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Microbes in the wild face highly variable and unpredictable environments and
are naturally selected for their average growth rate across environments. Apart
from using sensory regulatory systems to adapt in a targeted manner to changing
environments, microbes employ bet-hedging strategies where cells in an isogenic
population switch stochastically between alternative phenotypes. Yet, bet-hedging
suffers from a fundamental trade-off: Increasing the phenotype-switching rate increases
the rate at which maladapted cells explore alternative phenotypes but also increases
the rate at which cells switch out of a well-adapted state. Consequently, it is
currently believed that bet-hedging strategies are effective only when the number
of possible phenotypes is limited and when environments last for sufficiently many
generations. However, recent experimental results show that gene expression noise
generally decreases with growth rate, suggesting that phenotype-switching rates may
systematically decrease with growth rate. Such growth rate dependent stability (GRDS)
causes cells to be more explorative when maladapted and more phenotypically stable
when well-adapted, and we show that GRDS can almost completely overcome the trade-
off that limits bet-hedging, allowing for effective adaptation even when environments
are diverse and change rapidly. We further show that even a small decrease in switching
rates of faster-growing phenotypes can substantially increase long-term fitness of bet-
hedging strategies. Together, our results suggest that stochastic strategies may play an
even bigger role for microbial adaptation than hitherto appreciated.

microbial adaptation | phenotypic heterogeneity | bet-hedging | growth rate dependent stability |
microbial population dynamics

Many microbial organisms exhibit a remarkable ability to adapt their internal state to
environments that are highly variable and can change in unpredictable ways. For example,
not only will there be different types of carbon sources, nitrogen sources, and amino acids
available in different environments but also the concentrations of all these nutrients may
vary over orders of magnitude. In addition, general variables such as temperature, pH,
osmotic pressure, and oxygen availability will vary, and cells may have to withstand a wide
array of specific stresses such as antibiotics or reactive oxygen species. It is remarkable that
microbes appear to be able to adapt to this enormous number of possible combinations
of environmental variables, not only because it requires coordinating the expression of
many genes but also because it seems unlikely that the microbes can have been specifically
selected for adapting to all these environments. For example, Escherichia coli is able to
adapt its gene expression in order to allow it to grow in fully deuterated water, a highly
unnatural condition in which the rates of most reactions involving water molecules are
significantly altered, even though it almost certainly never encountered such a condition
in the wild (1).

It is well known that microbes have evolved sensory regulatory machinery that can
sense a large variety of internal and environmental variables and adapt gene expression
patterns in response. In principle, the more information an organism gathers about its
environment, the better it can adapt to it (2, 3). However, sensory regulatory strategies
face a number of limitations. First, sensing is limited to those environmental variables
for which the organism has evolved sensors, which is likely only a subset of the many
environmental variables that affect optimal gene expression states. Second, given the
small number of molecules involved, there are fundamental thermodynamic limits on
the accuracy with which cells can gather information about their environment (4, 5).
Third, even if cells are able to gather accurate information about the state of environmental
variables, the processing and integrating of this information so as to optimally set gene
expression levels is a nontrivial regulatory problem. Moreover, the regulation of gene
expression is itself also significantly affected by thermodynamic noise. Finally, there may
be intrinsic costs associated with sensory regulatory machinery, be it through the cost of
expressing proteins that do not directly contribute to growth (6, 7) or due to energetic
costs (8).
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Apart from adapting gene expression in a regulated manner, it
is known that due to the inherent noise in gene expression pro-
cesses, isogenic cells also stochastically switch between different
phenotypes. In this way, cells explore alternative phenotypes, and
since subpopulations that happen to venture onto fast-growing
phenotypes will automatically expand because of their higher
growth rate, the population will appear to effectively “adapt”
its phenotype to the environment. This general mechanism,
which in principle allows microbes to adapt to a wide variety
of unexpected environmental changes, including those that they
are unable to sense, is typically referred to as a bet-hedging
strategy (9–16). Although the term “bet-hedging strategy” is
of course anthropomorphic, we will adopt it here to refer to
situations where stochastic phenotype switching of individual
cells is adaptive at the population level.

However, the long-term fitness that can be attained with such
bet-hedging strategies, i.e., the long-term average population
growth rate (17, 18), is limited by an intrinsic trade-off:
Increasing the stochastic phenotype-switching rate speeds up
adaptation to new environments, but it also decreases the long-
term growth rate in each environment since it increases the rate
at which cells switch out of well-adapted phenotypes (19). Due
to this inherent trade-off, as demonstrated both by theoretical
modeling (9, 19, 20) and by experimental approaches (21, 22),
bet-hedging strategies are effective only when durations of
environments are large relative to the doubling times of the cells,
and when the number of possible environments that populations
need to anticipate is limited.

Several recent studies have observed that gene expression
noise generally increases at low growth rates (23–25). Since
many phenotype switches may be driven by gene expression
fluctuations (26–30), these observations suggest that there may
be intrinsic coupling between the growth rate of cells and their
phenotypic stability. That is, stochastic phenotype-switching
rates may naturally be higher for slow-growing cells than for
fast-growing cells. Intuitively, it seems that such growth rate
dependent stability (GRDS) could benefit bet-hedging strategies
since it would reduce the rate at which well-adapted cells switch
to maladapted phenotypes, while at the same time increasing
the rate at which maladapted cells explore alternatives. Indeed,
as has been shown by Kaneko et al. in a nonevolutionary
setting (31, 32), when phenotypic stability increases with growth
rate, the distribution of phenotypes in the population is shifted
toward faster-growing phenotypes. In conceptually related work,
Schreier et al. (33) proposed a general abstract model of
phenotypic adaptation in which cells randomly diffuse through
phenotype space until they reach a desired phenotype, although
no concrete mechanisms were proposed for how cells would sense
that they had reached a desired phenotype.

