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ABSTRACT
Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic systems. Copolymer-
ization has been studied theoretically in a number of contexts, often by considering a Markov process in which monomers are added or
removed from the growing tip of a long copolymer. To date, the analysis of the most general models of this class has necessitated simulation.
We present a general method for analyzing such processes without resorting to simulation. Our method can be applied to models with an
arbitrary network of sub-steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover,
the approach allows for a dependency of addition and removal reactions on the neighboring site in the copolymer and thermodynamically
self-consistent models in which all steps are assumed to be microscopically reversible. Using our approach, thermodynamic quantities such
as chemical work; kinetic quantities such as time taken to grow; and statistical quantities such as the distribution of monomer types in the
growing copolymer can be directly derived either analytically or numerically from the model definition.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0133489

I. INTRODUCTION

Copolymers are polymers consisting of more than one type of
monomeric unit; the order of these monomers in the chain defines
the copolymer sequence. In general, copolymerization mechanisms
can be classified into two main categories: free copolymerization that
does not rely on a template,1 as shown in Fig. 1(a); and templated
copolymerization, in which a template (usually another copoly-
mer) is used to bias the distribution of sequences produced, as
shown in Figs. 1(b) and 1(c). Polymers produced via both types
of mechanism are of relevance to both biological and industrial
systems. In living systems, O-glycans are sequences of monosaccha-
rides that grow by free copolymerization from serine or threonine
amino acids.2 They play a key role as a physical protective barrier
for cells from pathogens, as well as participating in other cellu-
lar processes.2,3 Free copolymerization is also a common method

for producing plastics and rubbers in commercial and industrial
systems.4,5 In addition, there have been recent experimental designs
for free copolymerization systems that produce specific products
utilizing DNA-nanotechnology-based reaction schemes.6,7

Templated copolymerization is the mechanism by which DNA,
RNA, and polypeptides are produced in DNA replication, RNA tran-
scription, and protein translation, respectively. These processes are
at the heart of the central dogma of molecular biology8 and are the
basis of the informational and biochemical complexity of life. In
DNA replication, DNA templates the production of copies of itself;
in transcription, DNA templates the production of RNA; and, in
translation, messenger RNA (mRNA) is the template for the pro-
duction of a polypeptide.9 Inspired by these biological templated
copolymerization mechanisms, there has been recent interest in
designing synthetic systems that can produce other sequence-
controlled molecules via templated copolymerization.10–16
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FIG. 1. Comparison of the different types of copolymerization mechanism with three types of monomer (blue, red, and yellow). (a) shows free copolymerization, (b) templated
self-assembly, and (c) templated copolymerization with autonomous separation. In (b) and (c) the template is shown with squares and the growing polymer with circles.
(d) Example of a more detailed reaction scheme used to select the next monomer. In each of these sub-figures, different colors represent different monomer types, with
bonds colored accordingly when their strength might depend on the monomer. In (d), different activation states of the monomer undergoing incorporation are represented
by different shapes. The dashed bubble indicates how the arbitrary set of reactions in (d) may replace the simple reaction surrounded by a dashed bubble in (c) for a more
complex model.

Free polymerization can be modeled as a Markovian growth
process under which monomers bind to the end of a growing poly-
mer at a certain rate. Early free copolymerization models17–19 built
on this framework to allow for copolymerization via the incorpora-
tion of multiple types of monomeric unit, as shown in Fig. 1(a), albeit
with irreversible polymerization reactions. In particular, Mayo and
Lewis19 emphasized that in polymerization models, if the monomer
binding events are irreversible and their rates are conditional on
the terminal monomer type, then intra-sequence correlations are
generated within the copolymer.

Although the use of models with irreversible transitions is
reasonable in many contexts, thermodynamically self-consistent
models require all transitions to be microscopically reversible.20

In particular, if a transition from state A to state B is possi-
ble, then transitions from B to A must also be possible. Models
with fully microscopically reversible polymerization reactions, as in
Fig. 1(a), are more challenging to analyze but can be interpreted in a
thermodynamic sense.1,21,22

Templates can affect the rate at which monomers are added
or removed from a growing copolymer, and hence, templated
copolymerization models can be more complex than free copoly-
merization models. When the template consists of just one type of
templating monomer (homopolymer), a templated copolymeriza-
tion process can be mapped onto a free copolymerization model.
Furthermore, if one assumes some symmetries regarding inter-
actions between monomers in the growing copolymer and those
in the template (such as all complementary bonds have equal
strength and all non-complementary bonds have equal strength),

models of sequence-bearing templates may be mapped onto mod-
els with homopolymeric templates and, hence, to models of free
copolymerization.23–27

Templated copolymerization models can be further divided
into two main categories: templated self-assembly Fig. 1(b)1,27–41

and autonomously separating mechanisms Fig. 1(c).23,24,42 Tem-
plated self-assembly models are those in which all the monomers
in the growing copolymer remain bound to the template. In
autonomously separating models, the growing copolymer detaches
as it extends.23–25 There has been recent interest in explicitly model-
ing autonomous separation in templated growth in an attempt to
understand models that give a better description of transcription
or translation.23–25 In autonomously separating models, the simul-
taneous growth and separation of the copolymer and template mean
that the copy-template interactions are not permanent, and there-
fore, free energy released from such interactions cannot be part of
the driving force of polymerization. In addition, since these copy-
template bonds are temporary, they cannot stabilize the accurate
copy directly in the long time limit. Furthermore, an ensemble of
accurate polymers is a lower entropy state than an ensemble of ran-
dom polymers. These conditions mean that non-equilibrium driving
is required to generate accurate copies of the template if the copies
are to spontaneously detach.42 Moreover, the separation of the lag-
ging tail from the template as the copolymer grows naturally causes
intra-sequence correlations within the product.23

The models described above are maximally coarse-grained, in
that they treat the binding of monomers to the growing tip of the
copolymer as a simple, usually single-step, process. However, more
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generally, one may wish to study models in which polymerization
occurs via a more detailed series of steps, as in Fig. 1(d). For instance,
in order to explain the high accuracy observed in biological polymer
copying systems, Hopfield43 and Ninio44 independently introduced
the concept of kinetic proofreading: a reaction motif in which a
monomer undergoes a free energy consuming activation reaction
before it is polymerized into the copolymer. The introduction of
kinetic proofreading reaction motifs presaged the investigation of
more complex copolymerization mechanisms.35,45

In summary, models that allow for multiple monomer
types, intra-sequence correlations, reversible reactions, and
general, multi-step monomer inclusion reactions repre-
sent a wide class of copolymerization processes. Previous
techniques17–19,22,23,27–35,39–41,46–51,66–69 have not allowed analy-
sis of thermodynamically self-consistent models of generalized free
copolymerization processes in which monomer addition is given
by an arbitrarily complex network of reversible reactions with rates
that may depend on the terminal monomer type, and templated
copolymerization models with a high symmetry that can be mapped
to these free processes. Investigating the most general type of model
in this class would require simulation.

In this paper, we present a universal method for studying this
large class of copolymerization models. Drawing on the work of
Gaspard and Andrieux52 for analyzing linear copolymerization pro-
cesses, and Hill53,54 for analyzing absorbing Markov processes, we
present analytical methods for extracting: explicit expressions for the
probability of inclusion of a given monomer; the growth rate of a
copolymerization process; and the chemical work done by the pro-
cess. Our method removes the need to extract the same features by
simulation and often produces simple, analytic results.

In Sec. II A, we review and refine methods relating to absorb-
ing Markov chains that are crucial to understanding our approach.
In Sec. II B 1, we present our method. In Sec. III, we apply the
method to a few example processes to demonstrate its use and power
when considering models with certain features. First, we apply the
method to models for which the rate of adding new monomers only
depends on the monomer type being added. Next, we apply the
method to templated copolymerization systems with autonomous-
separation that do not have non-equilibrium kinetic proofreading
cycles. Finally, we solve a generalized version of Hopfield’s kinetic
proofreading model applied to a templated copolymerization system
with an autonomously separating product.

II. METHODS
A. Absorbing Markov chains

We begin by reviewing and adapting some diagrammatic tech-
niques introduced by Hill to analyze absorbing Markov chains.53,54

An absorbing Markov chain is a Markov chain for which any
trajectory through its state space with arbitrary initial conditions
will reach an absorbing state in finite time almost surely.55 We
can decompose the state space of an absorbing Markov chain into
absorbing states 𝒜 and transient states X such that the state space is
V = 𝒜 ∪X. Let us denote the rate function that describes the chain
as K : V × V → R+ such that K(x, y) is the rate of the transition from
state x to state y. Then, we denote a Markov process as the tuple
(V , K).

FIG. 2. Graphical representations of an absorbing Markov process to illustrate
the methodology outlined in Sec. II A. (a) Example absorbing Markov process
(X ∪𝒜, K), with two absorbing states, 𝒜 = {A, B}, and four transient states
X = {1, 2, 3, 4}. (b) The closed process starting at state 1, (X, K1). (c) The cycle
process ({c} ∪X/{1, 2, 3} = {c, 4}, K1,C) for the cycle C = 1→ 2→ 3→ 1
or C′ = 1→ 3→ 2→ 1.

Throughout this section, we shall refer to the absorbing Markov
chain given in Fig. 2(a), which possesses two absorbing states and
non-trivial cycles, for illustrative purposes.

1. Expectations of an absorbing process are steady
state averages of a “closed process”

We will derive expressions for four main quantities: the proba-
bilities of reaching certain absorbing states, the expected time taken
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to absorption, the expected net number of times traversing a given
edge before absorption, and the expected number of times that a
trajectory goes round a cycle before absorption. These quantities
depend on the starting (transient) state σ ∈ X and can be found
in terms of the “closed” process.54 The closed process is a modi-
fied version of an absorbing Markov chain in which transitions to
the absorbing states are redirected to the starting state. Figure 2(b)
shows the closed process starting at state 1 of our example absorb-
ing chain of Fig. 2(a). The closed process for a Markov process
(X ∪𝒜, K) starting at state σ is a new Markov process (X, Kσ) with
a rate function given by

Kσ(x, σ) = K(x, σ) +∑
A∈𝒜

K(x, A) (1)

for x ∈ X and agreeing with K on X ×X/{σ}.
The closed process has a unique stationary distribution for

the following reasons. From the definition of an absorbing Markov
chain, there exists a path from any state to an absorbing state, taking
finite time. Thus, in the closed process, there is a path from any state
to the starting state, taking finite time. The set of states including
the starting state and all those that may be reached from the start-
ing state is, therefore, positive recurrent and furthermore, this set is
the only recurrent set of states and will be reached from any other
state. Since there is only one recurrent set of states, there is a unique
stationary distribution.55

Expected quantities of an absorbing Markov chain, such as the
expected probability that a particular absorbing state is reached, can
be found in terms of steady state quantities in the closed process.
Whenever a trajectory of the original process reaches an absorbing
state, in the closed process that same trajectory would have been
reset back to the starting state. Hence, running the closed process
for long times is equivalent to generating many independent trajec-
tories to absorption for the original chain. Thus, averaging quantities

in the steady state of the closed process is equivalent to taking expec-
tations over independent trials of quantities in the absorbing chain.
It is worth noting that the dependence of expected quantities on
the starting state is encoded in the definition of the closed process.
Finally, we can see that the definition of the closed process may
permit self-transitions σ → σ, which, for continuous time Markov
processes, have little meaning. However, for the purposes of calcu-
lating steady state probabilities of the closed process they may be
ignored.

