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1
Introduction

Materials are all around us, shaping our everyday, macroscopic world. However,
most of their properties derive from the arrangement of the microscopic con-
stituents that make up a material. For example, the interaction between electron
waves and atoms neatly ordered into a crystal determines whether a material will
conduct electricity (e.g. copper) or be an insulator (e.g. quartz). This is a central
result in the field of solid-state physics [1], and hinges on the observation that a
periodic crystal potential organizes the energy levels of electron waves into bands,
separated by gaps.

The interactions inside a material are usually bound by basic principles of
physics. These fundamentally constrain the material’s properties: For example, time-
reversal symmetry dictates that electricity will flow through a wire from left to right
just as well as from right to left — a property known as reciprocity. Likewise, glass
is equally transparent for light in both directions1. Other fundamental constraints
include conservation of energy and the second law of thermodynamics, or derive
from spatial symmetries. A way to break these shackles would thus enable unique
and potentially useful material responses.

1.1. Metamaterials
Over the last decades, metamaterials have garnered a lot of attention. These ‘ef-
fective’ materials use larger building blocks than the atoms making up regular
materials, giving room to engineer their properties and fine-tune their constitu-
tional interactions through careful design and control of the building blocks and
their couplings. Photonic crystals [2] can be considered a metamaterial, and form
a prime example: By combining real materials with varying refractive indices in a
periodic arrangement, a composite effective medium is established with an optical
‘crystal potential’ that gives rise to a band structure for light. Similar to electron

1This even holds true for so-called ‘one-way mirrors’, for which the perceived difference in transparency
actually comes about by illuminating both sides with a different brightness.

1
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Figure 1.1: Metamaterials. (a) Structure of a metamaterial with a negative Poisson’s ratio: When stretched
in the direction indicated by the red arrows, the material expands laterally (blue arrows). (b) Example
of a tight-binding model. Each circle indicates a lattice site that is coupled to its neighbours. (c) One-
dimensional chain of masses coupled by springs. This model can be used to study the vibrations of
atoms in a periodic lattice potential.

waves, tuning the corresponding photonic bandgaps then allows blocking or en-
abling the propagation of light in desired wavelength ranges. By now, this unique
ability to manipulate the flow of light has found many applications, e.g. in Bragg
reflectors, anti-reflective coatings, and photonic-crystal fibers. This technique natu-
rally carries over to other wave phenomena as well: For example, soundproofing is
facilitated by acoustic metamaterials [3].

Metamaterials can be composed of small, subwavelength building blocks, but
also of macroscopic units like beams, springs, resonators, or optical cavities. Inter-
esting collective responses can then be induced when multiple of these units are
combined to form coupled networks or complete lattices. Importantly, judicious
engineering of their structure bestows metamaterials with responses unparalleled
in atomic materials. Figure 1.1a shows a material with a negative Poisson’s ratio,
expanding laterally when stretched [4]. In the microwave and optical domains,
metamaterials can be constructed with the ability to cloak a scattering object [5,
6] or with a negative refractive index [7, 8]. Moreover, by exposing the elements to
external driving, controllable active metamaterials [9–11] are formed, in which even
fundamental symmetries such as time-reversal symmetry or the conservation of
energy can be broken.

The dynamics of many materials, real and artificial alike, can be modelled by
a lattice of fixed sites coupled by interactions. An example is the tight-binding
model (Figure 1.1b), often used in condensed matter physics. With this method,
the electronic properties of e.g. graphene can be derived from the interactions
between the orbitals of nearby carbon atoms [12], illustrating a fermionic tight-
binding model. Another powerful class of tight-binding models arises in the study
of bosonic excitations, and deals with networks of coupled harmonic oscillators. As
a demonstration, Figure 1.1c shows how such a model can describe atoms vibrating
around their equilibrium position in a lattice potential [13].
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1.2. Nanomechanical resonators
In this spirit, nanomechanical resonators present an interesting building block to
create metamaterials. Nanomechanical resonators [14–16] are conceptually simple,
yet surprisingly versatile physical systems. Their ability to interface with many
different degrees of freedom puts them forth as sensors [17, 18] and transducers [19]
even for quantum signals [20, 21], while their high coherence and tunability find
application in signal filtering and processing [22]. Due to their small mass, stochastic
forces from the thermal environment play a considerable role in their dynamics,
advancing them as an important testbed for stochastic thermodynamics [23, 24].
Finally, nanomechanical resonators are used to create computational elements
[25] and perform fundamental tests of quantum mechanics by controlling and
measuring their quantum states of motion [26, 27].

Nanomechanical resonators have been studied extensively in isolation. By cou-
pling them, intriguing dynamics are unlocked including chaos [28], synchronization
[29], and multimode lasing of mechanical vibrations [30] — all depending on nonlin-
ear processes. In this thesis, we realize small, linear nanomechanical metamaterials
by constructing tunable nanomechanical networks. Our aim is then to use this ex-
perimental platform to study the emergence of, and mechanisms behind, unusual
collective responses induced through the controlled breaking of symmetries. In
particular, we will orchestrate these networks in a reconfigurable fashion using
light. Apart from demonstrating our platform as a proof-of-concept implementing
a highly-tunable metamaterial, we believe that the physics we uncover could be
useful in the traditional application domains of nanomechanical resonators as well.

The remainder of this chapter provides a basic introduction to the main con-
cepts that are combined in this thesis: breaking time-reversal symmetry by dynamic
modulation, the quantum Hall effect and topology, non-Hermitian dynamics, and
cavity optomechanics. We conclude with an outline of the contents of the thesis.

1.3. Breaking time-reversal symmetry
In this thesis, we explore the physics of mechanical systems and lattices with broken
symmetries. In particular, we study the effect of broken time-reversal (T ) symmetry,
where the operator T : t 7→ −t reverses time t. A ‘trivial’ way to break T -symmetry
is by adding dissipation to a system. However, richer dynamics are enabled by
T -symmetry-breaking gauge fields, which allow nonreciprocal functionality (i.e.
direction-dependent asymmetry in transmission) [31–35] and underlie topological
isolation in extended systems [36–38]. The latter form is what we focus on.

For charged particles such as electrons, magnetic fields break T -symmetry. As
shown in Figure 1.2a, free electrons are forced along circular trajectories by the
Lorentz force, with a handedness (‘chirality’) dictated by the sign of the magnetic
field. In particular, this means that an electron cannot follow the same orbit in the
opposite direction, if the magnetic field remains unchanged. This last condition
implies that the time-reversal operation we consider acts only on the electron, and
not on the source of the magnetic field. The external magnetic field thus ‘biases’ the
system.
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Figure 1.2: Breaking time-reversal symmetry. (a) The Lorentz force deflects an electron along a circular
trajectory, with handedness dictated by the sign of the magnetic field B (muurformules.nl). (b) Electron
wavepackets travelling through a magnetic vector potential A pick up a nonreciprocal phase. The phase
difference ∆ϕ between two paths is gauge-invariant and proportional to the magnetic flux piercing the
enclosed surface S . This leads to a measurable interference phenomenon known as the Aharonov-Bohm
effect. (c) Nonreciprocal elements. An isolator (top) allows transmission of a signal in one direction while
blocking it in the other. A circulator (bottom) routes signals in a chiral fashion.

On the level of electron wavepackets, the hallmark of this interaction is a phase
ϕ picked up by the electron as it travels through a magnetic vector potential A,
as shown in Figure 1.2b. Importantly, as the sign of the phase pick-up depends
on the direction of propagation, ϕ is a nonreciprocal phase. While there is gauge
freedom in the definition of A, and thus in ϕ, the phase difference ∆ϕ between
two paths is gauge-invariant and proportional to the enclosed magnetic flux. This
phase difference is known as the Aharonov-Bohm phase and leads to measurable
interference phenomena in the famous Aharonov-Bohm effect [39].

The Aharonov-Bohm phase is an example of a geometric phase [40], in this case
defined in real space. In general, a geometric phase arises when the parameters
of a system are slowly cycled along a closed path, and expresses the phase differ-
ence that remains between initial and final states of the system after the cycle is
completed. This phase difference, known also as the Berry phase, depends only on
the geometry of the cycle in the system’s abstract parameter space, and manifests
in many phenomena across physics, including Foucault’s pendulum [41] and the
polarization of light [42].

On a tight-binding lattice, the hopping of an electron from site a to b is described
by the Hamiltonian

Ĥhop = J
(
e−iϕab â†b̂+ eiϕab âb̂†

)
, (1.1)

where J is the coupling rate and â, b̂ are the site annihilation operators. In this
Hamiltonian, the magnetic vector potential A is embodied by the nonreciprocal
hopping phase

ϕab =
q

~

∫ b

a

A · d`, (1.2)

https://muurformules.nl
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known as the Peierls phase, where q is the charge of the electron. When the electron
hops in the opposite direction, the limits of the integral are swapped, and the
negative Peierls phase ϕba = −ϕab is acquired. An electron going around a loop
enclosing surface S then acquires the gauge-invariant phase

Φ =
q

~

∫∫
S

B · dS. (1.3)

We will often refer to this loop phase as the (magnetic) flux.
Neutral excitations, such as optical photons and mechanical phonons, do not

interact directly with a magnetic field, as their charge q in (1.2) is zero. Magnetically-
active materials then provide a way to break T , enabling for example the con-
struction of bulk optical nonreciprocal elements such as isolators and circulators
(Figure 1.2c) based on the Faraday effect. Another, perhaps more explicit way of
breaking T is offered by dynamic modulation of a system’s Hamiltonian by an exter-
nal drive [43, 44]. Harmonic modulation can stimulate the frequency conversion of
a signal, imprinting the phase of the modulation on the transfer from one frequency
to another analogous to a magnetic vector potential for a traveling electron [45].
Thus, by incorporating multiple up- and down-converting steps with individual
control over the respective phases, it is possible to exploit Aharonov-Bohm inter-
ference in frequency space to realize nonreciprocal transmission, as proposed and
demonstrated in the photonic domain [46–52]. Similar mechanisms allow nonre-
ciprocal phenomena also at microwave frequencies in superconducting systems
[31, 53–55] and cold atoms in optical lattices [56–59].

In mechanics and acoustics, various schemes have been explored to create
nonreciprocal responses through breaking time-reversal symmetry [11]. Sound
isolation was demonstrated through biasing by rotating air flows [60]. In gyroscopic
metamaterials, the spinning of coupled mechanical elements formed artificial
magnetic fields to induce unidirectional edge states [9]. Moreover, similar to pho-
tonic methods, dynamic modulation allows inducing nonreciprocal transmission
in systems of coupled resonators [61] and modulated elastic waves [62]. Notably,
recent demonstrations in the nanomechanical domain have employed modulated
radiation pressure forces [63, 64]. We will discuss this last interaction further in
section 1.6.

1.4. Quantum Hall effect and topological insulators
In extended systems, broken T -symmetry leads to intriguing physics. A quintessen-
tial example is the integer quantum Hall effect (QHE), discovered in 1980 [65]
and celebrated as a milestone in physics [66]. As shown in Figure 1.3a, it occurs
in two-dimensional electron gases subject to a perpendicular magnetic field. In
the bulk of the material, the magnetic field localizes the electronic states into cy-
clotron orbits that do not allow conduction. However, along the boundary of the
material, electrons can ‘skip’, giving rise to conduction channels along the edge.
Strikingly, these channels are unidirectional (‘chiral’), owing to the T -breaking mag-
netic field. Indeed, Robert Laughlin explained shortly after the first observation that
the emergence of chiral edge states can be understood from interferences between
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a b

Figure 1.3: Quantum Hall effect and topology. (a) The quantum Hall effect arises in a two-dimensional
electron gas (blue) subject to a perpendicular magnetic field B. In the bulk, electrons are confined
into cyclotron orbits (grey) and do not contribute to conduction. Along the boundaries, unidirectional
skipping orbits (green) are formed that allow electron transport between the two conductors (orange)
connected to the electron gas. The number of chiral conduction channels is strictly quantized. (b)
Schematic representation of the band structure of a semi-infinite topological insulator with broken
T -symmetry. There are no bulk states available at the Fermi level, while there is a single unidirectional
state available at the boundary.

electron wavepackets that pick up a nonreciprocal phase while travelling through
the magnetic vector potential [67] — thus linking the quantum Hall effect to the
Aharonov-Bohm phase introduced above.

As the quantum Hall conduction is sustained by a discrete number of channels,
it is strictly quantized, giving the QHE a central role in the international system
of units SI [68]. It is now understood that the QHE derives this robust quantized
conductance from the topology of its band structure [36].

Topology is the branch of mathematics that studies the properties of geometric
objects that are preserved under continuous deformations [69]. These properties
are then characterized by numbers called topological invariants. The objects under
consideration may exist in real space, such as balls, donuts, and pretzels charac-
terized by a different number of holes, or they may exist in an abstract space. The
latter applies to quantum Hall systems: Their energy bands in momentum space
are characterized by an integer topological invariant called the Chern number [36].
Importantly, because the Chern number is a global property of the band structure,
it is robust to local perturbations and disorder in the underlying lattice, as long as
the bandgap separating the band from its neighbours remains open.

When two materials characterized by bands with different Chern number are
brought into contact, for example the quantum Hall electron gas and its surround-
ings, topology dictates that the gap must be closed at the boundary (Figure 1.3b).
This is known as the bulk-edge or bulk-boundary correspondence, and the localized
edge states it procures in the QHE are precisely the chiral conduction channels.
Their existence and direction are thus topologically protected. This means that
defects along the edge can not cause any back-scattering.

The QHE is a basic example of a topological phase of matter. In turn, it spurred
the exploration of various other topological phases with unique properties. Notably,
the requirement of breaking T -symmetry was lifted with the discovery of the quan-
tum spin-Hall effect (QSHE), and led to the discovery of a new class of materials
called topological insulators [70–72]. The QSHE relies on the electron spin: While
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the bulk of a quantum spin-Hall material is insulating, spin-orbit coupling man-
dates that electrons with positive spin propagate along the edge in one direction,
whereas electrons with negative spin travel in the opposite direction. This chiral
transport is topologically protected from back-scattering, as long as defects do not
induce spin-flips.

Both the QHE and QHSE have been emulated in other domains, including
bosonic systems [73–76]. Through biasing with an actual magnetic field, robust
unidirectional edge transport has been demonstrated for microwave radiation using
gyrotropic materials [77, 78] and for exciton-polaritons that exhibit Zeeman splitting
[79]. In the photonic domain [38], analogues of the QSHE — featuring preserved
T -symmetry — have been observed in photonic crystals, where the spin degree
of freedom is associated with the polarization [80, 81] or the band valley [82, 83]
of light. A particularly practical way to observe a QHE for light is by mapping the
temporal dimension to a spatial dimension, studying the spatial evolution of light
along arrays of waveguides whose properties are varying along the propagation
dimension to emulate broken time-reversal symmetry [84].

In this context, another concept that has proven useful is to exploit ‘synthetic
dimensions’, formed by coupling the internal degrees of freedom of resonators at
different frequencies. For example, multiple optical modes of a ring resonator [85]
or the internal states of a cold atom [58] may be coupled via frequency-converting
temporal modulations. This allows to create effective topological systems with
higher dimensionality than the physical system [86, 87].

In the mechanical domain, topological phases [37] have been implemented in
gyroscopic metamaterials, where the spinning of coupled mechanical elements
formed an artificial magnetic field to induce unidirectional edge states [9]. In addi-
tion, frequency-converting harmonic modulation has been used to show a topologi-
cal insulator comprising piezoelectrically modulated disks [88]. Finally, mechanical
topological insulators without broken T -symmetry have been implemented using
macroscopic pendula coupled by springs [89], and in nanomechanical periodic
thin-film structures [90–92].

1.5. Non-Hermitian dynamics
In a closed system, energy is necessarily conserved. This cornerstone of physics
derives from time-translation symmetry, and requires that closed systems are gov-
erned by Hermitian Hamiltonians (H = H†). Hermiticity guarantees a real energy
spectrum, and in the quantum domain, a unitary time evolution that preserves
probability. However, allowing a system to interact with an environment — turning
it into an open system — relaxes this requirement. The interaction with the envi-
ronment usually removes energy through dissipation. Alternatively, it may also add
energy through driving or pumping. In many cases, such systems can be described
by a non-Hermitian effective Hamiltonian [93], which in general hosts complex
eigenfrequencies and can generate unbounded dynamics.

However, in 1998, Bender and Boettcher identified a class of open-system Hamil-
tonians that still exhibit a real energy spectrum [95]. While non-Hermitian, these
Hamiltonians are invariant upon applying both a parity operationP that reflects
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Figure 1.4: Non-Hermitian dynamics. (a) The parity-time (PT ) dimer comprises two resonators coupled
by rate J . One site experiences gain η, while the other site decays with the opposite rate−η. (b) Real
(top) and imaginary (bottom) parts of the complex eigenfrequencies ε± of thePT -dimer. For J > η,
the eigenstates respect thePT -symmetry of the dimer and delocalize evenly over both resonators. For
η < J , the eigenstates spontaneously breakPT -symmetry and localize in the site with either gain or
loss. This transition is marked by an exceptional point at J = η, where both the complex eigenvalues and
the eigenvectors coalesce. (c) Parametric amplification in an everyday setting. By moving their center
of mass, a person on a swing can modulate the swing’s resonance frequency and amplify their motion.
Image reproduced from [94] under a CC-BY 4.0 license (http://creativecommons.org/licenses/
by/4.0/).

the system in space, and the operation T that reverses time. Recently, such PT -
symmetric systems have been widely studied in optics [96]. A prototypical example
of aPT -symmetric system is given by the Hamiltonian

H =

(
Ω + iη J
J Ω− iη

)
, (1.4)

where we have set ~ = 1. This Hamiltonian matrix governs the evolution of the
PT -dimer [97, 98] shown in Figure 1.4a, formed by the two resonators a1 and a2,
via the equation of motion ȧ = −iHa of the vector a = (a1, a2)T of complex mode
amplitudes.

The resonators oscillate with equal frequency Ω and are coupled with rate J .
Through the interaction with the (otherwise unspecified) environment, resonator a1

experiences gain with rate +η, while the other resonator decays with the opposite
rate −η. In this system, the parity operation P exchanges the two sites a1 ↔ a2,
while the time-reversal operation T is equivalent to complex conjugation i 7→ −i,
turning gain into loss and vice versa.

The eigenvalues of the matrix (1.4) are given by

ε± = Ω±
√
J2 − η2. (1.5)

For η = 0, the HamiltonianH = H† is Hermitian and energy is conserved during
the evolution. We then find two hybridized eigenmodes with split frequencies
ε± = Ω± J , formed by the (anti)symmetric superpositions of a1 and a2. As shown
in Figure 1.4b, for η < J , the spectrum of H remains real, until the eigenvalues

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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ε+ = ε− = Ω coalesce at J = η. Beyond this point, for η > J , the equality of
the eigenmode oscillation frequencies persist (Re(ε±) = Ω), while their imaginary
parts now split.

By analysing the corresponding eigenvectors a±, we find for η < J that the
eigenmodes are delocalized over both resonators and respect thePT -symmetry of
the dimer. However, for J > η, the eigenmodes spontaneously breakPT -symmetry,
and localize in the site with either gain or loss. This transition is marked by an ex-
ceptional point at J = η, where both the eigenvalues ε± and the eigenvectors a±
coalesce. This is a truly non-Hermitian phenomenon: The orthogonality of eigen-
modes is guaranteed in Hermitian systems and prevents those from coalescing.

The stable dynamics of the PT -dimer in the PT -symmetric phase (η < J)
derive from the balance between gain η and loss−η. This is, however, not a strict
requirement: For gain and loss η̄ ± ∆η centered around an average value of η̄,
‘virtual’PT -symmetry is recovered in the dynamically offset basis a′(t) = e−η̄ta(t),
with an exceptional point at J = ∆η [99]. This even applies to systems that are
lossy overall, where the ‘gain’ η̄ + ∆η < 0 is negative. We refer to this situation as
‘passive’PT -symmetry [98].

In principle, the derivative 2|∂ Re(ε±)/∂J | of the frequency splitting diverges
at the exceptional point. While this has been proposed as a way to improve sensing
of perturbations in J (or η) [100], the benefits of this approach are still under
debate [101]. Notwithstanding, devices relying on this sensing mechanism have
been constructed [102–105].

There exist also strong ties between topology and non-Hermitian physics. In a
sense, objects with interesting geometry are more abundant in non-Hermitian sys-
tems, as many of their properties are now described by complex numbers, defined
in spaces with higher dimensionality than their Hermitian counterparts [106, 107].
A basic example emerges even by supplementing the PT -dimer with a variable
detuning δ between the resonators, and considering the Riemann sheet defined
by its complex eigenvalues in the two-dimensional δ – η parameter space. Using
the topology of this manifold, topological transfer of energy between two modes
has been demonstrated [108]. In a three-mode system, braiding of eigenvalues has
been observed [109].

Lattice models with non-Hermitian dynamics and topological features have also
been proposed, including the Hatano-Nelson chain [110], featuring asymmetric
hopping amplitudes in different directions, and the Lee ladder [111]. Remarkably,
the usual bulk-boundary correspondence (BBC) that characterizes Hermitian topo-
logical phases does not apply in these models [112]. In Hermitian systems, the BBC
relies on the notion that introducing boundaries does not impact states in the bulk
significantly, that is to say, going from periodic to open boundary conditions does
not induce a phase transition [106]. However, the bulk of a non-Hermitian system
can be drastically sensitive to boundaries, with bulk states ‘piling up’ at an open
boundary. This has recently been dubbed the ‘non-Hermitian skin effect’ [112] and
profoundly impacts the behaviour of non-Hermitian lattices.

For bosonic systems, a natural way to induce non-Hermitian dynamics is
through parametric amplification. This phenomenon is in fact very common, and



1

10 1. Introduction

explains how a person on a playground swing can sustain and even amplify their
motion. As shown in Figure 1.4c, varying the center of mass modulates an important
parameter of the system: the swing’s resonance frequency. Hence, this process is
called parametric modulation or driving, and when it occurs at twice the natural
frequency of the swing, motion is amplified. Notably, the amplification occurs only
for a particular phase, or quadrature, of motion: The orthogonal quadrature is
deamplified. Important for applications, this process underlies e.g. phase-sensitive
amplifiers of microwave or optical signals [113]. Applied to thermal or quantum
states, both characterized by a spread in phase space rather than a definite state,
parametric amplification changes their distribution asymmetrically. Hence, this
process is also known as squeezing [114]. In quantum-limited optics, squeezing is
used to increase the sensitivity of e.g. gravitational wave detectors [115].

1.6. Cavity optomechanics
In this thesis, we will orchestrate nanomechanical interactions using light, as further
detailed in chapter 2. The interaction between an optical cavity and a mechanical
resonator coupled to it is the subject of the field of cavity optomechanics. Cavity
optomechanical systems come in many shapes and sizes, from kilometer-scale
gravitational wave detectors [116] to clouds of atoms trapped in a Fabry-Pérot cavity
[117]. We refer to the review by Aspelmeyer, Kippenberg & Marquardt [118] for an
overview.

A cavity serves to confine light in space and store it in time, thereby enhancing
the effects of the light-motion interaction. Using lasers as an exceptionally clean
light source, the cavity optomechanical interaction allows extremely precise sensing
of motion, up to quantum-level precision. Conversely, the radiation pressure force
of the cavity field actuates the resonator. Notably, the coupling between the optical
field and the resonator motion can be quantum-coherent [26, 119, 120], enabling en-
tanglement between radiation fields and motion [121] and even mediating remote
entanglement between micromechanical resonators [27].

As displacement modifies the cavity field, which in turn modulates the radiation-
pressure force acting back on the resonator, a feedback mechanism emerges known
as optomechanical backaction. The displacement-dependent radiation pressure
force acts as an optical spring. Importantly, the optical spring can be modulated
dynamically by the laser driving the cavity, enabling frequency conversion between
multiple resonators coupled to the same cavity [122]. As we will explain in chapter 2,
this will be an enabling mechanism throughout this thesis.

Multimode cavity optomechanical systems are thus an interesting platform for
breaking time-reversal symmetry, providing effective time-varying potentials for
either light or sound [123]. In suitable multi-mode optomechanical cavities, this can
lead to nonreciprocal effects such as a proposed phononic circulator [122]. Optical
nonreciprocity was predicted in light-driven optomechanical ring resonators [124],
which can in fact also be completely understood in terms of a synthetic magnetic
field [32]. Nonreciprocal transmission of photons was observed in optomechanical
systems both in the optical and microwave domains [32, 33, 125–128]. Suitable
combinations of nonreciprocal coupling and dissipation allow in principle ideal
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isolation [129, 130], and optomechanical systems were also configured as magnet-
free three- or four-port circulators [131–133].

Conversely, optomechanical interactions can induce nonreciprocal coupling
between mechanical modes [63, 64]. When extending these mechanisms to many-
mode lattices, topological phases for sound and light have been envisioned, in-
cluding Chern-type topological insulators with broken time-reversal symmetry [64,
134, 135]. In addition, this platform presents various interesting possibilities, in-
cluding nonlinear behaviour and dynamical gauge fields linked to optomechanical
limit-cycle oscillators [136].

If the photon lifetime in the cavity approaches the mechanical period, the
optomechanical backaction attains a dynamical character and allows to cool or
amplify mechanical motion. This principle, known as optomechanical sideband
cooling, allows to cool mechanical motion near the quantum ground state [26, 119,
120]. Alternatively, the required phase offset between position and force to damp or
amplify motion can be obtained using measurement-based feedback [137].

1.7. Outline of this thesis
In this thesis, we realize, and explore the dynamics of, networks of nanomechani-
cal resonators connected via time-modulated radiation pressure. Multiple flexural
mechanical resonances of a silicon nanostructure couple simultaneously to a pho-
tonic crystal nanocavity, allowing sensitive optical readout of mechanical motion
with a resolution well below the thermal fluctuation level. In addition, by suitable
modulation of a detuned drive laser, light-mediated effective mechanical couplings
are established.

This experimental platform is introduced in chapter 2. Departing from a general
discussion of the multimode cavity optomechanical interaction, we show that dy-
namic modulation of the optical spring can establish both nanomechanical hopping
and squeezing interactions, by stimulating the appropriate frequency conversions.
We implement a phase-coherent driving and detection scheme that enables the con-
trolled breaking of time-reversal symmetry, and allows the construction of arbitrary
multi-mode quadratic phononic Hamiltonians in time and (synthetic) space. To
analyse the resulting, possibly non-Hermitian dynamics, the Bogoliubov-de Gennes
formalism is introduced. We demonstrate control over the mechanical linewidths
both through feedback and dynamical opto-thermal backaction.

In chapter 3, we focus on particle-conserving hopping interactions and con-
struct phononic networks that are subject to synthetic magnetic fields. For a three-
mode network with a single plaquette, we observe chiral circulation of coherent
vibrations. For networks featuring multiple plaquettes, we study the interplay of
aligned and opposed synthetic fluxes. Finally, in a five-mode lattice pierced by a
homogeneous synthetic flux, we demonstrate the emergence of chiral transport of
phonons along the edge.

Chapter 4 explores the interaction between synthetic flux for phonons and ther-
mal fluctuations. The chirality imposed before on coherent excitations is shown to
carry over to thermally excited vibrations. Combined with the different Bose occu-
pations of the thermal baths feeding the mechanical resonators, flux-dependent
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circulation of energy leads to a redistribution of thermal energy in the loop. We
develop a procedure to directly measure the flow of heat along the networks’ links,
revealing flux-dependent reversal of thermal currents.

We exploit the opportunity to induce non-Hermitian dynamics through squeez-
ing in chapter 5 to reveal a non-Hermitian version of the Aharonov-Bohm effect.
First, we focus on the ‘squeezing dimer’ that combines hopping and single-mode
squeezing interactions. We show that this dimer features a geometric phase, re-
vealed diagrammatically after applying the Bogoliubov-de Gennes formalism to
separate ‘hole’-like and ‘particle’-like degrees of freedom. This geometrical phase,
acting as a flux through the non-Hermitian particle-hole loop, now tunes both
frequency and linewidth of the dimer’s normal modes. In addition, the flux tunes
squeezing, stability, and the occurrence of exceptional points in the dimer’s spec-
trum. Finally, we construct a three-mode loop closed by a single hopping and two
two-mode squeezing interactions. This system features a flux-tunable third-order
exceptional point and unidirectional phononic amplification.

Nonreciprocal transport is generally associated with the breaking of time-
reversal symmetry. In chapter 6, we introduce an extended notion of unidirectional
transmission for quadrature-resolved signals, dubbed ‘quadrature nonreciprocity’
(qNR), that does not rely on the breaking of T -symmetry. Instead, it relies on
the interference of hopping and two-mode squeezing interactions. We develop a
theoretical framework to characterize and identify qNR for arbitrary systems, and
test it in experiment for a two-mode dimer and a four-mode ring.

In chapter 7, we implement in experiment one of the seminal models put for-
ward earlier in the area of quadrature-dependent transport: the bosonic Kitaev
chain (BKC). We show that the transmission through the BKC is chiral, with the
direction of propagation depending on the excited quadrature. In addition, the
presence of squeezing interactions allows amplification or damping of signals that
propagate along the chain. By closing the chain into a ring, a dramatic change in
stability is observed as signals are then allowed to amplify indefinitely. The strong
dependence of the BKC’s dynamics on its boundary conditions is a uniquely non-
Hermitian effect that links to the non-Hermitian skin effect. By tuning the phases of
the hopping and squeezing interactions, we show a transition from global to local
response in the chain.

Finally, we conclude in chapter 8 with a general discussion of the results pre-
sented in this thesis, and provide an outlook on further research in this field. To
that end, we present experiments demonstrating that the cavity response can in-
duce a highly-tunable effective Duffing nonlinearity in the mechanical resonators,
which could be used to study nonlinear topological phenomena. The nonlinearity
is shown to carry over to light-mediated effective mechanical interactions, while it
can be cancelled on the single-resonator level by a two-laser driving scheme.
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Effective mechanical

interactions mediated by
radiation pressure

We introduce the main theoretical and experimental methods used in the thesis. We
explain how in cavity optomechanical systems different mechanical modes can be
coupled through time-modulated laser drives. This allows the implementation of ar-
bitrary quadratic bosonic Hamiltonians, which we suitably describe in a Bogoliubov-
de-Gennes formalism to account for both beamsplitter and squeezing interactions.
We introduce the experimental system, the optical set-up, and the experimental tech-
niques for temporal control and measurement of coherent and incoherent mechanical
excitations.
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2.1. Introduction
In this chapter, we put forward optical driving as a technique to control the dy-
namics of a multimode nanomechanical system. Through the optomechanical
interaction of multiple nanomechanical resonances with a common optical mode,
we mediate tunable effective interactions between the resonators. By careful dy-
namic modulation of optomechanical backaction, we induce both beamsplitter
and squeezing interactions and construct arbitrary quadratic multi-mode phononic
Hamiltonians. Crucially, we are able to construct Hamiltonians that break time-
reversal symmetry — a central theme in this research. In addition, measurement-
based resonant feedback allows to tune the damping of the nanomechanical modes.
These ingredients combined form a versatile toolbox to conduct the experiments
demonstrated in the following chapters of this thesis.

We start the chapter with a general overview of radiation pressure and cavity
optomechanics. Subsequently, we intuitively explore the effect of dynamically mod-
ulated optomechanical backaction, followed by an introduction of optomechanics
in a quantum formalism. We then arrive at the heart of this chapter: We study the
effect of modulated optical driving in the quantum optomechanical framework, and
show how this leads to a reconfigurable quadratic effective mechanical Hamiltonian.
We move on to review the Bogoliubov-de Gennes framework to model nanome-
chanical evolution in the presence of beamsplitter and squeezing interactions. We
conclude the chapter by discussing the experimental platform: We review the exper-
imental set-up and procedures, and consider the techniques used to analyse our
measurement results.

2.2. Radiation pressure
To manipulate nanomechanical resonators, we exploit the optical force that arises
when light interacts with matter. Recognized already by Kepler [138] in the 17th
century when he observed that a comet’s dust tail always points away from the
sun, this mechanism was given a theoretical underpinning by Maxwell. Specifically,
Maxwell realized that light carries momentum, and the transfer of this momentum
‘kicks’ an object when light is reflected or absorbed. This effect is known as radiation
pressure.

On the macroscopic scale, radiation pressure forces are usually negligible com-
pared to e.g. electrostatic forces, thermal expansion, or friction. To observe them,
several strategies exist. The first is to work in vacuum, where friction and heating
effects of the surrounding medium (air) are removed: this enabled the first experi-
ments to observe radiation pressure around 1900 [139, 140]. Another approach is
to use tightly focused light and transparent objects with a very small mass, which
inspired the development of optical tweezers [141] in the 1970s. Finally, one may
utilize an optical cavity to recycle light and increase the number of reflections,
thereby boosting the interaction between light and matter. This is the idea behind
the field of cavity optomechanics [118].

In the single nanoscale device used in every experiment presented in this thesis,
shown in Figure 2.1, we exploit all three strategies. While the device will be properly
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introduced in section 2.3.3, we note that it is housed in a vacuum chamber, has
transparent1 vibrating elements with a very low mass (∼ pg) and features a photonic
crystal cavity [2] that traps light. As such, carefully modulated optical driving offers
a great degree of control over the mechanical degrees of freedom in the device.

2.3. Cavity optomechanics
Like many mechanisms in physics, the interaction between light and matter works
both ways. Radiation pressure is one side of the coin, while the effect of motion
on light allows the optical read-out of mechanical displacement, as used e.g. in
gravitational wave detectors [116]. Together they constitute the optomechanical
interaction.