Here, we systematically investigate the effect of GRDS on
the performance of bet-hedging. In particular, we extend the
basic model of a population evolving in a changing environment
introduced in ref. 19, and using a combination of analytical
solutions and numerical simulations, we determine how GRDS
affects the long-term average growth rates that stochastically
switching populations can achieve. We show that even a
small growth rate dependence of the phenotype-switching rates
immediately increases the average growth rate of bet-hedging
populations and that GRDS can completely resolve the inherent
trade-off of traditional bet-hedging strategies when the ratio of
switching rates of slow- and fast-growing cells is sufficiently high.
We also find that GRDS can improve average population growth
rates through two qualitatively distinct mechanisms depending

on whether environment durations are short or long relative
to the doubling time of adapted phenotypes. Taken together,
our results show that GRDS dramatically expands the range of
scenarios for which stochastic bet-hedging strategies can attain a
high long-term average growth rate.

Results

Model Setup. To investigate the effects of growth rate dependent
stability (GRDS) on bet-hedging strategies for microbial popula-
tions growing in changing environments, we extend the general
model introduced by Kussell and Leibler (19). We consider
a population of cells that switch stochastically between n + 1
discrete phenotypes and grow in an environment that switches
stochastically between m discrete environment types. For a given
realization of the stochastic environment switches, the sequence
of environments is described by the function E(t), denoting
which environment type is present at time t. The average time
that an environment of type J remains before it switches to
another environment type is τJ . The order in which environment
types occur is determined by a Markov chain: upon a switch,
the probability that environment J is followed by environment
I is denoted by bIJ , where

∑
I bIJ = 1 and bII = 0. In

environment J , cells with phenotype i grow at a rate µ(J)
i and

switch stochastically from phenotype j to i at rate φ(J)
ij .

The population is assumed to be sufficiently large such that
the population dynamics can be modeled by a set of deterministic
differential equations. The state of the population is described by
an (n + 1)-dimensional vector s, containing the number of cells
of each phenotype, whose dynamics are described by

d
dt
s = AE(t)s, [1]

where AE(t) is the time evolution matrix of environment E(t).
The components A(K )

ij of the time evolution matrix of environ-
ment K are given by

A(K )
ij =

µ(K )
i −

∑
k 6=i

φ
(K )
ki

 δij + φ
(K )
ij , [2]

where δij is the Kronecker delta function that is one when i = j
and zero otherwise.

Up to this point, this model is identical to the general
model used in (19) for modeling a bet-hedging population in
fluctuating environments. In the classical bet-hedging scenario
of ref. 19, the switching rates φ(K )

ij are assumed independent

of the environment, i.e., φ(K )
ij = φij for all K . To investigate

the effects of GRDS, we extend this classical model by allowing
the switching rates φ(K )

ij to be functions of the current growth

rate of the cell, i.e., φ(K )
ij = φijfj

(
µ

(K )
j

)
, and generally assume

that fj(µ) is a decreasing function of the growth rate µ. That is,
given the same phenotype j, more slowly growing cells are more
“restless” than faster-growing cells and switch their phenotype
more often. However, the relative rates of switching to different
phenotypes i are always the same.

We will quantify the strength of GRDS by the parameter r,
which is the ratio of switching rates between the fastest- and
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slowest-growing phenotypes, i.e., when phenotype j achieves its
maximal growth rate in environment J and its minimal growth
rate in environment K , we get φ(K )

ij = rφ(J)
ij . Note that the case

where r = 1 thus corresponds to classical bet-hedging without
GRDS.

The total number of cells at time t is given byN (t) =
∑

i si(t),
and we are generally interested in the average growth rate G of
the population over a long sequence of environments, i.e.,

G = lim
t→∞

1
t

log
(
N (t)
N (0)

)
, [3]

which quantifies the “fitness” of a given strategy (3, 17, 18).
In particular, we will compare the average growth rates G that
are obtained with classical bet-hedging with those obtained with
GRDS.

A Toy Example That Qualitatively Illustrates the Benefits of
GRDS. We use a toy example of this general model to illustrate
the differences in behavior between classical bet-hedging and
bet-hedging with GRDS (Fig. 1). In this example, there are only
three environments and phenotypes (shown as purple, red, and
green); in each environment, one phenotype is optimal and leads
to a growth rate of µ1 = 1.0, while the other phenotypes have
a growth rate of µ0 = 0. For the population dynamics shown
here, all cells start out in the green phenotype and encounter
the purple environment, followed by the red environment; both
environments have a duration of T = 10. We assume that cells
in the optimal phenotype switch with a rate φ, while the other
cells switch at a rate rφ, where r = 10 for bet-hedging with
GRDS (and r = 1 for classical bet-hedging). The switching rate
φ was optimized to maximize G for both strategies separately.

The inherent trade-off of classical bet-hedging is illustrated
in Fig. 1A. Because the switching rate is independent of the
environment, a cell in a given phenotype is equally likely to switch
independent of whether this phenotype is well or badly adapted to
the current environment. Thus, increasing the switching rate will
not only increase the rate at which cells in maladapted phenotypes
explore alternative phenotypes but will also increase the rate at
which cells with optimal phenotype switch to worse phenotypes.
The trade-off thus arises because a high long-term growth rate
requires a relatively low switching rate, while fast adaptation
requires a high switching rate. Indeed, at the switching rate φ
that optimizes this trade-off, the adaptation takes about half
the environment duration, but speeding this up would require
a higher switching rate which would decrease the long-term
population growth rate (Fig. 1B, blue curve).