2. Steady state averages of the closed process are
calculated using the Markov chain tree theorem

Given that we can turn the calculation of expectations of
absorbing processes into steady state averages over closed pro-
cesses, we can make use of tools developed for analyzing the steady
state of Markov processes, such as the Markov chain tree theorem
(MCTT).56 The MCTT states that the steady state distribution of a
Markov chain with a unique stationary distribution may be found by
summing over rooted spanning trees of the process, where the tran-
sition rates are taken as weights on the edges of the graph. Explicitly,
let 𝒢 be a directed weighted graph, with weight K(e) for an edge e
of 𝒢. A spanning tree of 𝒢, rooted at a vertex ν, is a subgraph of 𝒢
with no cycles that connects all the vertices of 𝒢 and for which the
out degree of every vertex, except ν, is one. The sets of spanning trees
rooted at nodes 3 and 4 of the closed process given in Fig. 2(b), are
shown in Fig. 3. Denote the set of all spanning trees rooted at x by
𝒯(x). The MCTT states that the steady state probability π(x) to be
in state x is given by

π(x) =
∑

T∈𝒯 (x)
∏
e∈T

K(e)

∑
v∈X

∑
T∈𝒯 (v)

∏
e∈T

K(e) , (2)

with e ∈ T representing the edges of the tree. The denominator here
is simply a normalization constant.

FIG. 3. Spanning trees of the closed
processes rooted at (a) node 3 and (b)
node 4 derived from Fig. 2(b), with nodes
labeled in the first spanning tree and
all other trees following the same posi-
tioning. The spanning trees have been
arranged in terms of the self-avoiding
walk between nodes 1 and 3 for the trees
rooted at node 3 and arranged in terms
of the self-avoiding walks between nodes
1 and 4 for the trees rooted at node 4.
More details on the relationship between
self-avoiding walks and spanning trees
are given in Appendix A.
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We can define steady state currents from the steady state distri-
bution of the closed process that corresponds to expected currents of
the absorbing chain. Let a subscript σ denote quantities in the closed
process starting at state σ. Then, πσ is the steady state probability dis-
tribution and Kσ the rate function. The current along a given edge,
e = x → y, is given by the probability to be in state x, πσ(x), multi-
plied by the rate along said edge. We can, therefore, write the steady
state current along all edges that originally led to absorbing states as

JTot(σ) = ∑
A∈𝒜
∑
x∈X

πσ(x)K(x, A), (3)

where, as before, X is the set of transient states and 𝒜, the set of
absorbing states. JTot(σ) is the expected total current to absorbing
states from state σ, and, therefore, its reciprocal is the expected time
to absorption.

For the example process shown in Fig. 2, we present the span-
ning trees of the corresponding closed process rooted at node 3 and
4 in Fig. 3. Given the spanning trees, we can directly write down the
total current to the absorbing states as

JTot(1) =
1
𝒩
[kA[r12r24r43 + r12r23(r42 + r43 + kB)

+ r13((r43 + kB)(r21 + r23 + r24) + r42(r21 + r23))]
+ kB[r12r23r34 + r12r24(r31 + kA + r32 + r34)
+ r13r34(r21 + r23 + r24) + r13r32r24]], (4)

where 𝒩 is the normalization term, given in Appendix B. The terms
multiplied by kA are the partial current to absorbing state A, i.e.,
the current along transition 3→ A, coming from the trees rooted
at node 3, and equivalently for kB with state B, i.e., the current along
transition 4→ B, coming from trees rooted at node 4.

3. Absorbing probabilities
Given a Markov chain with multiple absorbing states, we can

ask for the probability of absorption in each absorbing state in the
long time limit. The probability that a trajectory eventually ends in
a specific absorbing state can be calculated from the closed process,
by dividing the expected current along transitions that originally led
to the absorbing state in question by JTot(σ) [Eq. (3)]. Therefore, the
absorption probabilities can be written

P[σ → A] =
∑

x∈X
πσ(x)K(x, A)

∑
B∈𝒜
∑

x∈X
πσ(x)K(x, B) , (5)

using the notation P[σ → A] to denote probability of being absorbed
to A given that the trajectory started in state σ. It is worth not-
ing here that given that this quantity is a ratio of currents, there is
a factor of πσ in both the denominator and the numerator of the
expression. In practice, we see that the normalization factor from
the MCTT [Eq. (2)] cancels out, which simplifies the quantities in
the calculation.

For our example process shown in Fig. 2, we can use the partial
currents to absorbing states A and B to write down the absorbing
probabilities

P[1→ A] = 1
𝒩 JTot(1)

kA[r12r24r43 + r12r23(r42 + r43 + kB)

+ r13((r43 + kB)(r21 + r23 + r24) + r42(r21 + r23))],

P[1→ B] = 1
𝒩 JTot(1)

kB[r13r34(r21 + r23 + r24) + r13r32r24

+ r12r23r34 + r12r24(r31 + kA + r32 + r34)]].

(6)

The normalization factor, 𝒩 , propagated through from Eq. (2),
conveniently cancels out with the 1/𝒩 implicit in Jtot.

4. Counting edge and cycle transitions
In this subsection, we shall calculate the expected net number of

times traversing a given edge of an absorbing Markov process before
absorption. In addition, we shall calculate the expected number of
times a non-recurrent cycle of an absorbing Markov process is tra-
versed before absorption. Both of these will be of use later in defining
a notion of chemical work.

To calculate the net number of times crossing a given edge, we
find the expected current along the transition x ⇋ y, between states
x and y of an absorbing process, (X ∪𝒜, K), as in Sec. II A. The
expected current through this edge, denoted Jx⇋y(σ), given starting
in state σ ∈ X, can be calculated from the closed process, (X, Kσ), as
in Eq. (1), as the difference between the steady state probability to
be in state x multiplied by the rate from x → y and the steady state
probability to be in state y multiplied by the rate from y → x,

Jx⇋y(σ) = πσ(x)K(x, y) − πσ(y)K(y, x). (7)

The net number of times traversing this edge (number of observed
transitions x → y - number of observed transitions y → x) before
absorption is, then, just the ratio between this current and total
current to absorbing states,

Nx⇋y(σ) =
Jx⇋y(σ)
JTot(σ)

. (8)

The current, given in Eq. (7), is intimately linked to the notion of
cycles as pointed out by Wachtel et al.57 and detailed in Appendix C.
Thus, we also wish to find the expected number of times travers-
ing a non-recurrent cycle. We define a non-recurrent cycle for a
Markov chain to be a cycle of states, where each state, aside from
the originating state, does not appear more than once in the cycle.
For example, the cycle A → B → C → D → A is non-recurrent, but
A → B → C → D → B → A is recurrent. Note that the originating
state is arbitrary, and so A → B → C → D → A is equivalent to
B → C → D → A → B. For a stationary process, the expected fre-
quency with which a cycle is completed can be calculated from the
one-way cycle current,54,58 which is the probability current going
around the cycle. For a chosen non-recurrent cycle, the one-way
cycle current can be calculated diagrammatically from three terms.
First, a cycle term given by the product of rates around the cycle
in the chosen direction. Second, a spanning tree term that can be
found by collapsing the nodes in the cycle into a single node [in
Fig. 2(c), the cycle 1→ 2→ 3→ 1 has been collapsed in this way]
and finding the sum of spanning trees of this new graph rooted at the
collapsed cycle node. Finally, there is a normalization factor, which
is the same normalization factor as for the current, 𝒩 . Explicitly,
consider an absorbing Markov chain 𝒢 = (X ∪𝒜, K) and its closed
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process starting at σ ∈ X, 𝒢σ = (X, Kσ). Let C denote both the set
of edges and set of nodes of a cycle in the closed process. To calcu-
late the spanning tree term for the one-way cycle current, construct
a new Markov chain, the cycle process 𝒢σ,C = ({c} ∪ (X/C), Kσ,C),
where {c} ∪ (X/C) is the set of transient states of the original pro-
cess with the states in the cycle replaced by the single node c and Kσ,C
is given by

Kσ,C(x, c) =∑
i∈C

Kσ(x, i)

Kσ,C(c, x) =∑
i∈C

Kσ(i, x)

Kσ,C(c, c) = 0

(9)

for x ∈ X/C and agreeing with Kσ elsewhere. The cycle process for
the cycle C = 1231 (or C′ = 1321) of the example system in Fig. 2(a)
is shown in Fig. 2(c). Let 𝒯σ(x),𝒯C(x) be the sets of spanning
trees rooted at x of the closed process, 𝒢σ , and cycle process, 𝒢σ,C,
respectively. Then, the cycle current is given by58

JCyc(σ, C) =

Cycle
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(

e∈C
∏K(e))

Spanning Trees
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

T∈𝒯C
∑

e∈T
∏Kσ,C(e)

∑
x∈X

∑
T∈𝒯σ(x)

∏
e∈T

Kσ(e)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
normalization

. (10)

Note that, for the cycle term, the edges are taken from the original
process rather than the closed process. Given the cycle current for
the closed process, the expected number of circulations of the cycle

before absorption, NCyc(σ, C), is the ratio of the cycle current to the
total current to absorbing states

NCyc(σ, C) = JCyc(σ, C)
JTot(σ)

. (11)

For our example process, the expected number of circulations of
C = 1231 is

NCyc(1, C) = (r12r23r31)(r42 + r43 + kB)
𝒩 JTot(1)

, (12)

with the same implicit cancelation of normalization as before, since
JTot ∝ 1

𝒩 .
For an absorbing process starting at a given state, we may divide

the cycles into internal and external cycles. External cycles are those
which appear in the closed process and involve edges which were
absorbing edges in the original process. The set of all cycles, sorted
into internal and external, for the example process Fig. 2, is shown
in Appendix D. The external cycles correspond to the pathways
from the starting state to an absorbing state. Therefore, the expected
number of times traversing an external cycle before absorption will
be at most one and corresponds to the probability of following a
given path to absorption. Furthermore, the sum of Eq. (11) over all
external cycles will be one.

B. Copolymer methods
1. Philosophy of coarse-graining complex
underlying copolymerization reaction networks

Armed with the techniques for solving absorbing Markov
chains, here, we set out the method for the analysis of copolymer-
ization processes. Gaspard and Andrieux52 presented a method to

FIG. 4. (a) The step-wise process for an arbitrary model with three monomer types. This step-wise process is for a copolymer & xy. The edges colored red are the completion
edges. The flower like structure of the step-wise process can be seen with four petals, each connected at the starting state & xy. (b) One of the petals of the step-wise
process, which we use to define Λ±(z, y). Λ+(z, y) is defined as the sum of spanning trees rooted at the rightmost state & xyz and Λ−(z, y) is defined as the sum of the
trees rooted at the leftmost state & xy. (c) One of the petals [connecting & xy to & xyz, as in (b)] which has been linked back to the starting state. This graph is used to define
Q(z, y) as the sum of spanning trees rooted at the leftmost state & xy.
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analyze Markov polymerization processes in which each monomer
is added in a single step [i.e., if the internal reaction network shown
in Fig. 1(d) were trivial], assuming long polymers. We shall present
a method for mapping more complex models for the individual
polymerization step onto coarse-grained descriptions that can be
analyzed using this framework and, subsequently, show how to get
the behavior of the full model from the results.

