ) + 4]). The latter, as expected, con-
verges to KT as k → ∞.

3. The edge modes and the fans

The three fans of faces shown most clearly in Figs. 7(e)
and 7(f) are associated with the multiplicity M = 4 modes on
the edges of the IBZ. We distinguish the modes of the form
qS (i) = (2π i/N, 0), i = 1, . . . , l (N ), on the horizontal leg,
which are associated with striped ordering patterns, modes
of the form qMS (i) = (π, 2π i/N ), i = 1, l (N ) on the vertical
leg, which we associate with modulated-stripe ordering pat-
terns, and the modes on the hypotenuse of the form qDS (i) =
(2π i/N, 2π i/N ), k = 1, . . . , l (N ), which we associate with
diagonal stripe ordering patterns, where l (2k) = k − 1 and
l (2k + 1) = k. These modes are visualized in Fig. 4.

We can show by explicit construction that the facets corre-
sponding to any three successive fan modes share a common
vertex, which moreover is independent of which triplet is
considered. For the striped modes, we find, on solving K ·
F(qS (i − 1)) = K · F(qS (i)) = K · F(qS (i + 1)) = 1, the ver-
tex KS = (1/2,−1/4, 0) for all N . The analogous calculation
for the modulated-stripe modes yields, for even N , the ver-
tex KMS = (−1/2,−1/4, 0), consistent with the symmetry
of D2k discussed above, while for odd N = 2k + 1, we find
KMS

odd = { 1
2 sec( 2πk

2k+1 ),− 1
4 sec2( 2πk

2k+1 ), 0}, which converges to
KMS for k → ∞. Finally, for the diagonal stripe modes, we
find KDS = (0, 1/2,−1/4) for all N . Details of how these fans
meet in the middle area of the bottom of the polytopes will be
addressed in the following section.

4. The interior modes and the ridge

The interior modes with multiplicity M = 8 have fewer
remaining symmetries. A few examples are shown in Fig. 4.
As Figs. 7(e) and 7(f) suggest, the faces corresponding to
these modes are directly connected to the striped and mod-
ulated stripe fans and are clustered around an increasingly
narrow quasi-one-dimensional structure which we call the
ridge. This structure can be characterized by considering
the common vertex belonging to the faces corresponding to
two successive modes along either of the legs of the IBZ
and one of the interior M = 8 modes nearest to this pair.
Considering, e.g., the pair striped modes [qS (i), qS (i + 1)]
on the horizontal leg, the nearest interior mode is qint (i) =
(2π i/N, 2π/N ), and we solve for K · F(qS (i)) = K · F(qS (i +
1)) = K · F(qint (i)) = 1. For finite N , the resulting analytical
expressions for the solution Kridge(i) are rather unwieldy and
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we refrain from presenting them. However, by parametrizing
i = aN, a ∈ [0, 1/2], we can take the limit N → ∞, yielding

KR(a) = 1

4 cos(2πa)+ cos(4πa)+ 5

[
4 cos2(πa),−1,−1

2

]
.

(D2)

A similar analysis for the modulated-stripe modes on the ver-
tical leg, now parameterized by i = (1/2 − a)N, a ∈ [0, 1/2],
yields, as expected by the reflection symmetry in the antidiag-
onal of the IBZ, the same result mirrored in the plane K1 = 0.
We also note that the ridge is a planar curve embedded in
the plane K2 = 2K3. For future reference, we name the two
end points of the ridge KR

± = (±2/5,−1/10,−1/20) and the
lowest point on the curve KB ≡ KR(1/2) = (0,−1/2,−1/4).

One also notices that the faces belonging to the diagonal
stripe fan are “split” by wedge-shaped faces belonging to
M = 8 modes. The vertices at which this happens can be
found by considering the common vertex between two sub-
sequent diagonal stripe modes [qDS (i), qDS (i + 1)] with their
common nearest interior mode [2π (i + 1)/N, 2π i/N]. Using
a similar parametrization as above, i.e., i = bN, b ∈ [0, 1/2],
and passing to the limit N → ∞, we obtain the curve

KW (b) =
(

cos(2πb)

cos(4πb) + 2
, 0,− 1

4(cos(4πb) + 2)

)
. (D3)

However, by considering the angle between the pair of
edges defined by the two pair of modes (qDS (i), [2π (i +
1)/N, 2π i/N]) and ([2π (i + 1)/N, 2π i/N], qDS (i + 1)), one
can show that the surface area of these wedgelike M = 8 faces
vanishes in the limit N → ∞.