GRDS can largely resolve this trade-off by decoupling the rate
of exploration by nonadapted cells, i.e., rφ, from the rate of
switching of well-adapted cells, i.e., φ. This makes it possible to
speed up the adaptation to a new environment, while the same
long-term population growth rate is reached (Fig. 1B, red curve).
Note that the population in each environment stabilizes with
a similar fraction of cells in suboptimal phenotypes as with the
classical bet-hedging strategy (Fig. 1 C , Bottom). This shows that,
at least in this setting, GRDS mainly works because it allows for
a “panic mode”: Immediately after an environment change, the
growth rate of the majority of cells drops so that their phenotype-
switching rates increase, quickly generating a heterogeneous
population of cells that explore different phenotypes. Moreover,
these exploring cells stabilize only once they find the phenotype
that supports fast growth. Since these adapted cells are both
more stable and grow faster, the population quickly becomes
dominated by optimized cells again (Fig. 1 C , Bottom).

A B

C

Fig. 1. A toy example illustrates how GRDS increases the effectiveness of
bet-hedging. (A) Growth was simulated in a sequence of two environments
(purple and red background) for cells with three different phenotypes:
optimal for the purple, red, or green environment. The growth of a phenotype
is indicated by the arrow marked by �, while the other arrows indicate
switching between phenotypes. Bolder lines indicate higher rates. Random
phenotype-switching rates are either constant (bet-hedging) or growth rate
dependent (GRDS). The optimal tuning of the switching rates � to maximize
the average growth rates G resulted in � = 0.13 for bet-hedging without
GRDS, and � = 0.26 for bet-hedging with GRDS. (B) Population growth rates
as a function of time for bet-hedging without GRDS (blue curve) and with
GRDS (red curve), starting from an initial condition with all cells in the green
phenotype. The average growth rates for both strategies are indicated by
dashed lines. (C) Time courses of the fractions of the population in each of the
phenotypes (colors) for the bet-hedging (Top) and GRDS (Bottom) strategies.
The red curves show time courses of the population heterogeneity, defined
as the entropy of the distribution of phenotypes in the population. The
parameters used for these simulations, as described in the Model Setup
section, were n+ 1 = 3, T = 10, � = 1.0, and r = 10.

A Minimal Model of Bet-Hedging with GRDS. To quantify the
effect of GRDS on bet-hedging strategies, we first analyze a
model in which the number of parameters is reduced to a
minimum and which can be solved analytically. In this minimal
model, we set the number of environments and phenotypes both
to n + 1. We assume that each environment lasts for a fixed
time T and then switches to another environment with uniform
probability, i.e., bIJ = 1/n for all I 6= J . In addition, we assume
that there are only two possible growth rates, a “fast” growth rate
µ1 and a “slow” growth rate µ0, i.e., µ1 > µ0, and that in each
environment I , only cells in a “good” phenotype i = I grow at
the fast rate µ1 and cells in the n (“bad”) other phenotypes grow
at the slow rate µ0. Regarding phenotype switching, we assume
that whenever a cell switches its phenotype, it is equally likely
to switch to any of the n other phenotypes. Finally, to tune the
overall switching rates and amount of GRDS, we assume that
cells in the fast-growing phenotype i = I switch out of their
phenotype at a total rate φ, whereas cells in any of the n slow-
growing phenotypes switch out of their phenotype at a total rate
rφ with r ≥ 1. Thus, formally, the switching rates are given by
φ

(J)
ij = φ/n for all i 6= j when j = J and φ(J)

ij = rφ/n for all
i 6= j and j 6= J .

Because switching rates to and from all bad phenotypes
are equal in this model, we can describe the state of the
population by the number of cells sg(t) and sb(t) in the good
and bad phenotypes, respectively (more details are provided in
SI Appendix, section 1.B.1). Because the growth rates µ1, µ0 and
environment duration T are the same in each environment, we
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can restrict ourselves to solving models where the bad phenotype
does not grow at all, i.e., µ0 = 0, and measure time in units such
thatµ1 = 1, without loss of generality (SI Appendix, section 1.B).
Solutions for any other setting of the growth rates µ1 and µ0
can then be obtained by rescaling and shifting the resulting time
dynamics. This leaves us with the following differential equations
for the number of cells with good and bad phenotypes

dsg(t)
dt

= (1− φ)sg(t) +
φr
n
sb(t),

dsb(t)
dt

= −
φr
n
sb(t) + φsg(t),

[4]

where φ is the switching rate of adapted (“good”) phenotype
cells and rφ the switching rate of cells in a bad phenotype. Note
that because a cell in a bad phenotype can switch to n other
phenotypes and only one of these is the good phenotype, the
effective switching rate of cells from a bad to the good phenotype
is φr/n. Eq. 4would not change if instead of one good phenotype
and n bad ones, we assumed that there were K good phenotypes
and nK bad ones. This suggests interpreting the probability
1/n more generally as the probability that, under a stochastic
phenotype switch, a cell in a bad phenotype will switch to a good
phenotype. That is, the parameter n quantifies how rare fast-
growing phenotypes are and thereby quantifies the complexity of
the fluctuating environment.

When the environment changes, a new phenotype will become
optimal so that all cells that were in the good phenotype now
find themselves in a bad phenotype, whereas some cells that were
in a bad phenotype may coincidentally find themselves in the
new good phenotype. In our analysis of the minimal model,
we will make the approximation that all cells that were in a bad
phenotype in the previous environment have a probability 1/n to
find themselves in the good phenotype of the new environment.
Thus, if we denote the fraction of adapted cells at the end of an
environment as p(T ), the initial fraction of adapted cells in the
next environment is (1−p(T ))/n. In SI Appendix, section 1.C.2
we explain why, under mild conditions on the model parameters,
this approximation is justified.

The dynamics of this system can be solved analytically
(SI Appendix, sections 1.C and 1.D) yielding an expression for
the long-term average growth rate G that is fully determined by
the four parameters T, n, r, and φ. Of these parameters, n and T
parametrize the regulatory problem that the microbial population
faces: The complexity of the environment is set by n, and T sets
the number of generations between environmental changes which
determines the relative importance of fast adaptation versus a high
stationary growth rate. In turn, the strength of GRDS r and the
switching rate φ set the behavior of the cellular population.