Consider a growing copolymer with M monomer types, which
are assumed to be present in the environment at fixed concentra-
tions. At a coarse grained level, we can define a state space of finite
length sequences {x1x2 . . . xl∣xi ∈ {1, 2, . . . , M}, l ≥ 0}, where l is the
length of the sequence. Let us refer to the coarse-grained states in
this state space as completed states. On this coarse-grained level, a
sequence of length l may increase in length by one unit by polymer-
izing one of M units at the growing tip (x1x2 . . . xl → x1x2 . . . xlxl+1)
or it may decrease in length by one unit (x1x2 . . . xl → x1x2 . . . xl−1).
Such a coarse grained model is depicted in Figs. 1(a)–1(c) for free
polymerization, templated self-assembly, and templated polymer-
ization with simultaneous separation.

In general, copolymerization processes may be best described
by models in which the underlying copolymerization reaction net-
works are complex, featuring multiple sub-steps in arbitrarily com-
plex networks connecting the completed states, as suggested in
Fig. 1(d). Hence, overall, we could consider a copolymerization
process as having a tree-like structure with networks of reactions
connecting completed states, as in Fig. 4. Such a class of models is
wide-reaching, with many examples from the literature included in
this class.17–19,22,23,27,28,30–35,39–41,45–51

We will define a Markov process at the level of the coarse-
grained completed states that, by construction, preserves the prob-
abilities of the transitions between the completed states of the
fine-grained process and, therefore, preserves the statistics of the
sequences produced. The coarse-grained Markov process does not
preserve the distribution of the transition times between the com-
pleted states implied by the fine-grained model, which will, in gen-
eral, be non-Markovian. Moreover, it does not provide fine-grained
information on trajectories between the coarse-grained completed
states. However, the temporal details and information about the
fine-grained dynamics can be added back in at a later stage, once
the statistics have been analyzed at the coarse-grained level.

2. Identifying propensities in the coarse-grained
model

We find the transition rates of the coarse-grained model (here-
after labeled as propensities to avoid confusion with the underlying
rates of the fine-grained process) by considering first passage prob-
lems between completed states. From a given completed state, there
are M + 1 completed states that may be reached, corresponding to
the M possible additions of a monomer and the removal of the
monomer currently at the tip of the copolymer. For a first passage
problem, we can convert each of these reachable completed states
into an absorbing state by removing the transitions out of said states,
as in Fig. 4(a), in the same vein as Cady and Qian.59 Let us refer to
this absorbing Markov process as the step-wise process and define
step to mean the addition/removal of a monomer.

We shall work with the assumption that the transition rates
depend on the two monomers at the growing tip of the copolymer
following.1,17–19,21–23,36–38,52,60 There will therefore be M2 flavors of

this process corresponding to the combinations of the two terminal
monomers of the copolymer, the central state &xy (here & repre-
sents an arbitrary sequence). We wish to find the absorbing prob-
abilities, P[&xy → &xyz], z ∈ {1, . . .M}, P[&xy → &x] given an
initial condition of the central state & xy. As outlined in Sec. II B 1,
Eq. (5), we can find these probabilities by constructing the closed
process and finding sums over spanning trees rooted at different
states. The step-wise process has M + 1 petal-like graphs each con-
nected to the central state but disconnected from each other. Due to
this structure, any sums over spanning trees of the full process will
factorize into a product of sums over spanning trees of the petals.
Thus, we find that the absorbing probabilities take the following
form:

P[&xy → &xyz] = 1
𝒩

Λ+(z, y)
⎡⎢⎢⎢⎢⎣
∏
z′≠z

Q(z′, y)
⎤⎥⎥⎥⎥⎦

Q(y, x),

P[&xy → &x] = 1
𝒩

Λ−(y, x)∏
z

Q(z, y).
(13)

Here, z ∈ {1, . . . , M}, 𝒩 is the normalization factor from Eq. (2);
Λ+(z, y) is the sum over spanning trees of the petal connecting
states monomers & xy and & xyz, rooted at the forward completed
state & xyz; Λ−(y, x) is the sum over spanning trees of the petal
connecting states monomers & x and & xy, rooted at the backward
completed state & x, Fig. 4(b); and Q(y, x) is the sum over spanning
trees of the petal connecting states & x and & xy, linked back to the
central state and rooted at the central state, i.e., with edges redirected
to the starting state as in the closed process, as in Fig. 4(c). Since Q
is a sum over spanning trees rooted at the node to which edges have
been redirected, the sum takes the same form for both the forward
and backward petals, only depending on which two completed states
it is connecting.

From these probabilities, we see that choosing propensities ω±yx

for the transitions &x
ω+yxÐÐÐ→ &xy and &xy

ω−yxÐÐÐ→ &x such that

ω±yx =
Λ±(y, x)
Q(y, x) (14)

not only preserves the ratios of probabilities of transitions to com-
pleted states, but also ensures that ω±yx only depends on monomers
x and y.

We note here that this coarse graining process is different from
lumping,55,61 in which the state space is reduced while attempting to
retain trajectory dynamics. In our approach, the coarse-grained pro-
cess does not reproduce the dynamics of the fine-grained process,
only the statistics of the completed states that are visited. How-
ever, dynamic quantities may be extracted exactly from the step-wise
process, as we show in Sec. II B 4.

3. Solving the coarse-grained model
We now use the methods developed by Gaspard and

Andrieux52 to solve the coarse-grained Markov model over the
completed states with propensities ω±yx. Gaspard and Andrieux’s
approach considers a frame of reference that is comoving with the
tip of the growing polymer and assumes that the state of the tip
and nearby monomers reaches a stationary distribution to derive
quantities at this steady state, such as the set of tip incorporation
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velocities vx (the rates of adding monomers to a copolymer & x), the
tip probabilities μ(x) (the probability at a given time that the grow-
ing polymer is in state & x), and the pair tip probabilities μ(x, y)
(the probability of being in state & xy). However, we note that the
time-dependent information is not physical at this stage due to
the coarse-graining process. The above quantities are found from
solving the following equations:52

vx =
M

∑
y=1

ω+yxvy

ω−yx + vy
, (15)

μ(x) =
M

∑
y=1

ω+xy

ω−xy + vx
μ(y), (16)

μ(x, y) = ω+yx

ω−yx + vy
μ(x). (17)

Using μ and v, we can calculate the statistics of the copolymer
sequence far behind the growing tip.52 We note that the distribu-
tion of monomers at the tip μ(x) is different from the distribution
of monomers at sites behind the tip; we assume that this distribu-
tion reaches some limit far behind the growing tip in the bulk of the
copolymer. This limiting distribution describes the probability that a
monomer in the bulk of the copolymer takes a value x. Using ε(x) to
denote the frequency of monomer x in the bulk of the copolymer,52

ε(x) = μ(x)vx

∑
y

μ(y)vy
. (18)

We may similarly define ε(y∣x) as the probability that in the bulk of
the copolymer, a monomer y is observed given a monomer x behind
it. ε(x) and ε(y∣x) fully characterize the statistics of the bulk copoly-
mer since under our assumptions, transitions only depend on the
two monomers at the tip; the completed copolymer sequence is itself
a Markov chain.23

4. Extracting properties of the fine-grained model
from the solution of the coarse-grained model

The easiest quantities to extract are the frequencies of
monomers in the bulk of the copolymer. These quantities are
identical in the coarse-grained and fine-grained models, since the
coarse-graining preserves the statistical distribution of the sequences
produced. Therefore ε(x), as defined in Eq. (18), and ε(y∣x) apply
directly to the fine-grained process.

The tip probabilities μ above give the fraction of the time
spent in each tip state in the coarse-grained model. However, the
coarse-grained model will not reproduce the time series of the fine-
grained model, but only the sequences of completed states visited.
We, therefore, quotient out the lifetime τ(x, y) of the tip state (x, y)
to obtain the frequency with which the tip states are visited in the
coarse-grained model,

ξ(x, y) = 1
M
∑

x′ ,y′=1

μ(x′ ,y′)
τ(x′ ,y′)

μ(x, y)
τ(x, y) , (19)

τ(x, y) = 1

ω−yx +
M
∑
z=1

ω+zy

. (20)

This frequency defines a new tip distribution ξ. ξ(x, y) is the fre-
quency that a given pair of monomers x, y is observed at the tip
of the growing copolymer in the sequence of transitions. This dis-
tribution, ξ(x, y), applies to both the coarse-grained model and
the sequence of completed states visited in the full fine-grained
model. It can, therefore, be used to find averages of the key dynamic
properties.

For example, we can calculate the probability P that a growing
copolymer increases in length at each step of the step-wise process.
P is calculated by averaging the probability of adding a monomer
over the possible states & xy:

P =
M

∑
x,y=1

ξ(x, y)

M
∑
z=1

ω+zy

ω−yx +
M
∑
z=1

ω+zy

. (21)

Upon averaging out the sequence information, we may treat the
growth of a polymer as a random walk with probability P of stepping
forwards and (1 − P) of stepping back. We can find the expected
number of monomer inclusion/removal steps per net forward step
as 1/(2P − 1) (for proof see Appendix E). A number of quantities
scale with the total number of steps rather than the net number of
steps, making the number of steps per net forward step a necessary
quantity. For example, in order to find the expected time taken per
net forward step, one can find the expected time to absorption for
the step-wise process T(x, y) for a copolymer in state & xy by calcu-
lating 1/JTot(& xy) for the step-wise process using Eq. (3). Then, the
expected time per net forward step is

τstep =
1

2P − 1

M

∑
x,y=1

ξ(x, y)T(x, y). (22)

1/τstep is, therefore, the physical average growth rate of the
copolymer in the fine-grained model.

We may also calculate the chemical work done by the system
in producing the copolymer. In a purely chemical system, with no
time-varying externally applied protocols, the entropy increase of
the universe is given by the decrease in the generalized free energy
of the chemical system, including any coupled reservoirs of fuel
molecules.20 Since the total free energy must decrease, any increase
in one contribution must be paid for by a decrease of at least the
same magnitude in another contribution. It is common to describe
the latter subsystem as doing work on the former.