More specifically, cavity optomechanics [118] is the field that studies this mutual
interaction between a mechanical resonator and an optical cavity. Cavity optome-
chanical systems span a wide range of sizes: from kilometer-scale gravitational
wave detectors [116] to clouds of atoms trapped in a Fabry-Pérot cavity [117]. Our
interest lies in nanoscale systems, where low mass, tight confinement of both light
and motion, and the engineerability of their co-localization transpire to induce
large optomechanical interactions.

2.3.1. Toy model: moving-mirror cavity
In the following sections, we explore the theory of the cavity optomechanical inter-
action. The canonical toy model of the field is shown in Figure 2.1d: a Fabry-Pérot
cavity formed by two mirrors, one of which is mounted on a spring. While simple, it
illustrates the dynamics of a wide variety of systems and geometries. In this section
we highlight some of its properties; further details may be found in the review by
Aspelmeyer, Kippenberg & Marquardt [118], or in the textbook by Bowen & Milburn
[142]. A useful discussion tailored towards the sliced nanobeam device used here
can be found in the thesis of Leijssen [143].

The spring-mounted mirror forms a mechanical resonator that oscillates with
mechanical frequency Ω. The mechanical displacement xmodifies the lengthL+x
of the cavity and thereby modulates the optical resonance frequency ωc(x). For the
Fabry-Pérot cavity considered here, ωc(x) = πjc/(L+ x) is a simple function of x,
where c is the speed of light. We restrict the discussion to a single optical mode with
index j, driven by an external field with frequency ωL ≈ ωc.

Systems with a different geometry generally have a less straightforward relation
between cavity frequency and displacement. In nanoscale systems, two coupling
mechanisms are important: the moving boundary effect (demonstrated in the
moving-mirror cavity) and the photo-elastic effect. Regardless of the origin of the
optomechanical interaction, for small x, it usually suffices to expand ωc around the
equilibrium value ω0 = ωc(0),

ωc(x) = ω0 +
∂ωc
∂x

x+
1

2

∂2ωc
∂x2

x+ . . . , (2.1)

1For infrared (telecom) light.
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Figure 2.1: Cavity optomechanics in a nano-optomechanical device. (a) Scanning electron micrograph
(tilt 45◦; inset, top view) showing a device as used in our experiments. In the top silicon device laser
(thickness 220 nm), supported by silicon oxide pedestals, three suspended beams are defined with teeth
separated by a narrow slit (∼ 50 nm). Between each outer beam and the central beam, a photonic crystal
cavity is defined. In the experiments presented in this thesis, only one of the two optical cavities is used.
(b) Simulated electric field y-componentEy of the optical cavity mode. The mode’s energy is strongly
confined to the narrow slit, inducing a large optomechanical interaction with flexural mechanical
resonances of the two adjacent beams. The cavity’s off-centre position ensures coupling to both even
and odd resonances. Measured resonance frequency of the experimental cavity ω0 = 195.62 THz
(vacuum wavelength λ0 = 1532.5 nm), spectral linewidth κ = 320 GHz (wavelength linewidth
∆λ = 2.5 nm). (c) Simulated displacement field of the five lowest frequency flexural modes. The
displacement is greatly exaggerated for clarity; typical (thermal) displacement amplitudes are on the
order of picometers. Measured mechanical frequencies range from 3.7 – 26 MHz. (d) Toy model to
illustrate the optomechanical interaction. A Fabry-Pérot cavity with equilibrium lengthL is formed by
two highly reflective mirrors. An external optical driving field is coupled into the cavity through the left
mirror. The right mirror is mounted on a spring, forming a mechanical resonator. Its displacement x
oscillates at the mechanical frequency Ω, changing the cavity lengthL+ x and modulating the optical
resonance frequency ωc.

and assume that only the term linear in displacement contributes significantly. We
capture the strength of the (linear) optomechanical interaction in the coupling
strengthG = −∂ωc/∂x.

2.3.2. Mechanical resonator
Conversely, the light circulating in the cavity pushes on the mirror. Every round trip,
taking time ∆t = 2(L+ x)/c ≈ 2L/c, the light imparts a momentum ∆p = 2Ec/c
on the mirror, withEc the circulating optical energy. The radiation pressure force
exerted is

Fopt = ∆p/∆t = Ec/L ≈ GEc/ωc = ~Gnc, (2.2)

where we note thatG = πjc/L2 = ω0/L for the moving-mirror Fabry-Pérot cavity.
In anticipation of a later quantum treatment, we have defined the cavity photon
number nc = Ec/~ωc. The last expression is the general form of the radiation



2.3. Cavity optomechanics

2

17

pressure force and applies to all cavity optomechanical systems: one just needs to
distinguishG.

We review some basic properties of the mechanical resonator. In addition to
optical forces, the mechanical resonator is subject to damping with rate γ. Its
equation of motion reads

ẍ = −Ω2x− γv + Fopt/m+ Fext/m, (2.3)

where v = ẋ is the velocity, m the mass of the mirror, and Fext any other force
that acts on the resonator. In the frequency domain, accessed by applying the
Fourier transform y(ω) =

∫∞
−∞ y(t)e+iωt dt to the position x(t) and force Fext(t),

the response of the resonator x(ω) = χmFext(ω) to an external force is quantified
by the mechanical susceptibility

χm(ω) =
1

m (Ω2 − ω2)− imγω
. (2.4)

Instead of measuring x(t) directly, we often measure quantities related to the energy
x(t)2. For convenience, we define the transfer function |χm(ω)|2, given by

|χm(ω)|2 =
1

m2

1

γ2ω2 + (Ω2 − ω2)2
≈ 1

4m2Ω2

1

(ω − Ω)2 + γ2/4
. (2.5)

The last approximation is a Lorentzian function and valid for a weakly damped
resonator (Ω� γ) around its resonance frequency.

In the Fabry-Pérot cavity, the displacement coordinate x and the motional mass
m are easily recognized. For mechanical resonators with a more complicated mo-
tional pattern, the definition of x is ambiguous and essentially arbitrary. However,
any choice of coordinate x suffices, as long as the effective motional mass meff is
defined accordingly to satisfy the relation

Um =
1

2
meffΩ

2x2 (2.6)

for the mechanical potential energy Um.
For resonators with a high quality factor Q = Ω/γ � 1, the second-order

differential equation (2.3) may be approximated (see the thesis of Mason [144] for
details) by a first-order differential equation for the complex amplitude

a =
1

x̃

(
x+

iv

Ω

)
, (2.7)

such that

x = (a+ a∗) x̃/2, v = −i (a− a∗) x̃/2. (2.8)

Here, x̃ is a fixed length scale that we will later use to normalize a.
The equation of motion for a reads

ȧ = −i (Ω− iγ/2) a+ fopt + fext, (2.9)
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which describes a rotation in the complex plane with frequency +Ω. In the so-
called rotating wave approximation, we have neglected a contribution∝ a∗ that
counter-rotates with frequency−Ω, as it represents a highly off-resonant drive for
the narrow-band resonator under consideration. The drive terms fk are given by

fk = i
Fk
mΩx̃

. (2.10)

In the frequency domain, the response of a(ω) = χa(ω)fext(ω) to an external force
is quantified by the susceptibility

χa(ω) =
1

i(Ω− ω) + γ/2
≈ (2mΩ/i)χm(ω), (2.11)

where the last approximation holds in the high-Q regime Ω � γ. The prefactor
arises from (2.8) and (2.10).

Pre-empting a later quantum treatment, a natural choice for x̃ is related to the
standard deviation of the mechanical ground state

xzpf =

√
~

2meffΩ
, (2.12)

also known as the zero-point fluctuation amplitude. Choosing x̃ = 2xzpf ensures
that |a|2 represents the phonon number of the resonator.

Even though the length scale xzpf has no intrinsic meaning in the classical
domain, using it still presents an advantage. As the definition of the coordinate x
suffers from ambiguity, so does the optomechanical coupling strengthG. However,
the photon-phonon coupling rate or vacuum optomechanical coupling rate

g0 = Gxzpf (2.13)

does not depend on the definition of x as a consequence of the relation between
xzpf andmeff in (2.12). The rate g0 is therefore a more fundamental quantity thanG.

2.3.3. Sliced nanobeam device
We now introduce the single nano-optomechanical device used in all experiments
in this thesis. The device is nano-fabricated in the AMOLF NanoLab Amsterdam
cleanroom and shown in Figure 2.1a. Designed with a sliced nanobeam geometry
[145], it features a one-dimensional photonic crystal [2] with a single-site defect
obtained by locally varying the hole pitch. The defect creates an optical cavity
mode, longitudinally confined by the photonic crystal, with resonance frequency
ω0 = 195.62 THz (vacuum wavelength λ0 = 1532.5 nm, in the telecom range).
Furthermore, the point defect ensures a considerable coupling to focused light
normally incident from free space and endows the cavity with a relatively large
optical linewidth κ = 320 GHz (wavelength linewidth ∆λ = 2.5 nm). The narrow
slit (width∼ 50 nm) between the beam halves introduces a dielectric discontinuity
that serves to confine the field of the optical mode (Figure 2.1b) to the deeply
subwavelength region between the beam’s teeth.
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The high concentration of optical energy near the dielectric boundary sensitizes
the optical mode to in-plane flexural displacement of the beam halves. As the
cavity is defined away from the beam center, this leads to strong optomechanical
coupling to mechanical modes with both even and odd symmetries. Each beam
half supports a ladder of flexural overtones, all with distinct resonance frequencies
due to the mass difference between the beam halves. The first five flexural modes,
with frequencies between 3.7 and 26 MHz, are shown in Figure 2.1c and have
optomechanical coupling rates g0 between 2 and 6 MHz. These mechanical modes
constitute the ‘resonators’ that we use in our experiments.

We briefly review the procedure used to nano-fabricate the sliced nanobeam de-
vice. We start with a silicon-on-insulator substrate, with a 220 nm device layer and
a 3µm buried oxide layer (BOX). A 50 nm layer of diluted hydrogen silsesquioxane
resist (1:2 in methyl isobutyl ketone) is spin-coated, and electron-beam lithogra-
phy (Raith Voyager) is used to write patterns on the sample. After developing in
tetramethylammonium hydroxide, an anisotropic etch of the exposed device layer
is done using inductively coupled plasma–reactive ion etching with HBr and O2

gases. Finally, the nanobeams are suspended in a wet etch of the underlying BOX
layer with hydrofluoric acid followed by critical point drying. More details on the
relevant fabrication techniques can be found in the thesis of Leijssen [143].

2.3.4. Optical spring shift
In this section, we explore a basic consequence of the optomechanical interaction
that is central to our experiments: the optical spring shift. We start with the equation
governing the evolution of the field c of a driven cavity,

ċ = i (∆ + iκ/2) c+
√
κincin. (2.14)

The cavity is driven by an external laser with optical frequency ωL coupling in
through the port field cin with rate κin. As we discuss in more detail in section 2.8,
this port is in our case formed by the free-space radiation of the cavity mode,
which we use to couple light both in and out of the cavity from normal incidence.
Furthermore, ∆ = ωL − ωc is the detuning between the driving field and the cavity,
κ the total cavity energy decay rate, and |c|2 = nc is normalized to express the cavity
photon number. We describe c = c̃e−iωLt in a frame that rotates along with the
drive laser field, where c̃ is the cavity field in the stationary lab frame.

Let us now consider a time-varying displacement x(t) of the mechanical res-
onator. Through the optomechanical interaction, it shifts the detuning ∆ and thus
the response of the cavity to the external drive. In turn, this will alter the cavity
photon number nc and thereby the optical force acting back on the resonator. This
feedback mechanism is known as optomechanical backaction.

Two different regimes are distinguished. In the bad-cavity limit or Doppler
regime, the cavity decay rate κ is much larger than the mechanical frequency Ω.
This means that the cavity relaxes to a steady-state faster than the motion modulates
its frequency. In other words, on the optical timescale, the mechanical displacement
appears to be “frozen”.
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The complementary regime, where Ω > κ, is known as the resolved-sideband
regime. Optical sidebands produced by mechanical oscillations are then resolved
by the cavity. In this regime, the dynamics of the cavity need to be accounted for
and result in dynamical backaction that does not follow the mechanical motion
instantaneously.

For our nanodevice, the sideband resolution Ω/κ < 10−4 is much smaller than
unity. Thus, for simplicity, we restrict the current discussion to the bad-cavity limit.
For a frozen ∆, the steady state amplitude css of the cavity is given by

css =

√
κincin

κ/2− i∆
=
√
κincinχc(∆), (2.15)

where we have defined the cavity susceptibility χc(∆) = (κ/2− i∆)−1. The instan-
taneous photon number nc follows a Lorentzian response,

nc = |css|2 = κin|cinχc(∆)|2 = nmax
κ2

κ2 + 4∆2
= nmax · h(u), (2.16)

as shown in Figure 2.2. Here, nmax is the maximum number of photons that a drive
field with power P = ~ωL|cin|2 can excite in the cavity, attained on resonance
(∆ = 0) and given by

nmax = 4|cin|2κin/κ. (2.17)

The ratio ηin ≡ κin/κ is known as the incoupling efficiency. Finally, we define the
dimensionless detuning u ≡ 2∆/κ and the Lorentzian relative cavity population
function

h(u) =
1

1 + u2
. (2.18)

Next, we express the displacement using a dimensionless coordinate z = x/xzpf.
Recalling that ∆ depends on the displacement through ∆ = ∆0 +Gx = ∆0 + g0z
with equilibrium detuning ∆0 = ωL − ωc, the cavity photon number is a function
of z and reads

nc(z) = nmaxh(u0 + 2g0z/κ). (2.19)

Here, u0 = 2∆0/κ. The variable cavity field generates a varying optical force, such
that the evolution of the displacement z is governed by

z̈ = −Ω2z − γż + ~Gnc(z)/(mxzpf) = −Ω2z − γż + 2Ωg0nc(z). (2.20)

Plugging (2.19) into (2.20) gives a full description of the mechanical evolution in the
bad-cavity limit.

For small displacementsGx = g0z � κ, we gain additional insight by expand-
ing nc(z) around z = 0,

nc(z) = nmax

[
h(u0) +

∂h(u0)

∂u

∂u

∂z
z +

1

2

∂2h(u0)

∂u2

(
∂u

∂z

)2

z2 + . . .

]
. (2.21)
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The constant term nmaxh(u0) = nc yields an average cavity photon population nc

and generates a static optical force that displaces the resonator to a new equilibrium
position zeq = 2g0nc/Ω. It is generally omitted after shifting the displacement origin
by zeq. In addition, modulating nmax(t) in time by varying the drive laser intensity
allows to drive the mechanical resonator.

The term linear in z,

n(lin)
c (z) = nmaxh

′(u0)
2g0

κ
× z, (2.22)

generates an optical force that is linear with displacement. This is known as the
optical spring effect and its strength depends on the derivative of h(u),

h′(u) =
−2u

(1 + u2)2
=
−2u

1 + u2
h(u). (2.23)

The optical spring constant kopt = −∂Fopt(x)/∂x supplements the intrinsic me-
chanical spring constant kmech = mΩ2 and changes the mechanical resonance
frequency. We estimate the mechanical frequency shift δΩ from (2.20) by using the
approximation (Ω + δΩ)2 ≈ Ω2 + 2ΩδΩ, valid for δΩ� Ω, and arrive at

δΩ = −2g2
0nmaxh

′(u0)/κ =
g2

0nmax

κ

4u0

(1 + u2
0)2

= g2
0nmax

8∆0κ
2

(4∆2
0 + κ2)

2 = g2
0nc

2∆0

∆0 + κ2/4
,

(2.24)

given in several different forms for later reference. In the last expression, we recog-
nize the cavity-enhanced optomechanical coupling rate g ≡ g0

√
nc.

The sign and magnitude of the spring shift depend on detuning, as illustrated
in Figure 2.2. For ∆0 > 0, the optical contribution stiffens the total restoring force
and shifts the mechanical frequency up. Conversely, for ∆0 < 0, the optical spring
counters the intrinsic spring and the mechanical frequency shifts down. For a
given drive laser power, the largest spring shift is attained when |h′(u0)| is maximal.
Solving h′′(u0) = 0 results in the two detunings u± = ±1/

√
3, or equivalently,

∆± = ±κ/(2
√

3) at which the spring shift is maximally positive and negative,
respectively.

Finally, for larger displacementsGx = g0z & κ, the effect of higher-order terms
in (2.21) becomes important. This will be discussed chapter 8. Until then, we neglect
these higher-order contributions.

2.3.5. Optical detection of mechanical motion
We illuminate the cavity using the input channel described by cin and incoupling
rate κin. This builds up a field with amplitude c in the cavity that is subsequently
absorbed and radiated out, until steady-state is reached. Detection of the light
escaping the cavity thus allows us to estimate the amplitude of the cavity field.
Moreover, it allows the optical detection of the resonator position, as we will see in
the current section.
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Figure 2.2: Optical spring shift. A drive laser with relative detuning u = 2∆/κ and fixed intensity
excites a photon population nmaxh(u0) in the cavity. The relative cavity population h(u0) (left) is a
Lorentzian function of detuning. A mechanical displacement x changes the detuning u = u0 +Gx and
alters the cavity photon population instantaneously in the bad-cavity regime. In turn, this modulates
the optical force acting back on the resonator. The optomechanical backaction results in a shift δΩ of
the mechanical resonance frequency (center). The magnitude of the optical spring shift δΩ is largest
when |h′(u0)| is maximal, which occurs for u± = ±1/

√
3 (dashed lines). The spring shift is observed

experimentally in the thermomechanical spectrum (right) of a resonator as the frequency of the laser
driving the cavity is swept. A fit of the optical spring shift model is overlaid (thin black line). The detected
intensity of the mechanical resonance varies as the linear transduction coefficient ∂R/∂x dictated by
(2.26) changes with laser detuning.

We describe the detected radiation mode as an output channel cout with out-
coupling rate κout. In general, the output mode and input mode may have arbitrary
overlap, such that κin and κout, while both bounded by the total decay rate κ, are
unrelated. In addition to light scattered resonantly by the cavity, light can also be
coupled directly from the input to the output channel. For the Fabry-Pérot cavity,
this happens through reflection off the highly-reflective front mirror (reflection
coefficient∼ 1) and leads to the input-output relation cout = cin −

√
κoutcwhere

energy conservation enforces the phase relation indicated by the minus sign.

In general, the direct reflection coefficient may differ from unity. We represent
the amplitude and phase of non-resonant scattering in our nanobeam system by a
complex reflection coefficient reiψ [143]. This leads to the input-output relation

cout = reiψcin −
√
κoutc = reiψcin −

√
κoutκincin

κ/2− i∆
(2.25)

after plugging in the steady-state cavity field (2.15). Now, we recall that the cavity
detuning ∆ = ∆0 +Gx is a function of displacement x. Equation (2.25) thus allows
optical detection of the resonator position from the output field.

Depending on the equilibrium detuning ∆0 and the reflection coefficient reiψ ,
the displacement x may be encoded the amplitude and/or phase of the output
light. The amplitude quadrature can be measured directly with a photodiode, while
phase-sensitive detection of the output light requires interferometric techniques.
In this thesis, we only measure the intensity |cout|2 of the output light, related to the
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input intensity |cin|2 by the reflection

R(x) = |cout|2/|cin|2 =

∣∣∣∣reiψ −
√
κoutκin

κ/2− i∆0 + iGx

∣∣∣∣2 . (2.26)

We do not attempt to determine the coefficients reiψ , κin, κout, andG directly. In-
stead, we assume small displacements x and characterize the linear transduction
∂R/∂x experimentally, as detailed in the next section. Finally, we note that mea-
suring the values of the higher-order nonlinear transduction coefficients ∂nR/∂xn

allows to determine the optomechanical coupling g0 [146].

2.3.6. Thermal fluctuations and spectral density
In many experiments, we do not drive the mechanical resonators directly. Instead,
we rely on the interaction with their thermal environment to set the resonators
into Brownian motion; the detection is sensitive enough to resolve those thermal
vibrations. This interaction is extensively discussed in chapter 4. In the current
section, we discuss some essential results.

The thermal environment of a resonator is modelled by a fluctuating thermal
force Fth(t) with zero average 〈Fth(t)〉 = 0. In response to Fth(t), the displacement
x(t) will be a stochastic quantity, whose frequency content can be quantified using
the spectral density. Let us assume we have measured x(t) during a measurement
interval tM and calculate the gated Fourier transform of x(t),

XtM (ω) =
1√
tM

∫ +tM/2

−tM/2

x(t)e−iωt dt. (2.27)

After collecting many time traces of x(t), the power spectral density is defined as
the ensemble average

Sxx(ω) = lim
tM→∞

〈|XtM (ω)|2〉, (2.28)

and is approximated well from traces of finite duration if the timescale of corre-
lations in x(t) is much shorter than the measurement time tM. We note that the
prefactor 1/

√
tM in (2.27) ensures that Sxx(ω) is independent of the measurement

time. For our high-Q mechanical resonators, the spectral density Sxx(ω) will con-
tain frequency contributions in a narrow band of width γ around their resonance
frequency Ω. Finally, we note that if two processes x, y are linearly related in the fre-
quency domain through y(ω) = h(ω)x(ω), then their spectral densities are related
by Syy(ω) = |h(ω)|2Sxx(ω). We call |h(ω)|2 the transfer function.

Another useful concept is the autocorrelation function2

Rxx(τ) = 〈x(t+ τ)x∗(t)〉t , (2.29)

defined here for a general, possibly complex process x(t). Here, 〈·〉t represents
an average over time t and τ is called the time lag. For our resonators, the typical

2Other common definitions use a different sign convention for τ or swap the conjugation.
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timescale of correlations is related to their dissipation rate and given by 2/γ. We
thus need to make sure that tM � 2/γ. We usually assume that x is a stationary
process, i.e. the statistics of x, includingRxx(τ), do not change over time. In that
case, according to the Wiener-Khinchin theorem, the spectral density Sxx(ω) is
given by the Fourier transform of the autocorrelation [147],

Sxx(ω) =

∫ ∞
−∞

Rxx(τ)e+iωτ dτ. (2.30)

By inverting the Fourier transform, we derive the useful property that the variance
of x(t) is given by the integral of Sxx(ω),

1

2π

∫ ∞
−∞

Sxx(ω) dω = Rxx(0) = 〈|x(t)|2〉. (2.31)

Now we are in a position to analyse the stochastic thermal force Fth(t). The
fluctuation-dissipation theorem [142] relates the strength of the thermal force to the
dissipation rate γ — both arising from interactions with the thermal environment.
It states that the thermal force satisfies the correlation function

〈F (t)F (t− t′)〉 = 2γmkBTδ(t− t′). (2.32)

As this correlator only depends on the time difference τ = t − t′, it represents
a stochastic process that is stationary in time. Moreover, the correlation is zero
when t 6= t′, which means that the thermal environment retains no ‘memory’ of
previous interactions. The spectral densitySFF (ω) of the thermal force is frequency-
independent and given by

SFF (ω) = 2γmkBT. (2.33)

This flat frequency spectrum is known as a white noise spectrum.
From the mechanical susceptibility χm(ω) given in (2.4), we expect a high-Q

resonator only to pick up thermal fluctuations in a narrow bandwidth around the
resonance frequency. This is confirmed by calculating the spectral density, or more
specifically the thermomechanical spectrum

Sxx(ω) = |χm(ω)|2SFF (ω) ≈ γkBT

2mΩ2

1

(ω − Ω)2 + γ2/4
, (2.34)

which indeed describes a peaked, Lorentzian function centered at the resonance
frequency Ω. Its full width at half-maximum is given by the dissipation rate γ, hence
also known as the spectral linewidth. Note that the mechanical transfer function
|χm(ω)|2 is even: it also contains a peaked contribution at the negative frequency
−Ω that the Lorentzian approximation lacks. The variance 〈x(t)2〉, acquired by
integrating (2.34) over the full frequency spectrum, is given by

〈x(t)2〉 =
kBT

mΩ2
=
kBT

k
, (2.35)
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Figure 2.3: Thermal vibrations in the sliced nanobeam device. Thermomechanical fluctuation spec-
trum of the sliced photonic crystal nanobeam, imprinted on the intensity of laser light reflected from the
nanocavity. Lorentzian resonances correspond to mechanical flexural modes at frequencies Ωj/(2π) =
{3.7, 5.3, 12.8, 17.6, 26.2} MHz with loss rates γj/(2π) ≈ 1− 7 kHz and estimated vacuum optomechan-

ical coupling rates g
(j)
0 /(2π) = {5.3, 5.9, 3.3, 3.1, 1.9}MHz.

in accordance with the equipartition theorem.
Equation (2.35) is an important result. It allows to use the thermal variance

of the displacement as a reference length scale, e.g. for calibrating the linear op-
tomechanical transduction coefficient ∂R/∂x. In experiments, we measure the
detector voltage V (t) = · · ·+ vxx(t), related to the position via the transduction
coefficient vx = (∂V/∂R)(∂R/∂x), and evaluate its spectral density SV V (ω) =
· · ·+ v2

xSxx(ω). In addition, SV V (ω) contains other contributions, e.g. from other
resonators coupled to the same cavity or electronic noise sources, as illustrated
in Figure 2.3. To estimate the portion of the variance of V (t) attributable to x(t),
we integrate SV V (ω) over a small frequency band of width ∆ω > γ that is larger
than the spectral linewidth γ but small enough to not include other frequency
contributions:

〈V (t)2〉(x) = 2

∫ Ω+∆ω/2

Ω−∆ω/2

SV V (ω)
dω

2π
≈ v2

x〈x(t)2〉 =
v2
x

mΩ2︸ ︷︷ ︸
Ax

kBT. (2.36)

Note that we have to double the value of the integral, as we only integrate over the
positive frequency contribution.

At this point, we recall that the definition of x is essentially arbitrary and tied to
the effective massm. This ambiguity does not apply to the energymΩ2〈x(t)2〉 =
kBT . We therefore measure and use the well-defined energy transduction constant
Ax = v2

x/(mΩ2) to normalize our experiments. Alternatively, we may work with
the dimensionless displacement z(t) = x(t)/xzpf introduced before. Plugging the
voltage transduction coefficient vz = vxxzpf for z(t) intoAx yields

〈V (t)2〉(z) =
v2
z

mΩ2x2
zpf

kBT = 2v2
z

kBT

~Ω
= 2v2

zn
th, (2.37)

where we have recognized the phonon occupation nth = kBT/~Ω of the thermal
environment, valid in the high-temperature limit kBT � ~Ω. Again, we measure
and use the well-defined transduction constant 2v2

z for normalization.
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The required reference measurements to determine the normalization coeffi-
cientsAx and 2v2

z are generally taken immediately before every experimental run,
to compensate for changes in transduction due to e.g. drifts in optical alignment.

2.4. Dynamic modulation of the optical spring
Next, we consider an optical cavity coupled to multiple mechanical resonators.
Each resonator j is associated with a linear optomechanical couplingGj , phonon-

photon coupling rate g(j)
0 , mechanical frequency Ωj , damping γj and spring shift

δΩj . The cavity frequency ωc(x1, . . . , xN ) ≈ ω0 −
∑
j Gjxj is then a function of

N displacement coordinates xj .
We start withN = 2. Again, we define dimensionless displacement coordinates

zj = xj/xzpf,j . The cavity photon number

nc(z1, z2) = nmaxh
(
u0 + 2g

(1)
0 z1/κ+ 2g

(2)
0 z2/κ

)
(2.38)

is now a function of two coordinates. Its expansion around z1,2 = 0 features two
linear contributions of the form in (2.22), one for each zj . Following (2.20), the
equation of motion for z1 reads

z̈1 = −Ω2
1z1 − γ1ż1 + nmax

4Ω1g
(1)
0 g

(2)
0 h′(u0)

κ
z2, (2.39)

where we have absorbed the optical spring shift into the mechanical frequency
Ω1 7→ Ω1 + δΩ1 and approximated Ω1 + δΩ1 ≈ Ωj in the last term. A similar
equation is obtained for z̈2 upon exchanging the indices 1↔ 2.

The final term in (2.39) represents an optical force F12(x2) acting on resonator
1 that depends linearly on the displacement of resonator 2. Ostensibly, the cavity
field mediates an optical spring that couples the two resonators with a stiffness
k12 = −∂F12/∂x2 ∝ nmax that scales with the intensity of the optical drive. For
resonators with equal frequencies Ω1 ≈ Ω2, this immediately leads to hybridized
mechanical modes [148].

For detuned resonators, the inter-resonator force is off-resonant and does not
induce hybridization. However, as the force F12(t) = −k12(t)x2(t) mixes the inter-
resonator optical spring k12(t) with the displacement x2(t), we realize that dynamic
modulation of k12(t) enables frequency conversion [149].

Modulating the drive laser intensity |cin(t)|2 with frequency ωm � κ and phase
offset φm instantaneously addresses the cavity photon population nc in the bad-
cavity limit and thus modulates the inter-resonator spring k12(t) ∝ cos(ωmt+ φm).
With the displacement x2(t) ∝ cos(Ω2t+ φ2) oscillating harmonically at Ω2 with
phase offset φ2, this creates sidebands in the optical force

F12(t) ∝ cos(ωmt+ φm) · cos(Ω2t+ φ2)

=
1

2
cos ((Ω2 − ωm)t+ φ2 − φm) (2.40)

+
1

2
cos ((Ω2 + ωm)t+ φ2 + φm) . (2.41)
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Figure 2.4: Coupling detuned resonators by a modulated optical spring. Thermomechanical fluctuation
spectra of the sliced nanobeam, imprinted on the intensity of a far-detuned detection laser reflected
off the cavity. An additional drive laser is detuned by κ/(2

√
3) and induces a positive optical spring

shift. With a static drive laser (top), two mechanical modes are revealed with spring-shifted frequencies
Ωj = {3.7, 5.3}MHz. By modulating the drive laser with finite depth cm > 0 at the frequency difference
ωm = Ω2 −Ω1 between the two modes (bottom), a linear interaction is induced between the resonator
through frequency conversion. The resonators form hybridised Floquet modes with frequency splitting
2J > γj larger than the mechanical linewidths γj ∼ kHz.

By choosing ωm = Ω2 − Ω1, the down-converted sideband (2.40) becomes
resonant with resonator 1. At the same time, the optical inter-resonator force F21(t)
acting on the other resonator acquires a resonant up-converted sideband, given
by (2.41) upon exchanging the indices 1↔ 2. This mutual interaction leads to the
formation of hybridised Floquet modes of the two resonators, shown in Figure 2.4,
and enables mechanical state transfer [149]. Moreover, we note that the modulation
phase φm appears with a negative sign−φm in the down-converted sideband, but
with a positive sign +φm in the up-converted one. As was demonstrated in [64],
this causes φm to be imprinted as a nonreciprocal Peierls phase (section 1.3) on
transferred vibrations.

Choosing ωm = Ω1 + Ω2 presents another opportunity to create inter-resonant
sidebands. However, in that case, it is the down-conversion sideband (2.40) imprint-
ing phase−φm that is resonant in both F12 and F21. This leads to a fundamentally
different interaction between the two modes: They now experience two-mode para-
metric amplification. In effect, the modulation couples the negative frequency
component e−iΩ1t of one resonator to the positive frequency component eiΩ2t of
the other, and vice versa (Figure 2.5). Similarly, modulating the drive laser inten-
sity at ωm = 2Ω̃j induces single-mode parametric amplification of resonator j
through modulation of the single-mode optical spring constant kjj . In this case, the
modulation couples the negative and positive frequency components of the same
resonator.

We discuss these interactions and their consequences in more detail in sec-
tion 2.6 using the quantum framework laid out in the next section.

2.5. Quantum optomechanics
While the experiments in this thesis are distinctly classical, we will adopt a quantum
formalism to describe them. This is standard practice in the field of classical cavity
optomechanics and illustrates the connection to other (quantum) systems such
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2Ω1

ΔΩ21ΔΩ21

ΣΩ21

Figure 2.5: Dynamic modulation in a sideband picture. Positive and negative frequency sidebands
corresponding to two resonances are shown at±Ω1,2. Dynamic modulation of the spring shift at the
difference frequency ∆Ω21 = Ω2 − Ω1 inter-couples the positive and negative frequency sidebands
of both resonators. Modulating the spring shift at the double frequency 2Ω1 couples the positive
frequency sideband to the negative frequency sideband of the same resonator, while modulation at the
sum frequency ΣΩ21 = Ω2 + Ω1 cross-couples positive and negative frequency sideband between
resonators.

as superconducting resonators or photonics. Moreover, it facilitates the potential
extension of our findings in the quantum domain. In this section, we introduce a
quantum treatment of the optomechanical interaction between a cavity mode and
a single resonator, before expanding the system to multiple resonators in the next
section.

Both the cavity and the mechanical resonator constitute harmonic oscillators,
with their quantized energy packets ~ωc and ~Ω known as (optical) photons and
(mechanical) phonons. We describe the optical and mechanical degrees of freedom
by the annihilation operators ĉ and â, respectively. The mechanical displacement
operator x̂ and momentum operator p̂ are given by

x̂ = xzpf

(
â+ â†

)
, p̂ = −imΩxzpf

(
â− â†

)
, (2.42)

where we recall that xzpf is the zero-point fluctuation amplitude given in (2.12).
This choice of normalization ensures that the mechanical number operator â†â
expresses the phonon number n̂. Similarly, ĉ†ĉ is normalized to express the number
of cavity photons n̂c.