To further analyze this minimal model, we assume that natural
selection has optimized the switching rate φ to maximize the
average growth rate G. In Fig. 2, we systematically investigate
how the resulting average growth rate G varies with n, T , and
the strength of GRDS r. We vary n and T on the vertical axes
of Fig. 2 A and B, while the strength of GRDS increases along
the horizontal axes. The growth rates for classical bet-hedging
correspond to r = 1 and are thus shown along the vertical axes
in these plots. We see that, as derived previously (19), the fitness
of a bet-hedging population decreases with the complexity of the
environment n and increases with the environment duration T
for classical bet-hedging. Increasing GRDS by moving away from
the vertical axes at r = 1 in Fig. 2 A and B, we see that GRDS can
dramatically increase the average growth rate and that increasing
r is always beneficial. That is, at least in this minimal model,

A C

B

Fig. 2. Effect of GRDS on the average growth rate of bet-hedging strategies
as a function of environment complexity and duration. The contour plots in
(A) and (B) show the average population growth rate (G) at optimal switching
rate � as a function of the strength of GRDS (horizontal axes, both panels) and
either the number of environments (A) or the environment duration (B). Since
�1 = 1 and �0 = 0, 0 ≤ G ≤ 1 and the contours occur at integer multiples of
0.1. The optimal switching rates�at four example parameter settings (colored
dots) are indicated in the contour plots. All axes are on logarithmic scales.
Contour plots for additional parameter settings are shown in SI Appendix,
Figs. S3 and S4. (C) Population growth rate versus time over the course of
one environment for the parameter sets indicated by colored dots in A and
B. The dashed lines indicate the average growth rate G. Note that the gray,
green, and purple parameter settings each differ from the red parameter
setting by a change in one parameter.

evolution would favor making the ratio r between the switching
rates at slow and fast growth as large as possible. Moreover,
provided that the strength of GRDS r is made sufficiently large,
the average growth rate G can approach the theoretical optimum
G = 1 arbitrarily closely.

To illustrate the dependence of the average growth rate G on
the parameters, we start from a reference parameter set n = 100,
T = 10, and r = 10 (red dots in Fig. 2 A and B) and increase
r by a factor of ten (gray dots Fig. 2 A and B), decrease n by a
factor of ten (green dot in Fig. 2A), or increase T by a factor of
ten (purple dot in Fig. 2B). When the strength of GRDS r is
increased by a factor of ten, this has a similar effect on growth
rate G as decreasing the number of bad phenotypes n by ten, and
more generally, the approximately straight diagonal contours in
Fig. 2A show that G effectively depends only on the ratio r/n.
This can be understood by noting that the population dynamics
of Eq. 4 depends on r and n only through the ratio r/n. Although
the initial fraction of good phenotype cells after an environment
switch does depend directly on n and not r, we find that this is
negligible when T is not small.
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Long environment durations. Of the three parameter changes in
Fig. 2, the optimal switching rate φopt changes significantly
only under a change in environment duration T and is largely
insensitive to changes in the other parameters. Indeed, as shown
in SI Appendix, Fig. S7, we find that when T is sufficiently large
(i.e., around T = 10 generations or larger), and r is not too large
(i.e., r < nT , as discussed below), the optimal switching rate is
just the inverse of the environment duration:

φopt
≈

1
T

(large T, r < nT ), [5]

and in SI Appendix, section 2.B.1, we mathematically prove that
this relationship holds exactly in the limit of long environment
durations. Thus, the optimal phenotype-switching rate for cells
in the fast-growth phenotype exactly equals the rate at which
the environment changes. This extends a classical result for
conventional bet-hedging which states that the probability of
using a strategy should equal the probability that the strategy
will become useful in the future (13, 19, 20, 34). Note that
in this large T parameter regime, the optimal switching rate is
independent of r and thus the same for classical bet-hedging and
bet-hedging with GRDS. This shows that the benefits of GRDS
derive not from greater stability of cells in the optimal phenotype,
so that GRDS does not diminish the subpopulations that are
preadapted for possible future environment changes. Rather, the
benefits of GRDS are due to the increased switching rate of the
slow-growing cells. That is, GRDS allows slow-growing cells to
“panic” and rapidly explore different phenotypes until a fast-
growing phenotype is found. Such an adaptive transition of the
population from stable to explorative and back is impossible
without GRDS.

We also derived an analytical approximation for G in the
parameter regime where environment durations are sufficiently
long for the population to reach its steady-state distribution of
phenotypes (SI Appendix, section 2.B.3):

G ≈ 1−
1
T︸︷︷︸

diversity cost

−
1
T

log
[
Tn
2

]
︸ ︷︷ ︸

delay cost

+
1
T

log
[

1 + r
2

]
︸ ︷︷ ︸

GRDS effect

. [6]

The terms in this equation have intuitive interpretations: First,
at the optimal switching rate φopt = 1/T , the long-term growth
rate is 1 − 1/T because a fraction 1/T of the population will
be in nongrowing phenotypes. In ref. 19, this is referred to as
the “diversity cost” of bet-hedging. Second, at the end of a given
environment, the nongrowing cells will be equally distributed
over the n nongrowing phenotypes, so that the fraction of cells
in the “good” phenotype just after an environment switch will
be 1/(nT ). The “delay cost” log[nT /2]/T corresponds to the
reduction of the average growth rate from having to expand this
small subpopulation. The final term log[(1 + r)/2]/T is unique
to bet-hedging with GRDS and quantifies the extent to which
GRDS can compensate the intrinsic delay and diversity costs of
bet-hedging. We have validated numerically that (6) provides an
excellent approximation to G as long as environment durations
are not short, i.e., T ≥ 10 generations (SI Appendix, Fig. S8). SI
Appendix, Fig. S8 also shows that once r becomes so large that
the delay costs are fully compensated, i.e., when r ≥ Tn, Eq. 6
starts to overestimateG, and the true growth rate saturates toward
G = 1 when r increases further. As discussed in the next section,
in this regime, the optimal switching rate no longer equals 1/T
and the approximation breaks down.