For the polymerization systems analyzed here, the generalized
free energy can be split into a term corresponding to the chemical
free energy of the system averaged over the uncertain state of the sys-
tem and a term related to the entropy arising due to the uncertainty
of the state occupied.62

𝒢 =∑
a

p(a)Gchem(a) +∑
a

p(a) ln p(a), (23)

where we use natural units such that kBT = 1. Here, a is a chemical
state of the system as a whole, Gchem(a) is the chemical free energy
of state a, and p(a) is the probability that the system occupies the
state a. Gchem(a) = −ln Za, where Za is the partition function of the
system (explicitly including any large chemical buffers) restricted to
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the chemical state a. Za represents the contribution of concentra-
tions and bond strength to the favorability of a molecular state. The
principle of detailed balance20 states that the chemical free energy
change associated with a transition from a to b is given by

Gchem(b) −Gchem(a) = − ln(K(a, b)
K(b, a)). (24)

The second term in Eq. (23) is information theoretic in charac-
ter; it is equal to the negative of the Shannon entropy associated with
the distribution over chemical states. For the systems studied here,
in which we consider infinitely long copolymers that have reached
steady state growth, the only relevant contribution to this term is the
increase in Shannon entropy of the copolymer sequence produced
as the polymer gets longer. Since the copolymer sequence is itself a
discrete time Markov chain23 the additional entropy per net forward
step (the entropy rate) can be readily calculated,63

H = −
M

∑
x,y=1

ε(x)ε(y∣x) ln ε(y∣x), (25)

with x, y representing the monomer types. Since the purpose of
a copolymerization system is often to produce a low entropy (or
“accurate”) sequence, it is reasonable to think of the chemical free-
energy decrease per net forward step as the chemical work done to
reduce the information entropy of Eq. (25) below that of a uniform,
random polymer. Extending the definition provided by Poulton
et al.,23 we may define the efficiency of copolymerization as

η = ln M −H
ln M +𝒲 chem

≤ 1, (26)

where ln M is the entropy per monomer (or entropy rate) of a uni-
form, random copolymer with M monomer types and 𝒲 chem is
the average decrease in chemical free energy per net forward step.
This efficiency is, then, the ratio between the entropy drop due to
the accuracy of the copolymer compared to that of a random one
(ln M −H) and the chemical work used to drive the system (𝒲 chem)
above that required to make a random copolymer in equilibrium is
(−ln M).64

The expected work done during a transition adding or remov-
ing a monomer given starting in completed state & xy can be
calculated by summing the contribution from Eq. (24) multiplied
by the expected net current along the edge a⇋ b prior to absorption
over all the edges in the step-wise process,

wchem(x, y) =

−ΔGchem(x, y) =∑
b>a

ln(K(a, b)
K(b, a))Na⇋b(&xy), (27)

where Na⇋b(& xy) is the expected net number of times traversing
edge a⇋ b before absorption given started in the central state of the
step-wise process & xy, as in Eq. (8). This sum will also require con-
tributions from edges that lead to absorbing states. For such edges,
the rate for the reverse transition in the logarithm of Eq. (27) is the
rate from the full process.

Equivalently, however, as outlined in Appendix C, we may find
this chemical work by considering the non-recurrent cycles of the
process.57 For a given internal cycle, C, we may define the affinity20

A(C) = ln
∏
e∈C

K(e)

∏
e∈C′

K(e) , (28)

where the products are over the edges e composing the cycle and C′,
which is the cycle with the edges in a reversed direction. For external
cycles, we may define the affinity in the same way, inferring the rate
for the reversed edge of the transition to absorbing states from the
full process. The expected work done before absorption of the cycle
C having started in the state & xy is

wchem(x, y) =

−ΔGchem(x, y) =∑
C

A(C) JCyc(σ, C) − JCyc(σ, C′)
JTot(&xy)

. (29)

Averaging wchem(x, y) with ξ and multiplying by the expected num-
ber of steps per net forward step gives the expected chemical work
done per net forward step,

𝒲 chem =
1

2P − 1

M

∑
x,y=1

ξ(x, y)wchem(x, y). (30)

Furthermore, the forms of Eqs. (22) and (30) may be applied to
an arbitrary quantity for which one can find the expected value in the
step-wise process starting in state & xy. Let this arbitrary quantity
be A(x, y). One can then average this quantity using the distribu-
tion ξ to obtain the expected value of the quantity per step. Then,
if appropriate, multiplying by 1/(2P − 1) gives the expected value
of the quantity per net forward step. In practice, as shall be seen in
Sec. III C, since the quantities we wish to calculate may be written
in terms of sums over spanning trees, the quantities for the step-
wise process may be written as a sum over the terms per petal, with
the quantity for a given petal factorizing into some quantity that
depends on the petal multiplied by Q’s for the other petals.

5. Stalled growth
Explicit simulation of copolymer growth is particularly chal-

lenging in regimes where P ≳ 0.5, since many backward and forward
steps are taken per net forward step. At P = 0.5, then, the process
will not reliably produce copolymers; for P < 0.5 polymers will tend
to shrink. In general, for P = 0.5, we can say the model has stalled.
Our approach is particularly beneficial in this case; indeed, it is pos-
sible to check whether a model is at the stall point by considering
an M ×M dimensional matrix of the ratios of forward to backward
propensities,52 Zyx = (ω+yx

ω−yx
) = Λ+(y,x)

Λ−(y,x) . The model is at the stall point
if and only if

det(Z − 𝟙M) = 0, (31)

where 𝟙M is the M ×M identity matrix. The polymer will shrink if
det(Z − 𝟙M) < 0, Since Z gives the ratios of adding a monomer to
removing one, this condition essentially says that models will stall
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if the total rate of adding a monomer is equal to the total rate of
removing one.

In a typical model, there exists at least one parameter that con-
trols the driving. Often this parameter is related to the backbone
strength of the polymer produced: e.g., the free energy drop asso-
ciated with the formation of a generic backbone bond ΔGpol. This
parameter will be present in the rates of each external cycle so that
by tuning it, the model can be moved all the way from stalling to
irreversible growth, whereby monomers cannot be removed once
polymerized. If such a parameter exists, we may rephrase the stall
condition, given in Eq. (31), in terms of this parameter. For exam-
ple, for the case of the parameter being ΔGpol, we may find some
threshold value Γ such that the model will stall for ΔGpol = Γ.

6. Limiting behavior
We shall note two limits for which we may give analytic expres-

sions for the frequency of monomer types in the copolymer bulk
for all models. First, consider the case that the system is at the
stall point [Eq. (31)]. In general, entropy production can still occur
within cycles in the step-wise process; therefore, these frequencies
cannot be determined from equilibrium arguments and are non-
trivial. Nonetheless, at the stall point, we may express the monomer
frequencies in the bulk relatively simply. The frequency εstall(x) of
monomer x is proportional (up to normalization) to the cofactor of
the diagonal element (corresponding to monomer x) of the matrix
(𝟙M − Z), as proven in Appendix F. For example, for M = 2,

εstall(1)∝ 1 − ω+22

ω−22
,

εstall(2)∝ 1 − ω+11

ω−11
,

(32)

and for M = 3, we have

εstall(1)∝ (1 − ω+22

ω−22
)(1 − ω+33

ω−33
) − ω+23

ω−23

ω+32

ω−32
,

εstall(2)∝ (1 − ω+11

ω−11
)(1 − ω+33

ω−33
) − ω+13

ω−13

ω+31

ω−31
,

εstall(3)∝ (1 − ω+11

ω−11
)(1 − ω+22

ω−22
) − ω+12

ω−12

ω+21

ω−21
.

(33)

On the other end of the spectrum, we can also solve for the
monomer bulk frequencies in the irreversible limit, where ω−yx = 0
for all x, y. Intuitively, we could consider the Markov process on
the state space {1, . . . , M} representing copolymers with a given
monomer at its tip and the transitions between those states with rates
K irrev(x → y) = ω+yx. The steady state of this process will give the
time dependent frequencies of having a given monomer at the tip of
the copolymer. Therefore, dividing by the time spent in each state
will give the bulk frequencies. A nice way to write out these frequen-
cies in the style of the methods described thus far is as a sum over the
spanning trees on the complete graph on M vertices with rate func-
tions K irrev(x, y) = ω+yx. Explicitly, we may write these frequencies
(up to normalization) as

εirrev(x)∝
⎛
⎝ ∑T∈𝒯 (x)

∏
e∈T

Kirrev(e)
⎞
⎠

M

∑
y=1

ω+yx, (34)

where 𝒯(x) is the set of spanning trees of the complete graph on
M vertices. This expression is derived formally in Appendix G. For
example, with M = 2,

εirrev(1) =
ω+12(ω+11 + ω+21)

ω+12(ω+11 + ω+21) + ω+21(ω+12 + ω+22)
,

εirrev(2) =
ω+21(ω+12 + ω+22)

ω+12(ω+11 + ω+21) + ω+21(ω+12 + ω+22)
.

(35)

7. Simplification for factorizable propensities
The presented method applies to arbitrary complex copolymer-

ization models obeying the structure of Fig. 4. However, if we make
some further common assumptions, much of the analysis simplifies.
For example, consider the case in which the ratios of propensities
may be factored,

ω+yx

ω−yx
= Λ+(y, x)

Λ−(y, x) = Y(y)X(x), (36)

where Y is a function of monomer y only and X is a function of
monomer x only. Intuitively, such a condition holds in the cases
where there are no direct, type-dependent interactions between
monomers in the growing polymer, such as when monomers only
interact with a template.1,23,24,27–38 Under such an assumption, mul-
tiple calculations simplify, see Appendix H. For example, the stall
condition becomes simply that the model will stall at

∑
x

X(x)Y(x) = 1. (37)

Bulk frequencies at stall are just,

εstall(x) = X(x)Y(x). (38)

III. EXAMPLE APPLICATIONS
We shall now consider some exemplar classes of models to: pro-

vide examples of how to utilize the methods; validate their accuracy;
and to show the types of quantities and information that may be
extracted.

A useful initial classification of these models is into those which
we shall call balanced. We shall refer to a model as being balanced
if its petals [see Fig. 4(b)] are detailed balanced. Such models are
useful baseline checks as their cycles all have zero affinity, meaning
no chemical work is done internally and, hence, the only contribu-
tions to chemical work are from external cycles. Furthermore, these
models exhibit a proper equilibrium at the stall point and allow for
equilibrium arguments to validate the method at this point. It is
worth noting that although related to the notion of detailed bal-
anced, the full model with its infinite state space is not detailed
balanced.

A. Stalling behavior in a polymerization model
with no neighbor–neighbor interactions

We shall start with the simplest case, where the propensities in
the coarse-grained model only depend on the monomer type being
added/removed: ω±yx = ω±y, such as in a simple model for tem-
plated self-assembly, shown in Fig. 1(b). Assume that there exists
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a backbone free energy ΔGpol controlling the driving as described in
Sec. II B 5. Any spanning tree in Λ± must involve at least one inci-
dence of ΔGpol, since it appears in every external cycle. Therefore, we
can split the ratio of propensities as follows:

ω+y

ω−y
= eΔGy eΔGpol , (39)

where ΔGy encompasses the rest of the details about the models. We
note, in general, that ΔGy may be a function of ΔGpol, however, in
many cases, it is not. These cases include when there is only one
completion reaction [highlighted in red in Fig. 4(a)] that contains
the dependence on ΔGpol or if the model is balanced. We may then
interpret −ΔGy as an effective binding free energy of monomer y. If
we think of ΔGpol as the free energy drive of the model away from
stalling, we look for a threshold value ΔGpol = Γ above which the
model will not stall. Using Eq. (37), we see that

Γ = − ln
⎛
⎝∑y

eΔGy
⎞
⎠
= − ln 𝒵, (40)

where 𝒵 is the partition function for a system with one state for each
monomer type, each state labeled by y and with free energy −ΔGy.
Furthermore, using Eq. (38), the bulk frequencies at the stall point
may be written as

εstall(y) =
eΔGy

∑xeΔGx
= 1
𝒵

eΔGy , (41)

which is the probability of selecting a state y with free energy −ΔGy
as predicted by equilibrium statistical mechanics. In these results,
−ΔGy looks like the equilibrium contribution to free energy, and the
results follow fairly directly in equilibrium. However, these results
hold even if the process involves fuel-consuming cycles: entropy may
still be being produced at stall. In such cases, the effect of break-
ing the equilibrium will be to change the effective free energies of
selecting a given monomer type.