In the rotating frame of the optical control field, the Hamiltonian of the interact-
ing system reads

Ĥ = −~∆(x̂)

(
ĉ†ĉ+

1

2

)
+ ~Ω

(
â†â+

1

2

)
, (2.43)

where the detuning ∆(x̂) = ∆0 +Gx̂ is defined as before. From now on, we leave
out the ground state energy offsets ∝ 1/2 in the brackets in (2.43), as these do
not affect the system’s dynamics. We express the cavity detuning in terms of x̂ and
obtain

Ĥ = ~Ωâ†â− ~∆0ĉ
†ĉ− ~g0ĉ

†ĉ
(
â+ â†

)
. (2.44)

Here, we recognize the radiation pressure force

F̂opt = −∂Ĥ
∂x̂

= ~Gn̂c, (2.45)
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which corresponds to its classical counterpart (2.2).
Equation (2.44) governs the dynamics of a closed system. In reality, both the

cavity and the mechanical resonator interact with the environment. To model
this, we employ input-output theory [147], which adds terms describing decay,
fluctuations and driving to quantum equations of motion in the Heisenberg picture.
We have already used this formalism tacitly in sections 2.3.4 and 2.3.5.

We assume that the cavity is coupled to an input port described by the input field
operator âin with rate κin. The cavity experiences loss at a rate κ, both through the
input port and other channels. Through these additional ports, vacuum fluctuations
described by the operator f̂env feed back into the cavity with rate κ0 = κ− κin. The
mechanical resonator dissipates energy into its environment at a rate γ. Conversely,
fluctuations described by the operator âenv feed into the resonator with the same
rate. For the MHz-frequency resonators used in this thesis, the phonon energy
~Ω� kBT is much smaller than the thermal energy for the lab temperature T ≈
300 K, such that âenv is dominated by thermal fluctuations.

The Heisenberg-Langevin equations of motion then read

˙̂c = −κ
2
ĉ+ i (∆0 +Gx̂) ĉ+

√
κinĉin +

√
κ0f̂env, (2.46)

˙̂a = −γ
2
â− iΩâ+ ig0ĉ

†ĉ+
√
γâenv. (2.47)

From (2.46) and (2.47), the classical evolution of a coherent state can be obtained
by taking the expectation value of the operators â 7→ 〈â〉 ≡ a and ĉ 7→ 〈ĉ〉 ≡ c. This
yields the classical equations of motion

ċ = i (∆0 +Gx+ iκ/2) c+
√
κincin, (2.48)

ȧ = −i (Ω− iγ/2) a+ ig0|c|2︸ ︷︷ ︸
fopt

+fth, (2.49)

where we have removed the effect of quantum fluctuations, but kept a stochastic
drive term fth for the mechanical resonator that represents a fluctuating thermal
force.

Quantum fluctuations are not relevant in our experiments as their impact on the
mechanical degrees of freedom is always smaller than that of fth. In the remainder
of this thesis, we therefore drop the hats for notational compactness and let the
meaning of a symbolO be inferred from context: the operator Ô is meant whenever
Hamiltonians are defined, while equations of motion are written for the expectation
value 〈Ô〉.

At this point, we recognize the similarity between (2.49) and the classically
derived evolution (2.9) for a high-Q resonator. Indeed, our choice x̃ = 2xzpf for
the classical normalization length guarantees that we can translate Heisenberg-
Langevin equations directly into classical equations of motion. As an example, we
note that the optical drive indicated by fopt in (2.49) is exactly the result of plugging
the radiation pressure force Fopt = ~G|c|2 into the classical driving term (2.10).

The evolution described in (2.46) and (2.47) is not linear and can in general
not be solved exactly. This reflects the fact that the optomechanical interaction
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Hamiltonian

Ĥint = −~g0ĉ
†ĉ
(
â+ â†

)
(2.50)

involves combinations of three operators and thus describes a nonlinear (three-
wave mixing) process. In the following section, we advance by linearising the evolu-
tion around a large coherent cavity amplitude, after first expanding our system to
include multiple mechanical resonators.

2.6. Optically-mediated mechanical interactions
The aim of the current section is to quantify the effective mechanical interactions
introduced in section 2.4, mediated by dynamic modulation of the cavity backaction.
To do so, we extend our system to a single optical mode annihilated by c coupled to
N mechanical modes annihilated by ăj in the laboratory frame, with frequencies Ωj

and vacuum optomechanical coupling rates g(j)
0 . The Hamiltonian of this system is

an extension of (2.44) and reads

H̆/~ =

N∑
j=1

Ωj ă
†
j ăj −∆0c

†c−
N∑
j=1

g
(j)
0 c†c

(
ăj + ă†j

)
. (2.51)

We work in the bad-cavity limit κ � Ωj . The cavity is driven by a control field
with slowly varying amplitude cin(t) that addresses the cavity photon population
instantaneously. Following (2.15), the cavity mode is displaced by a steady-state

amplitude approximated by the homogeneous (g(j)
0 = 0) solution

c̄(t) ≈ √κinχc(∆0)cin(t). (2.52)

We linearise the radiation-pressure interaction (2.51) by displacing the cavity
amplitude around (2.52), i.e. c(t) 7→ c̄(t) + δc(t) and neglecting terms O((δc)2),
assuming small cavity fluctuations δc(t). Ignoring constant offsets, Hamiltonian
(2.51) then reads

H̆/~ ≈−∆0δc
†δc+

N∑
j=1

[
Ωj ă

†
j ăj − |c̄(t)|2g

(j)
0

(
ăj + ă†j

)]

−
(
c̄(t)δc† + c̄(t)∗δc

) N∑
j=1

g
(j)
0

(
ăj + ă†j

)
.

(2.53)

Subsequently, we apply a unitary transformation UF = exp
(
−it
∑
j Ωj ă

†
j ă
)

to describe the mechanical resonators in a rotating frame with operators
aj = UF ăjU

†
F = eiΩjtăj . The lab frame Hamiltonian H̆ is transformed to

the rotating frame via H = U†F H̆UF + i~UF∂U†F /∂t and results in the rotating
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frame Hamiltonian

H/~ =−∆0δc
†δc−

static rpf︷ ︸︸ ︷
N∑
j=1

|c̄(t)|2g(j)
0

(
aje

iΩjt + a†je
−iΩjt

)

−
(
c̄(t)δc† + c̄(t)∗δc

) N∑
j=1

g
(j)
0

(
aje

iΩjt + a†je
−iΩjt

)
︸ ︷︷ ︸

backaction rpf

.

(2.54)

Following the approach in section 2.5, we derive the classical Langevin equations

δċ = (i∆0 + κ/2)δc + ic̄(t)
∑
j

g
(j)
0

(
aje

iΩjt + a∗je
−iΩjt

)
(2.55)

ȧj = −(γ/2)a︸ ︷︷ ︸
dissipation

+ i|c̄(t)|2g(j)
0 e−iΩjt︸ ︷︷ ︸

static rpf

+ ig
(j)
0

(
c̄(t)δc† + c̄(t)∗δc

)
e−iΩjt︸ ︷︷ ︸

backaction rpf

(2.56)

In contrast to the equations of motion (2.48) and (2.49) for the full cavity field,
equations (2.55) and (2.56) are linear and can be analysed further for example in
the frequency domain [118, 143].

Working in the bad-cavity limit, we separate the optical timescale from the
mechanical timescale by setting δċ ≈ 0. This results in cavity fluctuations that are
stationary on the mechanical timescale and given by

δc ≈ iχc(∆0)
∑
j

g
(j)
0 c̄(t)

(
aje

iΩjt + a†je
−iΩjt

)
. (2.57)

Here, we have tacitly assumed that the cavity susceptibility χ(∆0 + ω) doesn’t
change over the frequency components ω of the optomechanical drive term, which
are on the order of Ωj .

After plugging (2.57) into (2.56) and some algebra, we arrive at the system of
equations for the resonator amplitudes

ȧj =− (γ/2)a+ i|c̄(t)|2g(j)
0 e−iΩjt

− 2i|c̄(t)|2 Im [χc(∆0)]
∑
k

g
(j)
0 g

(k)
0

(
a∗ke
−iΩkt + ake

iΩkt
)
e−iΩjt.

(2.58)

We note that the prefactor Im [χc(∆0)] = ∆0|χc(∆0)|2 is a good approximation of
Im [χc(∆0 + ω)] if ∆0 � ω ∼ Ωj .

Finally, we recognize that the equations of motion (2.58) correspond to the
HamiltonianHeff = Hd +H int

eff comprising the displacement contribution

Hd/~ = −|c̄(t)|2
∑
j

g
(j)
0

(
aje
−iΩjt + H.c.

)
(2.59)
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and the interaction Hamiltonian

H int
eff /~ = ∆0|χc(∆0)|4κin|cin(t)|2

∑
j

g
(j)
0

(
aje
−iΩjt + H.c.

)2

. (2.60)

Alternatively, the effective interaction Hamiltonian (2.60) can be derived using a
proper open-system quantum treatment as well, after adiabatic elimination of the
cavity fluctuations [150]. This procedure is detailed in the Supplementary Informa-
tion of [151].

2.6.1. Control field modulation
We introduce modulation of the control field intensity |cin(t)|2 using multiple

harmonic driving tones l with frequencies ω(l)
m , modulation depths c(l)m , and

phases φ(l)
m . The homogeneous cavity intensity nc(t) = |c̄(t)|2 responds linearly

to |cin(t)|2 via (2.52) and reads nc(t) = n̄0

[
1 +

∑
l c

(l)
m cos

(
ω

(l)
m t+ φ

(l)
m

)]
, where

n̄0 = κin|χc(∆0)c̄in|2 is the average photon number.
First, we analyse the effect of a varying control field on the displacement term

Hd given in (2.59). The static component n̄0 of the modulation generates a static
force that displaces the resonators. This static displacement δxj constitutes a new
equilibrium position for each resonator and is customarily accounted for by shifting
their displacement origin by δxj . In addition, modulation tones that are resonant

with a mechanical frequency ω(l)
m = Ωj allow to drive the corresponding resonator

j with drive strength fj (cf. equations (2.10), (2.49)) proportional to the modulation
depth,

fj = ieiφ(l)
m c(l)m g

(j)
0 n̄0/2. (2.61)

The large frequency separation between different resonators ensures that the tone l
only drives a single mode. In the rotating frame, the effect of l on the other resonators
induces quickly rotating terms that are subsequently neglected in a rotating wave
approximation.

Next, we consider the effect on the interaction Hamiltonian H int
eff . We plug in

the modulated control field and expand the quadratic term in (2.60) into the terms

H int
eff =

∑
j,kH

(j,k)
eff given by

H int
eff /~ = gjk(t)

(
aje
−iΩjt + H.c.

) (
ake
−iΩkt + H.c.

)
. (2.62)

Here, gjk(t) = ∆0|χc(∆0)|2g(j)
0 g

(k)
0 nc(t) represents the cavity-mediated modu-

lated interaction between j and k.

2.6.2. Interaction Hamiltonian
To proceed, we apply a rotating wave approximation (RWA) that keeps the co-
rotating terms with slow evolution in the rotating frame. At this point, the frequency
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content of the control field modulation becomes important: it selects which terms
are mixed down to zero frequency and thus survive the RWA.

We start with the static component n̄0. This adds a stationary contribution

to the self-interaction terms H(j,j)
eff = ~δΩja†jaj + . . . that shifts the mechanical

resonance frequencies by δΩj = 2(g
(j)
0 )2n̄0∆0|χc(∆0)|2 = 2g2

j∆0/(∆
2
0 + κ2/4),

known as the optical spring shift and derived in section 2.3.4 for the classical system.

Here, g2
j = g

(j)
0

√
n̄0 denotes the cavity-enhanced optomechanical coupling rate.

For convenience, we reabsorb the optical spring shift in the definition of Ωj 7→
Ωj + δΩj .

Other frequency components (modulation tones) that induce RWA-surviving

interaction terms have frequencies ω(l)
m approaching either a mechanical sum fre-

quency ΣΩ(jk) = Ωj + Ωk or difference frequency ∆Ω(jk) = Ωj − Ωk. The full
interaction Hamiltonian in the RWA then reads

H int
eff /~ ≈

∑
ω

(l)
m ≈∆Ω(jk)

Jjka
†
jake

−i[ω(l)
m −∆Ω(jk)]t+ϕjk + H.c.

+
∑

ω
(l)
m ≈∆Σ(jk)

ηjka
†
ja
†
ke
−i[ω(l)

m −ΣΩ(jk)]t+θjk + H.c.,
(2.63)

where the sums run over the tones l and indices (j, k) that satisfy the specified reso-
nance conditions. Note that a single pair of indices (j, k) satisfies resonance with a
difference frequency ∆Ω(jk), whereas resonance with a sum frequency ΣΩ(jk) is
satisfied by both (j, k) and (k, j). This Hamiltonian underlies most of the experi-
ments performed in this thesis.

From (2.63), we recognize that difference frequency modulations induce beam-
splitter/hopping interactions, while sum frequency modulations induce squeezing
interactions/parametric amplification corresponding to pairwise creation or anni-
hilation of phonons in a quantum picture. The hopping and squeezing interaction

rates Jjk and ηjk, respectively, are tuned by the depth c(l)m of the corresponding
modulation tone and given by [64, 152]

{Jjk, ηjk} = c(l)m

gjgk∆0

(∆2
0 + κ2/4)

= c(l)m

√
δΩjδΩk

2
. (2.64)

Similarly, the hopping (squeezing) phases, denoted ϕij (θij), are set by correspond-

ing modulation phase φ(l)
m , and crucially allow to imprint a non-trivial Peierls phase

on the interaction [64, 74]. Note that δΩj , δΩk always have the same sign. The scal-
ing of the interaction rates with the geometric mean

√
δΩjδΩk of the resonators’

optical spring shifts reflects the fact that dynamically modulated optomechanical
backaction underlies the effective interaction. Maximal coupling rates are thus
attained for the optimal detunings ∆± = ±κ(2

√
3), when |δΩj | are maximal.

Finally, we comment on the validity of the RWA. It is valid for moderate effective
coupling strengths Jjk, ηjk � Ωj , (in the experiment, Jjk/Ωj , ηjk/Ωj ∼ 10−3 −
10−2), resolved mechanical sidebands (in the experiment γj/Ωj ∼ 10−3 − 10−2)
and moderate detuning of the control tones, as well as no commensurable frequency
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scales (Ωi ± Ωj 6= Ωk for all modes i, j, k). Besides moderate effective coupling,
the RWA relies on the assumption that the modulated drive is quasi-resonant with
each relevant process. In the large detuning and parametric drive limit, significant
deviations are expected [153]. Parametric resonators are more naturally treated
in this case in terms of the displacement coordinate x [154, 155] or employing
quadratures in a generalised rotating frame [156].

2.6.3. Time-independent effective Hamiltonian
For modulation frequencies exactly resonant with ∆Ω(jk),ΣΩ(jk), Hamiltonian
(2.63) is time-independent. In this limit, we encode the beamsplitter interactions
that conserve the total phonon number nph =

∑N
j=1 a

†
jaj in the elementsAjk =

Jjke
−iϕjk ,Akj = A∗jk of the Hermitian hopping matrix A. Consequently, we de-

fine the symmetric squeezing matrix B that encodes the particle-non-conserving
squeezing interactions in its elements Bjk = ηjke

iθjk , Bkj = Bjk. Equation (2.63)
then writes succinctly as the general quadratic form

Heff ≈
∑
j,k

a†jAjkak +
1

2
(a†jBjka†k + ajB∗jkak), (2.65)

where we have set ~ = 1 for convenience. We apply this convention in the remainder
of this thesis.

2.6.4. Basic consequences of interactions
We conclude this section by briefly discussing the basic consequences of beam-
splitter and squeezing interactions. As demonstrated experimentally in Figure 2.6a,
a beamsplitter interaction J > γj , i.e. in the strong coupling regime, hybridizes
resonators into Floquet modes and induces a frequency splitting 2J in their spectra.
In addition, we track the evolution of two coupled resonators in time in Figure 2.6b.
After a coherent excitation is initialized in resonator 1 by resonant drive laser mod-
ulation, the drive is switched off and the interaction modulation is switched on.
Subsequently, Rabi-like oscillations are observed [149]: Through the frequency-
converting interaction, energy is continuously exchanged back and forth between
the resonators until the coherent energy in the resonators is dissipated. The period
4πJ−1 of the Rabi oscillations is set by the interaction rate J . A detailed explanation
of the experimental control and readout methods will be given in section 2.8.

For a beamsplitter interaction, the evolution of energy initially localized in a
single resonator does not depend on the resonator quadrature that is excited. In ad-
dition, the beamsplitter interaction preserves the total phonon number in a closed
system, such that amplitude in an open system can only decay. This is markedly
different for a single-mode squeezing interaction: One resonator quadrature ex-
periences parametric amplification while the orthogonal quadrature experiences
damping. As demonstrated experimentally in Figure 2.7a and c, the parametric gain
ηmodulates the spectral linewidth of the resonator, until for 2η > γj the parametric
amplification overcomes the intrinsic decay rate γj and a narrow, high-amplitude
parametric resonance is observed. In that case, the resonator is driven into self-
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Figure 2.6: Beamsplitter interaction. (a) Thermomechanical spectra of resonators 1 and 2 shown in
Figure 2.3 coupled by an optically-mediated effective beamsplitter interaction in their rotating frame.
The interaction is induced by modulating the intensity of a drive laser, optimally detuned by ∆0 =
−κ/(2

√
3), at the frequency difference ∆Ω21 = Ω2 − Ω1 between the mechanical resonances. The

strength of the interaction J = cm/2
√
δΩjδΩk is controlled by the depth cm of the modulation and

limited by the resonators’ spring shifts δΩj . The interaction hybridizes the strongly-coupled resonators
into Floquet modes and induces a frequency splitting 2J > γj in their spectra that is larger than their
dissipation rates γj . A slight difference (on the order of 10%) remains between the observed and the
expected mode splitting (dashed lines) and is usually corrected for in later experiments. (b) Measured
time evolution of the coherent amplitude (in units of their zero-point fluctuation amplitude) of a pair
of resonators (1, blue and 2, red) subject to a beamsplitter interaction of strength J/(2π) = 5 kHz.
Resonator 1 is initially (time t < 0) driven to a high amplitude steady state by a coherent laser intensity
modulation. At t = 0, the drive modulation is switched off and the interaction modulation is switched
on. Rabi-like oscillations induced by the coupling interaction are observed, where energy is transferred
back and forth between the resonator until the coherent energy in the resonators is dissipated. The
evolution is averaged over 24000 runs of the experiment.

oscillation with a growing amplitude that is ultimately limited by the nonlinearity
of the resonator.

The effect of a single-mode squeezing interaction on thermal fluctuations is to
break the quadrature-symmetry of the thermal state, as demonstrated earlier in
electromechanical [157, 158] and optomechanical [159] systems. After recording
a time trace of the thermally fluctuating complex amplitude aj(t) of resonator j,
we construct a histogram of the distribution of the instantaneous quadrature am-
plitudes Xj(t) ≡ Re aj(t) and Yj(t) ≡ Im aj(t). As detailed in section 2.8.7, the
phase of aj(t) is referenced by independently measuring the propagation delay
through the set-up. In Figure 2.7b we show such experimental phase-space dis-
tributions for resonators 3 and 4 subject to a single-mode squeezing interaction
η/(2π) = 1 kHz smaller than their amplitude decay rates γj/2. For the particular
squeezing interaction angle θ = π/2 set in the experiment, the average amplitude
of theX quadrature expressed in phonon amplitude is reduced (‘squeezed’) below
the thermal quadrature amplitude

√
n̄j/2 while the average amplitude of Y is in-

creased (‘anti-squeezed’) above
√
n̄j/2. In general, the squeezing angle θ rotates

the phase-space distribution.
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Figure 2.7: Single-mode squeezing and linewidth modulation by parametric driving. (a) Parametric
gain induced by a single-mode squeezing interaction observed in thermomechanical spectra. Each panel
corresponds to a separate experiment where resonator j (1 through 4) is subjected to a single-mode
squeezing interaction of strength η. As η is increased, the resonance transitions from the broad intrinsic
linewidth to a narrow parametric resonance. b The phase-space distribution of the thermal fluctuations
of resonator j (left: 3, right: 4) subject to a single-mode squeezing interaction of strength η/(2π) = 1
kHz with squeezing angle θ = π/2 reveals a squeezed thermal state. The squeezed (anti-squeezed)
quadrature X (Y ), measured in units of the thermal equilibrium amplitude

√
n̄j , are referenced by

independently measuring the propagation delay through the set-up (section 2.8.7). c Fitted Lorentzian
full-width at half-maximum linewidths of the resonances shown in (a). Even though a superposition of
two degenerate resonances is expected – a broadened resonance of the anti-squeezed quadrature and a
narrowed resonance of the squeezed quadrature – only a single one can be successfully fitted in each
spectrum. This reflects the fact that the highly populated narrowed resonance dominates the broadened
resonance. As the parametric gain η is increased, each resonator’s squeezed quadrature linewidth is
expected to decrease by ∆γ = −2η (dashed lines), until parametric threshold is reached at η = γj/2,
where γj is the intrinsic linewidth of resonator j. The fitted linewidths follow the expected trend quite
closely for intermediate η, while for lower η the narrow resonance is presumably not yet fully dominant
and for larger η high-amplitude nonlinear effects are prominent. Error bars correspond to fit uncertainty,
and are smaller than symbol size in most points.

2.7. Bogoliubov-de Gennes (BdG) formalism
To analyse the quadratic Hamiltonian (2.65), we use the Bogoliubov-de Gennes
(BdG) framework [160–162] commonly used to model the dynamics of quasiparticle
excitations in many-body systems. In this section, we briefly review this formalism
and apply it to calculate the time evolution of interacting resonators.

In the absence of squeezing interactions, a quadratic Hamiltonian can be diago-
nalized by a unitary transformation that does not mix the system’s annihilation oper-
ators aj and creation operators a†j . That is no longer the case if squeezing is involved:
The Hamiltonian can then only be diagonalized by a Bogoliubov transformation
that mixes the aj ’s and a†j ’s into quasiparticles. The quasiparticle annihilation and
creation operators still satisfy the appropriate (bosonic or fermionic) commutation
relations. For bosons, the quasiparticle excitations are known as normal modes.
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Finally, in terminology borrowed from partially-filled electronic systems, aj ’s are

often indicated as particle (annihilation) operators, while the creation operators a†j
are referred to as hole (annihilation) operators.

2.7.1. BdG dynamical matrix and symmetries
In the BdG formalism, we therefore treat the operators aj and a†j of theN interacting
modes on equal footing, in effect doubling the apparent degrees of freedom of the
system. We extend the vector a = (a1, · · · , aN )T of annihilation operators into the
Nambu-like mode vector

α =

(
a
a†

)
, (2.66)

such that the quadratic Hamiltonian (2.65) can be written (up to a constant term)
as

Heff =
1

2
α†Hα, H =

(
A B
B∗ A∗

)
. (2.67)

We callH the Hamiltonian matrix.
Next, we calculate the Heisenberg equations of motion Ȯ = i/~ [H,O] for the

operators O 7→ aj , a
†
j . This yields the evolution α̇(t) = −iHα(t) of the mode

vector, governed by the BdG dynamical matrix

H = ΣzH =

(
A B
−B∗ −A∗

)
. (2.68)

Here, we have assumed that the aj , a†j represent bosonic modes, such that their

commutation relations are encoded by the matrix Σz = diag(1N ,−1N ) = [α,α†].
When squeezing interactions — which couple particle and hole operators — are

absent (B = 0), the dynamics of aj and a†j are independent, and simply governed
by the Hermitian matrices A and −A∗, respectively. However, in the presence
of squeezing (B 6= 0), the bosonic dynamical matrix H is non-Hermitian and
admits complex eigenvalues. It can thus generate dynamics that are not stable,
where physical observables grow unbounded (or decay) in time. This is in stark
contrast with the fermionic case, where the dynamical matrixH, related to H by
different commutation relations, is necessarily Hermitian [160]. We emphasize that
the underlying HamiltonianHeff is still Hermitian: The non-Hermitian dynamics
are induced by squeezing, not by incoherent coupling to a dissipative or pumped
environment, which necessarily introduces fluctuations [163]. Studying this type of
non-Hermitian dynamics is the subject of chapter 5.

The quasiparticles ψn, i.e. the eigenoperators that diagonalize the Hamiltionian,
as well as the solution of a(t) can be expanded in terms of the eigenvectors |ψn〉 of
H (that is,H|ψn〉 = εn|ψn〉 for some eigenvalue εn), in a similar fashion to Hermi-
tian systems. The apparent doubling of dynamical degrees of freedom introduces
symmetries in the matrixH that are reflected in the eigenvalues, to wit:
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1. Charge conjugation symmetry. The mutual adjointness of creation and anni-
hilation operators leads to a symmetry relation CHC = −H, where the opera-
tion C = τxK exchanges particles and holes using the matrix τx = σx ⊗ 1N
(σx is the x Pauli matrix) and applies the complex conjugation operationK.
It implies that if |ψn〉 is an eigenvector ofH with eigenvalue εn, then C|ψn〉 is
an eigenvector ofH with eigenvalue−ε∗n.

2. Σz-pseudo-Hermiticity. Bosonic commutation relations give rise to the sym-
metry relation ΣzHΣz = Σ†z known as Σz-pseudo-Hermiticity. It indicates
that if |ψn〉 is an eigenvector of H with eigenvalue εn, then Σz|ψn〉 is an
eigenvector ofH with eigenvalue ε∗n.

In general, the eigenvalues ofH thus come in quartets {εn, ε∗n,−εn,−ε∗n}, of which
some elements may be equal, for example when εn is purely real or imaginary.
These redundancies ensure that ifα(0) represents a physical excitation at t = 0, i.e.

the conjugation relations (aj)
† = a†j are satisfied between the upper half and the

lower half of entries in (2.66), then the evolved stateα(t) will also be physical.

2.7.2. Open-system dynamics
Next, we introduce mechanical dissipation and thermal fluctuations. We use the
Heisenberg-Langevin formalism to write the equation of motion

α̇(t) = −iMα(t) +αin(t) + f (α), (2.69)

governed by the open-system dynamical matrixM = H − iΓ/2 that incorpo-
rates the dissipation matrix Γ = diag(γ1, . . . , γN , γ1, . . . , γN ). The drive terms
αin describe fluctuations entering the modes and arise from the incoherent cou-
pling to (thermal) baths with (high-temperature) Bose occupations nth

j ≈ kBT/~Ωi.

The drive terms f (α) encode any other forces driving the system. We note that
dissipation generally means the dynamical matrixM does not obey Σz-pseudo-
Hermiticity. Still, as we will see later for known Γ, the symmetries ofH can often be
revealed from the observation of spectral features related to the complex eigenval-
ues ofM.

We note that the resonator operators aj in the underlying effective Hamiltonian
Heff in (2.65) are described in a rotating frame. Nevertheless, they fulfil the same
Markovian correlations as their lab-frame counterparts, that is, 〈αin(t)αin(t′)〉 =
Dδ(t − t′) with diffusion matrix D = diag(γ1(nth

j + 1), . . . , γ1n
th
j ) [164]. In our

analysis, we neglect quantum fluctuations by approximating (nth
j + 1) ≈ nth

j in
the diffusion matrix. In principle, equation (2.69) models the evolution of every
experiment in this thesis, except the nonlinear experiments shown in chapter 8.

2.7.3. Quadrature evolution
In the experiments discussed in chapters 5, 6 and 7, we resolve the resonator modes
into their quadratures xj = (aj + a†j)/

√
2 and pj = (aj − a†j)/(i

√
2) to study their

evolution. Following the approach in [161], we define the real matrices

U = Im(B −A), V = Re(A+ B) and T = Re(A− B). (2.70)
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The quadrature vector q′ = (x1, . . . , xN , p1, . . . , pN )T then evolves as

q̇′ =Mq′q
′ − f (q′), (2.71)

subject to drive terms f (q′)3 and governed by the quadrature dynamical matrix

Mq′ =

[
UT T
−V −U

]
− Γ/2. (2.72)

The dynamical matrixMq′ has purely real entries, reflecting the fact that quadra-
tures can only have a real amplitude and no phase.

Finally, the vector q′ = (S† ⊗ 1N )α can be obtained from the mode vectorα
using the unitary transformation

S =
1√
2

[
1 i
1 −i

]
. (2.73)

Note that the vector q′ is ordered by quadrature type. For convenience, we often or-
der the quadratures by resonator into the vector q = (x1, p1, . . . , xN , pN )T = Gq′,
where G is the matrix that permutes the operators. The corresponding dynamical
matrix then readsMq = GMq′G†, such that the evolution of q is given by

q̇ =Mqq− f (q), (2.74)

with forcing vector f (q) = Gf (q′) = (fx1
, fp1 , . . . , fxN , fpN )T .

2.7.4. Susceptibility
To evaluate the response of a system to harmonic driving via the f (b) terms at
frequency ω, we Fourier transform the equations of motion (2.69) and (2.71). This
results in the susceptibility matrices

χα(ω) = i (ω1−M)
−1
, (2.75)

χq(ω) = (iω1 +Mq)
−1
, (2.76)

in the mode and quadrature bases, respectively. In the absence of squeezing inter-
actions, the system’s dynamics and thus its response are fully characterized by the
hopping matrixA. In that case it suffices to consider only the reduced mode vector
a of particle operators and its associated susceptibility matrix

χa(ω) = i (ω1−A+ iΓ′/2)
−1
, (2.77)

where Γ′ = (γ1, . . . , γN ) is the reduced dissipation matrix.

2.8. Experimental platform
In the remainder of this chapter, we focus on the experimental platform we use
to induce nanomechanical multi-mode dynamics governed by tunable, arbitrary
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Figure 2.8: Experimental set-up. Schematic of the experimental set-up. Not all components are used
in every experiment. IMs, intensity modulators; LP, linear polariser; PBS, polarising beamsplitter; BPF,
optical bandpass filter; PD1, PD2, photodiode; DSP, digital signal processor; SWs, microwave switches;
LIA, lock-in amplifier; SG, signal generator. The device, shown in Figure 2.1a, is mounted in a vacuum
chamber under a 45◦ angle to facilitate cross-polarized detection. Depending on the experiment, one or
two drive lasers are used in addition to a detection laser. All lasers have different wavelengths (typical
spacing 1–5 nm). The BPF serves to filter out the detection laser in the read-out. The LIA ports serve
to (Out) drive the IMs through an amplification stage (not shown) and to (In) analyse the intensity
modulations of one drive laser (for calibration) and detection laser. If an experiment requires more
modulation signals than the LIA can provide, a pool of N = 6 additional signal generators (labelled
SGj ) is used. Phase coherence between additional SGs and the LIA is obtained by using the monitor
detector PD1, as detailed in section 2.8.2. For time-resolved measurements, the SG is programmed to
(Out) actuate the drive signal switches and trigger the LIA acquisition. The DSP optionally generates a
feedback signal to modify resonator damping rates. The specific routing between signal sources and the
IMs depends on the experiment.

quadratic bosonic Hamiltonians. We start by reviewing the set-up used in all experi-
ments.

Illustrated in Figure 2.8, the set-up consists of an optical part and an electronic
part. The sample is housed in vacuum chamber (pressure 2× 10−6 mbar) to min-
imize the effect of air resistance on the mechanical modes, and mounted on a
piezo-actuated precision stage to scan the laser focus over the sample. To assist with
optical alignment, the sample is illuminated from outside the vacuum chamber
using a broadband light source and imaged in transmission on a phosphor-coated
NIR camera (not shown in the figure). The nanocavity is illuminated by laser light at
normal incidence, focused by an objective lens (focal length 2.7 mm) co-located
in the vacuum chamber. To filter light that is resonantly scattered by the cavity
from light directly reflected by the substrate, we employ a cross-polarized detec-
tion scheme. In this scheme, the nanobeam device is rotated by 45◦ relative to
the vertical polarization of the incoming light. Subsequently, only the converted,
horizontally polarized light that has interacted with the cavity is detected.

Up to three lasers (Toptica CTL series) with individually tuned wavelengths are
used to drive the optical cavity. Typical powers incident on the device are on the
order of milliwatts, with an incoupling efficiency of ηin ≈ 3%. One laser serves as the

3Here we have opted for a different sign convention for the drive term than in the mode basis. This
choice is not essential, as long as input-output relations are defined accordingly.
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source of light used to optically detect mechanical motion (section 2.3.5), typically
detuned by ∆det = −2.5κ (6.9 nm in wavelength) from the cavity resonance. In
the reflection path, detection light is filtered from the other (drive) lasers by a fiber-
based tunable bandpass filter (DiCon) with a transmission window of 0.8 nm and
detected on a fast, low-noise photodetector (New Focus 1811, a.c. coupled).

The two remaining lasers serve as drive lasers to induce modulated radiation
pressure forces. Their intensities are modulated by individual fiber-based X-cut
lithium-niobate electro-optic intensity modulators (IMs; Thorlabs LN81S-FC and
Covega Mach-10 056), combined with the detection laser using fiber-based beam
combiners and launched using a fiber collimator into the free-space set-up. A small
portion of the modulated light of one of the drive lasers is split off in the fiber section
of the set-up and fed onto a fast photodetector (New Focus 1811, d.c. coupled) to
monitor and calibrate the drive modulation.

Control signals to drive the IMs are generated by a high-frequency lock-in ampli-
fier (LIA; Zurich Instruments UHFLI). For experiments requiring more modulation
signals than the LIA can provide, a pool of 6 additional signal generator ports (Siglent
SDG1062X and SDG2122X) is available. One output of the lock-in amplifier carries
signals to generate interactions, while the other output carries coherent excitation
signals. Both outputs are routed through individual radio-frequency (RF) switches
(Mini-Circuits ZYSWA-2-50DR+) to allow time-resolved driving. The connectivity
between signal sources (LIA ports and external signal generators) and the IMs is
tailored depending on each experiment’s requirements. Signals fed into each IM
are amplified by individual RF amplifiers (Mini-Circuits ZHL-32A+ with additional
attenuation). For time-resolved measurements, a synchronized two-channel signal
generator (Siglent SDG1062X) is used to generate pulses to actuate both RF switches
and trigger the LIA acquisition.