We derived an analogous expression to Eq. 6 for the more gen-
eral model, including differing average environment durations τJ
and transition probabilities bIJ , using the same assumptions as
were used in ref. 19 for the case without GRDS (SI Appendix,
section 2.B.3). In this more general setting, GRDS still increases
the average growth rate with log[(1 + r)/2]/T , giving

G ≈ µm −
1
τ︸︷︷︸

diversity cost

−

∑
I

pI
τ

log
[τI

2

]
−

Senv

τ︸ ︷︷ ︸
delay cost

+
1
τ

log
[

1 + r
2

]
︸ ︷︷ ︸

GRDS effect

, [7]

where µm is the growth rate of the adapted phenotype in
each environment, τ =

∑
I pI τI is the average environment

duration, pI is the probability of environment I occurring,
and Senv = −

∑
I,J bIJ pJ log(bIJ ) is the environment entropy,

which quantifies how hard it is on average to predict the next
environment given the current environment. In Eq. 6, this
entropy term was log(n) because we assumed that after each
environment, all other environments were equally likely to occur
next. In general, the change of environments can be much more
predictable, for example, when environment I is always followed
by environment J (i.e. bIJ = 1), which decreases the delay cost
for bet-hedging since switching rates can be adapted to this
predictability.

Eq. 7 shows that GRDS can compensate the intrinsic costs of
bet-hedging, including the uncertainty about the environment
captured by Senv. The logarithmic dependence also shows that
even a slight growth rate dependence of the phenotype-switching
rates can already provide a substantial fitness advantage. Finally,
Eq. 7 implies that a population employing GRDS outgrows a
population employing classical bet-hedging by a factor (1+ r)/2
over the course of each environment, independent of the number
of environment types, the transition rates bIJ between them, or
their durations τI .
Short environment durations. For classical bet-hedging, it is
known that, when environment durations are short relative to
the doubling time of the fastest-growing cells, bet-hedging is
ineffective because natural selection has no time to expand the
subpopulation of fast-growing cells. However, Fig. 2B shows
that, even when T = 1, bet-hedging with GRDS can reach
close to maximal fitness provided that r is made sufficiently large.
Interestingly, in this small T regime, the optimal strategy is
to switch as fast as possible, i.e., φopt

→ ∞. In this limit of
very fast switching, the steady-state fraction of cells in the fast-
growth phenotype is given by pφ→∞ = r/(n + r). Due to
the fast switching, this steady state is reached very quickly and,
consequently, the average population growth rate becomes

G =
r

n + r
. [8]

Although an infinite switching rate is not realistic, this strategy
of fast switching is already effective when φ is large compared to
the rate at which environments switch (1/T ) and compared to
the growth rate of adapted cells (µ = 1).

GRDS can thus aid adaptation through two qualitatively
different strategies. When environment durations T are large,
fast-growing cells come to dominate the population by out-
growing the slow-growing cells, and the optimal strategy is
for fast-growing cells to switch relatively infrequently, i.e., at
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the same rate as the environment switches. In contrast, when
environment durations T are short, fast-growing cells can still
come to dominate the population when r is sufficiently large
simply because the phenotypes of faster-growing cells are more
stable than those of more slowly growing cells, i.e., as previously
identified in refs. 31 and 32. In this regime, fitness is optimized
by maximizing switching rates.

As shown in SI Appendix, Figs. S5 and S6, the boundary
between the long-T regime where φ = 1/T is optimal and
the short-T regime where φ → ∞ is optimal approximately
corresponds to the line T = r/n when T ≥ 10 generations.
When T is small, high average growth rates can be achieved only
using the short-T strategy and require r � n. Of course, there
are also parameter regimes where no high average growth rate G
can be achieved, even with GRDS. In particular, when both T is
small and GRDS is small relative to the number of environments
(i.e., r < n), high average growth rates cannot be achieved.

General Model: GRDS Almost Always Increases Population
Fitness. Our calculations so far have quantified the benefits of
GRDS in the simplified case with only two growth rates: a
fast growth rate for adapted phenotypes and a slow growth
rate for nonadapted phenotypes. Next, we investigated the more
general settings including different environment durations τI ,
arbitrary environment switching rates bIJ , and arbitrary growth
rates µI

j of each phenotype j in each environment I . Following
analogous assumptions previously made in ref. 19, we study the
general model in the regime where environment durations are
relatively large and, to simplify notation, assume that there are
equally many environments as phenotypes, with phenotype i
being optimal in environment i. In SI Appendix, section 2.B.1,
we derive that with GRDS, the optimal switching rate from
phenotype j to k in environment i is given by

φikj =
bkj
τj

eδ(µ
i
j−µ

j
j), [9]

where δ ≥ 0 controls the strength of GRDS. This result
generalizes the result of ref. 19 that each phenotype-switching
rate φkj should match the corresponding environment switching
rate bkj/τj. With GRDS, i.e., when δ > 0, we find that
switching out of phenotype j is increased whenever the current
growth rateµi

j is less than the growth rateµj
j in the environment j

where phenotype j has the optimal growth rate. This also implies
that, in each environment j, the optimal switching rates φjkj out of
the optimal phenotype j are the same with and without GRDS.
Consequently, when switching rates are optimized, the fractions
of preadapted individuals upon an environment switch are the
same with and without GRDS. This further confirms our finding
with the minimal model that, when environment durations are
relatively large, the benefit that GRDS provides comes from
increasing the switching rates of suboptimal phenotypes.