B. Balanced models of templated polymerization
with autonomous separation

Next, we shall consider a class of models where the ratio of
propensities may be written as

ω+yx

ω−yx
= eΔGy e−ΔGx eΔGpol. (42)

As before, ΔGpol, coming from the polymerization reactions repre-
sents the driving of this process. Such a class of models includes,
most notably, balanced models of templated polymerization with
autonomous separation.23 In these cases, the breaking of the pre-
vious copy-template bond every time a new bond is formed enforces
the structure in Eq. (42). We shall assume, as in Ref. 23, that ΔGy is
independent of ΔGpol.

Using Eqs. (37) and (38), we find the stall point to be ΔGpol

= Γ = −ln M and the bulk frequencies at stall εstall(y) = 1
M , where M

the number of monomer types. Physically, we can understand these
results by considering balanced models of templated polymeriza-
tion with autonomous separation. For such models, by definition,
there is no entropy production in internal cycles and therefore, the

stall point must be thermodynamic equilibrium. In such models, the
only driving comes from the polymerization ΔGpol and the entropic
effect having M monomers to choose. These two effect balance at
equilibrium.64

Next, let us consider the limit that the completion reactions
highlighted in red in Fig. 4(a) are much slower than the other reac-
tions. Explicitly, let k be some rate constant at the same order of
magnitude of the rates of the process that are not the rates for
the completion transitions indicated in red in Fig. 4(a). Write the
completion rates as kcomR+com(y, x), where kcom ≪ k is a rate con-
stant controlling the overall speed of the completion reactions and
R+com(y, x) provides any sequence dependence. Similarly, the reverse
transitions along the completion edges have the rate kcomR−com(y, x).
Furthermore, let there be ncom such completion reactions in a given
petal of the step-wise process (we shall assume this number is the
same for all pairs of monomers x, y).

Assume for simplicity that all completion reactions, R±com(y, x),
take the same form in a given petal. Then, we can write the sum over
spanning trees Q(y, x) as

Q(y, x) = 1
ncom

Λ−(y, x)
kcomR−com(y, x) + 𝒪(

kcom

k
), (43)

since Λ−(y, x) has first order terms in kcom/k. This fact can be seen
from noting that the leading order terms in Q(y, x) are the trees with
no completion reactions and the leading order terms in Λ−(y, x) are
those same leading order trees of Q(y, x), except with one comple-
tion reaction added in. There are ncom such completion reactions
and each adds the same leading order term to Λ−(y, x). With Q(y, x)
taking this form, and remembering Eq. (42), the propensities take
the following form:

ω+yx = ncomkcomR−com(y, x)eΔGy−ΔGx+ΔGpol + 𝒪(kcom

k
)

2

,

ω−yx = ncomkcomR−com(y, x) + 𝒪(kcom

k
)

2

.
(44)

The ncomkcom term cancels in ratios of ω±yx variables and, therefore,
does not affect the sequence statistics. Thus, in the slow completion
limit, such models are only affected by the binding free energy differ-
ences (ΔGy − ΔGx), the driving (ΔGpol), and the nature of the final
completion step (R−com). Therefore, the finer details do not affect the
statistics of the polymers.

Assuming that all completion edges are associated with the
same free energy change −ΔGpol, so that R−com(y, x) = e−ΔGpol , we may
solve for the statistics explicitly. For the case of two monomer types,
M = 2, we find the bulk frequency to be (Appendix I):

ε(1) = (1 − 1
2
(e−ΔGpol − 1)(e−DG − 1)

+ 1
2

√
(e−ΔGpol − 1)2(e−DG − 1)2 + 4e−DG)

−1
, (45)

where DG = ΔG1 − ΔG2. This expression is plotted in Fig. 5 for
DG = 4. From this expression, we can confirm explicitly by substi-
tuting in the stall driving, ΔGpol = −ln 2, that the bulk frequency,
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FIG. 5. Plots of the frequency of the less stably-bound (incorrect) monomer with
smallest binding free energy, labeled 2 for on- and off-rate discrimination bal-
anced models with kcom = 100 and kcom → 0. The binding free-energy difference
for these models is DG = ΔG1 − ΔG2 = 4. The models are topologically the Hop-
field model as in Fig. 6(a), with ΔGact = 0 and Min = Mact = 1. However, for the
on-rate discrimination, the free-energy terms are in the binding reactions instead
of the unbinding ones. The specific models are given in Appendix J.

indeed, becomes ε(1) = 1
2 . Furthermore, taking the irreversible

limit, ΔGpol →∞, we find that the bulk frequency becomes

ε(1) = eΔG1

eΔG1 + eΔG2
, (46)

which is the equilibrium statistical mechanics probability of choos-
ing state 1 with free energy −ΔG1, given state 2 has free energy
−ΔG2. Since the completion reactions are slow and irreversible, in
this limit, the process of selecting the monomers is allowed to equi-
librate. Therefore, copolymerization is simply sampling from the
equilibrium distribution of this process and, hence, tends to the
result predicted by equilibrium statistical mechanics.

Equation (44) shows that in the slow completion limit, the finer
details of the reaction network leading to the selection of a specific
monomer becomes unimportant and the models collapse onto a sin-
gle accuracy curve determined by DG, ΔGpol, and R−com. Conversely,
if we fix all parameters except kcom, we seem to see that the bulk fre-
quencies will tend monotonically to their limits as kcom/k→ 0, either
from above or below.

We can use this fact to compare bulk frequencies for certain
types of models. For example, we may compare on-rate discrimi-
nation,26 where incorrect monomers bind more slowly, to off-rate
discrimination,26 where incorrect monomers unbind more quickly.
An example model comparing on-rate and off-rate discrimination is
plotted in Fig. 5 for a model defined in Appendix J. Consider the bulk
frequency of an incorrect monomer. On-rate discrimination benefits
from fast polymerization and, therefore, tends to its slow polymer-
ization limit from below, whereas off-rate discrimination benefits
from allowing the process selecting monomers to equilibrate and,
hence, tends to its slow copolymerization limit from above. This
fact sets up a hierarchy for a given set of parameters and moder-
ate or strong driving; for the bulk frequency of incorrect monomers,
off-rate discrimination > slow copolymerization > on-rate discrimi-
nation. This observation is consistent with the results of Sartori and
Pigolotti26 and Poulton et al.23 for kinetic (on-rate) and energetic
(off-rate) discrimination.

C. Hopfield’s kinetic proofreading in a model
of templated copying with autonomous separation

For our final example, we shall consider an explicit model
of copolymerization, with Hopfield’s kinetic proofreading mecha-
nism incorporated into a templated copolymerization system with
autonomously separating product in a thermodynamically valid
way. From this setup, we can provide a fully worked example of an
explicit model and demonstrate the power of the method for ana-
lyzing sequences of models with recursive structures as we look at a
generalized version of Hopfield’s proofreading incorporated into a
model of templated polymerization with autonomous separation.

FIG. 6. Reaction rates of the (a) 1-loop and (b) N-loop Hopfield kinetic proofreading models implemented in a templated polymerization model with autonomous separation.
Each of these subfigures represents a single petal of the step-wise process as in Fig. 4, going from completed state & x → & xy. In both cases, the template is represented
by red squares. In (a) the inactive monomer is represented by a white circle and the activated monomers by a dark blue circle. In (b), different levels of activation are
represented by increasingly dark shades of blue circles. Furthermore, in (b) the numbers by the states represent the activation level of the monomer. In each case, the
desired pathway is highlighted with red arrows.
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Explicitly, we first consider the one-loop model of kinetic
proofreading shown in Fig. 6(a). There are two monomer types, the
right ones x = r and wrong ones x = w. Note that we have already
transformed the model so that the sequence of the copy is defined
relative to that of the template.35 These monomer types exist in
inactive and active states with concentrations Min and Mact, respec-
tively, relative to some reference concentration, with each monomer
type having the same concentration. As previously, we shall assume
the environment is sufficiently large such that these concentrations
remain constant.

The monomers may bind to the template either in an active
or inactive state with binding free energies −ΔGx for monomer
type x. Inactive monomers may be activated on the template with
a free-energy change of ΔGact. Finally, active monomers may be
polymerized into the copolymer chain, with a free-energy change
−ΔGpol. Subsequently, the penultimate monomer of the copolymer
unbinds from the template. Each of these reactions is assigned a
forward and reverse reaction rate consistent with the thermody-
namic model; the full model is illustrated in Fig. 6(a). Conceptually,
the proofreading motif functions by providing two opportunities
to reject the unwanted monomer w: first, when the unactivated
monomer binds and second, after it has been activated. To be effec-
tive, a non-zero affinity is required to drive the system around
the cycle of states in the correct order: unbound template site
→ unactivated monomer bound → activated monomer bound.20,43

We emphasize that this model differs from Hopfield’s original
description in two important ways: first, we consider a full, micro-
scopically reversible polymerization process, rather than a single
incorporation step with irreversible polymerization; and second,
we embed the proofreading motif into a non-trivial polymerization
process involving autonomous detachment from the template.

Given the model as described in Fig. 6(a), we first identify the
propensities ωxy connecting completed states. Due to the petal-like
structure, we can follow Eq. (13) and simply consider spanning trees
of the petal sub-processes illustrated in Fig. 6; Λ−(y, x) rooted at & x,
Λ+(y, x) rooted at & xy, and Q(y, x) for a petal connecting & x and
& xy. Explicitly writing out the sums of spanning trees, we obtain

Λ+1 (y, x) = [k1kactMin + kKPMact(k1e−ΔGy + kact)]kpole
−ΔGx , (47)

Λ−1 (y, x) = [k1kacteΔGact−ΔGy + kKPe−ΔGy(k1e−ΔGy + kact)]

× kpole
−ΔGpol , (48)

Q1(y, x) = [k1kacteΔGact−ΔGy + (kKPe−ΔGy + kpole
−ΔGx)

× (k1e−ΔGy + kact)]. (49)

Here, we add a subscript 1 to denote these quantities as apply-
ing to the simple, “1-loop,” Hopfield model, which we shall extend
to allow more loops later. We note that the ratio Λ+(y, x)/Λ−(y, x)
factorizes as in Eq. (36), and so, we can easily write down the stall
condition as ΔGpol = Γ with

Γ = − ln(k1kKPMacte−ΔGr + kact(kKPMact + k1Min)
k1kKPe−ΔGr + kact(k1eΔGact + kKP)

+ k1kKPMacte−ΔGw + kact(kKPMact + k1Min)
k1kKPe−ΔGw + kact(k1eΔGact + kKP)

). (50)

Note that by setting Min =Mact = 1, ΔGact = 0 in Eq. (50), Γ collapses
to −ln 2 as these conditions reduce the system to a balanced one with
a stall point at equilibrium, as in Sec. III B.

The frequency of the right and wrong monomers ε(x = r, w)
may be calculated from Eq. (18) (the calculation is implemented in
the supplementary material). We plot copying error, as represented
by ε(w), in Fig. 7(a), and demonstrate that it agrees well with the
results found from a Gillespie simulation65 of the same model. We
also compare to a “0-loop” version of the model, in which the inac-
tivated monomers and the inactivated monomer bound state are
omitted. As can be seen, the proofreading motif generally improves
accuracy when driven above its stall point ΔGpol = Γ. Indeed, we
may write down expressions for the bulk frequency in the irre-
versible limit (ΔGpol →∞) using Eq. (34). In this irreversible limit,
we recover Hopfield’s classic argument by taking some further lim-
its consistent with his analysis. Namely, letting Mact, kact, kpol → 0,
we find ε(w)/ε(r) = e2(ΔGw−ΔGr). In this limit, the ratio of incorrect
monomers to correct ones involves the square of the binding free
energy difference, reflecting the fact that two steps of discrimination
have occurred.