The detected optical intensity signal is analysed by the LIA. Additionally, the
detector signal is fed into a digital signal processor (DSP; RedPitaya STEMlab 125-
14) that implements a configurable electronic bandpass filter with tunable gain
and phase shift (using the PyRPL suite [165]). The output of the DSP is optionally
combined with the control signals to control the nanobeam damping rates with
measurement-based dynamical feedback.

2.8.1. Analysis of the displacement signal
The lock-in amplifier is used to isolate each resonator’s displacement xj(t) by fre-
quency filtering the electronic displacement signal. To do so, the detector voltage
V (t) is demodulated in parallel at each resonator’s frequency Ωj using electronic
local oscillators (LOs) internal to the lock-in amplifier. For each resonator, the de-
modulated in-phase (Ij(t)) and quadrature (Qj(t)) components are filtered using a
third-order low-pass filter with a 3-dB bandwidth of 50 kHz, and combined into a
complex amplitude yj(t) = Ij(t) + iQj(t). This amplitude is formally equivalent
to the resonator amplitude aj(t) in the rotating frame, with a scaling given by the
optomechanical transduction factor and a phase rotation given by the propaga-
tion delay through the set-up. As discussed in section 2.3.6, the measured voltage
variance induced by thermal displacement fluctuations of each resonator is used
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to normalize yj(t). The correction procedure for the propagation phase delay is
discussed in section 2.8.7.

The complex amplitudes of all resonators involved are acquired simultaneously,
at a rate of 50 k to 500 k samples per second, depending on the experiment. Finally,
the resulting complex time traces are either (i) analysed directly, (ii) averaged coher-
ently over an ensemble of traces by calculating 〈yj(t)〉, or (iii) Fourier transformed
using a Hann windowing function, squared and averaged to yield spectral densities.
In the last case, the low-pass filter is compensated for by dividing spectral densities
by the filter frequency response.

2.8.2. Phase-coherent control signals
In our experiments, the central challenge in breaking time-reversal symmetry con-
trollably is the generation of phase-coherent control signals. The electronic LOs
oscillating at the resonator frequencies Ωj define the rotating frame that we describe

our nanomechanical system in. Even though the frequencies ω(l)
m of all modulation

tones are distinct, the frequency relation ω(l)
m = Ωj ± Ωk with the electronic LOs j

and k lends each modulation tone l a well-defined phase in the rotating frame. We
label the tone l = j ± k by the resonator frequency combination j ± k it addresses.

To understand this phase relation, we absorb the explicit time dependence

of each tone cos
(
ω

(l)
m t+ φ

(l)
m

)
= cosβl(t) into the instantaneous phase βl(t) =

ω
(l)
m t+ φ

(l)
m , and similarly for each LO labelled by its resonator index j. For conve-

nience, we denote φ(j)
m for the phase offset of LO j, even though it is not necessarily

used as a modulation tone. Phase coherence is now attained between the interaction
tone l and the combination of both resonator LOs j, k, since the phase difference

∆φ(j±k)
m = βj±k(t)− (βj(t)± βk(t))

= φ(j±k)
m −

(
φ(j)

m ± φ(k)
m

) (2.78)

is stable and does not depend on the origin of time. Physically, this phase difference
may be evaluated by generating a tone with the combined instantaneous phase
βj(t) ± βk(t) through mixing of the LOs and subsequent high-pass (low-pass)
filtering, and comparing that to the interaction tone.

As we work with relatively low modulation frequencies in the MHz range, we
can take a digital approach to achieve phase coherence. In fact, the lock-in am-
plifier we use is a digital device based on 8 numerical oscillators operating at a
clock frequency of 1.8 GHz, and synthesizes its output tones on-the-fly. We can
therefore access the instantaneous phase βl(t) directly, through the phase field of
the demodulator sample data structure4. Note that the actual output signal lags the
numerical oscillator by a time delay that depends on the oscillator index, equal to
16 clock cycles per oscillator index5.

If only the LIA is used to generate control tones and no external signal generators
are involved, we execute the following procedure. Before starting an experiment, at

4See Zürich Instruments LabOne programming manual, revision 22.08, section 2.4 for details.
5This is not reported in the LIA manual and took some experimentation to figure out.
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time t0, we simultaneously access the instantaneous phases βl(t0) of all numerical
oscillators, generating LO and interaction tones alike. We then apply a phase shift
equal to −βl(t0) to all oscillators, effectively defining t0 as the origin of time. Fi-
nally, we shift the interaction tone oscillators to generate the desired Peierls phases
ϕjk, θjk in the rotating frame. If the experiment requires more LOs and control sig-
nals than the 8 numerical oscillators of the LIA can provide, we follow an extended
procedure that is described in section 2.9.

We note that similar functionality can be achieved using an arbitrary waveform
generator (AWG), on which modulation tones can be programmed explicitly with
the appropriate phase relations. However, currently we do not have access to a suit-
able high-frequency AWG in our lab. Moreover, while an AWG offers more flexibility
in modulation patterns, its finite record length limits the maximum duration of
an experiment. In contrast, our control signals can be sustained for a long time
(on the order of hours), until numerical errors accrue in the digital phase regis-
ters. Finally, the integration of phase-coherent signal generation and demodulation
using the same lock-in amplifier device simplifies the analysis of the mechanical
displacement signals.

2.8.3. Optomechanical characterization
In Figure 2.9, we show the results of an experiment to characterize the optomechan-
ical interaction between the cavity and the mechanical resonances coupled to it. In
the thermomechanical fluctuation spectra shown in Figure 2.9a up to a maximum
frequency of 20 MHz, we identify four mechanical resonances that undergo an
optical spring shift as the frequency ωL of a single unmodulated drive/detection
laser is swept across the cavity resonance. We extract mechanical frequencies and
linewidths by fitting Lorentzian functions to the individual resonator spectra shown
in Figure 2.9b, and fit the extracted frequencies to the optical spring shift model
(2.24) in Figure 2.9c. Across all resonators, we find agreement in the fitted cavity
resonance frequency ω0/(2π) = 195.62 THz and linewidth κ/(2π) = 320 GHz (Q
factorQ ≈ 600), while the magnitude of the optical spring shift differs per resonator.
We use the order-by-order approach laid out in [146] to extract the vacuum optome-

chanical coupling rates g(j)
0 /(2π) = {5.30± 0.14, 5.86± 0.17, 3.29± 0.30, 3.12±

0.89}MHz from the measured intensity of nonlinear transduction.

2.8.4. Opto-thermal linewidth tuning
The small sideband resolution Ωj/κ < 10−4 suggests negligible dynamical back-
action and subsequent cavity-mediated modulation of the resonator decay rate.
This is not what we observe in experiment: We measure linewidth modulations δγj
on the order of 5% of the optical spring shift δΩj , with different ratios δγj/δΩj for
each resonator. This suggests the presence of a retarded opto-thermal force [166]
in addition to the instantaneous radiation-pressure force. Fine-tuning the laser
intensity allows to match the two linewidths of modes 3 and 4 specifically, as they
exhibit different scaling with drive laser intensity. This opportunity is used in later
experiments.

The dynamical opto-thermal backaction damps or amplifies thermal fluctu-
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Figure 2.9: Experimental characterization of the optical spring shift. (a) Thermomechanical noise
spectra of the first few mechanical modes imprinted on an unmodulated single drive/detection laser,
as the laser’s frequency ωL is swept across the cavity resonance. The four most intense peaks around
frequencies ωj/(2π) ≈ {3.7, 5.3, 12.8, 17.6}MHz correspond to flexural modes (labelled j) of the
individual beam halves (Figure 2.3) and show frequency tuning characteristic to the optical spring
effect (Figure 2.2), while the other modes represent nonlinearly transduced harmonics of those modes.
(b) Zoomed-in thermomechanical noise spectra of the first four resonators. (c) From the spectra in
(b), mechanical resonance frequencies Ωj (blue circles) and linewidths γj (red circles) are extracted.
The resonance frequencies are fitted using the standard optical spring model (2.24) (solid line). The
small sideband resolution Ωj/κ ≈ 10−5 suggests very little change in linewidth due to dynamical
cavity backaction (dashed line). The linewidth modulations we observe suggest the presence of an
opto-thermal retardation effect (section 2.8.4). Displayed errors correspond to fit uncertainty, smaller
than symbol size on the fitted frequencies.

ations and effectively modifies the mode temperature through Tj = T0 (γ̃j/γj)
[118], where T0 is the initial temperature and γ̃j is the mode’s intrinsic linewidth.
In the experiment shown in Figure 2.10 we confirm this behaviour, by measuring
the areaAj(ωL) of the mechanical resonance peak j imprinted on a separate, fixed
frequency, far-detuned detection laser while the frequency of the drive laser is
swept. The resonance peak areaAj(ωL) is proportional to the variance 〈x2

j 〉 of the
resonator displacement xj , which is proportional to the effective mode temper-
ature Tj , as confirmed by a linear fit to the data. In all experiments in this thesis,
we account for the optothermal modulation of effective mode temperature when
normalizing.
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Figure 2.10: Opto-thermal linewidth tuning. Drive laser frequency
sweep while using a separate, fixed frequency, far-detuned detection
laser. The fixed transduction of mechanical motion onto this detec-
tion laser allows a comparison of resonance peak areaAj(ωL), versus
linewidth γj(ωL) as the drive laser frequency ωL is varied. Our data
are well explained by linear fits ofAj(ωL) versus γ̃j/γj(ωL) (dashed).

2.8.5. Calibration of control signals
To estimate the modulation depth cm needed to induce a desired interaction rate
Jjk, ηjk, we use the relation given in (2.64) and repeated here for convenience:

Jjk, ηjk = cm

√
δΩjδΩk

2
.

Using this relation avoids the need to know the photon-phonon coupling rates

g
(i)
0 and cavity incoupling rate precisely. The individual spring shifts δΩj can be

measured easily by comparing and fitting thermomechanical spectra with the drive
laser switched on and off. As shown in Figure 2.6a, the estimated and desired
interaction rates may be off by about 10% depending on the specific circumstances.
In most experiments, we estimate this discrepancy from a reference measurement
and correct for it by adjusting the modulation depth.

The intensity modulators used are fiber-based interferometers with a tunable
phase shift in one of the arms. The response of their transmission I(V ) to an (RF)
voltage is therefore given by a cosine function. To find the linear operation point of
the IM, a sinusoidal modulation voltage is applied while sweeping its amplitude and
monitoring the modulations imprinted on the drive laser. The IM bias voltage is then
varied to minimise the variation in DC transmission as a function of modulation
amplitude. To compensate for frequency-dependent transmission in the RF chain
and/or the electro-optic response of the IM, the relation between control signal
voltage amplitude Vm and modulation depth cm is measured individually for every
tone using the DC-coupled modulation monitor detector. The measured relation is
then fitted using the first-order Bessel function J1(x), derived from a Jacobi-Anger
expansion of the IM cosine response.

For some experiments involving many interaction tones, the effective transduc-
tion per tone is reduced due to the stacking of their amplitudes. In this case, the
actual imprinted modulation depth for each tone is monitored using the monitor
detector while the experiment is running and all tones are enabled. By comparing
the actual and desired modulation depth, a correction to the interaction strengths
can then be determined.

2.8.6. Modulating damping by feedback
In addition to opto-thermal dynamical backaction (Figure 2.10), we control the
resonator decay rates with measurement-based feedback [167, 168]. From the
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Figure 2.11: Damping rate adjustment by feedback. Resonator thermomechanical spectra (top row) and
fitted full-width half-maximum linewidths (bottom row) adjusted by feeding back electronically filtered
and phase-shifted resonator displacement signals onto the drive laser modulation (left two columns,
resonator 1; right two columns, resonator 2). The resonator linewidth (circles) and frequency shift
(crosses) vary sinusoidally with the feedback phase φfb (odd columns). By fitting the linewidth variation
(solid black), the optimal phase shift to increase the damping rate is selected. The frequency variation
(dashed grey) expected from the fitted linewidth modulation, relative to the resonator frequency with
feedback off (dashed red), lags by π/2 radians. For the optimal feedback phase shift, an increase in
linewidth is observed for increasing gainG, while the resonator frequency remains unaffected (even
columns). The slope of the linear fit (solid black) can be used when setting a resonator’s linewidth to a
desired value.

electronic displacement signal, we obtain a feedback signal using a fast digital
signal processor (DSP) that is subsequently imprinted on the drive laser intensity
to actuate the resonators. The DSP filters the displacement signal around each
resonator’s frequency Ωj in parallel (second-order filter half-width at half-maximum
78 kHz), applies individual gains and phase shifts, and finally combines the filtered
signals digitally.

To find the optimal feedback phase shift φfb for each mode, we take thermo-
mechanical spectra using a fixed feedback gainGwhile sweeping φfb, as shown in
Figure 2.11. From the spectra, we extract the modulated linewidths, fit those with
a sinusoidal variation and select the shift φfb with the most significant change in
linewidth. Subsequently, for the optimal phase shift, thermomechanical spectra
are taken for various settings of the feedback gainG to establish a linear relation
between gain and modulated linewidth. This relation is then used to dial in the
desired linewidth.

2.8.7. Coherent driving and propagation delay
The total propagation delay through the set-up, from the LIA control outputs via
the sample to the LIA input, is determined by driving each of the resonators with
radiation pressure modulated at frequency ωd = Ωj + ∆d and measuring response
aj(∆d) as a function of detuning ∆d (Figure 2.12). We fit the response to the me-
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Figure 2.12: Resonator coherent response. (a) Amplitude |a1| and (b) phase φ1 of the complex response

a1(∆) = ei(φ1(∆)+αj)|a1(∆)| of resonator 1 to drive laser intensity modulation at a frequency ωd

close to resonance (drive detuning ∆d = ωd − Ωj ). α1 is the phase offset due to signal delay through

the set-up. The mechanical response a1 = eiα1A1
γ1/2

iγ1/2−∆d
is fitted to the data (solid line). (c) Phase

offsets αj as measured when driving the first five flexural modes versus their resonance frequencies
Ωj/(2π). A linear fit (solid line) of αj = −Ωjτ indicates a propagation delay τ = 143.6 ns through
the set-up.

chanical susceptibility aj(∆d) = eiαjAj
γ1/2

iγ1/2−∆d
to extract the response phase

offset αj and driving strength Aj . We fit αj versus resonator frequency Ωj to de-
termine the signal delay τ through the set-up, which is typically on the order of
τ ∼ 100 ns depending on the specific signal routing required for the experiment.
Importantly, we use τ to relate the quadratures of the demodulated amplitudes
yj(t) to those defined by the control tones.

Finally, we note that the driving strength scales linearly with modulation depth

c
(j)
m through (2.61). However, in our analysis we use the measured ratiosAj/c

(j)
m to

relate driving strength and modulation depth, as g(j)
0 and n̄0 are hard to determine

accurately.

2.9. Appendix: Implementing large numbers of phase-
coherent control signals

If an experiment requires more LOs and control signals than the 8 numerical oscil-
lators of the LIA can provide, we follow an extension of the procedure outlined in
section 2.8.2 that is conceptually similar but involves a more elaborate phase book-
keeping. Suppose we want to monitor the dynamics ofN mechanical resonators
under the influence ofM modulation tones, withN +M > 8. As we require the
LIA to analyse the mechanical signal, we implement up to N = 7 resonator LOs
using the lowest-index numerical oscillators. The remaining free LIA oscillators are
used to generate the first 8−N interaction tones. TheM +N − 8 interaction tones
that remain need to be generated by external signal generators.

During the phase referencing procedure, we temporarily use the LIA oscillator
with highest index m = 8 to ‘transfer’ phase coherence between the LIA and the
external signal sources. First, we achieve phase coherence between the oscillators
internal to the LIA as described earlier. For each externally generated modulation
tone l = j ± k, we execute the following steps:
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1. Set the frequency of LIA oscillator m = 8 to match the frequency ω(l)
m =

Ωj ± Ωk of the external signal generator.
2. Access the instantaneous phases β8(t) of the phase transfer oscillator 8 and
βj(t), βk(t) of the relevant resonator LOs.

3. Use (2.78) to evaluate the current, arbitrary phase ∆φ
(l)
m of oscillator 8 in the

rotating frame.

4. Shift the phase of oscillator 8 by −∆φ
(l)
m to cancel its current phase offset.

We have now achieved phase coherence between the tone generated by the
phase transfer oscillator and the resonator LOs.

5. Set the LIA to output a small voltage at ω(l)
m using oscillator 8. This signal im-

prints a weak modulation on the drive laser that we detect using the monitor
detector.

6. Analyse the monitor signal using the same LIA oscillator 8 to evaluate the
phase α1 of the imprinted modulation, combined with signal delay through
part of the set-up.

7. Disable the LIA output and enable a small output voltage at ω(l)
m on the exter-

nal signal generator.
8. Measure the phase α2 of the imprinted modulation using LIA oscillator 8.
9. Shift the phase of the external signal source by−(α2 − α1) to achieve phase

coherence between the LIA-generated tone and the externally generated tone.
10. Shift the phase of the external signal source to generate the desired Peierls

phase ϕjk or θjk in the rotating frame. We are now done, and move on to the
next external tone.

As a final step, the phase coherence of the interaction tone originally assigned to
oscillator 8 is restored by following the procedure above up to step 4.



3
Synthetic magnetism in

multi-plaquette phononic
networks

In this chapter, we experimentally demonstrate the breaking of time-reversal symme-
try in nanomechanical networks through radiation pressure control fields. We study
the influence of synthetic magnetic fluxes on thermomechanical spectra, localiza-
tion, and chiral dynamics. In a nano-optomechanical cavity, time-modulated laser
drives couple three mechanical modes in a loop, establishing a phononic circulator.
Larger networks show canonical signatures of the quantum Hall effect for phonons,
including unidirectional states at the edge of the network.

Part of this chapter is based on J. del Pino, J. J. Slim & E. Verhagen. Non-Hermitian chiral phononics
through optomechanically induced squeezing. Nature 606, 82–87 (2022) [151]. J.d.P. and J.J.S contributed
equally to this work.
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3.1. Introduction
The discovery of the integer quantum Hall effect (QHE, section 1.4) in a two-
dimensional electron gas subject to a perpendicular magnetic field [65] spurred
the exploration of various exotic phases of matter with unique properties. It is
now understood that the QHE is a basic example of a topological phase of matter;
with insulating bulk and conductance at the edges of the system in states that are
topologically robust against disorder and imperfections [36]. These edge states are
strikingly unidirectional (‘chiral’), owing to the magnetic field that effectively breaks
time-reversal-(T )-symmetry for the electrons in the material.

The emergence of chiral edge states in the QHE is essentially a wave phe-
nomenon. While thus fundamentally possible, realizing it in the optical [38] or
mechanical [37] domain requires the breaking of T -symmetry for those degrees of
freedom to induce the necessary nonreciprocity. In magneto-optic materials, the
Faraday effect allows to build bulk optical nonreciprocal elements like isolators and
circulators. Biasing using actual magnetic fields has also allowed the realization of
quantum-Hall-like topological insulators, for microwave radiation using gyrotropic
materials [78] and for exciton-polaritons that exhibit Zeeman splitting [79]. Fur-
thermore, mechanical and acoustic systems can be biased by rotation, enabling
the isolation of sound [60] and the observation of unidirectional edge states in a
gyroscopic metamaterial of spinning elements [9].

A different paradigm to breaking T -symmetry is the creation of synthetic mag-
netic fields through suitable forms of spatiotemporal modulation [43, 44]. As we
explained in section 1.3, harmonic modulation can stimulate the frequency conver-
sion of a signal, with the modulation phase acting as a magnetic vector potential
on the induced hopping between modes. Thus, combining modulations with con-
trolled phases between multiple modes, it is possible to exploit Aharonov-Bohm
interference to realize nonreciprocal transmission, for example in photonic systems
[46–52], at microwave frequencies in superconducting systems [31, 35, 53–55], for
cold atoms in optical lattices [56, 58, 59] and mechanics [88]. Finally, in extended
lattices, combining many Aharonov-Bohm loops in all unit cells — mimicking the
effect of a homogeneous magnetic field piercing the lattice — enables bosonic
quantum Hall phases [73–76].

Time-varying potentials for either light or sound can be provided in multimode
cavity optomechanical systems [123]. Thus, laser drives that couple photonic and
mechanical modes can be used to convert the frequency of excitations and imprint
nonreciprocal transfer phases. In suitable multi-mode optomechanical systems,
this leads to nonreciprocal effects such as a proposed phononic circulator [122] and
demonstrations of mechanically-mediated nonreciprocal transmission of photons,
both in the optical and microwave domains [32, 33, 125–128]. Balancing nonrecip-
rocal coupling and dissipation allows ideal optical isolation [129, 130]. Importantly,
optomechanical interactions can also induce nonreciprocal mechanical mode cou-
pling [63, 64]. In optomechanical lattices, topological phases for sound and light
similar to the QHE were proposed [64, 134, 135].

Here we use optomechanical control and frequency conversion to bring nonre-
ciprocity and quantum Hall physics to the domain of nanomechanical resonators.
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Nanomechanical resonators have interesting potential as sensors and transducers,
in information processing, and to study quantum phenomena and thermodynamic
processes [16, 21]. We exploit the fact that the optical spring effect of a modulated
laser can induce mechanical coupling between modes at disparate frequencies and
induces a controllable synthetic gauge potential [64]. We demonstrate experimen-
tally how a synthetic magnetic flux in a three-mode mechanical loop (‘plaquette’)
tunes the spectra of thermomechanical fluctuations and induces chiral dynamics,
establishing a laser-controlled phononic circulator. Increasing the network size
to incorporate up to four plaquettes, we witness the emergence of quantum Hall
behavior, including chiral states at the network edge. Our fully reconfigurable plat-
form allows also the study of inhomogeneous magnetic fields. Specifically, we show
how combinations of alternating magnetic fields in adjacent plaquettes control
spectra and localization due to interference in the network. This relates our work to
studies of Aharonov-Bohm caging and related localization phenomena in lattices
with controlled and inhomogeneous magnetic fields [169–177].

3.2. Synthetic flux in a ring of resonators
We start with the simplest demonstration of phononic chirality, by breaking T
symmetry in a system of three coupled nanoresonators. We employ the sliced
photonic crystal nanobeam [64] shown in Figure 2.1, which supports multiple non-
degenerate MHz-frequency flexural mechanical modes coupled to the optical field
of a nanocavity. Figure 3.1a shows these distinct mechanical resonances in the
thermomechanical noise spectrum, read out as modulations of a detuned probe
laser reflected from the cavity.

As discussed in section 2.6, interactions between modes (which we will also
refer to as ‘resonators’ in the following) with well-separated frequencies Ωj are
established by temporal modulation of the intensity of a control laser detuned from
cavity resonance. Specifically, modulating at the difference frequency Ωj − Ωk of
resonators j and k induces a beamsplitter coupling between the resonators at a rate
J ∝ cmnc given in (2.64), controlled by the modulation depth cm and average cavity
population nc.

Three modulation tones are applied simultaneously (Figure 3.1b) to couple
the N = 3 lowest-frequency resonators in a ring network (Figure 3.1c). Describ-
ing the resonators by their annihilation operators aj in frames rotating at Ωj , the
Hamiltonian for this ‘beamsplitter trimer’ (BST) reads

HBST =

N=3∑
j,k=1,k 6=j

Jjke
−iϕjka†jak, ϕkj = −ϕjk, (3.1)

without intrinsic dissipation. This Hamiltonian preserves phonon number and
importantly, it imprints the phase offset ϕjk of the modulation tones in a nonre-
ciprocal fashion on phonons transferred along the loop — precisely like the Peierls
phase imprinted by a magnetic vector potential [64]. The gauge-invariant geomet-
ric phase Φ = ϕ12 + ϕ23 + ϕ31 around the loop then represents a synthetic flux
threading the resonator plaquette.
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Figure 3.1: Aharonov-Bohm interference in a nano-optomechanical network. (a) Thermomechanical
fluctuation spectrum of the sliced photonic crystal nanobeam, imprinted on a laser reflected from a
nanocavity with linewidth κ/(2π) = 320 GHz. Resonances correspond to mechanical flexural modes
at frequencies Ωj/(2π) = {3.7, 5.3, 12.8, 17.6, 26.2} MHz with loss rates γj/(2π) ≈ 1 − 7 kHz and

estimated vacuum optomechanical coupling rates g
(j)
0 /(2π) = {5.3, 5.9, 3.3, 3.1, 1.9}MHz. (b) Me-

chanical modes aj are coupled to the optical mode c (frequencyωc = 195.6 THz) with cavity-enhanced

optomechanical coupling rates gj = g
(j)
0

√
nc (mean photon number nc ≈ 343). Modulating the cavity

field at the mechanical difference frequencies ωjk = Ωj − Ωk between the three lowest-frequency
resonators stimulates frequency conversions and couples the resonator pairs aj , ak . (c) In a frame
rotating along with the mechanical resonators, the cavity mode is eliminated adiabatically. This leaves a
loop of mechanical resonators coupled by effective time-independent beamsplitter interactions with
rates Jjk/(2π) = 8 kHz and Peierls phases ϕjk . The loop is pierced by a synthetic flux Φ =

∑
ϕjk ,

where the condition ω21 + ω32 + ω13 = 0 ensures that Φ is a gauge-invariant quantity. Couplings are
achieved with modulation depths cm between 0.32 and 0.42. (d) Measured thermomechanical noise
spectra imprinted on the detection laser around each resonator’s sideband versus flux. Hybridised
Floquet modes tune with synthetic flux. Dashed lines represent theoretical eigenvalues given by (3.4).
ESD, energy spectral density.

The hopping matrix A (introduced in section 2.6.3) that encodes the three
beamsplitter interactions reads

A =

 0 J12e
−iϕ12 J31e

iϕ31

J12e
iϕ12 0 J23e

−iϕ23

J31e
−iϕ31 J23e

iϕ23 0

 . (3.2)

Setting equal Jjk = J , the Hamiltonian (3.1) is translationally invariant in a gauge
with equal Peierls phases ϕj,(j mod N)+1 = Φ/3, and therefore diagonal in the
discrete momentum basis

ãk =

N∑
j=1

e−i2πkj/Naj/
√
N for momenta k = {−1, 0, 1}. (3.3)
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Figure 3.2: Flux-induced circulation. (a) Measured time evolution of resonator amplitudes |〈ai〉| ≡ |ai|
for unbroken T symmetry (Φ = 0) and broken (Φ = ±π/2). Resonator a1 is coherently driven through
resonantly modulated radiation pressure until t = 0 ms, when excitation is stopped and modulation
tones implementing the couplings are established. For Φ = ±π/2, circulation of coherent vibrations is
observed. (b) Measured time evolution of resonator amplitudes for varying flux, showing crossover from
chiral to non-chiral transport through an intermediate regime with generally aperiodic dynamics, and
reversal of chirality with flux sign (Φ 7→ −Φ).

Equivalently, the hopping matrix (3.2) is circulant and diagonalized by Fourier
modes. Through Aharonov-Bohm interference along the loop, the enclosed flux
shifts the eigenfrequencies

εk = 2J cos

(
2πk + Φ

N

)
. (3.4)

Figure 3.1d reveals these states in the thermomechanical spectrum, for each res-
onance splits into a (Floquet) triplet owing to strong coupling J > γj , with me-
chanical damping rates γj . This demonstration of nanomechanical flux-tuning is
paralleled in spectra of quantum rings under magnetic fields [178].

The flux-tuning manifests Aharonov-Bohm interference over a given rotation –
the mechanism ultimately responsible for chirality of quantum Hall edge states [38]
and nonreciprocal dynamics [179]. Figure 3.2a shows the evolution of a mechanical
excitation, initialised in resonator 1 through resonantly modulated radiation pres-
sure. At time t = 0, its driving is switched off and the modulation implementing (3.1)
is switched on. For Φ ∈ {0, π}, the BST is time-reversal symmetric in an appropriate
rotating frame and energy simultaneously hops to both other resonators. Any other
flux breaks T and lifts the degeneracy between hybridized modes with opposite
momentum and enables chiral energy transport. For Φ = π/2 (Φ = −π/2), vibra-
tions circulate along the loop in a clockwise (counter-clockwise) fashion, with each
full exchange taking time τex = 2π/(3J

√
3). Figure 3.2b illustrates the evolution

for varying flux, where a crossover from chiral to non-chiral transport is observed
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'
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Figure 3.3: An optomechanical phonon circulator/isolator. (a) By setting unity cooperativity Cjk =
4Jjk/(γjγk) = 1 along each link, the nanomechanical three-mode loop operates as a circulator
for phonons. The directionality of the circulator is controlled by the flux Φ = ±π/2. Circulation is
independent of the hierarchy of loss rates: modes a3 and a4 are optothermally tuned to equal linewidth
γ = γ3 ≈ γ4 ≈ 3.7 × 2π kHz, while mode a2 has lower loss rate γ′ = γ2 = 1.3 × 2π kHz. When
disregarding the auxiliary mode a2, the loop operates as an isolator for phonon transport between a3

and a4. (b) Susceptibility |χjk| of the measured circulator response to continuous wave driving at zero
detuning. For Φ = π/2, scattering |γχ34| ≈ 1 from a4 to a3 is approximately unity while the scattering
|γχ43| ≈ 0 in the other direction is blocked. Isolation is reversed for Φ = −π/2.

through an intermediate regime with generally aperiodic dynamics [180].

3.2.1. Phonon circulator/isolator
By interfacing the resonators with mechanical waveguides, the BST can be function-
alized to route mechanical signals. While our device currently lacks such mechanical
circuitry, in Figure 3.3a we illustrate how to operate the BST constituted by a2, a3

and a4 as a proof-of-concept phonon circulator. Continuous wave driving of res-
onator ak with resonantly modulated radiation pressure acts as an input, while the
dissipations γj of each resonator to the environment constitute output channels.
The trimer’s amplitude response to the drive then serves as a proxy for the energy
scattered through the network. Finally, by restricting our attention to the transfer
between two modes (e.g. a3 and a4) while disregarding the energy dissipated in the
last mode (e.g. a2), the BST can be operated as a phonon isolator.

Akin to the reconfigurable superconducting microwave circuit circulator in
[31], the directionality of the circulator/isolator is controlled by a T -breaking flux
Φ = ±π/2. The mechanical susceptibility matrix χ(∆m) links the vector of re-

sponse amplitudes a = (a3, a4, a2)
T

= χ(∆m)f to the drive vector f = (f3, f4, f2)
(section 2.7.4) and is related to the hopping matrixA by

χ = i (∆m1−A+ iΓ′/2)
−1
, (3.5)

where ∆m is the detuning of the drives and Γ′ = diag (γ3, γ4, γ2) the loss matrix.
Focusing first on operating the BST to isolate resonant signals (∆m = 0) between

a3 and a4, the relevant susceptibilities for the ideal fluxes Φ = ±π/2 read

χa3←a4 = (J23J42 ± γ2J34) det(χ), χa4←a3 = (J23J42 ∓ γ2J34) det(χ), (3.6)

where det(χ) = 8(γ2γ3γ4 + 4γ4J
2
23 + 4γ2J

2
34 + 4γ3J

2
42)−1. Perfect isolation —

with directionality controlled by the sign of Φ — is obtained when J23J42 = γ2J34,
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which can be satisfied for any hierarchy of the loss rates γj . The loss rates however,
in their capacity as output channel coupling rates, do control the bandwidth of the
isolator [31].

Furthermore, perfect circulation between a3, a4 and the auxiliary resonator a2 is
obtained by setting Jjk =

√
γjγk/2. In this situation, the mechanical cooperativity

Cjk =
4J2
jk

γjγk
(3.7)

for each link Cjk = 1 is unity. The full susceptibility matrices χΦ=π/2 and χΦ=−π/2
are related by transposition and for Cjk = 1 given by

χΦ=π/2 = χTΦ=−π/2 =

 γ−1
3

√
γ3γ4

−1 0

0 γ−1
4

√
γ2γ4

−1

√
γ2γ3

−1 0 γ−1
2

 . (3.8)

Figure 3.3b demonstrates flux-tunable isolation and circulation in the experimental
susceptibility matricesχΦ=π/2 andχΦ=−π/2, constructed from the responses of the
BST to additional drive modulations resonant with each resonator aj . We have cho-
sen to fine-tune the strength of optothermal dynamical backaction (section 2.8.4)
on a3 and a4 so that their linewidths γ3 ≈ γ4 = γ = 3.7 × 2π kHz are matched.
The backward transmission (a4 to a3) for Φ = π/2 is then equal to the forward
transmission (a3 to a4) for Φ = −π/2.

3.3. Two interfering Aharonov-Bohm loops
While the flux tunes the eigenfrequencies (3.4) of a single Aharonov-Bohm loop with
equal couplings, its eigenstates (3.3) are unaffected and evenly distributed over all
resonators for any Φ. However, in networks featuring multiple AB loops, interference
between adjacent plaquettes does affect the localization of eigenstates, ultimately
leading to e.g. Aharonov-Bohm caging [169, 174, 181] and topological edge states
[38] for extended lattices. We therefore explore and demonstrate multi-plaquette
interference in small nanomechanical systems.

We start with the simplest multi-plaquette extension of the BST: the four-mode
diamond-shaped network shown in Figure 3.4a. The diamond features two
Aharonov-Bohm loops a1 - a3 - a4 (‘left’) and a2 - a3 - a4 (‘right’), fused together
along the central link a3 - a4 and pierced by independent fluxes. The relative
handedness of the fluxes now crucially determines the diamond’s spectrum and the
localization of its eigenstates.