Next, we asked under what conditions on the parameters of the
general model, including cases where the switching rates have not
been optimized, a small amount of GRDS is beneficial. Assuming
again that environment durations are relatively large, we show in
SI Appendix, section 2.B.2 that whenever switching rates are
not optimized, GRDS can generally bring switching rates closer
to their optima. We further show that, when switching rates
are optimized, GRDS is beneficial whenever, averaged over all
environment switches j → i, we have 〈µj

j〉 > 〈µ
i
j〉. That is,

GRDS is beneficial when, on average, the growth rate of the

current optimal phenotype j decreases when the environment
switches from j to a new environment i. Although it is possible
to design parameter settings that do not obey this constraint, this
requires a careful tuning of parameters that is very unlikely to
occur by chance (SI Appendix, section 2.B.2). Indeed, when we
randomly sample growth rates µi

j from different distributions,
GRDS is always beneficial (SI Appendix, Fig. S9). Notably, these
derivations apply to the general model and are thus valid for an
arbitrary number of phenotypes and environments for arbitrary
growth rates. This includes cases where the growth rate of the
optimal phenotype in one environment is still lower than the
growth rate of the worst phenotype in another environment. It
also holds regardless of whether all environments have the same
duration or whether the phenotype-switching rates are optimized.
This thus strongly suggests that GRDS is generically beneficial
when environment durations are not short.

Finally, to quantify the extent of the growth rate improvement
when switching rates are not optimized and to explore whether
the benefits of GRDS also extend to the regime of short
environment durations, we numerically computed the effect of
GRDS on the average growth rate for many different parameter
sets (Fig. 3). The parameter sets were picked as follows: We
systematically varied the number of environments between 5 and
20, chose the environment switching probabilities bIJ uniformly
at random, and varied the average environment duration from
T = 1 to T = 40. The number of phenotypes m was
chosen to be equal, twice, or half the number of environments.
For each environment, the growth rate of the fastest-growing
phenotype was drawn randomly over a range, such that one
unit of time on average corresponds to one doubling of the
best phenotype. All other phenotypes were assigned growth rates
at random, chosen uniformly over a range below the maximal
growth rate in that environment. The ranges from which the

Fig. 3. Population growth rates rise with increasing strength of GRDS r,
even when switching rates are not optimized. Each colored line corresponds
to a different randomly picked parameter set and shows how the average
population growth rate G increases when the strength of GRDS r is increased.
Different colors correspond to different average environment durations T ,
where T = 1 corresponds roughly to a single doubling of the fastest-growing
phenotype in each environment (SI Appendix, section 3). The bolder black
line indicates the average. The vertical axis shows the difference between
the average population growth rate with a certain strength of GRDS and the
average growth rate without GRDS. The rate of switching from phenotype j to
i decreases with the growth rate of phenotype j, and the ratio of the highest
and lowest switching rate from j to i in different environments is r (Methods
for details). The random sampling of the other parameters is described in SI
Appendix, section 3.

6 of 10 https://doi.org/10.1073/pnas.2211091120 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
M

O
L

F 
L

IB
R

A
R

Y
 S

E
R

V
IC

E
S 

on
 A

pr
il 

6,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
4.

17
1.

11
1.

64
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials


growth rates were sampled were chosen such as to ensure the
occurrence of environments in which the fastest growth rate was
still slower than the slowest growth rate in other environments.
The switching rate φij for each pair of phenotypes was chosen
randomly over a thousand-fold range. To model the effect of
GRDS, we then add growth rate dependence to these randomly
chosen switching rates, such that we get rates φKij that are
higher in environments where phenotype j grows slow and
lower where phenotype j grows fast. In particular, we let the
logarithm log(φKij ) decrease linearly with growth rate µK

j such
that φKij varies by a factor r across environments and equals φij
on average (Methods and SI Appendix, section 3 for details). That
is, as before, r quantifies the strength of GRDS (plotted on the
horizontal axis in Fig. 3), with r = 1 corresponding to traditional
bet-hedging.

For almost all parameter sets (1,872 out of 1,875), a small
growth rate dependence immediately increases the long-term
growth rate that is achieved by a randomly switching population
(Fig 3). The three exceptions all correspond to cases where
environment durations are very short. Although the size of the
fitness benefit of GRDS as a function of r varies across the
randomly chosen parameter settings and is consistently smaller
when the average environment duration is short, essentially all
curves show an initial steep increase followed by a slower but
nonsaturating increase with r, similar to the dependence observed
for the minimal model with optimal switching rates, Eqs. 6
and 8. These simulation results confirm that, even without
optimized switching rates, GRDS is generically beneficial across
a very wide range of parameter settings, including relatively short
environment durations.

Discussion

Although it has long been observed that microbial populations of
isogenic cells can exhibit significant phenotypic variability, over
the last two decades, it has become increasingly appreciated that
such phenotypic variability is pervasive and involves both con-
tinuous fluctuations in gene expression and stochastic switching
between discrete phenotypic states (9, 10, 12, 14, 35–39). A large
body of theoretical work has established that such phenotypic
heterogeneity can be beneficial in fluctuating environments,
which led to the suggestion that microbial populations may
be employing “bet-hedging” strategies (35, 40, 41). Indeed, it
has been shown that a bet-hedging strategy can be evolved in
laboratory evolution experiments (14, 39). Moreover, it was
shown that a bet-hedging strategy can be fixed in a population
even if this population is of finite size (13) and that it leads
to higher average growth rates especially if the population is
colonizing new, unknown environments (42).

However, previous theoretical work has also suggested that
bet-hedging strategies can be effective only if environments are
not too diverse and environment durations are relatively long
(9, 19, 20). These fairly restrictive bounds on the benefits of
bet-hedging raise the question of to what extent the pervasive
phenotypic heterogeneity that is observed in microbial popula-
tions can be attributed to bet-hedging. Here, we have shown
that these bounds on the effectiveness of bet-hedging strategies
disappear when we account for one additional ingredient: growth
rate dependent stability (GRDS). With GRDS, phenotype-
switching rates decrease with growth rate, and we have shown
that, as the ratio between switching rates of slow- and fast-
growing cells increases, the intrinsic costs of bet-hedging can

be compensated, and average population growth rates can
approximate the theoretical maximum.