We may also write down expressions for the expected chemical
work done per net step of the process. This quantity will involve the
total current to absorbing states of the step-wise process for starting
with a copolymer & xy, which we may write as

JTot(y, x) = 1
𝒩(y, x)(Λ

+
1 (r, y)Q(w, y)Q(y, x)

+Λ+1 (w, y)Q(r, y)Q(y, x) +Λ−1 (y, x)Q(r, y)Q(w, y)),
(51)

where 𝒩 is a normalization factor that will cancel out of calcula-
tions. In order to track each of the terms here, we shall break down
the contributions to the chemical work done into three parts, one
for each of the petals present in the step-wise process. These three
petals correspond to adding a monomer type r, adding a monomer
type w, or removing a monomer type y. Let us label each of these
contributions to the chemical work with a subscript, 𝒢r(y, x) for the
transition & xy → & xyr, 𝒢w(y, x) for the transition & xy → & xyw,
and𝒢q(y, x) for the transition & xy → & x. From the r petal, we have

𝒢r(y, x) = [(−ΔGact + ln
Min

Mact
)k1kactkKPe−ΔGr(Min +MacteΔGact)

+(ΔGpol+ΔGr−ΔGy + ln Min−ΔGa)(k1kactkpolMine−ΔGy)
+(ΔGpol + ΔGr − ΔGy + ln Mact)kKPkpolMacte−ΔGy

×(k1e−ΔGr + kact)]
Q(w, y)Q(y, x)
𝒩(y, x)JTot(y, x) . (52)

The first line of Eq. (52) corresponds to the chemical work
associated with the internal cycle (inactive monomer binds, gets
activated, and the activated monomer unbinds). The second line cor-
responds to an external cycle: an inactive monomer binds to the
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FIG. 7. Analytical method applied to a 1-loop proofreading model [Fig. 6(a)],
compared to Gillespie simulation of the same model and a simpler 0-
loop model. For these data, the following parameters were used: ΔGr = 2,
ΔGw = −2, ΔGact = −1, Min = 1, Mact = 0.01, and k1 = kact = kKP = 1. The stall
point Γ is marked on each of the plots. The Gillespie simulations used a tem-
plate of length 2000 and were run until completion with the first monomer being
chosen as either r or w with probability 0.5. The statistics were averaged over
2000 copolymers per data point. The chemical work was calculated from the simu-
lation as (Inactive monomers)∗(ΔGact − ln(Mact/Min)) + L∗(ΔGpol + ln Mact),
where “Inactive monomers” is the number of inactive monomers taken out of the
environment and L is the length of the template.

template, is activated, and is polymerized into the chain with the
previous monomer y, detaching from the template. The third line
corresponds to the alternative external cycle: an active monomer
binds to the template and is polymerized with monomer y, unbind-
ing from the template. We may similarly write down 𝒢w(y, x) as
Eq. (52), except swapping r and w. Finally, the contribution to the
chemical work from the petal for removing monomer y may be
written as

𝒢q(y, x) = [ − (ΔGpol + ΔGy − ΔGx + ln Min − ΔGa)

× (k1kactkpole
ΔGact−ΔGy−ΔGpol) − (ΔGpol + ΔGy

− ΔGx + ln Mact)kKPkpole
−ΔGpol−ΔGy(k1e−ΔGr + kact)]

× Q(r, y)Q(w, y)
𝒩(y, x)JTot(y, x) . (53)

Here, only external cycles are possible. The first line corre-
sponds to monomer x rebinding to the template, monomer y being
depolymerized, this monomer being deactivated and an inactive
monomer y unbinding from the template; and the second line to x
rebinding, y being depolymerized, and an active monomer y unbind-
ing from the template. The distribution ξ(y, x) may be calculated
from Eq. (20) and P from Eq. (21) (both demonstrated in the
supplementary material), letting the chemical work done per net step
of the 1-loop model be written as

Δ𝒢 = 1
2P − 1 ∑

x,y∈{r,w}
ξ(y, x)(𝒢r(y, x) + 𝒢w(y, x) + 𝒢q(y, x)). (54)

This chemical work done is plotted for a certain set of para-
meters in Fig. 7(b) and is also compared to both the results of direct
simulation and the simpler “0-loop” model, which has chemical
work ΔGpol. The free-energy cost of the proofreading mechanism
diverges as ΔGpol → Γ since there will be a finite chemical work done
per monomer addition/removal step due to the proofreading inter-
nal cycle and the number of addition/removal steps per net step
diverges. Furthermore, for large ΔGpol, the work tends to be dom-
inated by ΔGpol, albeit very slowly, as shown by the orange line
gradually approaching ΔGpol (the blue line) in Fig. 7(b).

In addition, we can find an expression for the time taken per
net step forwards, Eq. (22). For this quantity, we need the explicit
expression for the normalization, 𝒩 . Similar to the chemical work,
we can split this term into contributions from the petal adding an r,
𝒩 r(y, x); from the petal adding a w, 𝒩w(y, x); from the petal remov-
ing monomer y, 𝒩 q(y, x) and a contribution from the central node.
These normalization terms come from the sums of the spanning
trees directed to the individual nodes in the closed step-wise process.
We see that

𝒩 r(y, x) = [k1Min(kacteΔGact + kKPe−ΔGr + kpole
−ΔGy)

+ kKPkactMact eΔGact + k1kactMin + kKPkactMact

+ k1kKPe−ΔGr]Q(y, x)Q(w, y), (55)

with a similar result for 𝒩w(y, x) except swapping r and w. Finally,
for the monomer removal petal, we have

𝒩 q(y, x) = kpole
−ΔGpol(k1e−ΔGy + kact + kacteΔGact)Q(r, y)Q(w, y).

(56)
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The total normalization is, then,

𝒩(y, x) = 𝒩 r(y, x) +𝒩w(y, x) +𝒩 q(y, x) +Q(y, x)Q(r, y)Q(w, y),
(57)

with the last term being the contribution from the starting, central
node. This normalization can be used in Eq. (51) to give the cur-
rent to absorbing states, which can be used in Eq. (22) to find the
expected time per net step. This time is plotted in Fig. 7(c), along-
side a simulation of the same model and the simplified 0-loop model
for comparison. Like the chemical work in Fig. 7(b), the time per net
step diverges as ΔGpol → Γ, since each monomer addition/removal
step will take finite time, but the number of such steps required for
a net forward step diverges. Unsurprisingly, the time taken for a
given driving for the Hopfield model is longer than that of the simple
model, due to the proofreading cycle.

Hopfield’s model for proofreading may be naturally extended
to include N activation stages instead of just one.48,50 We shall call
these extensions the N-loop Hopfield models. These models can be
solved recursively to write down expressions for the sums over span-
ning trees Λ±N(y, x), QN(y, x) as a function of the number of loops
N. We shall consider the model as in Fig. 6(b). A detailed derivation
of the sums over the spanning trees is given in Appendix K. From
these sums over spanning trees, we calculate the bulk frequencies,
the time taken per net step, and the chemical work done per net step
using recursive relations (see Appendix K).

For simplicity, we shall discuss the case where the monomer
binding free energy is only dependent on monomer type, not on
the activation stage; each activation stage is associated with a free
energy change of ΔGact; each active monomer is present in the envi-
ronment at a concentration Mact except for the inactive monomers
at concentration Min; and the overall rate constants are k1 for bind-
ing of inactive monomer, kKP for binding of active monomers,
and kact for activation of monomers. Under these assumptions, the
corresponding rates are given in Appendix K.

To reduce the frequency of incorrect monomers in the prod-
uct, we wish to have a low concentration Mact of active monomers
in solution to force the system into utilizing the proofreading cycles.
Indeed, the bulk error probability in the irreversible limit [calculated
using Eq. (34) and plotted in Fig. 8(a)] shows a strong improve-
ment with loop number for low Mact, but larger values of Mact lead
to a much worse performance and limited (or negative) returns to
increasing the number of loops.

However, for finite driving strength ΔGpol, we cannot allow this
concentration to be arbitrarily small. To see why, consider the stall
point Γ(N) derived in Appendix K and plotted for a certain set of
parameters in Fig. 8(b). It is observed that the stall point driving
increases monotonically with N and that this increase is faster and
tends to a higher limit for smaller Mact. We find that the limiting
Γ scales approximately linearly with −ln(Mact). Intuitively, intro-
ducing more monomer states at a low concentration in the environ-
ment destabilizes the polymer. For a small Mact and driving ΔGpol,
the depolymerization of the polymer into these activated states com-
petes with its tendency to grow by binding to and activating the
inactive monomers.

One drawback of proofreading with a large number of loops
is, therefore, that the tendency to disassemble the growing poly-
mer increases. A second effect is a tendency to introduce errors by
alternate pathways if Mact is non-zero. In particular, for Mact ≠ 0,

FIG. 8. Many-loop models have a limited efficacy for finite Mact for the proofread-
ing model introduced in Fig. 6. Plots of the error in the irreversible limit εirrev(w)
and the stall point driving Γ, for different values of the active monomer concen-
trations Mact and other parameters: ΔGr = 2, ΔGw = −2, Min = 1, ΔGact = −1,
and ks = 1. The N = 0 error is not shown for clarity, but is 0.5 for all Mact.

we observe in Fig. 8(a) a minimum in εirrev(w) for a relatively
small value of N. This minimum can be explained by splitting
the pathways by which a monomer can go from solution to being
incorporated into the polymer into two; either starting from a fully
inactive monomer or from a partially activated one. The pathway
starting with an inactive monomer will have the highest discrimi-
nation between the right and wrong monomers and will improve
exponentially with more loops, as demonstrated by the exponen-
tial decrease in error for Mact = 0. However, the probability that
a monomer taking this path will reach polymerization falls expo-
nentially with loop number at the same time. On the other hand,
the pathway from partially active monomers will give an error that
reaches some non-zero limit as the number of loops N increases.
Furthermore, the rate with which activated monomers bind to an
available template site and subsequently get incorporated into the
polymer will also tend to a constant. As such, the error will initially
decrease exponentially with N, but for non-zero Mact, will eventu-
ally become dominated by the less discriminating, partially active
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monomer pathways through which monomers are more likely to be
incorporated into the polymer.

Having calculated the error probability ε(w) at finite driving,
plotted in Fig. 9(a); having used ε(x, y) to calculate the entropy
rate; and having calculated Δ𝒢, we can evaluate the efficiency η, as
in Eq. (26) (see the supplementary material for demonstrations).
This efficiency is plotted in Fig. 9 for N = 0, 1, 5, 10 and a certain
set of parameters. Although accuracy is generally increased above
the stall point, we see that in this particular model, kinetic proof-
reading requires much more work than the minimum required to
generate information and as such is inefficient. In addition, the gra-
dient of the efficiency at minimum driving ΓN is zero for N > 0,

FIG. 9. Plots of (a) the error and (b) efficiency of the N-loop proofreading model
(Fig. 6) for a range of N, with the same parameters as in the one-loop Hopfield
case, shown in Fig. 7, as a function of driving ΔGpol. Proofreading is observed
to generally increase the accuracy above its stall point, but in a thermodynami-
cally inefficient way. The enhanced plot in the second graph shows the efficiencies
near the stall point for each of the loop numbers on a non-logarithmic scale to
emphasize the decreasing gradient at stall.

reflecting how at minimum driving, the number of monomer addi-
tion/removal steps diverges, but the chemical work done per such
step remains finite.