When the two plaquette fluxes Φ,−Φ are handed oppositely (Figure 3.4, top),
the net flux through the larger plaquette defined by the diamond’s perimeter is zero.
With equal couplings J along the perimeter, this guarantees the existence of an
antisymmetric mode ãapex = (a1 − a2)/

√
2 localized solely on the apex resonators

a1 and a2. Carrying no weight in the central resonators, the frequency of ãapex is
insensitive to the coupling Jc along the central link. Moreover, with no net flux, the
Peierls phases ϕjk along the perimeter can always be gauged away: the fluxes are
then fully sustained by the central link. This implies that the frequency of ãapex is
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Figure 3.4: Interference between two adjacent plaquettes in a diamond configuration. (a) Four res-
onators aj are coupled in a diamond configuration featuring two adjacent plaquettes. The plaquettes are
pierced by fluxes Φ,−Φ of opposite handedness (top) or by fluxes Φ of equal handedness (bottom). The
resonators are coupled along the perimeter with rate J/(2π) = 5 kHz, while the central link has rate
Jc = J

√
2. (b) Thermomechanical sideband spectrum of the apex resonator a1 (left) and the central

resonator a3 (right) for varying flux Φ. The other central and apex resonator feature similar spectra. The
diamond with opposed fluxes (top) hosts flux-independent eigenmodes ãk . A single antisymmetric
eigenmode ãapex is localized in the apex resonators and does not tune with Φ. The other three eigen-
modes are delocalized over all resonators and tune exactly like those of a single three-mode plaquette
with couplings Jc = J

√
2 (cf. Figure 3.1d). The diamond with equal-handed fluxes (bottom) hosts

eigenmodes that tune with flux both in frequency and localization. The central link induces couplings
between opposite momentum eigenstates of the perimeter. As the flux 2Φ piercing the perimeter tunes
opposite momentum eigenstates into resonance for Φ = 0, π, their symmetric and antisymmetric
superpositions fully localize either on the apex or the central resonators. (c) Weight of central resonator
a3 in each of the hybridized eigenmodes ãk of the diamond.

insensitive to flux as well. In the thermomechanical spectra shown in Figure 3.4b,
top, ãapex is observed as a flat band around zero detuning that is exclusive to the
sideband of the apex resonators.

The remaining three eigenmodes are sensitive to Jc and Φ, generally both in
frequency and localization. However, in the special case Jc = J

√
2, all eigenstates

are again independent of flux in the gauge where all links (including the central link)
carry equal Peierls phase ϕjk = Φ/3. The eigenstates are then given by ãapex and

ãk =
(
a1 +

√
2
(
e−i2πk/3a3 + ei2πk/3a4

)
+ a2

)
/
√

6 (3.9)

for k = {−1, 0, 1}.

Interestingly, the ãk retain the character of the phase-chiral momentum states
of the two fused BSTs that make up the diamond. As the fluxes align along the
central link, ãk is a combination of the (non-orthogonal) left and right plaquette
states with momentum k as given by (3.3). Moreover, their frequencies tune exactly
as the BST eigenfrequencies (3.4) with J 7→ Jc = J

√
2, as demonstrated in the

thermomechanical spectra in Figure 3.4b, top.
On the other hand, when the two plaquettes are threaded by fluxes Φ of

equal handedness, multi-loop interference ensures that all eigenstates have
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Figure 3.5: Momentum state interactions in the equal-handed diamond. Eigenfrequency spectra of a
diamond network pierced by fluxes Φ of equal handedness (Figure 3.4a, bottom) for increasing central
link strength Jc. Colours indicate the weight of the apex (top row) or central (bottom row) resonators
in each eigenmode. Turning on Jc > 0 couples perimeter states of opposite momenta, opening a
spectral gap as they are tuned on resonance for Φ = 0, π. The resulting symmetric and antisymmetric
superpositions fully localize either in the apex or central resonators.

flux-dependent weights. In this case, the perimeter is pierced by a net flux of 2Φ.
We take this as a suggestion to express the diamond’s Hamiltonian in the basis
of momentum states bk of the perimeter for momenta k = {−1, 0, 1, 2}. These
are given by (3.3) when summing over the N = 4 resonators aj in the order of
their position in the loop (a1 → a3 → a2 → a4). In the basis {b0, b2, b1, b−1}, the
equal-handed diamond’s hopping matrix is block-diagonal and reads

A′�� =


ε0 + Jc/2 −Jc/2 0 0
−Jc/2 ε2 + Jc/2 0 0

0 0 ε1 − Jc/2 Jc/2
0 0 Jc/2 ε−1 − Jc/2

 , (3.10)

where the εk are the eigenfrequencies of an N = 4 mode Aharonov-Bohm loop
pierced by flux 2Φ, given in (3.4) for Φ 7→ 2Φ.

Apart from shifting the frequencies of the bk, the central coupling Jc is seen
to couple perimeter states of opposite momentum b1 ↔ b−1, b0 ↔ b2 with rate
Jc/2. As shown in Figure 3.5, this opens a spectral gap when the pair b1 ↔ b−1

(b0 ↔ b2) is degenerate for the non-T -breaking flux Φ = 0 (Φ = π). Precisely at
these avoided crossings, (anti)symmetric superpositions are formed in which the
coupled opposite momentum states interfere to fully localize either in the apex or
central resonators. Any other flux breaks the degeneracy of opposite momentum
states and counters the localization. In Figure 3.4b, bottom right, flux-tunable
localization is experimentally observed as a disappearance of thermomechanical
sidebands. Note that for the particular ratio Jc/J =

√
2 used in the experiment, the

expected disappearance of the upper and lower apex sideband of the apex resonator
(Figure 3.4b, bottom left) for Φ = π and Φ = 0, respectively, happens to be masked
by a degeneracy.
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Figure 3.6: Multi-plaquette interference in a wheel graph. (a) Hub resonator a1 is coupled to four
edge resonators aj in a wheel graph configuration with equal rates J = Js. The wheel features four
plaquettes pierced by fluxes Φ of equal handedness (top, J/(2π) = 4 kHz) or by alternating fluxes Φ,
−Φ of opposite handedness (bottom, J/(2π) = 3 kHz). (b) Thermomechanical sideband spectrum of
the hub resonator a1 (left) and the edge resonator a2 (right) for varying flux Φ. With equal-handed fluxes,
the wheel hosts two modes that are delocalized over all resonators and three phase-chiral modes that
are localized on the edge of the wheel. With opposing fluxes, the spectrum of the wheel is similar to the
spectrum of the opposed-flux diamond (Figure 3.4b, top). Two degenerate, flux-insensitive eigenmodes
(a2 − a4)/

√
2 and (a3 − a5)/

√
2 are formed by the antisymmetric superposition of opposite edge

resonators and carry no weight in the hub. The remaining three modes delocalize over all resonators. (c)
Weight of hub resonator a1 in each of the hybridized eigenmodes ãk of the wheel.

3.4. Emergence of edge states
Up until now, we have only observed localized eigenstates that are either completely
insensitive to flux (in the oppositely-handed diamond), or for which the flux actually
breaks the localization (in the equally-handed diamond). However, localized edge
states are known to exist in extended lattices subject to magnetic gauge fields. In fact,
with T -breaking fluxes piercing the lattice, the presence of these edge states is even
topologically protected [38]. In addition, breaking T lends the edge states a chiral
character and allows them to contribute to topologically protected, unidirectional
transport.

Motivated by this promise, we construct the small lattice shown in Figure 3.6a.
Known as the five-mode wheel graphW5, the network comprises four resonators aj
coupled in a ring (rates J), with additional spokes coupling the ring to the central
hub resonator a1 (rates Js). We identify the network’s perimeter as its ‘edge’, while
we identify the network’s hub as its ‘bulk’ (albeit a very small one).

First, we briefly consider the wheel network when fluxes through adjacent
plaquettes are handed oppositely (Figure 3.6a, bottom). The dynamics of this system
are very close to those of the oppositely-handed diamond, as once more the net
flux through the perimeter is zero. In this case we find two flux-insensitive states:
the antisymmetric superpositions (a2 − a4)/

√
2 and (a3 − a5)/

√
2, similar to the

apex state ãapex of the diamond. As shown in the thermomechanical spectra in
Figure 3.6b, bottom, the three remaining states tune for the case with equal rates
Js = J like those of a BST with unequal couplings J

√
2, J
√

2 and J . For the
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special coupling ratio Js/J =
√

2, we would find the remaining states to be flux-
independent, delocalized over all resonators and tuning like those of a BST with
equal couplings J

√
2, exactly like the diamond spectrum in Figure 3.4b, top.

However, with equally handed fluxes Φ piercing the network’s four plaquettes
(Figure 3.6a, top), distinct states are observed in its thermomechanical spectrum
(Figure 3.6b, top) that live only on the edge. Moreover, these edge states tune with
flux, revealing their chirality. Again, this motivates us to write the network’s Hamilto-
nian using the momentum states bk of the perimeter. In the perimeter momentum
basis {a1, b0, b1, b2, b−1} supplemented by the bulk resonator state a1, it reads

HW5,� = Js

(
a†1b0 + b†0a1

)
+

2∑
k=−1

εkb
†
kbk (3.11)

where εk = J cos (Φ + kπ/2) is the frequency given by (3.4) for the momentum-k
state of a four-mode Aharonov-Bohm loop pierced by the net flux 4Φ. Here, we have
chosen a gauge where the spokes carry no Peierls phase, so that the phase along
each perimeter link ϕjk = Φ.

The spoke coupling Js hybridizes the zero-frequency hub state a1 and the
zero-momentum perimeter state b0, while leaving the other perimeter states be.
Increasing Js > 0 opens a spectral gap and pushes away these eigenstates from zero
frequency, as shown in the thermomechanical spectra in Figure 3.6b for Js = J .
For flux Φ = ±π/2, we are at zero detuning then only left with the chiral perimeter
state b±1.

Next, for these T -breaking fluxes Φ = ±π/2, we probe the transport of a con-
tinuous wave excitation through the wheel (Figure 3.7). When the hub resonator
a1 is driven for Φ = ±π/2 (Figure 3.7a, left), the edge state at zero drive detuning
∆m = 0 cannot be excited. Driving the edge resonator a2 does allow excitation
of the edge state (Figure 3.7a, middle and right) and results in a peaked response
around ∆m = 0 for all edge resonators, while the bulk response remains flat.

Interestingly, from the relative heights of the zero-detuning peaks we see chiral
transport along the edge emerge (Figure 3.7b). As the coherent transfer of energy
through the network competes with dissipation, we observe the energy fed into a2

propagating along the edge either in the clockwise or counter-clockwise direction,
depending on the flux Φ = ±π/2. In fact, the interaction between bulk and edge is
crucial for this process. Contrary to the three-mode circulator discussed before, it
can be shown that the energy susceptibility matrix |χAB4|2 of a four-mode Aharonov-
Bohm loop is always symmetric, regardless of Φ (assuming equal couplings and
decay rates). The edge alone, constituting such a loop, can therefore not sustain any
chiral propagation of energy.

3.5. Conclusion and outlook
In conclusion, we studied the effects of breaking time-reversal symmetry in nanome-
chanical networks that are induced and controlled through time-modulated radi-
ation pressure in a photonic crystal nanocavity. The various flexural mechanical
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Figure 3.7: Transport along the edge of a wheel graph. (a) Amplitude response of the five-mode wheel
network with aligned fluxes Φ = ±π/2 (Figure 3.6a, top) to continuous wave driving of the central
resonator a1 (left) and edge resonator a2 (middle and right). Coupling rates J/(2π) = Js/(2π) =
4 kHz. Driving the edge resonator a2 excites the edge mode at zero detuning, while driving the hub
resonator a1 does not. Measured amplitudes are in good agreement with the response predicted by
(3.5) (black lines), with all necessary parameters (coupling J , dissipation γj and driving strength fj )
determined independently. (b) Amplitude response at each site of the network when resonantly driving
a2 (∆m = 0, indicated by dotted lines in a). Clockwise (counter-clockwise) chiral transport along the
edge is observed for Φ = π/2 (Φ = −π/2) as vibration transfer competes with decay. Differences in
clockwise and counter-clockwise transport are explained by disorder in the dissipation rates γj/(2π) ≈
{1.2, 2.5, 2.7, 4.4, 6.9} kHz.

modes of the system serve as a synthetic dimension, with optomechanical mod-
ulation coupling the different energy levels to form networks. The drive phases
allow imprinting the Aharonov-Bohm effect for phonons traveling in a three-mode
loop, leading to chiral dynamics and mechanical frequencies tuned by synthetic
magnetic flux. In larger networks, we witness interference of multiple Aharov-Bohm
loops and the chiral edge states that result, demonstrating the quantum Hall effect
in a minimal nanomechanical network.

While the experiments were conducted in the classical domain, the observed ef-
fects should persist for arbitrarily small signals and fluctuations. Moving the demon-
strated phenomena towards the quantum domain would warrant the development
of these principles in sideband-resolved cavities, to avoid added fluctuations associ-
ated with quantum backaction of the control fields, and associated revised temporal
driving schemes.

The high degree of active control over the system and its dynamics presents
many opportunities for future studies. These include the study of localization and
flat bands due to inhomogeneous fluxes and specific network topologies [169–177],
the possibility to derive bulk topological properties from careful studies of unit
cell spectra [182], the effects of rapidly varying magnetic fields on the long-lived
mechanical excitations that these systems host, the dynamics of the systems if the
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coupled resonators are self-oscillating through dynamical backaction amplification
[30, 136, 183], and the effect of mechanical or optomechanical nonlinearities on the
topological states of the network.





4
Chiral thermal flows in a

flux-biased
nano-optomechanical system

Nanomechanical systems offer a rich playground for studying nonequilibrium ther-
modynamics at the nanoscale, due to their low frequencies, unavoidable contact
with thermal environments, and active control of system parameters. When suitably
orchestrated via optomechanical interactions, multimode nanomechanical loops
exhibit synthetic magnetism and host chiral phononic modes. In this chapter, we
experimentally study the dynamics of thermal fluctuations in a minimal nanome-
chanical loop permeated by a synthetic magnetic flux, contacted by dissipative baths
with inhomogeneous thermal occupancy. By correlating the thermal motion of dif-
ferent resonators, we directly observe circulating fluctuations and chiral eigenstates,
and image the microscopic thermal currents in the loop. We find that the flow of heat
is tuned by the flux, redistributing energy in the thermal steady-state. Finally, we
illustrate how broken time-reversal symmetry assists the refrigeration of a hot mode
in the strongly coupled regime.
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4.1. Introduction
Microscopic thermodynamics — the study of fluctuations in low-dimensional, well-
controlled open systems — is a vibrant field of research, both in the form of quantum
thermodynamics [184, 185] and, in the classical setting, of stochastic thermodynam-
ics [23, 24]. Recent experimental advances in the latter include autonomous heat
engines [186] and fundamental tests of out-of-equilibrium fluctuations [187], while
much theoretical attention goes to the conversion of heat to work at the nanoscale
[188].

In this context, the ability to measure and manipulate heat flows between inter-
acting microscopic constituents is a valuable tool. In the relatively artificial setting
of a trapped ion chain, a method was proposed to image heat currents [189] to
elucidate the onset of Fourier’s law of heat conduction [190]. Very recently, multi-
mode cavity nano-optomechanical systems [118] have attracted interest in this
pursuit, due to their high controllability, low frequencies, and natural contact with
solid-state thermal environments. Tunable, cavity-mediated transport of thermal
phonons and photons has been proposed and realized in a variety of settings [63,
191–197], in addition to the imaging of heat flows from optically detected classi-
cal mechanical correlations [196]. Moreover, the optical driving allows breaking
time-reversal symmetry, enabling nonreciprocal vibration transport [63] and the
generation of synthetic magnetism for phonons [64, 151], analogous to e.g. magnetic
fluxes induced in photonic [45] and chiral quantum fluctuations in superconducting
microwave circuits [179].

In general, the combination of heat transport and (synthetic) magnetism has
inspired a flurry of scientific activity. Flux-dependent temperature variations have
been observed in a Josephson interferometer [198] biased by a real magnetic field.
In addition, persistent directional (circulating) heat currents in the absence of a
thermal gradient, i.e. in equilibrium, have been predicted in photonic [199] and
phononic [200] lattices, as well as unidirectional heat currents along the edge of
a bosonic topological insulator [201] and an optomechanical thermal diode [202].
So far, these chiral heat flows have not been observed in experiment. Meanwhile,
an ongoing theoretical debate in stochastic thermodynamics questions whether
breaking time-reversal symmetry can improve the efficiency of heat engines at finite
power [203–206]. Conversely, it would be interesting to study the effect of breaking
time-reversal symmetry on refrigeration.

Here we combine cavity-mediated phonon transport and broken time-reversal
symmetry to realize chiral thermal fluctuations and flows in a nanomechanical
system. We first demonstrate our ability to image microscopic cavity-mediated
heat flows in a dimer of detuned resonators [196]. With both resonators coupled to
bosonic baths of different occupation, we show the dimer operating as an optically
driven tunable heat pump, transferring thermal energy from the low-frequency to
the high-frequency resonator. We then construct a loop of three nanomechanical
resonators threaded by a synthetic magnetic flux [64, 151] and observe that the
flux induces circulating thermal fluctuations. Moreover, due to our unique phase-
resolved driving and detection scheme, we elucidate the chiral character of the
loop’s thermally driven mechanical eigenstates.
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Finally, we focus on heat flows and the interplay between synthetic magnetism
and gradients of thermal bath occupations. We show that the directionality of heat
flows can be tuned by flux, similar to the predicted tuning of persistent (heat) cur-
rents in TRS-broken phononic [200] and photonic [199] systems. Interestingly, we
find that breaking TRS allows stronger refrigeration of a hot mode in the strong
coupling regime, by preventing the formation of a dark (uncoupled) hybridized
mode [207] — a problem commonly encountered in simultaneous sideband cooling
of multiple mechanical resonators [208, 209]. Our experimental platform thus high-
lights a route towards improved performance of low-dimensional refrigerators and
provides a unique testbed to study nonreciprocal thermodynamics and fluctuations
at the nanoscale.

4.2. Correlations in thermally driven systems
We start this chapter with a brief review of the theory of thermally driven classical
systems. As an example, we take a single high-Q mechanical resonator with fre-
quency Ω, subject to viscous damping with rate γ = Ω/Q and force F (t). We write
down the Langevin equation for its complex amplitude a,

ȧ = − (iΩ + γ/2) a+ ξ(t). (4.1)

In line with section 2.3.2, we express a in units of xzpf and apply the rotating wave
approximation to write the evolution of the resonator as a first-order differential
equation (DE) for a, rather than a second-order DE for the displacement x. The
drive term ξ(t) = −2i/(mΩxzpf)F (t) represents the force F (t), withm the mass of
the resonator.

The resonator experiences random interactions with the near-infinite number
of degrees of freedom in the environment, commonly referred to as its thermal bath.
These collisions generate a stochastic thermal forceF (t) with zero average 〈F (t)〉 =
0. As the degrees of freedom in the environment continuously exchange energy, the
bath quickly ‘forgets’ about any interaction it had with the system. Therefore, we
make the common assumption that the bath is Markovian (memoryless) such that
F (t) shows no correlations in time [142].

A second consequence of the interaction with the thermal environment is the
damping term proportional to γ. The connection between damping and thermal
forces is captured in the fluctuation-dissipation theorem [142]. In the classical,
high-temperature limit (kBT � ~Ω), it states that F (t) satisfies the correlator

〈F (t)F (t− t′)〉 = 2γmkBTδ(t− t′), (4.2)

where T is the temperature of the environment. Alternatively, following the Wiener-
Khinchin theorem, the spectral density SFF (ω) = 2γmkBT ≡ SFF of the thermal
Langevin force is frequency-independent. The resulting flat frequency spectrum is
commonly referred to as a white noise spectrum and F (t) as a white noise process.

Because we express the complex amplitude a in units of xzpf, the driving term
satisfies the particularly succinct correlator

〈ξ(t)ξ∗(t− t′)〉 = nthγδ(t− t′), (4.3)
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where nth = kBT/(~Ω) denotes the occupation of the thermal (phonon) bath.

4.2.1. Onsager regression principle
Although the thermal force shows no correlations in time, the inertia of the resonator
does generate correlations in the amplitude a(t). For the classical nanomechanical
systems under study in this chapter, those correlations are governed by the Onsager
regression principle [210]: “the average regression of fluctuations will obey the same
laws as the corresponding macroscopic irreversible processes”.

Applied to the resonator in (4.1), the Onsager regression principle sim-
ply states that for positive time lag τ > 0, the regression of the correlator
Raa(τ) = 〈a(τ + t)a∗(t)〉 evolves in the thermal steady-state (i.e. independent of
t) as

dRaa(τ)

dτ
= − (iΩ + γ/2)Raa(τ), (4.4)

just like 〈a(t)〉would. To complete this description, we note that

Raa(0) = 〈a(t)a∗(t)〉 = 〈n(t)〉 = nth. (4.5)

where the occupation n(t) = |a(t)|2 expresses the energy in the resonator as the
number of phonons of energy ~Ω.

4.2.2. The quantum regression theorem
For systems with linear equations of motion (i.e. those governed by a quadratic
Hamiltonian), a quantum version of the Onsager regression principle is known
as the quantum regression theorem, often used in quantum optics [211]. In the
classical limit, where we replace operators by their expectation values â 7→ 〈â〉 = a,
both approaches yield the same result. However, as we regularly adopt quantum
formalism to describe the systems in this thesis, in line with conventions in the
field, we invoke a quantum approach in this section as well.

In particular, we follow the approach in section 15.5 of Meystre & Sargent [212].
We group the field operators aj , a†j describing a system ofN interacting modes in
the Nambu-like vector

α = (a1, . . . , aN , a
†
1, . . . , a

†
N )T . (4.6)

The equation of motion of α, derived in section 2.7.1, is extended into the
Heisenberg-Langevin equation

α̇(t) = −iHα(t)− Γ

2
α+ ξ(t) = −iMα(t) + ξ(t), (4.7)

by adding a damping term with matrix Γ = diag (γ1, · · · , γN , γ1, · · · , γN ) and a
zero-mean stochastic vector ξ(t) that represents the noise operating on our system.
Here we denoteM for the open-system dynamical matrix given byM = H− iΓ/2,
while H represents the closed-system Bogoliubov-de Gennes dynamical matrix
given in (2.68).
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The central quantity is now the correlator matrix

A(t, t′) ≡
〈
α (t)αT (t′)

〉
. (4.8)

The quantum regression theorem dictates the evolution of the correlator matrix in
the steady state

dA(t+ τ, t)

τ
=

d

dτ

〈
α(t+ τ)αT (t)

〉
= −iM

〈
α(t+ τ)αT (t)

〉
= −iMA(t+ τ, t),

(4.9)

which admits the formal solution

A(t+ τ, t) = exp (−iMt)A(t, t), (4.10)

again just like the evolution of 〈α(t)〉.
For a linear system ofN interacting modes, determining the one-time correlator

A(t) ≡ A(t, t) is slightly more complicated than for the single mode in (4.5). As
detailed in [212], a generalized Einstein relation can be employed to connect the
“drift” described byM to the “diffusion” caused by ξ(t). The evolution of the one-
time correlator then reads

Ȧ(t) = −i
(
MA(t) +A(t)MT

)
+D, (4.11)

with the elements of the diffusion matrixD encoding the white noise correlators

〈ξj(t)ξk(t′)〉 = Djkδ(t− t′). (4.12)

Finally, the steady-state (Ȧ(t) = 0) correlatorA ≡ A(0) satisfies

MA+AMT = −iD. (4.13)

4.2.3. Hermitian closed-system dynamics
In the absence of squeezing interactions, only particular elements of the correlator
matrix (4.8) are important, as we will see in this section. We start by grouping the
mode annihilation operators in the vector

a = (a1, · · · , aN )
T
. (4.14)

Using this mode vector, we reconstruct the correlator matrix

A (t, t′) =

〈[
a(t)aT (t′) a(t)a†(t′)
a∗(t)aT (t′) a∗(t)a†(t′)

]〉
(4.15)

where the operation a∗ is understood to conjugate the operators in the vector a
without transposing it.

In the absence of squeezing interactions, the Bogoliubov-de Gennes matrixH is
Hermitian and has the block representation

H =

[
A 0
0 −A∗

]
, (4.16)
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with the hopping matrixA encoding the system’s phonon-conserving beamsplitter
interactions. After defining the reduced dynamical matrixMA = A− iΓ′/2 with
Γ′ = diag (γ1, · · · , γN ), the full dynamical matrix of the system reads

M =

[
MA 0

0 −M∗A

]
. (4.17)

Assuming that all modes are coupled to individual, uncorrelated thermal baths, the
diffusion matrix reads

D =

[
0 D′
D′ 0

]
, (4.18)

withD′ = diag
(
γ1n

th
1 , · · · , γNnth

N

)
the reduced diffusion matrix. Here we assume

that our system is dominated by classical noise and neglect the contribution of
quantum fluctuations (i.e. nth

j ≈ nth
j + 1).

Now, the block structure of the matrices (4.15), (4.17) and (4.18) proves to be
helpful. Plugging them into (4.11) leads to decoupled evolution for each block of
one-time correlators

d

dt

〈
aaT

〉
= −i

(
MA

〈
aaT

〉
+
〈
aaT

〉
M∗A

)
, (4.19)

d

dt

〈
aa†
〉

= −i
(
MA

〈
aa†
〉
−
〈
aa†
〉
M†A

)
+D′, (4.20)

where we have dropped the time argument (t) of all mode vectors for notational
compactness. The steady-state solution satisfies

0 =
〈
aaT

〉
(4.21)

D′ = i
(
MA

〈
aa†
〉
−
〈
aa†
〉
M†A

)
, (4.22)

which shows that for a system with Hermitian closed-system dynamics, only the

correlators
〈
aja
†
k

〉
can attain finite values, while the correlators 〈ajak〉 remain zero.

In this chapter, we therefore restrict ourselves to studying the reduced correlator
matrix

A′(t, t′) =
〈
a(t)a†(t′)

〉
, (4.23)

with regression evolution

dA′(t+ τ, t′)
dt

= −iMAA′(t+ τ, t′). (4.24)

Finally, combining (4.24), (4.22) and the Wiener-Khinchin theorem allows deter-
mining the spectral density matrix

Saa†(ω) =

∫ ∞
∞

e−iωτA′(t+ τ, t) dτ = χ(ω)D′χ†(ω) (4.25)
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Figure 4.1: Brownian motion of uncoupled nano-optomechanical resonators. (a) Thermomechanical
fluctuation spectrum of the sliced nanobeam, imprinted on a laser reflected from a nanocavity with
linewidth κ/(2π) = 320 GHz. Five flexural mechanical resonances aj are revealed, with frequencies
ωj/(2π) between 3.7 and 26.2 MHz. (b) Time trace of the thermally fluctuating amplitude |aj | of the
lowest and highest frequency resonances a1 and a5, obtained by demodulating the optical fluctuation
signal with parallel electronic local oscillators at Ωj and subsequent low-pass filtering. (c) Phase fluctua-
tions arg(aj) corresponding to b. (d) Histograms of the amplitudes |aj | collected over a duration of 10
ms. Black lines represent the probability densities fMB of the corresponding Maxwell-Boltzmann distri-
bution (4.27). (e) Auto-correlationsR11(τ) andR55(τ) and cross-correlationsR15(τ) as a function of
time lag τ . Black dashed lines represent exponentially decaying amplitude correlations with rates γj/2
equal to half the spectral linewidth of the resonances.

from the susceptibility matrix χ(ω) = −i(ω1−MA)−1. For completeness, we note
that in the presence of squeezing interactions (B 6= 0), the spectral density matrix
of the full correlator matrixA(t) in (4.10) is given by the similar expression

Sαα†(ω) = χα(ω)Dχ†α(ω), (4.26)

with susceptibility matrix χα(ω) = −i(ω1−M)−1.

4.3. Brownian motion of single resonators
We move on to our experimental results, where we study the thermal motion that
is naturally present in a room-temperature nanomechanical system: the sliced
nanobeam presented in chapter 2. We sensitively measure thermally driven vi-
brations by employing the strong optomechanical interaction between its flexural
mechanical modes and the photonic crystal optical nanocavity. As discussed, the
displacements xj of these optically active mechanical resonances are imprinted
on the intensity of laser light reflected off the cavity. By studying the frequency
content of the reflected intensity signal z(t), five high-Q mechanical resonances
are revealed with MHz resonance frequencies Ωj and kHz linewidths γj , as shown
in Figure 4.1a.

We track the thermal vibrations of these mechanical modes in time. To do so, we
compare the oscillations in z(t) with fixed electronic signals (‘local oscillators’, LOs)
that oscillate at the mechanical resonance frequencies Ωj . In particular, we demodu-
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late z(t) for each resonator j in parallel using a local oscillator with complex-valued
representation vj(t) = eiΩjt and subsequent low-pass filtering. The resulting com-
plex amplitude envelope aj(t) encodes the oscillation amplitude and phase offset
of resonator j relative to its LO.

To set the stage, we first study the thermal fluctuations of individual mechanical
resonators, as is routinely done in optomechanical systems. We show exemplary
time traces of the Brownian motion of the lowest and highest frequency modes
a1 and a5 in Figure 4.1b (amplitude) and 4.1c (phase). Qualitatively, we recognize
two differences: the average amplitude of mode a1 is higher (measured in units of
the zero-point motion xzpf), while the fluctuations of mode a5 evolve more rapidly.
The first observation is a consequence of their different frequencies: The thermal
variance a2

rms,j =
〈
x2
j

〉
= 2x2

zpfn
th
j of a resonator depends on the occupation

nth
j = kBT/~Ωj of the thermal phonon bath (with temperature T ) that it is coupled

to. The second observation shows a variation in the strength of coupling to that
environment and reflects their different dissipation rates γ1/(2π) = 1.5 kHz and
γ5/(2π) = 6.9 kHz.

4.3.1. Statistical analysis
Next, we introduce some statistical tools to analyse the inherently stochastic thermal
fluctuations quantitatively, and illustrate these tools with the time traces measured
previously. One of the simplest statistical analyses we can do, beyond evaluating
moments such as the mean and the variance, is to construct a histogram of the
amplitude values |aj | that we find in a trace, as shown in Figure 4.1d.

Each mechanical mode (effective mass mj) features two degrees of free-
dom: displacement xj and velocity vj . In thermal equilibrium, the total energy
Ej = mjΩ

2
jx

2
j/2 + mjv

2
j /2 follows the exponential Boltzmann distribution

∝ exp(−Ej/kBT ). Consequently, we expect the probability of finding a particular

normalized oscillation amplitude rj = |aj | /aj,rms (with a2
j,rms = 〈|aj |2〉) to follow

a two-dimensional Maxwell-Boltzmann distribution

fMB (rj) = 2rje
−r2j . (4.27)

The relatively large variations of the experimental histograms in Figure 4.1d around
the expected probability density functions (black lines) are due to the short time
span of 10 ms over which the histograms are constructed, compared to the dissipa-
tion times 1/γj (on the order of 0.2 ms).

The histograms in Figure 4.1d do not reveal any of the temporal structure present
in Figure 4.1b and 4.1c. To study this structure, we calculate the auto-correlations
(for j = k) and cross-correlations (for j 6= k)

Rjk(τ) = 〈aj(t+ τ)a∗k(t)〉t (4.28)

as a function of time lag τ . Figure 4.1e shows experimental auto- and cross-
correlation functions for the fluctuations of modes a1 and a5. The cross-correlation
R15(τ) only shows instrument noise and verifies that the two resonators are
fluctuating independently. On the other hand, the auto-correlations R11(τ) and
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Figure 4.2: Thermodynamics of two coupled nanomechanical resonators. Modes a1 and a5 are coupled
by a beamsplitter interaction of strength J . Panels a-c are shown for J/(2π) = 6 kHz. (a) Exemplary
time traces of the amplitude fluctuations |a1| and |a5|. (b) Histograms of the amplitudes |aj | collected
over a duration of 10 ms. The black line represents the probability density f (|aj |) of the Maxwell-
Boltzmann distribution (4.27)) (c) Auto-correlationsR11(τ) andR55(τ) and cross-correlationsR15(τ)
as a function of time lag τ . The dashed black line indicates an exponential decay for the average
amplitude dissipation rate γ/2. (d) Average thermal occupationRjj(0) =

〈
|aj(t)|2

〉
t

as a function of
coupling strength J . (e) Heat flowing from mode 1 to mode 5 as a function of J , measured from the zero-
lag cross-correlationQ1 7→5 = Im

[
Jeiφ ·R15(0)

]
. (f) Effective mode temperatures corresponding to

the occupations in d. The black lines in panels d-f are calculated from the model laid out in section 4.4.1,
while the dashed vertical lines indicate the coupling J for which the cooperativity C = 1.

R55(τ) show amplitude correlations decaying with τ at a rate γj/2 (dashed
lines), as predicted by the regression principle (4.4). The zero-lag correlation
Rjj(0) =

〈
|aj(t)|2

〉
t

is equal to the thermal variance of the modes. With the
Wiener-Khinchin theorem connecting the auto-correlation function and spectral
density by Fourier transform, the amplitude correlation decay rate γj/2 is directly
related to the spectral linewidth γj .

4.4. Thermodynamics of a dimer
Subsequently, we study the thermodynamics of a nanomechanical dimer coupled
by cavity-mediated radiation pressure forces [63, 196], employing the phonon-
conserving beamsplitter interaction introduced in section 2.6. The interaction is
induced parametrically by modulating the intensity of a drive laser at the difference
frequency between the two mechanical modes a1 and a5, stimulating frequency
conversion [64]. This leads to an effective interaction Hamiltonian

HBS = Je−iφa†1a5 + Jeiφa†5a1 (4.29)

in a frame rotating along with the two resonators. Under this Hamiltonian, phonons
are exchanged in a Rabi-like oscillation between the modes a1 and a5 at a rateJ with
an interaction phase φ. This is illustrated in Figure 2.6b for a coherent excitation.
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Similar energy exchange is observed for thermal vibrations as well. Qualita-
tively, the amplitude time traces in Figure 4.2a of fluctuations in the dimer indeed
show thermal energy continuously being traded back and forth. Their amplitude
distributions, shown in Figure 4.2b, are now very similar, while still following the
two-dimensional Maxwell-Boltzmann distribution (4.27).