5. The faceless modes

The so-called faceless modes for even N are all lo-
cated on the antidiagonal that runs from the vertex qAF =
(π, 0) to the midpoint of the hypotenuse of the IBZ. These
modes can generically be parameterized as qAD(α) = (π −
α, α), α ∈ [0, π/2]. It follows that F(qAD(α)) = [0,−2(1 +
cos 2α), 4 cos 2α]. Considering the family of planes defined
through K · F[qAD(α)] = 1, we see that these share a common
line of intersection given by (K1,−1/2,−1/4). Hence only
the planes defined by the relevant endpoints, qAS = (π, 0) and
qAD = (π/2, π/2) for N = 4k or qAD = [2π (k + 1)/(4k +
2), 2πk/(4k + 2)] for N = 4k + 2 (see Fig. 3) can contribute
a face to DN , and all the modes between these endpoints do
not, which exactly explains the pattern observed in Table I.
We note, however, that these modes will of course play a role
for K values located on the common edge they share.

APPENDIX E: THE NATURAL COORDINATE SYSTEM

Slightly rewriting Eq. (27), we have F1(q)2 − 4 =
2F2(q) + F3(q), which suggests a new basis vector along
(0,2,1). Trivially, a vector along (0, 1,−2) is then orthogonal
to both the latter and the invariant axis along (1,0,0). Normal-
izing these vectors yields the frame n̂ j given in the main text.
The explicit form of the two independent coordinates is

ϕ1 = 2 cos q1 + 2 cos q2 ≡ 2ξ1 + 2ξ2, (E1)

FIG. 10. The shape of �̂∞, the image of the IBZ Û∞ expressed
in the natural coordinates ϕ j .

ϕ2 = 2√
5

[cos (q1 − q2) + cos (q1 + q2) − 2 cos 2q1

−2 cos 2q2]

= 4√
5

(
2 + cos q1 cos q2 − 2 cos2 q1 − 2 cos2 q2

)
≡ 4√

5

(
2 + ξ1ξ2 − 2ξ 2

1 − 2ξ 2
2

)
, (E2)

where we have introduced ξ1 = cos q1 and ξ2 = cos q2. The
mapping (q1, q2) → (ξ1, ξ2) maps Û∞ to �̂∞ = {(ξ1, ξ2)| −
1 � ξ1 � ξ2 � 1}. Clearly, on this domain ϕ1 ∈ [−4, 4].
Eliminating ξ2 then yields

ϕ2 = −2
10ξ 2

1 − 5ξ1ϕ1 + ϕ2
1 − 4√

5
. (E3)

For a given ϕ1, we need to ensure that (ξ1, ξ2) ∈ �∞,

which yields the constraint ξ1 ∈ [max(−1, 1
2ϕ1 − 1), 1

4ϕ1].
This yields the two limiting curves

ϕmax
2 (ϕ1) = 2√

5

(
4 − 3

8
ϕ2

1

)
, (E4)

ϕmin
2 (ϕ1) = − 2√

5
(2 − |ϕ1|)(3 − |ϕ1|), (E5)

where the first curve corresponds to the diagonal edge of
Û∞, and the lower curve to the horizontal leg when ϕ1 > 0
and the vertical leg when ϕ1 < 0. The three extreme points
qF , qAF , and qAS are mapped to ϕF = (4,−4/

√
5), ϕAF =

(−4,−4/
√

5), and ϕAS = (0,−12/
√

5), respectively. The do-
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main of values �̂∞ in the ϕ parametrization that corresponds
to Û∞ is shown in Fig. 10.

APPENDIX F: DETAILS OF THE SIMULATIONS

The Monte Carlo (MC) simulations were implemented in
C++ and performed on a local computing cluster. Following
the discussion in Sec. VI, we consider rays in phase space
through the centroids of the predicted faces of DN on N × N
square lattices with N = 4, 6, 8, 12. The specific state points
were chosen by sampling the inverse temperature T = 1/β on
40 equally spaced points in the range T ∈ [1, 3] and 45 points
in the lower-temperature range. Finally, on the lattice of size
N = 12, we refined the temperature resolution even further to

T = 0.01 for T < 0.5.

To compute the average of observables and their standard
deviations, we employed block averaging, using nB = 100
blocks. In order to choose the appropriate block length to
ensure independence of the block averages, we estimated the
autocorrelation “time” τ in MC sweeps (one attempted flip per
spin in the lattice) for a number of observables. For N = 4 and

N = 6, we were able to establish that the correlation time of
the order parameter of the dominant mode was systematically
larger, yet of similar order of magnitude than that of any of
the other modes, and moreover did not strongly depend on
the specific face of DN considered. For the larger lattice sizes,
we therefore limited ourselves to measuring the correlation
time for the standard ferromagnetic order parameter on the
ray through the face associated with qF = (0, 0). For T > 0.4,
we systematically measured τ < 100 for all lattice sizes, al-
lowing nb = 104. For T � 0.4, the correlation time increases
rapidly and we employed block sizes of nb = 105–106, with
the exact value optimized for the specific temperature and
system size. Finally, we note that the computational bottle-
neck of our simulations is actually the calculation of the order
parameters. Due to their extreme small size, these systems
are intrinsically noisy and subject to, e.g., drift. These means
that local magnetizations quickly average out. We therefore
needed to resort to calculating the order parameter on the
basis of instantaneous configurations, and subsequently av-
erage these, which requires a costly Fourier transform at
every sweep.
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