IV. CONCLUSION
We have presented a method for analyzing copolymerization

models with complex networks of reactions leading to the incor-
poration or removal of monomers. By coarse graining, a model
may be transformed into a simpler model that may be solved and,
thereafter, information from the fine-grained process may be put
back into the model to extract thermodynamic or kinetic quantities
such as chemical work done, molecule exchange, or time taken. The
approach allows for complex incorporation motifs to be considered
alongside the nearest neighbor interactions in a thermodynamically
well-defined model of polymerization with microscopic reversibil-
ity. We note that all of these features were present in the kinetic
proofreading example in Sec. III C. Moreover, phenomena such as
the shift in stall point with loop number and the non-monotonicity
of the error rate with the loop number rely on these features being
present in the model.

In general, this method provides a way to extract model pre-
dictions numerically quickly and without the need for simulations.
Doing so is particularly useful when simulating polymer growth is
slow, either due to the details of the incorporation process or because
the polymer is near its stall point. In addition, the approach makes
screening of a large parameter space for a given model topology
feasible.

In addition to the numerical performance, this approach allows
for analytic results in simpler models or those with helpful symme-
tries and in certain limits for more complex models. The process
of summing over the spanning trees is particularly well suited to
identifying the structure of the process and providing simplified
results.

Moving forward, it is an open question as to whether compo-
nents of the techniques developed here can be applied outside of
the context of infinitely long polymers whose tips have reached a
steady state. An obvious goal would be a simplified way to analyze
finite-length “oligomers.”24 More generally, we believe that the key
equation of this paper, Eq. (14), may be applied more generally for
the coarse graining of Markov processes and, in particular, that if a
set of states are enclosed between two boundary states, in the sense
that any path from one of the trapped states to outside must pass
through one of the boundary states, then this set of states may be
replaced by a pair of edges analogously to Eq. (14) that shall preserve
the steady state properties of the Markov process.

This framework could be applied to explore models of copoly-
merization processes such as those presented in Refs. 17–19, 22,
23, 27, 28, 30–35, 39–41, and 45–51, more straightforwardly or
more thoroughly. Alternatively, the method would allow for more
complex reaction steps to be included in such models. The frame-
work presented here is particularly useful when backward steps are
relevant, either when the system is weakly driven and, thus, operat-
ing near the stall point or when thermodynamics is of importance
or interest. We also predict that it will be useful to guide design
principles for synthetic copolymerization systems, which are often
particularly well-described by the class of models studied here.
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SUPPLEMENTARY MATERIAL

The supplementary material contains a C++ script imple-
menting the Gillespie algorithm that reproduces the data for the
1-loop Hopfield kinetic proofreading model presented in Fig. 7,
and a MATLAB script for numerically calculating quantities of the
1-Loop and N-Loop Hopfield kinetic proofreading models pre-
sented in Sec. III C and shown in the solid lines of Fig. 7 and the
points of Figs. 8 and 9.
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APPENDIX A: FACTORIZING SUMS
OF SPANNING TREES

We note here that sums of spanning trees can be factorized in
terms of self-avoiding walks (SAWs), a result which is both useful for
generating sets of spanning trees and allows us to make statements
about ratios of propensities of balanced models. For a given process,
𝒢 = (X, K), for which we wish to find the sum of spanning trees
rooted at x1 ∈ X, we may factorize this sum in terms of self-avoiding
walks (SAWs) between two vertices in the graph. Select some other
arbitrary vertex x2 ∈ X/{x1} and let 𝒮(x2, x1) be the set of SAWs
from x2 to x1. For each S ∈ 𝒮(x2, x1), we can construct 𝒢S = ({s}
∪ (X/S), KS) analogously to Eq. (9), whereby we collapse the nodes
S in the SAW into the single node s. The sum over spanning trees
rooted at x1 may then be written as

∑
T∈𝒯 (x1)

∏
e∈T

K(e) = ∑
S∈𝒮(x2 ,x1)

[∏
e∈S

K(e)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SAW term

⎡⎢⎢⎢⎢⎣
∑

T∈𝒯 S(s)
∏
e∈T

KS(e)
⎤⎥⎥⎥⎥⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Spanning tree term

, (A1)

where𝒯(x),𝒯 S(x) are the sets of spanning trees directed to x for the
original process 𝒢 and the new process 𝒢S. For example, in Fig. 3(a),
the spanning trees are arranged in terms of SAWs from node 1
to node 3, with the first row for SAW: 1→ 2→ 4→ 3; the second
row for 1→ 2→ 3; and the last three rows for 1→ 3. Similarly, for
Fig. 3(b), the trees are arranged in terms of SAWs from node 1 to
node 4 with row one for 1→ 2→ 3→ 4; row two for 1→ 2→ 4; row
three for 1→ 3→ 4; and row four for 1→ 3→ 2→ 4.

APPENDIX B: NORMALIZATION CONSTANT
FOR EXAMPLE ABSORBING MARKOV PROCESS

The normalization constant for the closed example process,
given in Fig. 2(b), can be found by considering the spanning trees
rooted at each of the nodes. Factorizing these in terms of SAWs, we
write

𝒩 = [r34r42r21 + r32r24kB + r32r21(r43 + r42 + kB) + r34kB(r24 + r23 + r21)
+ (r31 + kA)(r21r43 + r21kB + r42r21 + r23r43 + r23kB + r42r23 + r24r43 + r24kB)]
+ [r13r34r42 + r13r32(r43 + r42 + kB)
+ r12(r34r42 + r43r32 + r32kB + r32r42 + r43(r31 + kA) + kB(r31 + kA) + r42(r31 + kA) + r34kB)]
+ [r12r24r43 + r12r23(r42 + r43 + kB) + r13((r43 + kB)(r21 + r23 + r24) + r42(r21 + r23))]
+ [r13r34(r21 + r23 + r24) + r13r32r24 + r12r23r34 + r12r24(r31 + kA + r32 + r34)]. (B1)

The first square bracket corresponds to the trees rooted at node 1, organized by SAWs from node 3; the second, to trees rooted at 2 organized
by SAWs from 1; the third, to trees rooted at 3 organized by SAWs from 1; and the fourth, to trees rooted at 4 organized by SAWs from 1.
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APPENDIX C: EQUIVALENCE BETWEEN CHEMICAL
WORK CALCULATED FROM EDGES AND CYCLES

Here, we shall show the equivalence of chemical work for a pro-
cess calculated by summing over edges vs summing over cycles. For
this comparison, consider a process (X, K) without any absorbing
states (for simplicity) and such that every edge is microscopically
reversible, and let π(x) be the steady state probability to be in state x.
For an edge x ⇋ y, as described in Sec. II A 4, the net current through
this edge is

Jx⇋y = π(x)K(x, y) − π(y)K(y, x). (C1)

We can write π(x) in terms of the spanning trees by MCTT, and
by Appendix A, we may expand the sum over the spanning trees by
SAWs from y to x. For π(y), we may expand by SAWs from x to y
such that the spanning tree terms of both expansions are the same
and only the direction of the edges in the SAW terms is flipped. The
net current may then be written as

Jx⇋y =
1
𝒩
∑

S∈𝒮(y,x)

⎡⎢⎢⎢⎢⎣
K(x, y)∏

e∈S
K(e) − K(y, x)∏

e′∈S
K(e′)

⎤⎥⎥⎥⎥⎦

×
⎡⎢⎢⎢⎢⎣
∑

T∈𝒯 S(s)
∏
e∈T

KS(e)
⎤⎥⎥⎥⎥⎦

, (C2)

where 𝒮(x, y) is the set of SAWs from node x to node y; 𝒩 is the
normalization as in Eq. (2), and e′ is the edge in the opposite direc-
tion, i.e., if e = x → y, e′ = y → x; and the last bracketed term is the
spanning tree part for SAW, S, as in Eq. (A1). One of the SAWs
from y to x will simply be the single transition x → y, however, this
term will cancel out from the sum leaving just the non-trivial SAWs.
Taking a non-trivial SAW from y to x and multiplying by the rate

K(x, y) gives a cycle containing the edge x → y. Therefore, the cur-
rent may be written as a sum over cycle currents, as in Sec. II A 4,
of cycles which contain the edge x → y minus those which contain
y → x. Each of the edges contains a contribution to the chemical
work ln(K(x,y)

K(y,x)). The total chemical work before absorption is the
sum over all edges of these contributions,

𝒲 chem =∑
x⇋y

ln(K(x, y)
K(y, x))

Jx⇋y

JTot
. (C3)

Since Jx⇋y may be split up as a sum over cycles in this sum, we may
collect the parts of this sum corresponding to given cycles and con-
vert the sum over edges into a sum over cycles. By performing these
operations, we find the contribution to the chemical work from cycle
C to be ln( A(C)

A(C′)), i.e., the affinities as we might expect. Hence, the
sum over cycles is equivalent to the sum over edges.

APPENDIX D: CYCLES OF THE EXAMPLE
ABSORBING PROCESS

We divide the cycles of the example process, shown in Fig. 2(a),
into internal cycles, external cycles to absorbing state A, and external
cycles to absorbing state B. First, the internal cycles are

where the cycle is written out below in the clockwise direction. Similarly, we find the external cycles to state A,

Finally, the external cycles to absorbing state B are
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FIG. 10. Graphical representation of the random walk process considered.

APPENDIX E: NUMBER OF STEPS PER NET
FORWARD STEP OF A RANDOM WALK

Here, we shall derive the number of steps per net forward
step of a random walk. Let us set up a random walk as follows:
let the state space be the nodes {0, 1, . . .L}, where L is the length
of the walk (polymer). Let the transition 0→ 1 have probability 1,
i→ i + 1 for i = 1, . . .L − 1 have probability p, i→ i − 1 for
i = 1, . . .L − 1 have probability q = 1 − p, and let state L be an
absorbing state as in Fig. 10.

Then, we wish to find the expected number of steps to absorp-
tion given we start from state 0, for which we can utilize the spanning
tree methods with Eq. (22). Since the total rate out of any state sums
to one, the expected number of steps equals the expected time to
absorption. Thus, we can form the closed process starting at 0. Let
f (n) be the sum over spanning trees rooted at node n for the closed
process. f (n) is given by

f (n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L−1

∑
i=0

piqL−1−i for n = 0

pn−1
L−1−n

∑
i=0

piqL−1−n−i for n = 1, . . . , L − 1.
(E1)

From this equation, the expected number of steps before
absorption is

E[steps] =

L−1
∑

n=0
f (n)

p f (L − 1) . (E2)

By utilizing the formulas for finite geometric series, we can find the
expected number of steps to be

E[steps] = 1
2p − 1

(L − 1 − q
pL (

pL − qL

p − q
) + qL

pL +
pL − qL

pL−1 ). (E3)

Most of this expression is sub-linear in L and as such,

lim
L→∞

E[steps]
L

= 1
2p − 1

, (E4)

which is the net number of steps per net forward step.