Yet again, the exchange of thermal energy is best revealed by looking at the
correlation functions shown in Figure 4.2c. For a strongly coupled dimer, the auto-
correlations R11(τ) and R55(τ) show an overall decay that is exponentially en-
veloped by the average amplitude decay with rate γ/2 = (γ1 + γ5)/4. However,
within this envelope, we see the disappearance and subsequent revival of corre-
lations, with each auto-correlation dip coinciding with a high value for the cross-
correlation R15(τ). This indicates a Rabi-like exchange of thermal fluctuations
between the modes, and has so far only been observed between resonators of equal
frequency fed by artificial thermal fluctuations [196].

4.4.1. Energy, heat flow and temperature
Upon closer inspection,R15(τ) proves to be asymmetric in time lag with a non-zero
value at τ = 0. Here, time-reversal symmetry is broken by the thermodynamic arrow
of time associated with a thermal gradient, as the low-frequency mode a1 is coupled
to a phonon bath of higher occupation nth

1 > nth
5 . Moreover, by considering the

continuity relation derived from the time evolution of the number operators a†jaj ,
we find that the microscopic heat flow Q17→5 between coupled modes is related to
the zero-lag cross-correlation via [179, 201]

Qj 7→k = i
〈
Jeiφa†jak − Je−iφaja

†
k

〉
= 2 Im

[
Jeiφ ·Rjk(0)

]
. (4.30)

With our distinctive phase-resolved detection and driving scheme (section 2.8.2),
we are in the unique position to evaluate (4.30) experimentally. Figure 4.2d and 4.2e
show the steady-state occupations and heat flow between the resonators as the
coupling J is increased.

To understand the relation between heat flow and coupling strength, we work
out a model to predict the dimer’s thermal steady state. First, we unpack the reduced
one-time correlator matrixA′(t, t) of (4.23) into a vector

v(t) =

〈(
a1a
†
1, a5a

†
5, a1a

†
5, a5a

†
1

)T〉
. (4.31)

Under (4.20), the evolution of v(t) is governed by v̇(t) = −Nv(t) + h, where
h =

(
γ1n

th
1 , γ5n

th
2 , 0, 0

)
is the thermal driving vector and the thermalization matrix

reads

N =


γ1 0 −iJ ∗ iJ
0 γ5 iJ ∗ −iJ
−iJ iJ γ 0
iJ ∗ −iJ ∗ 0 γ

 , (4.32)
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with J = Jeiφ. We can use this relation to predict the thermalization of a non-
equilibrium state, as shown in the experiments in Figure 4.7.

However, at present, we are concerned with the thermal steady-state vss, which
easily follows from (4.32) as vss = N−1h. The steady-state heat flow (4.30) reads

Q1 7→5 =
4J2γ1γ5

(γ1 + γ5) (4J2 + γ1γ5)
∆nth =

C
1 + C

γ1γ5

γ1 + γ5
∆nth. (4.33)

We see that the flow is driven by the bath occupation difference ∆nth = nth
1 −nth

5 and
scales with the cooperativity C = 4J2/(γ1γ5). The average resonator occupations
are given by

n1,5 =
〈
|a1,5|2

〉
=

4J2
(
γ1n

th
1 + γ5n

th
2

)
+ γ1γ5 (γ1 + γ5)nth

1,5

(γ1 + γ5) (γ1γ5 + 4J2)

=
γ1,5n

th
1,5 ∓Q17→5

γ1,5
(4.34)

and express the balance between the rate γjnth
j at which resonator j exchanges

thermal quanta with its own bath and the heatQj 7→k flowing out towards the other
resonator k.

As shown in Figure 4.2d, the occupations predicted by this model are in excellent
agreement with the experimental results. Without interaction between the modes
(J = 0), the difference in the resonators’ thermal occupation reflects the difference
in their bath occupation nth

1 > nth
5 . As the interaction J > 0 is turned on, the

occupation difference is reduced with mode a1 cooling down while mode a5 heats
up. As a5 is coupled to the environment more strongly (γ5 > γ1), it is able to dump
the excess heat flowing in from a1 efficiently, such that a5 heats up less than a1

cools down.
The changes in occupation are corroborated by the trend of the heat flow in

Figure 4.2e. Here, the cooperativity C proves to be a central parameter, as the heat
flow (4.33) scales with C/(1+C). For small C this prefactor scales linearly with C (and
thus quadratically with J), while for C → ∞ a maximum in flow is asymptotically
reached, with C/(1 + C)→ 1. The occupations then equilibrate to the value n1,5 =
(γ1n

th
1 + γ5n

th
5 )/(γ1 + γ5). For unity cooperativity C = 1, the heat flow is half of the

maximum value.
Finally, while a description in terms of quantized phonons is convenient and

standard practice even in classical nano-optomechanics, we realize that this experi-
ment does not rely on quantum effects in any way. A more natural description is
therefore found by expressing the mode energies as an effective temperature

Tj = nth
j ~Ωj/kB. (4.35)

Doing so reveals the nature of this experiment. As illustrated in Figure 4.2f, for J = 0
the effective temperatures start out very close to the temperature Tlab ≈ 295 K of
the laboratory environment (the small difference is explained by the opto-thermal
dynamical backaction discussed in section 2.8.4). Cranking up the couplingJ causes
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a

b

c

d

Figure 4.3: Circulating thermal fluctuations in a flux-biased loop. (a) A phonon circulator is formed
by coupling three resonators aj (strengths J/(2π) = 7.5 kHz) in a loop permeated by a synthetic flux
Φ. Each resonator interacts with an independent phonon bath of occupation nth

2 > nth
3 & nth

4 through
dissipation rate γj . (b) Measured cross-correlationsRjk(τ) as function of time lag for flux Φ = 0, where
the circulator is time-reversal symmetric (TRS), and for Φ = ±π/2, where TRS is broken. The controlled
breaking of TRS induces circulating thermal fluctuations. For Φ = ±π/2, the intermode exchange
time τex = ±2π/(3J

√
3) is indicated (dashed lines). (c) Colour plot of the measured cross-correlation

magnitude |R23(τ,Φ)|. A cross-over from non-circulating to circulating fluctuations is observed when
varying the flux Φ, and reversal of chirality with flux sign. (d) Magnitude and phase of the cross-spectral
density S23(ω,Φ), obtained by Fourier transform ofR23(ω,Φ). Hybridized eigenmodes of the loop,
identified by their distinct phase delay between adjacent resonators, tune with synthetic flux.

the temperature T1 to drop significantly below Tlab, while T5 is heated above Tlab.
This shows the dimer operating as a heat pump. The work required to refrigerate is
supplied by the modulated drive laser field, analogous to the energy supplied by a
red-detuned optical drive to convert low-energy phonons into high-energy photons
in optomechanical sideband cooling schemes [118].

4.5. Fluctuations in a phonon circulator
In the remainder of this chapter, we explore the interplay between time-reversal
symmetry broken by synthetic magnetism and by thermal gradients. A natural
system to study this combination is the phonon circulator of section 3.2. Figure 4.3a
depicts a circulator — formed by coupling resonators a2, a3 and a4 in a loop with
strengths J — embedded in its thermal environment comprising the uncorrelated
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phonon baths nth
j . The Hamiltonian of the circulator is given in (3.1).

Disregarding the thermal environment for now, the closed-system dynamics
of the circulator mode vector a = (a2, a3, a4)T are governed by ȧ(t) = −iAa(t),
where the (reduced) Hamiltonian matrix reads

A = J

 0 e−iΦ/3 eiΦ/3

eiΦ/3 0 e−iΦ/3

e−iΦ/3 eiΦ/3 0

 . (4.36)

As discussed in section 3.2, a gauge-invariant synthetic magnetic flux Φ controls
the time-reversal symmetry (TRS) of the closed system. In (4.36), we have chosen
a gauge where the flux is distributed equally over the three links, rendering A
rotationally invariant.

4.5.1. Circulating fluctuations
We first focus on the effect of a TRS-breaking flux on the temporal structure of the
circulator’s fluctuations. For a relatively high coupling J/(2π) = 7.5 kHz > γj ,
Figure 4.3b shows the cross-correlation magnitude |Rjk(τ)| of adjacent resonators
as a function of time lag τ . For Φ = 0 — when TRS is not broken — these are approx-
imately symmetric in τ , with the thermal gradient nth

2 > nth
3 & nth

4 contributing
only slightly to the asymmetry. However, when TRS is broken by a flux Φ = ±π/2,
the cross-correlations become markedly asymmetric in τ and evidence circulating
thermal fluctuations, akin to the circulation of coherent vibrations witnessed in
Figure 3.2a.

Indeed, following for exampleR23(τ) when Φ = π/2 and keeping in mind the
definition (4.28), thermal energy in resonator a2 is seen to be transferred to a3 after
the inter-mode exchange time τex = 2π/(3J

√
3) with high intensity. Conversely, at

this time, the transfer in the other direction — noting thatRkj(τ) = R∗jk(−τ) — is
at a minimum (see dashed lines in Figure 4.3b). The chirality (handedness) of the
circulation is reversed upon reversing the flux Φ 7→ −Φ.

In Figure 4.3c, we illustrate the cross-correlation magnitude |R23(τ)| both as
a function of lag τ and flux Φ. This reveals a continuous tuning of chirality with
Φ, analogous to the tuning seen for coherent vibration transfer in Figure 3.2b. By
taking the Fourier transform ofR23(τ), we obtain the power spectral density S23(ω)
illustrated in Figure 4.3d. Crucially, as R23(τ) is a complex quantity comparing
both amplitude and phase of adjacent resonators, the cross-spectral density S23(ω)
now also contains phase information, in contrast to the single-resonator spectra
shown in Figure 3.1d. Especially, this allows for a phase-sensitive examination of
the circulator’s eigenmodes.

The three magnitude bands ofS23 in Figure 4.3d indicate the flux-tuned frequen-
cies of the hybridized circulator eigenmodes, while the phase of each band reveals
the relative phase between resonators a2 and a3 in the corresponding eigenmode.
With (4.36) rotationally symmetric, S34(ω) and S42(ω) look similar and exhibit
the same relative phases. The light blue band therefore corresponds to a symmet-
ric eigenmode where all resonators oscillate in phase for the chosen gauge (LO
phases), while the other bands indicate phase-chiral eigenmodes with a ±2π/3
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TRSTRS and TRS

a b

Figure 4.4: Broken time-reversal symmetry (TRS) and chiral eigenmodes. (a) Real and imaginary part
of the cross-spectral density S23(ω,Φ) shown in Figure 4.3. For flux Φ = 0, the circulator respects TRS
and features a real Hamiltonian matrixAwith real eigenvectors ãj . For flux Φ = π/2, TRS is broken and
A is complex with complex ãj . Each complex Lorentzian contribution toS23(ω) scales with the product

ã
(2)
j · (ã

(3)
j )∗, where ã

(m)
j is the weight of resonatorm in the associated eigenmode ãj . This results in

a real (complex) cross-spectral density for Φ = 0 (Φ = π/2). (b) Phasor representation of the circulator
eigenmodes, with the magnitude (phase) of each resonator weight indicated by the radius (rotation) of
a circle. Regardless of the breaking of TRS, eigenmodes can be described by the angular momentum
eigenstates ã0, ã−, ã+ of the rotationally-invariant circulator Hamiltonian. Each resonator has equal
weight, with the relative phase between adjacent resonators 0,±2π/3 given by the eigenstate index.
When the Hamiltonian matrixA is real and TRS is respected, the two chiral eigenstates ã± become
degenerate and can be combined to form two achiral, real eigenstates ãB and ãD with unequal resonator
weights.

inter-resonator phase lag for the same gauge (see Figure 4.4b). Finally, we note that
whileAΦ=2π is gauge-equivalent toAΦ=0, it is not identical. In the present gauge,
the phase of S23(ω) is 6π-periodic in Φ, whereas the phase-insensitive amplitude
|S23(ω)| is 2π-periodic.

For the trivial flux Φ = 0, the lower frequency eigenmodes become degener-
ate. Moreover, as TRS is preserved, they can be combined to form two different
eigenmodes with real resonator weights and no TRS-breaking phase delays between
resonators. This is manifested in Figure 4.3d by the trivial phase ∠S23(−J, 0) ≈ π
(red) at the lower crossing. To analyze the situation for the other TRS-preserving
flux Φ = π, we must be mindful of the gauge we are working in. While the phase
∠S23(J, π) ≈ 5π/3 (green) at the upper crossing appears to be non-trivial, the
gauge-invariant inter-band phase difference ∠S23(J, π) − ∠S23(−2J, π) = π is
trivial.

Alternatively, Figure 4.4a shows the real and imaginary parts of S23(ω,Φ =
0, π/2). For Φ = π/2 we distinguish three Lorentzian distributions with a complex
amplitude. These complex Lorentzians fan out in evenly-distributed directions from
the ω-axis in the ω- Re(S)- Im(S)-space. As the degeneracy of the two lower fre-
quency modes is established for Φ = 0, their cross-spectral contributions coincide
to cancel out their imaginary amplitudes, resulting in a real cross-spectral density.
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As discussed in section 3.2, the rotationally invariant circulator Hamiltonian
(3.1) is diagonal in the discrete angular momentum basis

ãk =

3∑
j=1

e−i2πkj/3aj/
√

3 for k = {−1, 0, 1}. (4.37)

For a thermally fully symmetric circulator (equal nth
j and γj), it follows from (4.25)

that the complex amplitude of each Lorentzian contribution in S23 scales with the

product ã(2)
j ·(ã

(3)
j )∗, where ã(m)

j is the weight of resonator am in the corresponding
eigenmode ãj . This elucidates the intimate connection between (the reality of) the
cross-spectral density and (the reality of) the circulator’s eigenmodes.

A phasor representation of the eigenvectors of A is visualized in Figure 4.4b.
The phase-chiral angular momentum eigenstates ã0, ã+ and ã− have equal weights
in all resonators, and are valid irrespective of the breaking of TRS. When ã− and
ã+ are tuned to be degenerate at Φ = 0, they can be combined to form the two
achiral eigenmodes ãB = (ã+ + ã−)/

√
2 and ãD = (ã+ − ã−)/(i

√
2) with real but

unequal weights.

4.5.2. Chirality and heat flows
We now return to the interplay between flux-induced chirality and thermal gradients.
We implement a circulator using the low-frequency ‘hot’ resonator a1 and the
high-frequency ‘cold’ resonators a3 and a4. This circulator sports a larger thermal
gradient nth

1 > nth
3 & nth

4 than the one examined in the previous section. The
thermal gradient drives a heat flow from the hot resonator to the cold resonators.
As shown in Figure 4.5a for a moderate coupling J/(2π) = 3.6 kHz, the average
thermal occupation n1 of the hot resonator is thus cooled from its bath occupation
nth

1 while the cold resonators are heated up and n3,4 > nth
3,4.

Remarkably, we find that the flux Φ has a striking impact on the distribution of
thermal energy in the circulator. For flux Φ = π/2 (Φ = −π/2), heat flows from
the hot resonator a1 preferentially to a3 (a4). This is a consequence of flux-induced
chirality: hot thermal fluctuations entering a1 circulate in a particular, Φ-dependent
order as they decay, breaking the symmetry of thermal transport.

These findings are corroborated by measuring the heat flows in the circulator,
illustrated in Figure 4.5b and 4.5d. The relative magnitude of the heat flows between
the hot resonator and the two cold resonators is tuned by Φ, while the direction of
the heat flowQ37→4 is reversed by reversing the flux.

Interestingly, at trivial fluxes Φ = 0, π we find an increase in n1 or conversely, a
decrease in the cooling of a1. Here, the presence of time-reversal symmetry allows
the formation of an eigenmode ãB that is ‘bright’ to the hot resonator a1 (i.e. a1

has weight in ãB) and an eigenmode ãD that is ‘dark’ (see Figure 4.4b). The dark,
but cold eigenmode ãD is decoupled from the hot resonator and can therefore not
contribute to cooling it [207]. In Figure 4.5c, this reduction in cooling is seen to
persist as J is increased.

We take a closer look at this mechanism. Figure 4.6a shows the resonator occu-
pations in the circulator for Φ = 0. As J is increased, a plateau is reached where the
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Figure 4.5: Heat and refrigeration in a chiral system. (a) Thermal average resonator occupation nj in
the circulator formed by coupling the modes a1, a3 and a4 with strength J/(2π) = 3.6 kHz. Mode
a1 is cooled down from its bath occupation nth

1 = 1.5 · 106, while a3 and a4 heat up from relative
to their baths nth

3,4 = {0.45, 0.36} · 106 (indicated by light blue and green lines). Dissipation rates

γ3/(2π) ≈ γ4/(2/pi) = 3.8 kHz are optothermally tuned to be equal, while γ1/(2π) = 1.5 kHz. The
chirality induced by the flux Φ redistributes thermal energy in the circulator, with heat from the hot
resonator a1 flowing preferentially to a3 (a4) for Φ = π/2 (Φ = −π/2). At trivial fluxes Φ = 0, π, the
hot resonator a1 has no weight in the cold, ‘dark’ eigenmode ãD (cf. Figure 4.4b) and the level of cooling
is reduced. (b) Heat flowsQj 7→k in the circulator. The direction of heat flow between the cold modes
Q3 7→4 is controlled by the chiral flux Φ, as is the relative flow between the hot mode and each of the
cold modes. (c,d) Thermal average resonator occupations nj and heat flowsQj 7→k as a function of both
flux Φ and coupling rate J . The reduction in cooling for Φ = 0, π is seen to persist as J is increased.
Black lines in a,b are calculated from (4.22).

hot resonator occupation n1 remains larger than the cold resonator occupations
n3,4. In Figure 4.6b, we compare this to the related Λ-shaped resonator network,
where the direct coupling between both cold resonators is absent. The Λ-system is
flux-free and thus achiral. Importantly, it also hosts the dark, cold eigenmode ãD

and shows a similar distribution of thermal energy in the strong coupling regime
J � γj . In line with the realization that ãD does not contribute to cooling, the oc-
cupation n1 in the Λ-network is exactly equal to that in a dimer formed by coupling
a1 with rate J

√
2 to an equivalent cold mode aeq with dissipation γeq = γ3 ≈ γ4

and nth
eq = (nth

3 + nth
4 )/2.

By breaking TRS in the circulator, we lift the degeneracy of the phase-chiral
eigenstates ã± and remove the dark mode ãD. As shown in Figure 4.6c for flux
Φ = π/2, this allows to reach a lower hot resonator occupation n1. Eventually, for
J → ∞, all resonators approach the same occupation n1 = n3 = n4. Effectively,
the breaking of TRS assists in the refrigeration of the hot resonator by adding an
extra cooling channel [207]. We note that this effect is only important in the case of
strong coupling — in the weak coupling regime with cooperativity C < 1 smaller
than unity, the average occupation and thus the cooling rate of the hot resonator is
essentially the same in all three configurations shown in Figure 4.6. This indicates
that dissipation dominates over correlations in weakly-coupled systems.
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Figure 4.6: Refrigeration assisted by broken TRS. (a) Thermal average resonator occupation nj of the
(∆-shaped) circulator in Figure 4.5 for flux Φ = 0 as a function of coupling J . A theory extrapolation for
high J (black lines) shows that a plateau is reached where the hot resonator occupation remains higher
than that of the cold resonators — a consequence of the dark mode ãD being inaccessible to cool a1.
(b) The achiral Λ-configuration, where the coupling between the cold resonators is absent, also hosts
the dark eigenmode ãD and shows a similar cooling plateau. The occupation n1 in this configuration is
exactly equal to that of a dimer formed by coupling a1 with strength J

√
2 to a cold resonator with the

average occupation (nth
3 + nth

4 )/2 (dotted line). (c) Breaking time-reversal symmetry with a non-trivial
flux Φ = π/2 removes the dark eigenmode. The presence of three equal-weight eigenmodes improves
the performance of cooling a1 and allows equal resonator occupations to be reached for J →∞.

4.6. Competing energy transfer and thermalization
Finally, we study another manifestation of the competition between thermal relax-
ation and energy transfer via beamsplitter interactions. In particular, we track the
thermalization of occupations and flows over time [213], in the ensemble-averaged
time-resolved experiments shown in Figure 4.7. At times t < 0, the resonators are
in only contact with their individual baths and maintain an uncoupled steady state.
At time t = 0, interactions are instated and the resonators thermalize to the new
steady-state of the coupled system. The evolution of this process is modeled in
(4.20).

In the case of the dimer a1-a5, immediately after t = 0, the initial occupation
difference drives a large energy transfer that greatly overshoots the eventual steady-
state flow. In this process, the cold resonator n5 is even temporarily seen to be
more occupied than the hot resonator n1. Indeed, for an arbitrarily large J , a short
pulsed interaction of length π/J would allow a full swap of the resonator states [120,
214]. Here however, we see thermal relaxation kicking on a time scale 1/γj , guiding
the system to a steady-state where heat constantly flows from a1 to a5. Similar
behaviour is seen for the circulator a1-a3-a4 with TRS-breaking flux Φ = π/2,
where thermal energy is seen to slosh back and forth between the cold resonators
a3 and a4 until a steady-state flow is reached.

4.7. Conclusions and outlook
To summarize, we have employed tunable, light-mediated mechanical interactions
in a multi-mode cavity optomechanical system to manipulate and image in situ
the transport of heat, with emphasis on the effect of controlled breaking of time-
reversal symmetry by the optical drive. In a three-mode chiral phononic system, we
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Figure 4.7: Chirality in time-resolved thermalization. Time-resolved ensemble averages (1000 runs)
of the resonator occupations (upper row) and heat flows (lower row) in the dimer a1-a5 (left column,
J/(2π) = 5 kHz) and circulator a1-a3-a4 (right column, J/(2π) = 3.6 kHz, Φ = π/2). The resonators
are in thermal equilibrium with their baths nth

j until at t = 0 the interactions are switched on and
the correlators thermalize following (4.20) to a new steady-state. The evolution of the occupations and
flows reflects the competition between energy transfer with time-scale 1/J and thermal relaxation with
time-scales 1/γj . In the circulator, the heat flow Q37→4 between the cold resonators is seen to slosh
back and forth until steady-state is reached.

have demonstrated circulating thermal fluctuations, chiral eigenstates, and flux-
controlled directionality of heat flows. Moreover, we have found that the breaking
of time-reversal symmetry assists in refrigeration: In a strongly-coupled chiral con-
figuration, a lower phonon population could be attained for the lowest-frequency
mode than is possible in an achiral configuration.

These findings put forth our experimental platform as a promising model sys-
tem to investigate symmetry-broken thermodynamics at the nanoscale, and point
to a direction to improve cooling in multi-mode systems. Looking forward, it may
be applied to study non-equilibrium fluctuations [215], heating and cooling in anti-
parity-time symmetric systems [216], and heat transport in topological insulators
[201], connecting to the previous chapter of this thesis. Moreover, as we will exploit
in the following chapters, dynamical modulation of the optical spring also allows
inducing squeezing interactions, opening yet another direction to study nonstan-
dard thermodynamics. The nonreciprocal routing and efficient cooling we study
may also provide useful insights into the development of nonreciprocal photonic or
microwave components, where the suppression of thermal noise in specific output
channels is important [127, 128].

Finally, noting that the non-degenerate circulator acts as a heat pump driven by
modulated light, an interesting follow-up would be to quantify the work supplied
by the driving field, the efficiency of refrigeration, and the production of entropy.
This angle has been overlooked in previous work on light-mediated nonreciprocal
phonon transport as well [63, 196, 202], and relates to an ongoing debate on the
bounds of finite power efficiency of heat engines subject to broken time-reversal
symmetry [203–206].
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Figure 4.8: Instrument noise in auto-correlations. (a) In the lock-in amplifier used to analyze thermo-
mechanical signals, δ-correlated instrument noise is filtered by a third-order low-pass filter (response
h(t) shown for unity time constant) in the demodulation process. This introduces time-correlations in
the demodulated signal y(t) and results in a peaked auto-correlationRyy(τ) ∝ h(τ) ? h(−τ) given by
the convolution of h(t) with itself. (b) Measured auto-correlation voltages |Rjj(τ)| for three uncoupled
resonators. On top of the long-time exponential thermal decay of amplitude correlations, there is a
short-time contribution of filtered noise correlations. The inset zooms in on |R44(τ)| at the short time
scale and shows that it is described well by the (uncorrelated) sum of the filtered noise auto-correlation
and the exponential thermal decay (black line). The effect of the low-pass filter on the thermal corre-
lations is negligible due to their different time constants τfilter = 1.62 µs and τth = 2/γ4 = 81 µs.
Cross-correlations between resonator signals at different frequencies do not suffer from the frequency-
uncorrelated instrument noise.

4.8. Appendix: Instrument noise in auto-correlations
In the measurement of the resonators’ thermal displacement, the dominant noise
source is electronic noise in our instruments: a detector and a lock-in amplifier.
The lock-in amplifier is used to demodulate the thermomechanical signals, and in
doing so passes the voltage signal it has measured (including the instrument noise)
through a digital low-pass filter. Assuming that the instrument noise is δ-correlated
with spectral density Snn (at least around the MHz frequencies of our resonators),
this introduces time-correlations in the demodulated noise signal y(t). Depicted
in Figure 4.8a, this leads to a noise auto-correlationRyy(τ) = Snn(h(τ) ? h(−τ))
that scales with the convolution of the low-pass filter response h(t) with itself.
The instrument noise gets added to the thermal auto-correlationsRjj that we are
interested in, as demonstrated in Figure 4.8b. In all auto-correlations shown in this
chapter, we correct for this noise contribution.
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Non-Hermitian chiral

phononics through
optomechanically induced

squeezing

Imposing chirality on a physical system engenders unconventional energy flow and
responses, such as the Aharonov-Bohm effect [40] and the topological quantum Hall
phase for electrons in a symmetry-breaking magnetic field. Recently, great interest
has arisen in combining that principle with broken Hermiticity to explore novel
topological phases and applications [106, 217–230]. In this chapter, we report unique
phononic states formed when combining the controlled breaking of time-reversal
symmetry with non-Hermitian dynamics, both induced through time-modulated
radiation pressure forces in small nano-optomechanical networks. For phonons
in a synthetic dimension, we supplement synthetic magnetism with particle-non-
conserving squeezing interactions, and discover a non-Hermitian Aharonov-Bohm
effect in ring-shaped networks in which mechanical quasiparticles experience para-
metric gain. The resulting complex mode spectra indicate flux-tuning of squeezing,
exceptional points, instabilities and unidirectional phononic amplification. This
rich phenomenology points the way to exploring new non-Hermitian topological
bosonic phases and applications in sensing and transport that exploit spatiotemporal
symmetry breaking.

This chapter is based on J. del Pino, J. J. Slim & E. Verhagen. Non-Hermitian chiral phononics through
optomechanically induced squeezing. Nature 606, 82–87 (2022) [151]. J.d.P. and J.J.S, contributed equally
to this work.
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5.1. Introduction
From the Zeeman to the quantum Hall effect, magnetic fields biasing electronic sys-
tems alter their spectrum and imprint chirality on their eigenstates. Nonreciprocal
interference underlies these phenomena, as electrons travelling along a closed path
gain a phase proportional to the enclosed magnetic flux that depends on direction
— evidencing broken time-reversal (T ) symmetry. Such geometrical phases [40]
and the resulting synthetic magnetism were recently brought to bosonic systems in
photonics, acoustics, and cold atoms to explore nonreciprocal functionality [31–34]
and various topological insulators [37, 38].

In a parallel, largely unconnected development, researchers turned to non-
Hermitian systems including parity-time-(PT -)symmetric systems, which feature
dynamical phase transitions linked to spectral singularities such as exceptional
points (EPs) [98, 231]. Here, controlled gain and loss lead to unique eigenmode
symmetries and tuning of complex eigenfrequencies ε. Bosonic systems form the
natural realm for these phenomena, with lasing and self-oscillation ubiquitous in
photonics and mechanics. In particular, bosonic squeezing is described by Hamil-
tonians that do not conserve excitation number, and engenders distinct phases
showing stable or unboundedly growing dynamics [162, 163].

Very recently, the combination of topology and non-Hermiticity attracted strong
interest [106, 217]. Tailoring gain and loss in topological insulators showed lasing
into protected states [220, 221, 226] and topological phase transitions [222]. In
principle, states with symmetries, dynamics, and spectra that are altogether differ-
ent from Hermitian chiral systems are expected [218, 219]. Indeed, various non-
Hermitian topological phases were predicted, with associated chirally-amplified
and unstable edge modes [223–225], quadrature-dependent chiral transport [232,
233] and anomalous bulk-boundary correspondence with extreme sensitivity to
boundary conditions [106, 227–230]. However, the rich combination of squeezing
interactions and geometrical phases remained experimentally unexplored so far.

Here we demonstrate Aharonov-Bohm (AB) interference and chirality of
nanomechanical states in multi-resonator networks where both T -symmetry-
breaking geometrical phases and non-Hermiticity are induced through radiation
pressure. As exploited in the preceding chapters, suitable laser drives that stimulate
frequency-converting transitions give rise to synthetic magnetism for phonons
[63, 64]. At the same time, optomechanical [118] or electromechanical control can
also enable parametric amplification [157–159]. In this chapter we combine both,
using squeezing interactions in addition to particle-conserving interactions to
create non-Hermitian dynamics without dissipation [163, 234] and uncover new
geometrical phases. Using light to sensitively actuate and detect nanomechanical
motion, we reveal the unique effects of this merger on chiral transport, dynamical
phases, and squeezing — and actively control them in space and time.

5.2. Experimental platform
We realize combined non-Hermitian dynamics and phononic gauge fields using
the experimental platform introduced in chapter 2. For clarity, we recapitulate the
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essential ingredients here.

The sliced photonic-crystal nanobeam [64, 145] shown in Figure 2.1 supports
multiple non-degenerate MHz-frequency flexural mechanical modes coupled to
the optical field of a nanocavity. Each mode j, identified as an individual resonator,

changes the cavity frequency by g(j)
0 xj through displacement xj (normalized to the

zero-point amplitude xzpf) and experiences a force proportional to g(j)
0 nc, with g(j)

0

the vacuum optomechanical coupling rate and nc the intracavity photon number.
Mechanical motion is read out from the intensity modulations of a detuned probe
laser reflected off the cavity. The detected thermomechanical noise spectrum of the
device is shown in Figure 2.3, and reveals several distinct mechanical resonances.

While the (uncoupled) mechanical resonators have well-separated eigenfre-
quencies Ωj , interactions are established by temporal modulation of the inten-
sity of a control laser detuned from cavity resonance. For optimal laser detun-
ing ∆ = −κ/(2

√
3), with cavity decay rate κ ≈ 320 GHz, mechanical displace-

ment modulates the intracavity intensity instantaneously at phononic timescales
(κ� Ωj). Mixing of a control laser intensity modulation at the difference frequency
Ωk − Ωj of resonators j and k with the radiation pressure force sideband of res-
onator j creates a sideband at Ωk. The resulting ‘cross-mode optical spring effect’
[64] induces particle-conserving beamsplitter coupling between the resonators
at rate Jjk = cmgjgk∆/(∆2 + κ2/4), scaling with modulation depth cm and op-

tomechanical coupling gj = g
(j)
0

√
n̄c enhanced by the average cavity population

n̄c(section 2.6).

We describe the resonators by their annihilation operators aj in frames rotating
at Ωj . The phonon-preserving Hamiltonian that describes the nanomechanical
beamsplitter interactions induced by simultaneously applying appropriate modula-
tion tones then reads

Hbs =
∑
j 6=k

Jjke
−iϕjka†jak, ϕkj = −ϕjk (5.1)

(5.2)

where the phase offset ϕjk of each modulation tone is imprinted nonreciprocally
on phonons transferred between the resonators j and k [64]. Indeed, as discussed
in the previous chapters, ϕjk represents the Peierls phase imprinted by a synthetic
magnetic vector potential.

5.3. Non-Hermitian Aharonov-Bohm effect
Using these light-induced nonreciprocal beamsplitter interactions, we demon-
strated a three-mode chiral phononic circulator [122] in chapter 3, dubbed the
beamsplitter trimer (BST). Still, vastly richer phenomenology is uncovered by intro-
ducing squeezing interactions in the nodes and links of the network. We implement
single-mode (j = k) or two-mode (j 6= k) mechanical squeezing by optical mod-
ulation at the sum frequencies Ωj + Ωk. As discussed in section 2.6, the resulting
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Figure 5.1: Aharonov-Bohm interference along non-Hermitian squeezing loops (a) The squeezing
dimer encompasses two resonators driven at 2Ωj and Ω2 − Ω1. These introduce single-mode nanome-
chanical squeezing (blue self-loops) and beamsplitter coupling (red). We employ the modes labelled (3)
and (4) in Fig. 2.3 as resonator 1 and 2, respectively, and tune their linewidths γ1/(2π) ≈ γ2/(2π) ≈
γ/(2π) = 3.7 kHz to coincide through opto-thermal backaction (section 2.8.4). (b) Histograms of
the steady-state phase space distribution of resonator 1 for varying beamsplitter Peierls phase ϕ12,
showing its effect on thermomechanical squeezing. Dashed ellipses depict the standard deviation of the
principal components of the quadrature covariance matrix. Here θ1 = θ2 = π/2. (c) Graph associated
to the Hamiltonian matrix, unwrapping self-loops in (a) over particles (annihilated by aj ) and holes

(annihilated by a†j ). The clockwise loop is threaded by synthetic flux Φ, the counter-clockwise loop by
−Φ. (d) Coupling diagram for the resonator quadratures Xj and Yj , where Φ controls the coupling
between squeezed (green) and anti-squeezed (orange) quadratures of the two resonators.

effective Hamiltonian reads

Hsq =
∑
j,k

ηjk
2

(eiθjkajak + e−iθjka†ja
†
k), (5.3)

with interaction strength ηjk = cmgjgk∆/(∆2 + κ2/4) and modulation phase θjk
now imprinted on the creation or annihilation of phonon pairs. The squeezing
angles θjk form a powerful control resource, complementing the Peierls phases
ϕjk exploited in the previous chapters. Indeed, spatially patterned squeezing yields
anomalous pairing terms, enabling topological bosonic states unparalleled by their
fermionic (e.g. topological superconductor) counterparts and is essential for pro-
posed topological amplifiers [225].