There are clear conceptual similarities between GRDS and
stress-induced mutagenesis (SIM), which proposes that genotypic
adaptation is aided when the mutation rate increases in cells that
experience stress (43–45). Indeed, it may seem that much of
the mathematical framework that we developed above could
be applied to a model of growth rate dependent genotype
“switching” as well. However, there are important differences
between GRDS and SIM that make extending our analytical
framework to SIM difficult. First, genotype changes through
mutation of course occur on a much slower time scale than
phenotype changes. Second, while growth rate directly reflects
fitness, in SIM the mutation rate is proposed to be coupled to
“stress,” and it is unclear to what extent the stresses that increase
the mutation rate systematically lower growth rates. In fact, as far
as we can tell, it is currently not clear to what extent stress would
increase mutation rate, and a recent in-depth study of mutation
in single cells did not uncover large variation in mutation rates
across single cells (46). In addition, an important assumption in
our work is that when phenotype-switching rates are increased
through GRDS, cells will switch their phenotype more often.
This is hard to imagine in the context of SIM since a higher
mutation rate will not only lead to more genotype switches but
also to more mutations per genotype switch, which will drastically
increase the probability of deleterious mutations.

Bet-hedging strategies are typically contrasted to sensing
strategies, where cells detect features of their environment and
change their phenotype in particular directions in response.
Since GRDS requires that cells must be able to “sense” their
own growth rate in some way, one may wonder to what extent
GRDS corresponds to a partial sensing strategy. However, since
the same growth rate µ can occur in different environments
depending on the cell’s phenotype, GRDS does not allow cells
to directly sense their environment. With GRDS, the switching
rates φkij = φijfj(µk

j ) decrease with growth rate µ according to
some decreasing function fj(µ). Thus, for each phenotype j,
the function fj(µ) allows cells to decide whether their current
growth rate µ is low or high relative to growth rates that can be
achieved in other environments with the same phenotype j, but
it cannot inform cells as to whether an other phenotype i may
achieve a higher growth rate in the current environment. And
crucially, which phenotypes cells will switch to is just as random
with GRDS as it is in traditional bet-hedging since the relative
switching rates to different phenotypes stay the same. Therefore,
GRDS could be summarized by saying that it allows cells to sense
something about themselves, i.e., whether they are doing “well”
or “poorly” given their current phenotype, but it does not allow
cells to sense anything about their current environment.

There is in fact significant evidence supporting that phenotype-
switching rates tend to decrease with growth rate. In a number
of studies, it has been observed that gene expression noise
levels decrease with growth rate (23–25, 31), and metabolic
heterogeneity has also been observed to increase with nutrient
limitation (47–52). Since phenotype switches are often ultimately
driven by fluctuations in gene expression or metabolic state
(11, 26–30, 53), phenotype-switching rates will generally increase
with gene expression noise levels. Notably, if we assume that
a particular phenotype switch occurs under a particular rare
fluctuation in gene expression, then even a small change in the
noise level can have a large effect on the phenotype-switching
rate. For example, when noise levels differ two-fold between fast-
and slow-growing cells, and the gene expression fluctuation that

PNAS 2023 Vol. 120 No. 8 e2211091120 https://doi.org/10.1073/pnas.2211091120 7 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 A
M

O
L

F 
L

IB
R

A
R

Y
 S

E
R

V
IC

E
S 

on
 A

pr
il 

6,
 2

02
3 

fr
om

 I
P 

ad
dr

es
s 

19
4.

17
1.

11
1.

64
.

https://www.pnas.org/lookup/doi/10.1073/pnas.2211091120#supplementary-materials


is required for a phenotype switch corresponds to 4 standard
deviations in fast-growing cells, then the same fluctuation would
correspond to 2 standard deviations in slow-growing cells, leading
to a e42/2/e22/2

≈ 400 fold increase in switching rate in slow-
growing cells.

It is currently not clear what mechanisms underlie the decrease
of gene expression noise with growth rate. Analysis of genome-
wide noise in E. coli across different growth conditions has
shown that while relative noise levels of different genes are
highly condition-dependent and are driven by noise propagation
through the regulatory network, absolute noise levels decrease
systematically with growth rate in a way that appears to affect
all genes (25). This suggests that the overall decrease in gene
expression noise with growth rate results from mechanisms
that affect all genes. However, this still leaves many possible
mechanisms, including fluctuations in chromosome copy num-
bers across the cell cycle, fluctuations in transcription initiation
rates due to variations in the RNA polymerase concentration,
fluctuations in transcription elongation rates due to variation in
nucleotide concentrations, fluctuations in translation initiation
rates due to variation in the ribosome concentration, fluctuations
in translation elongation rates due to variation in charged tRNA
concentrations, fluctuations in the dilution rate due to variation
in growth rate, intrinsic Poissonian fluctuations in all steps of
the gene expression process, unequal division of proteins at cell
division, and so on. Although a number of models have been
proposed that show how some of these sources of noise may
explain a decrease in noise with growth rate, e.g., refs. 23, 32, 54
and 55, these models make many simplifying assumptions and
consider only some of the mechanisms listed above. As it is
currently unknown which mechanisms are most important for
determining expression noise levels in realistic settings, it is thus
not yet clear which mechanisms drive the observed decrease in
noise with growth rate.

We hypothesize that one important contributor to the decrease
of noise with growth rate is that the growth rate sets the
dilution rate of most intracellular molecules and thus also the
rate at which intracellular fluctuations are diluted. Although
both the frequency and amplitude of some intracellular noise
may naturally increase with growth rate, thereby compensating
for the increased dilution rate, this may not apply to all sources
of noise, such as fluctuations in extracellular levels of metabolites
and stressors. Indeed, in a study of regulatory circuits with
positive feedback in E. coli, we have recently shown that because
signaling molecules are diluted more quickly at higher growth
rates, the sensitivity of these regulatory circuits to external signals
generally decreases with growth rate (56), supporting that faster
dilution may dampen fluctuations in the internal states of cells.
Of course, since GRDS generally increases long-term average
growth rates, the decrease of fluctuations with growth rate
may even be an adaptation that has evolved through natural
selection.