APPENDIX F: THE FREQUENCY AT STALL IS GIVEN
BY THE DIAGONAL COFACTORS OF A MATRIX

We wish to show that, at the stall point, the frequency with
which a monomer appears in the bulk of the copolymer is propor-
tional to the cofactor of the corresponding diagonal element of a
matrix,

ε(x)∝ Axx, (F1)

where Aij is the cofactor of element i, j of the matrix 𝟙 − Z. To show
this relation, we will rely on the relationship between the cofactors
and vectors of the nullspace of a matrix. Let M be an arbitrary matrix
with a one dimensional nullspace, and let A be its matrix of cofactors.
Recall that

MAT = det(M)𝟙 = 0. (F2)

Thus, any column of AT is in the nullspace of M. In anticipation,
let Ð→μ be a vector in the nullspace of M and Ð→v be a vector in the
nullspace of MT . Since M has a one dimensional nullspace, then,

μx

μy
= Aix

Aiy
, (F3)

for some arbitrary i. Similarly,

vx

vy
= Axj

Ayj
, (F4)

for arbitrary j.
Looking at Eqs. (15) and (16), noting that near the stall point,

vz ≪ ω±y,x, we see that the tip probabilities μ(x) form a vector in
the nullspace of 𝟙M − Z and the tip velocities vx form a vector in the
nullspace of 𝟙M − ZT . Hence, we have that

μ(y)vy

μ(x)vx
= AjyAyi

AjxAxi
, (F5)

for arbitrary i, j. Thus, we may choose j = y and i = x leading to
cancellation such that

μ(x)vx

μ(y)vy
= Axx

Ayy
. (F6)

Since

ε(x) = μ(x)vx

∑
y

μ(y)vy
= Axx

∑
y

Ayy
, (F7)

we get the required result.

APPENDIX G: THE FREQUENCIES IN THE
IRREVERSIBLE LIMIT ARE GIVEN BY THE STEADY
STATE OF A PROCESS OF THE COMPLETE GRAPH

We wish to find an expression for the frequency with which
monomer x appears in the bulk of the copolymer in the irreversible
limit. This limit is such that the backward propensities ω−yx = 0.
With this assumption, from Eq. (15), we have

vx =∑
y

ω+yx. (G1)

With this form for the velocities, we may manipulate Eq. (16),

μ(x) =∑
y

ω+yx

∑
z

ω+zx
μ(y),

∑
z≠x

ω+zxμ(x) + ω+xxμ(x) =∑
y≠x

ω+xyμ(y) + ω+xxμ(x).
(G2)
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The last line is the equation for the steady state of a Markov process
with probability μ(x) to be in state x and rate ω+yx of transition from
state x to state y. Thus, set μ(x) to be the steady state probability
distribution of the Markov process on M states with transition rates
from state x to y given by ω+yx and vx = ∑yω+yx. Then, calculating

ε(x)∝ μ(x)vx, (G3)

gives the required result. Finding the distribution μ(x) in terms
of the spanning trees of the complete graph on M elements gives
Eq. (36).

APPENDIX H: SIMPLIFICATION OF RESULTS
FOR FACTORIZABLE RATIOS OF PROPENSITIES

We shall show that, if the ratio of propensities factorizes as in
Eq. (38), then we may simplify the stall condition and frequency of
monomers at stall. Thinking of the functions X and Y as column
vectors, since they have a discrete domain, the matrix Z may be
written,

Z =Ð→XÐ→Y T. (H1)

By a well-known result,70

det(𝟙M −
Ð→
X
Ð→
Y T) = 1 −Ð→Y TÐ→X = 1 −∑

x
X(x)Y(x). (H2)

Here, rearranging gives Eq. (39). As shown, the frequency of
monomer x in the bulk of the copolymer is given by the cofactor
of the diagonal elements of 𝟙M −

Ð→
X
Ð→
Y T . The cofactor Axx may be

written as

Axx = det(𝟙M−1 −
Ð→
X [x]
Ð→
Y T
[x]) = 1 −∑

y≠x
X(y)Y(y) = X(x)Y(x),

(H3)

using the stall condition, where
Ð→
X [x] is the vector

Ð→
X missing ele-

ment X(x), i.e.,
Ð→
X [x] = (X(1), . . .X(x − 1), X(x + 1), . . .X(M))T .

In addition, because of the stall condition∑xX(x)Y(x) = 1,

εstall(x) = X(x)Y(x) (H4)

is already normalized.

APPENDIX I: FREQUENCY FOR A BALANCED MODEL
WITH TWO MONOMER TYPES IN THE SLOW
POLYMERIZATION LIMIT

We shall derive the frequency of monomer x in the bulk
of the copolymer with propensities given by Eq. (46), cancel-
ing ncomkcom, with R−com = e−ΔGpol , and with M = 2. With these
propensities, Eq. (15) becomes

v1 =
v1

e−ΔGpol + v1
+ e−DGv2

e−ΔGpol + v2
(I1)

v2 =
eDGv1

e−ΔGpol + v1
+ v2

e−ΔGpol + v2
, (I2)

where DG = ΔG1 − ΔG2. These equations may be solved by the
following form the velocities:

vx = eΔGy−ΔGx vy. (I3)

Doing so reduces Eq. (15) to a quadratic equation,

0 = eDGv2
1 + (1 + eDG)(e−ΔGpol − 1)v1 + e−ΔGpol(e−ΔGpol − 2) (I4)

with one positive root,

v1 =
1
2
((1 − e−ΔGpol)(e−DG + 1)

+
√
(e−ΔGpol − 1)2(e−DG − 1)2 + 4e−DG), (I5)

when the system is not stalling. v2 can be found from in terms
of v1 as v2 = eDGv1. Furthermore, a quick check confirms v1 = 0 if
ΔGpol = −ln 2. Furthermore, with vy known, Eq. (16) is a simple
linear equation, and μ can be found as the eigenvector of the matrix

⎛
⎜⎜⎜
⎝

1
e−ΔGpol + v1

eDG

e−ΔGpol + v1
e−DG

e−ΔGpol + v2

1
e−ΔGpol + v2

⎞
⎟⎟⎟
⎠

, (I6)

with eigenvalue 1 and normalized to sum to 1. Combining the
solutions for μ and v, using Eq. (18), gives Eq. (47).

FIG. 11. Reaction rates of the (a) off-rate
and (b) on-rate discrimination models
used to produce the results of Fig. 5.
These reactions represent a single petal
of the step-wise process (Fig. 4) between
the completed states & x and & xy. For
the results in Fig. 5 for the off-rate
and on-rate curves, the following para-
meters were used: ΔG1 = 2, ΔG2 = −2,
k1 = kKP = kact = 1, and kcom = 100.
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APPENDIX J: MODEL USED FOR BALANCED ON-RATE
VS OFF-RATE DISCRIMINATION COMPARISONS

Figure 11 shows the on-rate and off-rate discrimination models
used to produce Fig. 5.

APPENDIX K: EQUATIONS FOR N -LOOP HOPFIELD
MODEL

The sum over the spanning trees of the N-loop model can be
written in terms of sums over spanning trees of the lower loop num-
ber models. We label the reaction rates for the N-loop process as
shown in Fig. 6. The N-loop model has one more node and two
more edges than the N − 1-loop model. Let a subscript N denote the
sums over the spanning trees for the N-loop models. Tracking the
spanning trees, we see,

Λ+N = R+act(N)Λ+N−1 + R+KP(N)
R+pol

R−pol

N

∑
i=0

⎡⎢⎢⎢⎢⎣

i−1

∏
j=0

R+act(N − j)
⎤⎥⎥⎥⎥⎦

Λ−N−1−i,
(K1)

Λ−N = R−act(N)Λ−N−1 + R−KP(N)
N

∑
i=0

⎡⎢⎢⎢⎢⎣

i−1

∏
j=0

R+act(N − j)
⎤⎥⎥⎥⎥⎦

Λ−N−1−i, (K2)

QN =
1

R−pol

⎛
⎝

Λ−N + R+pol

N

∑
i=0

⎡⎢⎢⎢⎢⎣

i−1

∏
j=0

R+act(N − j)
⎤⎥⎥⎥⎥⎦

Λ−N−1−i
⎞
⎠

, (K3)

with the initial conditions

Λ±−1 = R±pol,

Λ±0 = R±polR
±
in,

Q0 = R+pol + R−in.

(K4)

The sum-product can be eliminated by subtracting terms propor-
tional to Λ±N−1, QN−1, leaving just

Λ+N = (R+act(N) +
R+KPR+act(N)
R+KP(N − 1))Λ+N−1

−R+KP(N)R+act(N)R+act(N − 1)
R+KP(N − 1) × Λ+N−2 + R+KP(N)

R+pol

R−pol
Λ−N−1,

(K5)

Λ−N = (R−act(N) + R−KP(N) +
R−KP(N)R+act(N)

R−KP(N)
)Λ−N−1

× − R−KP(N)R+act(N)R−act(N − 1)
R−KP(N − 1) Λ−N−2, (K6)

QN = R+act(N)QN−1 +
Λ−N
R−pol
+ (R+pol − R+act(N))

Λ−N−1

R−pol
, (K7)

with the same initial conditions as above. This system of recursion
relations may be used to generate the terms of the spanning tree
sums quickly.

In certain simple cases, Eqs. (K5)–(K7) can be solved as a func-
tion of N. For example, when the reaction rates are not a function of
N, such as

R+in = k1Min,

R−in = k1e−ΔGy ,

R+act(n) = kact,

R−act(n) = kacteΔGact ,

R+KP(n) = kKPMact,

R−KP(n) = kKPe−ΔGy ,

(K8)

for n ∈ {1, . . .N}, for the step-wise process with monomer tip & xy,
where ki are some overall rates, Min and Mact represent the con-
centrations of inactive or active monomers, respectively, and ΔGact
represents the chemical work upon moving a monomer up one acti-
vation stage. The rates in Eq. (K8) are used for the numeric results
in Figs. 8 and 9. In this case, the sums over spanning trees are

Λ+N(y, x) = kpole
−ΔGx(kN

act(k1Min − k1Mact + kacteΔGy Mact(eΔGact − 1))

+ kKPMacte−ΔGy

Δ
[(k1λ+ + kact(kKP − k1))

(λ+ − kact)2 λN+1
+

− (k1λ− + kact(kKP − k1))
(λ− − kact)2 λN+1

− ]), (K9)

Λ−N(y, x) = kpole−ΔGpol e−ΔGy

Δ
[(k1λ+ + kact(kKP − k1))λN

+

− (k1λ− + kact(kKP − k1))λN
−], (K10)

QN(y, x) = kpole−ΔGx

Δ
[(k1e−ΔGy + kact − λ−)λN

+ − (k1e−ΔGy

+ kact − λ+)λN
−] +

e−ΔGy

Δ
[(k1λ+ + kact(kKP − k1))λN

+

− (k1λ− + kact(kKP − k1))λN
−], (K11)

where

λ± =
1
2
(kact + kKPe−ΔGy + kacteΔGact ± Δ), (K12)

Δ =
√
(kact + kKPe−ΔGy + kacteΔGact)

2
− 4(kact)2eΔGact. (K13)

From Eqs. (K9) and (K10), we may write the stall condition. Noting
that, Λ+(y, x) is independent of ΔGpol and Λ−(y, x) is proportional
to e−ΔGpol , we may write the stall point as

Γ(N) = − ln( Λ+N(r, r)
eΔGpol Λ−N(r, r)

+ Λ+N(w, w)
eΔGpol Λ−N(w, w)

), (K14)

such that the dependence on ΔGpol in the logarithm is canceled out.
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