We first consider a ‘squeezing dimer’ (SD, Figure 5.1a) consisting of two
resonators, each single-mode squeezed through 2Ω1,2 modulation, and coupled
through driving at Ω2 − Ω1. Its Hamiltonian reads

HSD =
η1

2
eiθ1a2

1 +
η2

2
eiθ2a2

2 + Jeiϕ12a†2a1 + H.c.. (5.4)

Remarkably, we find that the level of squeezing of thermal fluctuations is not only
determined by the interactions’ magnitudes η1,2, J , but also by their phases θ1,2,
ϕ12. Figure 5.1b shows single-mode squeezing is maximal when ϕ12 = π/2 and
disappears when ϕ12 ∈ {0, π} if θ1 = θ2 = π/2 and η1 = η2 = η.
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Figure 5.2: Network graph representation of general quadratic Hamiltonians. Schematic of an arbitrary

N-mode Hamiltonian matrixH , acting on a Nambu-like vectorα = (a1, · · · , aN , a†1, · · · , a
†
N ) (sec-

tion 2.7.1). Particle annihilation (hole creation) operators, aj , are represented by blue nodes, whereas
hole annihilation (particle creation) operators are represented by orange nodes.H includes excitation-

conserving interactions (matrixA), which link particle operators (e.g. termsAjka†jak) and hole oper-

ators (e.g. termsA∗kjaka
†
j ). Squeezing interactions (with complex amplitude matrixB) contain pairs

Bjka†ja
†
k which can be visualized to either annihilate two particles j, k or to annihilate a particle in

j and create a hole in k, hence the connection between particle and hole networks (green). Mutatis
mutandis, termsB∗jkajak can be similarly visualized.

We now show that this observation is associated with a non-Hermitian version
of AB interference. Even though the coupled-mode picture Figure 5.1a shows no
plaquette, we can recognise a loop along which excitations experience a geometric
phase when combining graph representation with the Bogoliubov-de Gennes (BdG)
formalism [162] introduced in section 2.7. In this formalism, aj and a†k are treated as
separate degrees of freedom – ‘particles’ and ‘holes’ – and squeezing (Equation 5.3)
as a conversion between particles and holes. An equivalent viewpoint, illustrated in
Figure 2.5, is that squeezing couples positive- and negative-frequency components
of the mechanical displacement.

As illustrated in Figure 5.2, we represent the mode operators aj , a†k as the nodes
of a graph, separated into two layers Ga and Ga† for the particle and hole anni-
hilation operators, respectively. The Hamiltonian matrix (Eq. (2.67)) of a general
quadratic bosonic system is then visualized by using the hopping matrixA (A∗)
as an adjacency matrix within the layer Ga (Ga† ) and the squeezing matrix B, B∗
as an adjacency matrix between the layers. Importantly, this representation avoids
self-loops to describe on-site parametric amplification [235].

Applied to the squeezing dimer, we find that the graph representing its Hamil-
tonian matrix in particle-hole space (Figure 5.1c) reveals a conjugate pair of su-
perimposed loops, threaded by gauge-invariant fluxes Φ = 2ϕ12 − θ1 + θ2 and
−Φ. As these fluxes govern interference in the loop, they control the connec-
tion between the resonators’ quadratures (defined such that Xi = (ai + a†i )/

√
2

(Yi = i(a†i − ai)/
√

2) are squeezed (anti-squeezed) for J = 0): While Φ = π con-
nects the squeezed quadratures, maximizing squeezing, Φ = 0 connects squeezed
quadratureX1 to anti-squeezed quadrature Y2 and vice versa, cancelling the overall
squeezing (Figure 5.1d).
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Figure 5.3: Flux-controlled linewidth modulation and squeezing. (a) Thermomechanical spectra for
the squeezing dimer around Ω1. (b) Sweeping flux continuously tunes the fitted apparent resonance
linewidths γI,II (blue and red circles), compared to the theoretical loss rate of the lowest-loss eigen-
frequency of HSD (solid black). (c) Flux-dependent level of squeezing, measured as the ratio of the
variances ∆R2

sq. and ∆R2
a. of the quadratures squeezed and anti-squeezed along the principal axes

of the covariance matrix, respectively, in experiment (green) and theory (dashed, section 5.7.5). Here,
J/(2π) = 5.37 kHz, η1/(2π) = η2/(2π) = 1.34 kHz, and loss rates γ1/(2π) ≈ γ2/(2π) = 3.7 kHz.
ESD, energy spectral density. Error bars in b (c) are dominated by fitting (statistical) uncertainties, with a
small contribution from control parameter fluctuations (section 5.7.1).

5.3.1. Quadrature couplings
To understand how the flux-dependent coupling between gainy and lossy quadra-
tures comes about, we consider the dynamics of the squeezing dimer. Follow-
ing section 2.7.1, the closed system evolution of the Nambu-like mode vector
α = (a1, a2, a

†
1, a
†
2)T is given by iα̇ = HSDα, and governed by the BdG dynamical

matrix HSD. Even without dissipation (γi = 0), squeezing makes HSD necessar-
ily non-Hermitian, preserving only Σz-pseudo-Hermiticity (Σz = diag(1,−1),

H†SD = ΣzHSDΣz) to satisfy bosonic commutation relations [162]. The graph repre-
sentation discussed above carries over to the BdG dynamical matrix, after replacing
A∗ 7→ −A∗ and B∗ 7→ −B∗1.

Inspired by the structure in Figure 5.1c, we reorder the mode vector asαL =
(a1, a2, a

†
2, a
†
1) to follow the loop. The corresponding BdG dynamical matrixHLSD

can be decomposed asHLSD = H�
SD +H	

SD using the clockwise and counterclockwise
contributions

H�
SD =


0 J 0 0
0 0 −iη 0
0 0 0 −J
−iη 0 0 0

 and H	
SD =

(
ΣzH�

SDΣz
)†
. (5.5)

We continue to adopt the gauge θ1 = θ2 = π/2, such that J = Je−iΦ/2.

Next, we introduce the quadrature vector2 qSD = (X1, Y2, X2, Y1) = QαL
(section 2.7.3) and the corresponding unitary transformationQ. In this basis, the

1The geometric phases recognized in the BdG graph are then trivially offset by a multiple of π relative to
the Hamiltonian graph.

2Note the non-standard ordering of qSD.
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dynamical matrixHXYSD = QH�
SDQ† +QH	

SDQ† is given by

HXYSD =


−iη iJ⊥ −iJ‖ 0
−iJ⊥ iη 0 iJ‖
iJ‖ 0 −iη iJ⊥
0 −iJ‖ −iJ⊥ iη

 , (5.6)

where the flux-dependent couplings J‖ = J sin(Φ/2) (dashed lines in Figure 5.1d)
and J⊥ = J cos(Φ/2) (solid lines in Figure 5.1d) between gainy and lossy quadra-
tures express the interference between clockwise and counterclockwise processes
with nontrivial interaction phases.

5.4. Flux-controlledPT symmetry
Interestingly, like the synthetic flux in the beamsplitter trimer, the geometric phase
Φ impacts the normal mode frequencies of the squeezing dimer. These are now
generally complex — being given by the eigenvalues of the non-Hermitian BdG
dynamical matrixHSD. The non-Hermitian character ofHSD thus carries over to
the Aharonov-Bohm-like interference in the BdG loop, where now both frequency
and linewidth evolve with flux. In the strongly coupled, dynamically stable regime
(J > η, 2η < γj , Figure 5.3a,b), Φ strongly tunes linewidth and thermal amplitude
of the hybridised eigenmodes, in unison with squeezing (Figure 5.3c). The squeezed
and anti-squeezed partners recognised for Φ = π in Figure 5.1d correspond to
broad and narrow resonances, respectively [236], with the latter dominating the
spectrum (section 5.7.2).

The complex eigenvalues define surfaces in J/η − Φ space (Figure 5.4a) with
varying degeneracy, indicating distinct dynamical phases. Their physical properties
are appreciated by studying the dynamical matrix in the quadrature basisHXYSD (Eq.
5.6). For Φ = 0, the matrixHXYSD = diag(HX1Y2

SD ,HX2Y1
SD ) is block-diagonal, with

the blocks

HX1Y2 = i

(
−η J
−J η

)
= HX2Y1 (5.7)

governing the dynamics of two degenerate, independent ‘quadrature dimers’X1Y2

andX2Y1. Each of the blocks in (5.7) isPXjYjT -symmetric, where the parity oper-
ationPXjYk exchangesXj ↔ Yk and the time reversal operation T is equivalent to
complex conjugation i 7→ −i.

We thus demonstratePT -symmetric physics by means of squeezing dynamics,
instead of coupling to dissipative baths [163, 234]. The squeezing dimer features
a pair of complex eigensurfaces, two-fold degenerate in real and imaginary parts.
The only effect of non-zero but equal dissipation is a uniform displacement of the
dynamical matrixHXYSD → HXYSD −iγ1/2 (section 5.7.3), manifestingPT symmetry
in the basis a′i = aie

γt/2, i.e. ‘passive’PT symmetry in the open system subject to
additional local dissipation [98].

The thermomechanical spectra in Figure 5.4b evidence the distinct dynamic
phases. Along Φ = 0, we recognise behaviour of the conventionalPT -symmetric
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Figure 5.4: Flux-control of non-Hermitian dynamical phases. (a) Complex eigenfrequency surfaces
of the squeezing dimer in J − Φ space for γi = 0, tuned by the non-Hermitian AB effect acting on its
beamsplitter and squeezing links. For Φ ∈ {0, 2π} and η = J ,PT symmetry breaks spontaneously
and the eigenspectrum coalesces into two second-order EPs. (b) Fingerprints of complex degeneracies
in the thermomechanical spectra for resonator 1 at η/(2π) = 1.34 kHz and varying J . Nonzero
flux breaksPXiYjT symmetry explicitly, precluding EPs. (c) Flux-tuned spectra for resonator 1 when

J/(2π) ≈ η/(2π) = 1.34 kHz, showing mode coalescence at the EP at Φ ∈ {0, 2π}. For b and c, theory
eigenvalues Re(ε) are shown as dashed lines. In this experiment, resonances 3 and 4 have been used,
employing dynamical backaction to equilibrate damping rates to γi/(2π) = 3.7 kHz (section 2.8.4). Fits
of frequencies and linewidths are shown in Figure 5.5.

dimer [98]: Eigenmodes (hosted by quadrature dimers) respectPT symmetry for
J > η, with equal linewidths and splitting increasing with J . For J < η, PT
symmetry is spontaneously broken, with degenerate frequencies independent of
J , while linewidths split (Figure 5.5).HSD becomes defective at a degenerate pair
of second-order exceptional points (one per quadrature dimer), when J = η.
Accordingly, for Φ = 0, the complex eigenfrequencies for each block in (5.7) are
given by ε = ±

√
J2 − η2.

Finite fluxes break thePXjYkT symmetry ofHXYSD explicitly, eliminating excep-
tional points for any J or η (Figure 5.4b, bottom). The effect of flux is striking for
J ≈ η (Figure 5.4c), where we find strong tuning of both frequency and linewidth,
with eigenmodes coalescing at the degenerate exceptional points Φ ∈ {0, 2π}.

Finally, we return to the role of squeezing. As shown in Figure 5.6a for Φ = 0, the
squeezing of the intra-mode quadraturesX1Y1 andX2Y2 is gradually cancelled as
J is increased. However, advised by the formation of quadrature dimers for that flux,
we look for, and observe, effective two-mode squeezing between the inter-mode
quadraturesX1Y2 andX2Y1 instead (Figure 5.6b). The strength of the effective two-
mode squeezing, expressed by the measured covariances σ(Xj , Yk) = 〈XjYk〉 in
Figure 5.6c, attains an optimum for beamsplitter strength J2

opt = (γ2−4η2)/4 in the
case of equal dissipation rates γj = γ and bath occupations. This optimum reflects
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Figure 5.5: Frequency and linewidth modulation in the squeezing dimer. (a) Experimental resonance
frequencies (top) and linewidths (bottom) obtained by fitting a superposition of Lorentzian lineshapes
to the thermomechanical spectra in Figure 5.4b,c. Grey curves indicate theoretical values of Re (ε)
(top) and Im (ε) (bottom). Two peaks were fitted to the spectra for Φ = 0 (left), as for that flux both
eigenvalues are expected to be doubly degenerate for all J . The observed branching of frequencies
and linewidths is characteristic of an exceptional point. Four peaks were instead fitted for Φ = π
(middle), where the exceptional point behaviour completely vanishes, and spectra are fitted well with a
combination of broad and narrow peaks at two frequencies. When varying flux in the rightmost panel,
the grey shaded areas depict the regions near Φ = 0, π where a fit of two peaks provided better results
than a fit of four. Note that near the exceptional point, the non-Lorentzian nature of the spectrum
causes the fitted values of the Lorentzian linewidths to deviate from the theoretical Im(ε). This origin
of the deviation is confirmed by applying the same fit procedure to theoretically predicted spectra
(inset, bottom left), which shows the same deviation. Error estimation is described in section 5.7.1. (b)
Thermomechanical spectra for several values of J/η, for Φ = 0 (blue) and Φ = π (red). Solid lines show
Lorentzian fits. (c) Similar, for different values of Φ at J = η.

a trade-off, as J is increased, between the rotation of the effective squeezing axes
in the four-dimensionalX1,2Y1,2-space from single-mode squeezing to two-mode
squeezing, and an overall reduction in squeezing (section 5.7.5).

5.5. Higher-order EPs and chiral amplification
The squeezing dimer’s behaviour is intrinsically quadrature-dependent, as the paths
in quasiparticle space link conjugated elements aj and a†j directly or indirectly. The

response to any real excitation (a superposition of aj ’s and a†j ’s) then depends on
the particle-hole phase difference, i.e. the excited quadrature. Another example is
phase-dependent amplification in the bosonic Kitaev chain (without synthetic flux)
[162, 232], which we will explore in the subsequent chapters. One can, however, con-
ceive loops without such links, expecting quadrature-independent nonreciprocity
and chirality. The squeezing-free (B = 0), Hermitian BST represents a trivial exam-
ple, comprising two disjoint loops connecting all particles and holes, respectively
(Figure 5.7a).

5.5.1. Disjoint particle-hole loops
As we will now see, a quasiparticle network with disjoint loops results in a
quadrature-independent response. In general, owing to the charge conjugation
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Figure 5.6: Tunable single-mode and effective two-mode squeezing in the squeezing dimer. (a) Intra-
resonator squeezing as a function of the beamsplitter coupling J for η1/(2π) = η2/(2π) = 0.5 kHz,
measured as the ratio of the variances ∆R2

sq. and ∆R2
a. of the quadratures squeezed and anti-squeezed

along the principal axes of the covariance matrix, respectively. For this experiment, resonances labelled
(1) and (2) in Fig. 2.3 were used. For Φ = π, the squeezing persists as J is increased. In contrast, for
Φ = 0, when squeezed–anti-squeezed quadrature dimers are formed, cancellation of single-mode
squeezing is observed as the variance ratios tend to 1 for increasing J . Theory squeezing ratios (dashed
line) are calculated using the average γ/(2π) = 2.2 kHz of the experimental dissipation rates γ1,2 =
{2.6, 1.9} kHz and equal bath occupationsnth

j for simplicity. Optothermal backaction tunes the effective

nth
1 ≈ nth

2 to within a few per cent. (b) Two-mode squeezing observed in the phase-space distribution
of cross-resonator quadratures X1 and Y2 for Φ = 0, J = 3.5 kHz. The dashed ellipse depicts the
standard deviation of the principal components of the quadrature covariance matrix. (c) Covariance of
the coupled quadrature pairsX1Y2 and Y1X2 as a function of J , showing no correlations for Φ = π.
For Φ = 0, positive correlations σ(X1, Y2), σ(Y1, X2) > 0 are found when J is increased, as predicted
in theory (dashed line). Error bars in a and c reflect statistical uncertainty and control parameter stability
(section 5.7.1).

symmetry C discussed in section 2.7.1, each particle-hole loop L involving the

nodes αL = (a
(†)
j , . . . , a

(†)
k )T comes with a partner L∗ involving the conjugated

nodes α†L. In the case that all M loop pairs are disjoint, the operation Π that

permutes the mode vectorα by loop, i.e.α 7→ Πα = (αL1
,α†L1

, . . . ,αLM ,α
†
LM

),
block-diagonalizesH:

H 7→ H′ = ΠHΠ† = diag(L1,−L∗1, . . . ,LM ,−L∗M ). (5.8)

The symmetries of the BdG matrix relate the dynamical matrices Lm,−L∗m of part-
nered loops. Moreover, as the loops are disjoint, Lm,−L∗m will never mix particles
and their corresponding hole excitations as they propagate through the graph.

Dropping the index m, the decoupled evolution of a single loop pair is thus
given by iα̇L = LαL and iα̇†L = −L∗α†L. Furthermore, the evolution of the energy

vector n(t) = (a†jaj , . . . , a
†
kak) is given by

n(t) = eiL∗tn(0)e−iLt. (5.9)

Importantly, when a single resonator j is initially excited, the evolution (5.9) is
insensitive to the relative phase between aj(0) and a†j(0) that indicates the excited
quadrature in j.
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Figure 5.7: Chirality in a non-Hermitian network. (a) Sketch of the networks in particle-hole space
corresponding to the beamsplitter trimer realized in chapter 3 (left) and the singly conjugated trimer
(right), manifesting their topological resemblance. (b) Complex eigensurfaces for the singly conjugated
trimer (γi = γ) depicted from Φ = 0 to Φ = π for clarity. Imaginary parts are referenced to γ. A
black dotted line highlights an exceptional contour separating stable and unstable dynamical phases.
(c) Thermomechanical spectra of the three resonators (label denoted in the plot) for η/(2π) = 1 kHz,
J = 2

√
2η. Measurement-based feedback (section 2.8.6) is employed to equalise mechanical loss rates

γj/(2π) = γ/(2π) = 4 kHz. The sideband of the ‘conjugated’ resonator 3 is reflected in frequency
compared to the other two. Localisation of eigenstates is observed, including 1-2 asymmetry indicated
by arrows. Theoretical eigenfrequencies are shown as dashed lines.

5.5.2. The singly conjugated trimer
We find a non-Hermitian system encompassing disjoint loops by ‘conjugating’ one
resonator in the beamsplitter trimer, i.e. swapping a3 ↔ a†3. We implement this
‘singly conjugated trimer’ (SCT) by modulating at Ω2 − Ω1,Ω1 + Ω3 and Ω2 + Ω3.
The latter induce two-mode squeezing, resulting in the Hamiltonian

HSCT = Jeiϕ12a†2a1 + η23e
iθ23a3a2 + η13e

−iθ13a†1a
†
3 + H.c. (5.10)

and loops threaded by fluxes Φ = ϕ12 + θ23 − θ13 and −Φ (Figure 5.7a). The
dynamics of each loop vectorαL = (a1, a2, a

†
3),α†L are decoupled and governed

by the non-Hermitian blocks

L =

 0 Je−iΦ η
JeiΦ 0 η
−η −η 0

 and − L∗, (5.11)

respectively. Here, we adopt the gauge where θ23 = θ13 = 0 such that Φ = ϕ12.
The interplay of Aharonov-Bohm interference and non-Hermiticity in the singly

conjugated trimer induces dynamical stability transitions, unmatched by BST. Fig-
ure 5.7a shows these as surfaces in J/η − Φ space for η13 = η32 = η and equal



5

94 5. Non-Hermitian chiral phononics

Figure 5.8: Flux-controlled higher-order exceptional points. Thermomechanical spectra for resonators
1, 2 and 3 for η/(2π) = 0.75 kHz for a trivial flux Φ = 0 (top), and in the maximally chiral case Φ = π/2
(bottom). Theoretical eigenfrequencies are shown as dashed lines. The flux-dependent coupling topology
for the effective resonators ag and al morphs a second-order exceptional point into a third-order one
(see text). Insets show the effectivePglT -symmetric dimer/trimer structure for both flux values.

dissipation γj = 0. We identify a stable phase with real eigenfrequencies and an
unstable phase with three distinct imaginary parts.

Interestingly, for J = 2
√

2η the (real) eigenvalues of a single loop ofHSCT coin-
cide with those of a homogeneous BST (Jjk = J) for all Φ. The thermal spectra in
Figure 5.7c show, however, that the response around Ω3 associated with the ‘conju-
gated’ resonator (3) appears frequency-reflected, since particles (holes) evolve with
positive (negative) frequencies in the non-rotating frame. Moreover, we observe
asymmetries between resonators 1 and 2 in the middle band’s thermal amplitude at
Φ ∈ {π/2, 3π/2}. This asymmetric, flux-controlled localisation of fluctuations —
unattainable in the BST if J31 = J23 — arises from the combination of chirality and
squeezing and persists even for vacuum fluctuations (section 5.7.6). These asym-
metries, akin to chiral, incoherently pumped dynamics inPT -symmetric trimers
[237], suggest the singly conjugated trimer functions like a phononic nonreciprocal
amplifier [31, 32, 34, 225].

We see the singly conjugated trimer features an exceptional contour in the
J/η − Φ parameter space (Figure 5.7b). As for the squeezing dimer, this relates
to the spontaneous breaking of a parity-time (PglT ) symmetry. The appropriate
parity operation Pgl now exchanges the effective quasiparticle operators ag,l =

(a+ ∓ ia†3)/
√

2, where a+ = (a1 + a2)/
√

2 is the symmetric superposition of
the beamsplitter-coupled resonators. Notably, ag and al are the ‘gainy’ and ‘lossy’
eigenmodes for the SCT with J = 0, when they have complex eigenfrequencies
εg,l = ±

√
2iη.

Complemented by the anti-symmetric mode a− = (a1 − a2)/
√

2, the modes
{al, ag, a−} form a complete basis. The unitary transformation Ugl to this effective
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basis (i.e.αgl = (al, ag, a−) = UglαL) reads

Ugl =
1√
2


i√
2

−i√
2
−1

i√
2

−i√
2

1

1 1 0

 . (5.12)

In this basis, the loop matrix Lgl = UglLU†gl = Ξ + Θ splits into a gain/loss
contribution

Ξ = diag
(
−i
√

2η, i
√

2η, 0
)

= Ugl (L|J=0)U†gl (5.13)

that reflects the complex eigenvalues of L when J = 0, and the interac-
tion/frequency shift contribution

Θ =


1
2J cos(Φ) − 1

2J cos(Φ) J sin(Φ)√
2

− 1
2J cos(Φ) 1

2J cos(Φ) J sin(Φ)√
2

−J sin(Φ)√
2

J sin(Φ)√
2

−J cos(Φ)

 . (5.14)

In contrast to the squeezing dimer, the dynamical matrix Lgl respects PglT -
symmetry for arbitrary flux, where the time-reversal operator T applies conjuga-
tion i 7→ −i and reverses the flux Φ 7→ −Φ. The coupling topology, however, is
flux-dependent. We find that when Φ ∈ {0, π}, a beamsplitter interaction J > 0
couples ag ↔ al, constructing a PglT -symmetric dimer with a second-order EP
at J = 2

√
2η (Figure 5.8, top). On the other hand, for Φ ∈ {π/2, 3π/2}, the third,

gain-neutral mode a− — uncoupled when Φ ∈ {0, π}— couples to al,g in a loss-
neutral-gain chain configuration. Interestingly, this trimer features spontaneous
PglT symmetry breaking at a third-order EP at J =

√
2η (Figure 5.8, bottom). In-

deed, the presence of a higher-order EP sitting at the nexus of two second-order
exceptional contours [238] is mandated by eigensurface topology (Figure 5.7b).

Nevertheless, a non-trivial flux still breaks the mirror symmetry P12 that ex-
changes a1 ↔ a2. In the dynamically stable regime, we predict chiral dynamics for
Φ = ±π/2 (Figure 5.9a) analogous to those of the beamsplitter trimer (Figure 3.2).
However, due to the particle-non-conserving nature of squeezing, this periodic
pseudo-Hermitian evolution (for γj = 0) now features subsequent amplification
steps – where populations grow above the initial amplitude – and attenuation steps.
The flux-induced chirality is reflected in the order in which these steps take place.

The flux-induced breaking of P12 also impacts the PglT -symmetry-broken
phase. In a three-site, gainy-neutral-lossy chain,PT -symmetry-broken states de-
localise non-uniformly over central and boundary sites (here the pairs ag − a−
and a− − al) [103]. Crossing the third-order EP at Φ = ±π/2 thus biases gain
towards the bare oscillator a1 (Φ = π/2) or a2 (Φ = −π/2). This flux-tunable chiral
gain becomes striking in the transient, unstable dynamics of the singly conjugated
trimer, as shown in Figure 5.9b for gain exceeding dissipation. There, an initial
excitation in resonator 1 (2) is amplified coherently – above initial amplitudes –
towards 2 (1) for flux Φ = π/2 (Φ = −π/2), and attenuated quickly in the opposite
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Jt

Figure 5.9: Chiral non-Hermitian evolution. (a) Theoretical dissipation-less (γj = 0) evolution of a
coherent excitation initialized in resonator 1 of the SCT (amplitude a1(0)) for fluxes Φ = ±π/2. Here,
η/J = 0.6 such that the system is dynamically stable. The flux then determines the order in which
subsequent amplification and attenuation steps take place as the excitation is transferred back and
forth between the beamsplitter-coupled resonators 1 and 2. (b) Measured ratio between instantaneous
and initial coherent amplitudes (normalized to phonon number), in the unstable and nonlinear regime
η/(2π) = J/(2π) = 5 kHz, without feedback (mechanical loss rates γj/(2π) = {2.5, 1.6, 4.1} kHz).
Resonator 1 (left) or 2 (right) is driven for t < 0, and couplings are established when t > 0. This induces
chirally amplified transport to the other resonator and self-oscillation bounded by nonlinear dynamics.

direction. Conversely, for Φ = 0, gain distributes evenly over resonators 1 and 2
showing reciprocal dynamics. Linear analysis breaks down as the system crosses the
instability threshold (Im(ε) = 0), where we see optomechanically-induced Duffing
nonlinearities cause amplitude saturation and self-oscillations, even at only a few
times the thermal amplitude. Indeed, this points the way to investigating strongly
nonlinear systems with broken Hermiticity and time-reversal symmetry.

5.6. Conclusion and outlook
In conclusion, we observed chiral, non-Hermitian phonon dynamics in nano-
optomechanical networks with fully controlled beamsplitter and squeezing interac-
tions. Through a powerful diagrammatic framework, we uncovered new geometri-
cal phases acting on excitations in particle-hole space that controlPT symmetry
through a non-Hermitian Aharonov-Bohm effect. The resulting phenomena of
tunable squeezing, (higher-order) exceptional points and nonreciprocal amplifi-
cation point to applications in nanomechanical sensing [239], signal processing
[225], and Ising machines [240]. These mechanisms could be equally powerful in
other bosonic domains, from photonics to cold atoms. Although the effects were
probed with thermal and coherent excitations, they persist down to the quantum
domain for suitable system parameters and controls, forming essential ingredients
to explore new linear and nonlinear non-Hermitian topological phases.

5.7. Appendices
The following sections contain further details supporting this chapter.
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5.7.1. Error estimation
The error on fitted values like frequencies and linewidths originates from multiple
sources. Error bars in plots indicate±2σ, i.e. a 95% confidence interval for a normal
distribution.

The stability of the interaction strength over typical measurement timescales
(∼ 100 s) is controlled by the stability of the drive laser power (relative standard
deviation σPdrive/Pdrive ≈ 2 · 10−3) entering Equation 2.64 through δΩi and the
stability of the modulation tone amplitude (relative standard deviation σcm/cm ≈
10−3).

In addition, jitter of the spring shift δΩi due to variations in drive laser power and
incoupling efficiency controls the detuning of the control signals. For resonators

with comparable g(j)
0 (i.e. resonators 1 & 2 and resonators 3 & 4), the effect of

detuning jitter on beamsplitter interactions – which depend only on their frequency
difference – is reduced. To estimate the effect of detuning jitter on the effective
linewidth change induced by squeezing interactions, a Monte Carlo method is
employed.

Finally, the fit uncertainty is estimated using a numerical approximation of the
Jacobian matrix.

The standard error of the experimental (co)variances σ(A,B) of quadra-
tures A and B is estimated using the statistical relationship Std(σ(A,B)2) ≈√

1
n−1 (σ(A,B)4 + σ(A,A)2σ(B,B)2) where Std denotes the standard deviation.

Here, n is the number of thermally independent measurement points, given by
n = Tγj/2, where T = 0.3 s is the duration of the measurement record and γj is
the dissipation rate of the resonator involved.

5.7.2. Subdominant and non-Lorentzian spectral features in the
squeezing dimer

In the thermomechanical noise spectra of the squeezing dimer shown in Figure 5.4,
we expect narrow and broad, frequency-degenerate, resonances. We show this in
the ideal SD (γj = γ), whose spectrum is obtained in closed form using the relation
(4.26) obtained from the quantum regression theorem (section 4.2.2).

The noise spectrum of resonator j ∈ (1, 2) is given by the diagonal element
Sjj(ω). An explicit calculation for the SD shows that even in the simplified limit of
equal resonator bath occupations nth

j = nth, the spectrum consists of 4 superim-
posed Lorentzian responses located at the real parts of the eigenfrequencies ofHSD

for Φ = π, where two pairs of resonances split by 2J and

Sjj(ω) ∝ γ
∑
±

(
nth + 1

(γ + 2η)2 + 4(ω ± J)2
+

nth

(γ − 2η)2 + 4(ω ± J)2

)
. (5.15)

From Equation 5.15, it is apparent that the spectral weight in the rotating frame at
±J in the stable regime (γ > 2η) is concentrated in a dominant, narrow resonance
with linewidth γ − 2η, on top of an additional, heavily damped contribution with
linewidth γ + 2η.
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In contrast, the branch-cut topology mandated by the EP at Φ = 0 results in a
non-Lorentzian thermal response. If Φ = 0, the spectrum contains non-Lorentzian
contributions

Sjj(ω) ∝ 2γ
[
(2nth + 1)

(
γ2 + 4

(
η2 + J2 + ω2

))
− 4γη

]
d(ω)

,

d(ω) = 8ω2
(
γ2 + 4

(
η2 − J2

))
+
(
γ2 − 4

(
η2 − J2

))2
+ 16ω4.

(5.16)

Equation 5.16 reduces at the EP (J = η) to an expression which shows directly a
double-Lorentzian response [241]:

Sjj(ω) ∝ γ

2

(2nth + 1)
(
2J2 + γ2/4 + ω2

)
− γJ

(γ2/4 + ω2)
2 . (5.17)

This functional form implies deviations in the experimental linewidths in the vicin-
ity of an EP obtained from Lorentzian spectral fitting (Figure 5.3).

5.7.3. PassivePT symmetries
We discuss the role ofPT -symmetry in systems with dissipation. When squeezing
interactions – which inter-convert particles and holes – are absent (B = 0), the
dynamics of ai and a†i are independent, and simply governed by the Hermitian
matricesA and−A∗, respectively (section 2.7.1), in the case of no dissipation. On
top of this, if the matrix Γ = γ1 expresses equal dissipation rates, the dynamics can
be simply mapped to the closed system via a rigid displacement of the imaginary
parts of eigenvalues by γ/2. This displacement is equivalent to a dynamically-
offset basis transformationα′(t) = e

γ
2 tα(t) that relates the solutions of ideal and

dissipative harmonic oscillators [242]. However, if squeezing is present (B 6= 0),
M andH are non-Hermitian even for Γ = 0. The mechanical modes then exhibit
non-Hermitian dynamics in the dynamically-offset basis as well.

The time evolution of the mechanical amplitudes α′(t) can be expressed in
terms of the spectral decomposition ofH. A non-HermitianH can host eigenvectors
with complex eigenfrequencies ε. The different character of eigenfrequencies or
dynamical phases in parameter space links to generalised parity-time (GPT ) sym-
metries ofH and the associated eigenvectors fulfilling or spontaneously breaking
the symmetry [162]. For example, purely oscillatory eigenmodes (real eigenfrequen-
cies) indicate a stable phase (eigenvectors fulfil GPT symmetry), while positive
imaginary eigenfrequencies indicate an unstable phase (eigenvectors breakGPT
symmetry). We note thatGPT symmetry coexists with the other built-in symme-
tries ofH (section 2.7.1) that reflect ai-a

†
i splitting redundancies and must be always

fulfilled by the eigenvectors.
For homogeneous dissipation (γi = γ), the symmetries of the open-system

dynamical matrixM (section 2.7.2) are trivially related to those ofH, sinceM 7→ H
in the dynamically offset basisα′(t). The symmetry classification ofH thus offers
insight into dynamical phases, eigensurface topology and symmetry breaking in the
open system. As an example, PT symmetry inH [95, 243] corresponds to ‘quasi’
or ‘passive’ PT symmetry inM [98, 99, 244]. In our systems, a dynamical phase
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transition (i.e. spontaneous symmetry breaking) is often accompanied by an EP
[103, 245] where eigenvalues and eigenvectors simultaneously coalesce andH is
non-diagonalisable. Alternatively, eigenvalues can split off the real axis without
diagonalisability loss [162].