Another interesting question is whether GRDS also applies
to conditions where instead of different phenotypes growing
at different rates, none of the cells are growing, but cells with
different phenotypes die at different rates. For example, whether
GRDS would predict that cells are more likely to switch to
persister states under treatment with antibiotics. In order for
GRDS to function in such settings, one would need that fast-
dying cells are more likely to change their phenotype than cells in
a more slowly dying phenotype. Although this could be the case,
we are unaware of any evidence suggesting that slowly dying cells
are more phenotypically stable than cells that die more rapidly.

However, since GRDS predicts that cells are more likely to switch
their phenotype at a lower growth rate, including to persister
phenotypes, GRDS can explain experimental observations that
persister fractions increase when cells are stressed before antibiotic
treatment (57).

Finally, we have so far implicitly assumed that sens-
ing/regulation and bet-hedging are mutually exclusive strategies,
but these strategies can of course act in parallel and may in
fact be deeply entangled. By comparing native and synthetic
promoters, we have previously shown that natural selection has
acted to increase the noise levels of native E. coli promoters
(58). Moreover, expression noise in E. coli results to a substantial
extent from noise propagating through the regulatory network
so that noise levels are highly condition dependent, with noise
in more-regulated promoters being both higher on average
and more variable (25). These observations indicate that gene
regulation and expression noise are intimately coupled and
that the fluctuations in gene expression that we call “noise” at
least to some extent result from fluctuations in environmental
conditions that propagate through the gene regulatory network.
This suggests a strategy in which sensing, regulation, and bet-
hedging are all acting in concert, with sensing and regulation
being used to constrain the subspace of phenotypes that is
explored by stochastic phenotype switching.

Materials and Methods

The general setup of our model has been introduced in the “Model Setup” part
of the Results section (SI Appendix, section 2.A.1). We have studied this model
through several methods: By simplifying it to a toy example and a minimal
model, by mathematically studying a limit where environment changes are
relatively infrequent and switching rates are low, and by simulating the general
model for many random samples of the model parameters. We will here briefly
describe each of these methods.

Toy Example. For Fig. 1, we simulated the general model using a Python-script
with only n + 1 = 3 phenotypes in a sequence of two environments with
a duration of T = 10. The growth rate of the optimal phenotype was set to
µ1 = 1, while the other phenotypes did not grow: µ0 = 0; the strength
of GRDS was r = 10. For bet-hedging cells, we allow for only one global

switching rate: φ(K)
ij = φ/2. With GRDS, this switching rate becomes rφ/2

from nongrowing phenotypes. In both cases, φ was numerically optimized to
maximize the average growth rate.

Minimal Model. All results related to the minimal model were obtained with
Mathematica, and an analytical expression was obtained for the average growth
rate G as a function of the parameters (n, T, r,φ). Optimization of the switching
rate φ to maximize the average growth rate G was done numerically.

Analytical Derivations. In SI Appendix, section 2.B.1, we analytically derive
the optimal switching rates for a general model with GRDS; in SI Appendix,
section 2.B.2, we show that GRDS almost always increases the average population
growth rate G, and in SI Appendix, section 2.B.3, we approximate the fitness
benefit as a function of the strength of the growth rate dependence r. These
proofs are possible only if we apply the same approximations as proposed in
ref. 19, which entail:

1. The duration of environments is long enough compared to division times and
switching times, such that the phenotype distribution in the population has
relaxed to a stationary distribution before the next environment switch.

2. The switching rates are small compared to the differences between the
fastest growth rate and other growth rates in an environment, such that the
stationary phenotype distribution can be well approximated by determining
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the dominant eigenvector of the time evolution matrix with perturbation
theory.

Numerical Simulations. The numerical calculations for the general model
were done in Python. As detailed in SI Appendix, section 3, we randomly pick a
number of environmentsm, a number of phenotypesn, an average environment

duration τ , a growth rate for each phenotype in each environment µ(K)
i , and

parameters bIJ that determine the random sequence of environment types.
Then, we randomly choose a switching rate φij for each pair of phenotypes
i, j and implement GRDS of strength r as follows. We start by taking the
range Rφ(r) = [log(φij) − 0.5log(r), log(φij) + 0.5log(r)]. Then, we
determine the range of growth rates that cells of phenotype j can achieve in

the different environments: Rµ = [minK{µ
(K)
j },maxK{µ

(K)
j }], and we let

tr be the linear map from Rµ to Rφ(r) that maps the minimal growth rate
to the maximal switching rate and vice versa. Now, the switching rate from
phenotype j to i in environment I with GRDS of strength r is determined by

log(φ(K)
ij ) = tr(µ(K)

j ). Based on the growth rate in the current environment,
the switching rates between two phenotypes are thus linearly interpolated
in log-scale between an upper bound and a lower bound, where the factor
difference between the upper and lower bound is r. In addition, to allow an
unbiased comparison between different strengths of GRDS, we rescale these

switching rates such that the average switching rate between two phenotypes

( 1
m
∑m

K=1 φ
(K)
ij ) is equal to the initially drawn switching rateφij for all strengths

of GRDS. For the results presented in Fig. 3, we did these simulations for 10
different values of r, where r = 1 corresponds to the case with no GRDS.

Given this complete set of parameters, we compute the average population
growth rate by simulating a sequence of environments with a total duration
that exceeded n2τ to ensure that we sufficiently sampled the possible switches
between different environments.

Data,Materials, and Software Availability. All data and figures presented in
this work can be reproduced with the Python and Mathematica scripts deposited
in github at https://github.com/dhdegroot/GRDS-code-repository.
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