5.7.4. Hermitian vs. non-Hermitian Aharonov-Bohm effect
Here we provide further mathematical background for the comparison between the
Hermitian and the non-Hermitian Ahoronov-Bohm effect discussed in section 5.3.
We use as an example a single loop with N nodes, which can be particle-like or
include both particles and hole nodes. In a Hermitian ring (B = 0), with cou-
pling amplitudes J and periodic boundary conditions, the Hamiltonian matrix
H (Equation 2.67) is diagonal in the Fourier basis ak =

∑N
j=1 aje

−2πijk/N/
√
N

with discrete wavenumbers k.3 Noting
∑N
j=1 e

2πij(k−k′)/N = Nδk,k′ and choos-
ing a gauge where all Peierls phases are equally distributed, ϕij = Φ/N , the ring
Hamiltonian reads

Hring =J

N∑
j=1

a†jaj+1e
iΦ/N + H.c..

This is transformed to the Fourier basis as

Hring =
J

N

∑
k,k′

a†kak′e
2πij(k−k′)/Ne2πi((k+Φ/(2π))/N) + H.c.

=2J
∑
k

cos ((2πk + Φ)/N) a†kak. (5.18)

Aharonov-Bohm interference is manifest in the second line of Equation 5.18, where
the phases ϕij displace the wavenumber k, after being combined via

∑
k′ .

We seek a generalisation of this idea to loops that involve particles and holes.
In the BdG formalism, a Hermitian loop decomposes into a pair of particle-hole-
related disjoint loops. The BdG matrixH in (2.68) is thus Peierls-phase dependent
– from now on explicitly stated with a curly bracket notation – through the gauge-
dependent Hamiltonian matrix H({ϕij}) = diag(A({ϕij}),A∗({ϕij})). Fourier
decomposition is equivalent to the block diagonal unitary transformation α′ =
UHα with UH = diag(U,U∗), where Ukj = e−2πijk/N/

√
N preserves bosonic

commutators ([UH,Σz] = 0). The BdG matrix transforms as

H(k) = Σzdiag(U†A({ϕij})U,U†A∗({ϕij})U), (5.19)

with a diagonal matrix at the r.h.s., givenA is circulant [246]. Interference including
nontrivial Peierls phases now occurs within each block ofH(k).

For loops involving particles and holes, we define Fourier modes UNH, with
α′ = UNHα and (UNH)kj = e−2πijk/N/

√
N that diagonalise the (Hermitian)

3k ∈ {−[N/2], · · · , [N/2]} forN odd, or k ∈ {−[N/2], · · · , [N/2]− 1} forN even, where [] denotes
the integer part function.
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Hamiltonian matrixH :

H({ϕij}, {θij}) 7→ U†NHH({ϕij}, {θij})UNH. (5.20)

Importantly, UNH no longer respects bosonic commutation relations
([UNH,Σz] 6= 0), and thus does not diagonaliseH. Instead,H 7→ H′ = U†NHHUNH

with
H′({ϕij}, {θij}) = VΛ({ϕij}, {θij}), (5.21)

where Λ({ϕij}, {θij}) = U†NHHUNH is a real diagonal matrix by construction,
which contains the eigenvalues of the analogous Hermitian loop, see Equation 5.18.
This matrix contains the outcome of interference of Fourier waves with nontriv-
ial Peierls phases. But on top of this effect, the Peierls-phase-independent term
V = U†NHΣzUNH is in general a non-Hermitian matrix – being a product of non-
commuting Hermitian matrices – that couples Fourier states with different k. This
non-Hermitian interaction of Fourier modes with nontrivial phases, on top of their
interference, embodies the non-Hermitian AB effect. Note that if all holes were
replaced by particles (Σz → 1), then a trivial coupling matrix follows V → 1, given
the fact that UNH is unitary.

5.7.5. Phase-space distributions in the SD
The BdG formalism in particle-hole-space is equivalent to a description in terms of
quadratures (section 2.7.3). The latter is helpful in interpreting the main features of
flux-tunable quadrature squeezing in the main text. Here we discuss the representa-
tion of the nanomechanical steady states of the squeezing dimer as distributions in
phase space.

We recall the quadrature vector qSD = (X1, Y2, X2, Y1) = QαL defined in
section 5.3. It follows from the quantum regression theorem (section 4.2.2) that the
second momentsO = 〈qSDqTSD〉 satisfy the evolution

Ȯ = i
[
(HXYSD − iΓ/2)O +O(HXYSD − iΓ/2)T

]
+ 2DXY , (5.22)

obtained by transforming (4.11) to the quadrature basis. The thermal steady state
is then easily obtained by setting Ȯ = 0. In addition, the first moments evolve
according to 〈q̇SD〉 = −iHXYSD 〈qSD〉+ 〈(qSD)in〉. The diffusion matrixDXY encodes

the Markovian correlations 〈(qSD)
(i)
in (t), (qSD)

(j)
in (t′)〉 = DXYij δ(t− t′) for the scaled

input noise operators, where

〈X(i)
in (t), X

(j)
in (t′)〉 = 〈Y (i)

in (t), Y
(i)
in (t′)〉 =

(
nth
i +

1

2

)
δ(t− t′),

〈X(i)
in (t), Y

(j)
in (t′)〉 = −〈Y (i)

in (t), X
(i)
in (t′)〉 =

i

2
δ(t− t′). (5.23)

The thermal steady-state then follows a Gaussian Wigner function [247] in the
quadrature amplitudes r = (x1, y2, x2, y1)T , namely

W (r) =
1

(2π)N
√

detσ
exp

(
−1

2
rTσ−1r

)
, (5.24)
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with a symmetric covariance matrix

σij =
1

2
(
1

2
(Oij +Oji)− 〈q(i)

SD 〉〈q
(j)
SD 〉), (5.25)

whose eigenvectors indicate axes along which (anti)squeezing occurs with magni-
tude given by the corresponding eigenvalues. In the absence of coherent driving,

〈q(i)
SD 〉 = 0. The marginal distributions for resonator k

Wk(xk, yk) =

∫ ∏
i 6=k

dxidyiW (x1, y1, · · · , xN , yN ) (5.26)

are Gaussian distributions that show thermomechanical squeezing. These distribu-
tions can be visualised using the standard deviation ellipse defined by its (measured)
covariance matrix, as shown for example shown in Figure 5.1b.

The theory curve in Figure 5.3c is calculated in the limit of equal bath occupa-
tions and dissipations γj = γ, and given by

∆R2
sq.

∆R2
a.

(Φ) =
γ3 − 2η

√
(γ2 + 4J2) (γ2 − 2J2 cos(Φ) + 2J2) + 4γJ2

γ3 + 2η
√

(γ2 + 4J2) (γ2 − 2J2 cos(Φ) + 2J2) + 4γJ2
. (5.27)

The variance ratio (5.27) is maximal (closest to 1) at Φ = 0 and minimal (i.e. largest
difference in variance) at Φ = π. In the limit J � η and Φ = 0, the value for this

ratio reads
∆R2

sq.

∆R2
a.

(0) ≈ 1− 2η
J and can be made arbitrarily close to 1 by increasing the

ratio J/η, while the value at Φ = π is J-independent:
∆R2

sq.

∆R2
a.

(π) = (γ−2η)/(γ+2η).

Effective two-mode squeezing
We discuss the emergence of effective two-mode squeezing in the squeezing dimer
when Φ = 0. Assuming equal dissipations γj = γ and bath occupations nth

j = nth,
the covariance matrix reads

σ(Φ = 0) =
nth + 1

2

γ2 + 4(J2 − η2)

×

 γ(γ−2η)+4J2 0 0 Jη

0 γ(γ−2η)+4J2 Jη 0

0 Jη γ(γ+2η)+4J2 0

Jη 0 0 γ(γ+2η)+4J2

 .

(5.28)

As indicated by the diagonal elements of (5.28) and observed in Figure 5.6a, single-
mode squeezing is cancelled as the ratio J/η is increased. However, the cross-
correlations indicated by the off-diagonal elements in (5.28) still suggest the exis-
tence of a basis of hybrid quadratures where squeezing can be found. This result
can be referenced to the covariance matrix in the standard two-mode squeezing
dimer with HamiltonianHTMS = iηa†1a

†
2 + H.c.. This Hamiltonian produces anti-

squeezing in the variables X1 + X2 and Y1 − Y2 and squeezing in X1 −X2 and
Y1 + Y2, with no (single mode) squeezing onXi or Yi [113].
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To establish a link with the standard two-mode squeezing case, we diago-
nalise σ(Φ = 0) to reveal the rotation of the principal (squeezing) axes of the

covariance matrix. We find that the hybrid quadratures (R
(1)
sq. , R

(2)
sq. , R

(1)
a. , R

(2)
a. )T =

U(X1, X2, Y1, Y2)T corresponding to the eigenvectors of σ(Φ = 0) are related to
the resonator quadratures by the transformation

U =



−

√
1√
ξ2+1

+1

√
2

0 0 ξ
√

2

√
ξ2+
√
ξ2+1+1

0 −

√
1√
ξ2+1

+1

√
2

ξ
√

2

√
ξ2+
√
ξ2+1+1

0

ξ
√

2

√
ξ2+
√
ξ2+1+1

0 0 ξ
√

2

√
ξ2−
√
ξ2+1+1

0 ξ
√

2

√
ξ2+
√
ξ2+1+1

ξ
√

2

√
ξ2−
√
ξ2+1+1

0


,

(5.29)

where we denote ξ = 2J/γ. From the corresponding eigenvalues, we find thatR(i)
sq.

are squeezed whereas R(i)
a. are anti-squeezed. Their variances, equal for the two

squeezed (anti-squeezed) hybrid quadratures, read

∆R2
sq. =

γ(2nth + 1)
√
ξ2 + 1

2γ
√
ξ2 + 1 + 4η

, ∆R2
a. =

γ(2nth + 1)
√
ξ2 + 1

2γ
√
ξ2 + 1− 4η

. (5.30)

In the strong coupling limit ξ � 1, the principal axes defined by U rotate to the
antisymmetric quadratures (X1 − Y2)/

√
2 and (X2 − Y1)/

√
2 (squeezed) and

the symmetric superpositions (X1 + Y2)/
√

2 and (X2 + Y2)/
√

2 (anti-squeezed).
This rotation can be mapped into the standard case of two mode squeezing by
HTMS after considering the quadrature rotation Y2 → X2, X2 → −Y2. Note,
however, that (5.30) indicates that the level of squeezing vanishes in this limit, since
∆R2

sq. ≈ ∆R2
a.. We thus find that an inevitable trade-off between the principal

axes rotating towards two-mode squeezing and a reduction in the level of effective
squeezing as J is increased, as observed in Figure 5.6c.

5.7.6. Flux-asymmetries in thermomechanical spectra of the SCT
Here we demonstrate how the thermomechanical spectrum of the singly conjugated
trimer is asymmetric under flipping the sign of synthetic flux Φ 7→ −Φ, even if
resonators are coupled to equal thermal occupations nth

j or in the limit of zero

temperature. From now on we assume nth
j = nth to simplify our analysis.

Within the stable regime Im(ε) < γ, where the steady state within the linear
theory exists, the spectrum is readily obtained from (4.26), applied to a single block
L (5.11). For arbitrary frequency and flux, the noise spectrumSii(ω,Φ) can be given
in a closed form in terms of lengthy rational, trigonometric expressions.

As the flux-asymmetry is presented in the middle band in Figure 5.7c, it is
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sufficient to consider the response at zero frequency (in the rotating frame):

S11(0,Φ) =
4γ

d(Φ)

(
− 4η2

(
γ2(nth + 2)− 4J2nth

)
+ γ2(nth + 1)

(
γ2 + 4J2

)
+ 16γη2J(2nth + 1) sin(Φ) + 32η4(nth + 1)

)
, (5.31a)

S11(0,Φ) =
4γ

d(Φ)

(
− 4η2

(
γ2(nth + 2)− 4J2nth

)
+ γ2(nth + 1)

(
γ2 + 4J2

)
− 16γη2J(2nth + 1) sin(Φ) + 32η4(nth + 1)

)
, (5.31b)

S33(0,Φ) =
4γ
(
γ2 + 4J2

) (
4J2nth + γ2nth + 8η2(nth + 1)

)
d(Φ)

, (5.31c)

d(Φ) =
(
γ3 − 8γη2

)2
+ 16γ2J4 + 8J2

(
γ2 − 4η2

)2
+ 128η4J2 cos(2Φ).

WhileS33(0,Φ) = S33(0,−Φ) (in fact, for allω), the noise spectra for resonators
1 and 2 display asymmetries in flux. These asymmetries emerge as a combination
of squeezing interactions (η > 0) and chirality (Φ 6= {0, π}), which is maximal at
Φ = ±π/2. Remarkably, the asymmetries persist at zero temperature (nth � 1),
where only contributions from two-mode squeezed vacuum fluctuations exist:

S11(0,Φ)

S11(0,−Φ)
=

1
1
2 −

8γη2J sin(Φ)
γ4−8γ2η2+32η4+4γ2J2

− 1,

S22(0,Φ)

S22(0,−Φ)
=

1
1
2 + 8γη2J sin(Φ)

γ4−8γ2η2+32η4+4γ2J2

− 1,

(5.32)

with maximum asymmetry when the condition J = (
√
γ4 − 8γ2η2 + 32η4)/(2γ)

is matched.
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Quadrature nonreciprocity:

unidirectional bosonic
transmission without breaking

time-reversal symmetry

Nonreciprocity means that the transmission of a signal depends on its direction
of propagation. Despite vastly different platforms and underlying working princi-
ples, the realisations of nonreciprocal transport in linear, time-independent systems
rely on Aharonov-Bohm interference among several pathways and require breaking
time-reversal symmetry. Here we extend the notion of nonreciprocity to unidirec-
tional bosonic transport in systems with a time-reversal symmetric Hamiltonian
by exploiting interference between beamsplitter (excitation preserving) and two-
mode-squeezing (excitation non-preserving) interactions. In contrast to standard
nonreciprocity, this unidirectional transport manifests when the mode quadratures
are resolved with respect to an external reference phase. Hence we dub this phe-
nomenon quadrature nonreciprocity. First, we experimentally demonstrate it in the
minimal system of two coupled nanomechanical modes orchestrated by optome-
chanical interactions. Next, we develop a theoretical framework to characterise the
class of networks exhibiting quadrature nonreciprocity based on features of their
particle-hole graphs. In addition to unidirectionality, these networks can exhibit an
even-odd pairing between collective quadratures, which we confirm experimentally
in a four-mode system, and an exponential end-to-end gain in the case of arrays of
cavities. Our work opens up new avenues for signal routing and quantum-limited
amplification in bosonic systems.

This chapter is based on C. C. Wanjura, J. J. Slim, J. del Pino, M. Brunelli, E. Verhagen & A. Nunnenkamp.
Quadrature nonreciprocity: unidirectional bosonic transmission without breaking time-reversal symmetry
arXiv: 2207.08523 (2022). C.C.W. and J.J.S. contributed equally to this work.
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6.1. Introduction
In a nonreciprocal system, such as an isolator, the transmission varies when inter-
changing input and output, in an ideal case from unity to zero [123, 249–251]. Nonre-
ciprocity is a resource for many applications, such as sensing [239], the construction
of bosonic networks with general routing capabilities [235], and the realisation of
topological phases [38]. Complemented with gain, nonreciprocity amplifies weak
signals while protecting the source against noise, which is beneficial for quantum
information processing applications [252]. Magnetic-free isolators and directional
amplifiers have been proposed based on parametric modulation [46, 49, 251], in-
terfering parametric processes [55, 253], and reservoir engineering [130] and have
been experimentally demonstrated in different platforms, e.g. superconducting
circuits [31, 254, 255] and optomechanical systems [32, 33, 125–128, 131, 256].

In linear systems, achieving a nonreciprocal response relies on breaking time-
reversal symmetry (TRS) in the Hamiltonian by employing real or synthetic mag-
netic fields and dissipation. The directionality in this standard kind of nonreciproc-
ity (sNR) does not depend on the phase of the input signal. In this work we extend
the notion of nonreciprocity in linear bosonic systems by identifying a class of
systems that show a kind of unidirectional signal transmission, positioned between
reciprocal and standard nonreciprocal transmission, whose (uni)directionality de-
pends on the phase of the input signal. We dub this phenomenon quadrature
nonreciprocity (qNR), as it can be revealed when resolving the signal into its quadra-
ture components. In contrast to sNR, a qNR Hamiltonian does not break TRS, but
achieves unidirectional transport by interfering beamsplitter (excitation-preserving)
and two-mode squeezing (excitation non-preserving) interactions. It does not re-
quire strong Kerr nonlinearity [251, 257, 258] or spin-polarized emitters [259, 260].
We report its experimental realisations using an optomechanical network and con-
struct a comprehensive theoretical framework exposing an entire class of qNR
systems with exciting properties, including an even-odd pairing between collective
quadratures and exponential end-to-end gain in resonator chains. Our work intro-
duces a systematic tool to treat unidirectional phase-sensitive transport in bosonic
lattice systems, which have recently sparked interest in connection with bosonic
analogues of the Kitaev chain [162, 232, 261]. It further opens the door to studying
exotic phenomena in these models, such as multi-mode entanglement [232] and
non-Hermitian topology [233]. From the point of view of applications, our work
opens up new avenues for signal routing and amplification.

6.2. Defining quadrature nonreciprocity (qNR)
We consider a network ofN driven-dissipative bosonic modes. Their steady-state
response to a coherent probe follows from the Heisenberg-Langevin equations
of motion q̇ = Mqq − √γqin for the field quadratures xj ≡ (aj + a†j)/

√
2 and

pj ≡ −i(aj − a†j)/
√

2, where aj denotes the annihilation operator for the bosonic
mode j ∈ (1, · · · , N), γ the damping rate andMq the open-system dynamical
matrix (section 2.7.3). We use the vector notation q ≡ (x1, p1, · · · , xN , pN )T for
the system’s quadratures and similarly qin for the quadrature inputs. We assume
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that each mode dissipates only via coupling to the input-output port, although our
analysis extends to general temporal coupled-mode theory [32, 262]. The scattering
matrix S(ω) connects input qin and output quadratures qout, oscillating with fre-
quency ω, which satisfy the input-output boundary conditions qout = qin +

√
γq

[147, 263]. It reads,

S(ω) ≡ 1 + γ(iω1 +Mq)−1 ≡ 1 + γχ(ω), (6.1)

with the susceptibility matrixχ(ω) ≡ (iω1+Mq)−1. We will from now on consider
driving at resonance (ω = 0 in a frame rotating at the mode frequencies) and write
χ ≡ χ(0), S ≡ S(0) for brevity.

Let us consider a rotation of each pair of quadratures {xj , pj}, with respect to
some external phase reference (Figure 6.1, top left), namely(

xj(φj)
pj(φj)

)
=

(
cosφj sinφj
− sinφj cosφj

)(
xj(0)
pj(0)

)
≡ R(φj)

(
xj(0)
pj(0)

)
. (6.2)

Equation (6.2) can be understood as aU(1) gauge transformation in the mode basis

{aj , a†j} [31, 33] (see section 6.8.1 for details). The susceptibility matrixχ transforms
as

χφ ≡ U(φj)χU
T(φj), (6.3)

where we introduced U(φj) ≡ ⊕Nj=1R(φj).
Nonreciprocity is typically defined by asymmetry in the transmission ampli-

tudes [249, 251]. We adopt this notion in a generalised sense, with signals split
into their x, p quadratures, meaning |S|T 6= |S| for Eq. (6.1) or, equivalently,
|χ|T 6= |χ|. Here |· · ·| denotes taking the element-wise modulus. We will say that
a system exhibits quadrature nonreciprocity (qNR) if there exist at least two dif-

ferent sets of local gauges φ(1,2)
j corresponding to a nonreciprocal and reciprocal

susceptibility matrix, respectively. Mathematically, this implies a pair of rotations

U1,2 ≡ ⊕Nj=1R(φ
(1,2)
j ) such that

|U1χU
T
1 |T 6= |U1χU

T
1 | and |U2χU

T
2 |T = |U2χU

T
2 |. (6.4)

6.3. qNR dimer: the simplest qNR system
We now introduce the minimal system displaying qNR: the parametrically-driven
dimer shown in Figure 6.1a. It consists of two modes a1,2 coupled via beamsplitter
(BS) coupling of strength J and two-mode-squeezing (TMS) coupling of strength λ.
In a frame rotating at the mode frequencies, the Hamiltonian reads

Hqd = Ja†1a2 + λa†1a
†
2 + H.c., (6.5)

which corresponds to the most general bi-linear coupling. For J = λ, we recover
the well-known position-position coupling, which has been extensively studied,
e.g. for implementing quantum non-demolition measurements [264, 265] or gen-
erating squeezing and entanglement [266]. This system has been introduced in
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Standard non-reciprocity
'

in

Quadrature non-reciprocity

BS

TMS

Reciprocal transport

nanocavity

BS BS

a b c

Figure 6.1: Quadrature nonreciprocity (qNR) vs. standard nonreciprocity (sNR) vs. reciprocal trans-
port. Coupled-mode diagrams for three systems with distinct forms of transport (top row), realized in
experiment with mechanical modes a1,2 (resonances 3 and 4 in Figure 2.3, opto-thermally equalized
decay rates γ/(2π) = 3.7 kHz, see section 2.8.4) subject to cavity-mediated beamsplitter (BS, strength
J) and two-mode squeezing (TMS, strength λ) interactions. Coherent excitation along quadratures
(red) rotated by φ from the reference gauge (black) is sketched (top left). Corresponding measured
susceptibility matrix amplitudes |χjk| evolve differently with φ (middle row). Nonreciprocity manifests

in χ as an asymmetric element-wise modulus |χ| 6= |χ|T. The elements within the green and blue
boxes are plotted for a range of experimental φ settings (bottom row). (a) Two modes interact through
BS and TMS of equal strength (J = λ = γ/4), showing qNR. Nonreciprocity vanishes for φ = π/4,
while setting φ = π/2 inverts the transmission direction. (b) Auxiliary mechanical mode a3 (resonance
2 in Figure 2.3, decay rate γ′/(2π) = 1.3 kHz) is coupled to a1,2 through BS interactions of strength
J ′ =

√
γγ′/2, providing a coupling between a1 and a2 via a3 that interferes with the direct coupling

J = γ/2. SNR requires the breaking of TRS—realized by picking a non-trivial synthetic flux θ = π/2—so
that the susceptibility matrix is nonreciprocal for all φ. The same experiment is discussed in section 3.2.1
and shown in Figure 3.3b without quadrature resolution. (c) Reciprocal transport between two modes
coupled only through BS (J = γ/2) is characterised by a symmetric χ for any phase φ. Error bars are
obtained by repeating the measurement sweep 10 times and represent the statistical±2σ spread around
the average value.
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[130] as a source of (standard) nonreciprocity by combining it with dissipation, and
implemented in a superconducting circuit [267] as a (bi-directional) phase-sensitive
amplifier and used for qubit readout.

As we now show, it is also one of the minimal manifestations of qNR. Eq. (6.5)
gives the following equations of motion for the quadratures

ẋ1 = −γ
2
x1 + (J − λ)p2 −

√
γx1,in,

ṗ1 = −γ
2
p1 − (J + λ)x2 −

√
γp1,in,

ẋ2 = −γ
2
x2 + (J − λ)p1 −

√
γx2,in,

ṗ2 = −γ
2
p2 − (J + λ)x1 −

√
γp2,in,

(6.6)

from which it is apparent that the quadratures can decouple, due to the fact that
BS and TMS couplings enter with the opposite sign. In particular, setting J = λ in
Eq. (6.6) leads to perfect decoupling between ẋ1 (ẋ2) and p2 (p1), while ṗ2 (ṗ1) still
couples to x1 (x2), in a way which is formally equivalent to a cascaded quantum
system [268, 269]. This is also reflected in the asymmetric susceptibility matrix

χ =


− 2
γ 0 0 0

0 − 2
γ

8J
γ2 0

0 0 − 2
γ 0

8J
γ2 0 0 − 2

γ

 . (6.7)

We interpret this property by saying that a signal encoded in quadrature x1 can
propagate from mode 1 to 2, emerging as p2, while the reverse transduction, i.e.,
p2 → x1 does not take place. When J = λ > γ/4, we further have Sx2→p1 =
γχx2→p1 > 1, which signifies phase-sensitive amplification.

To demonstrate this unidirectional transport between quadratures, we imple-
ment Hamiltonian (6.5) in the optomechanical sliced photonic crystal nanobeam
platform introduced in chapter 2. Its non-degenerate, MHz-frequency flexural me-
chanical modes serve as resonators aj with distinct frequencies Ωj , while their
decay rates γj are adjustable through optothermal backaction (section 2.8.4) and
measurement-based feedback (section 2.8.6). Effective quadratic interactions with
tunable strength and phase are enabled by temporally modulated radiation pres-
sure of a detuned laser [64, 151]: Specifically, intensity modulations of the laser
drive at difference (sum) frequencies Ωj ∓ Ωk induce effective nanomechanical
beamsplitter (squeezing) interactions (section 2.6).

In our measurements, we define (electronic) local oscillators (LOs) at the res-
onator frequencies Ωj that demodulate – in parallel – the optically-detected dis-
placement signal, to obtain the amplitude envelope |aj(t)| and relative phase ϕj(t)
of each resonator’s harmonic motion zj(t) = |aj(t)| cos(Ωjt+ϕj(t)). In effect, the
LOs define a rotating frame of reference in which the resonator dynamics can be
tracked by a complex amplitude 〈aj〉 = |aj |eiϕj , or equivalently by the quadrature
amplitudes 〈xj〉 =

√
2 Re(〈aj〉) and 〈pj〉 =

√
2 Im(〈aj〉). Moreover, signals to
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drive the resonator quadratures coherently through radiation pressure are derived
from the same LOs, turning our experiment into a lock-in measurement. The full
procedure for driving and analysis is detailed in section 6.8.2.

To connect the unidirectional response of Eq. (6.7) to the definition of qNR (6.4),
we need to study how the dimer transforms under a change of gauge. We measure
the dimer’s quadrature-resolved response, when performing the gauge transforma-
tion in Eq. (6.3) (Figure 6.1, top left). This is experimentally achieved by referring
both the interaction tones and LOs to a common time origin and subsequently
adding a phase offset φ to the LOs—rotating the quadratures they define. Note that
even though the frequencies of LOs (Ω1,2) and interaction tones (Ω1 ± Ω2) are all
distinct, the fact that the latter signals can be derived from the former through
mixing leads to a well-defined relation between the LO and interaction phases
(section 2.8.2).

For different phases φ, we independently reconstruct the susceptibility ma-
trix (6.3) for J = λ in Figure 6.1a. The full susceptibility matrix of the qNR dimer
rotated by a phase φ is given by

χφ =


− 2
γ 0 − 4J sin(2φ)

γ2 − 8J sin2(φ)
γ2

0 − 2
γ

8J cos2(φ)
γ2

4J sin(2φ)
γ2

− 4J sin(2φ)
γ2 − 8J sin2(φ)

γ2 − 2
γ 0

8J cos2(φ)
γ2

4J sin(2φ)
γ2 0 − 2

γ

 . (6.8)

Here we focus on the matrix elements shown in the bottom row of Figure 6.1, namely

χx1→p2 =
8J cos2(φ)

γ2
, (6.9)

χp2→x1
= −8J sin2(φ)

γ2
. (6.10)

It is clear that nonreciprocity only reveals itself in particular rotated quadratures.
While maximal nonreciprocity is obtained for φ = 0, as in Eq. (6.7), a gauge transfor-
mation reduces the ‘contrast’ of the nonreciprocity until, at φ = π/4, the transport
is completely reciprocal, i.e., χx1→p2 = χp2→x1 = 4J/γ2, and in fact |χ|T = |χ|.
This confirms that the dimer is indeed a qNR system, as per our definition (6.4).
Further increasing φ swaps the direction of nonreciprocity, a1 ↔ a2, with complete
reversal at φ = π

2 , when χx1→p2 = 0, χp2→x1
= 8J/γ2.

In the qNR dimer, the cancellation at φ = π/4 and the reversal of directionality
fundamentally stems from TRS. We identify a system’s TRS from its Hamiltonian,
i.e. its dynamics in absence of local dissipation or gain. This is motivated by the
fact that dissipation or gain by themselves, while breaking temporal symmetry in a
‘trivial’ way, cannot induce nonreciprocal behaviour: In such systems, attenuation
or amplification is always equal in two directions. In section 6.8.3 we demonstrate
that TRS implies the constraints |χxj→x` | = |χp`→pj |, |χxj→p` | = |χx`→pj | for any
gauges φj and reciprocity for at least one set of gauges. This is strikingly different
from a system that breaks TRS, such as the isolator of Ref. [130]. In Figure 6.1b we
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Figure 6.2: Time-reversal symmetry and qNR. The coupled-mode diagrams (left column) of the systems
studied in Figure 6.1 are expanded using a general graph representation of quadratic Hamiltonians

(middle column). Operators aj , a`, a†j , a†` , annihilating ‘particles’ and ‘holes’ respectively, that are
coupled in the equations of motions are connected through a line. (a) If the graph forms a double loop
as is the case for the qNR dimer, TRS is always preserved. (b) If the resulting graph decomposes into two
loops as for the sNR isolator, TRS can be broken by a gauge invariant phase, enabling sNR. (c) When
the graph displays no loops as is the case for the trivial BS dimer, TRS is always preserved. (right) The
spectral density of the thermal fluctuations in mode a1 serves as an experimental signature of TRS. In a
gauge where all other interactions are real, we vary the phaseψ of the BS coupling between a1 and a2.
For (a) and (c), this does not affect the system’s eigenfrequencies, given by the real part of the dynamical
matrix’ eigenvalues (white lines), while for (b) it signals TRS breaking. Experimental parameters are
identical to those used in Figure 6.1.

show the measured susceptibility matrix for the ‘sNR isolator’ discussed before in
section 3.2.1. It is implemented in our optomechanical system using two equal-
linewidth mechanical modes a1 and a2, coupled directly via a BS interaction of
strength J while an auxiliary lower-order mechanical mode a3 is introduced and
coupled to both a1 and a2 with BS strength J ′. Contrary to the qNR dimer, here
isolation is enabled by a U(1) gauge-invariant flux θ, the relative phase between
the couplings J , J ′ as shown in Figure 6.1b. Since nonreciprocity is controlled
by the TRS-breaking flux, it is independent of local rotations in phase space by
φ, as reflected by the phase-independent susceptibility matrices in Figure 6.1b
(|χx1→x2

|2 = |χp1→p2 |2 = 1, |χx2→x1
|2 = |χp2→p1 |2 = 0).

For reference, we also contrast both notions of nonreciprocity against a re-
ciprocal system. We display in Figure 6.1c the susceptibility matrix measured for
two beamsplitter-coupled modes, which is completely reciprocal (|χ|T = |χ|) and
gauge-invariant (χφ = χ).

6.4. Time-reversal symmetry and qNR
The results above point to the fact that preserving TRS in the Hamiltonian is a key
element, which sets qNR apart from sNR. A time-reversal symmetric Hamiltonian
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imposes certain symmetries on the dynamical matrix that underlie the unique
transformation properties of a qNR susceptibility matrix. This motivates us to
provide a general characterisation of TRS Hamiltonians in bosonic networks. TRS
means that there exists a U(1) transformation

aj → eiφjaj , (6.11)

that renders the coefficients in the Hamiltonian real [73]. TRS is often associated
with reciprocity [251], but in fact TRS only requires |χ| to be symmetric for one set

of phases φ(0)
j in Eq. (6.11). This will be elaborated in section 6.8.3. Indeed, in qNR

systems, reciprocity only occurs when φj = φ
(0)
j (in the qNR dimer, φ(0)

j = φ(0) =

π/4, 3π/4) and nonreciprocity occurs for all φj 6= φ(0). This feature, which to the
best of our knowledge has not been recognised before, positions qNR precisely
between reciprocity and gauge-independent sNR.

We develop a criterion to identify TRS for arbitrary quadratic bosonic Hamiltoni-
ans, based on the graph representation of the Hamiltonian matrix in the field basis,
inspired by Bogoliubov-de-Gennes theory [151] and laid out before in section 5.3.
We associate the Hamiltonian matrix with a graph in which the ladder operators
aj — annihilating ‘particle’ excitations — and a†j — annihilating ‘hole’ excitations
— are represented as vertices and the interactions as edges, i.e., connecting aj to

a` (and a†j to a†`) for BS between sites j, ` and aj to a†` (and a†j to a`) for TMS. The
graph representations of the three systems of Figure 6.1 display manifestly different
structures (Figure 6.2), leading to a general criterion for TRS (section 6.8.4). The
graph of the qNR dimer, Figure 6.2a, connects all vertices in a double loop visiting
each site twice. Such double loops guarantee TRS for arbitrary, complex, coupling
constants. In contrast, the graph of the sNR isolator, Figure 6.2b, decomposes into
two disjoint loops. This structure allows to break TRS through a non-vanishing
relative phase between the coupling constants. The BS dimer, Figure 6.2c, displays
no loops and trivially preserves TRS.

The different graph structures, which embody the behaviour under time reversal,
are catalogued in general by a Z2 invariant, which we call loop product P . To define
such a quantity, we consider the particle-hole graph for a general loop with BS and
TMS interactions. Then by multiplying by (−1) for a line crossing (TMS coupling)
and (+1) for an uncrossed pair of lines (BS couplings) (+1), the loop product P
distinguishes between an even (disjoint loops) and odd number (double loop) of
line crossings

P ≡ (−1)nTMS(+1)nBS =

{
−1 : double loop (TRS)

+1 : disjoint loops
, (6.12)

with nBS the number of BS couplings and nTMS the number of TMS couplings.
Eq. (6.12) indicates that the only requirement for TRS in a general loop is an odd
number of TMS couplings, i.e. their position in the loop is irrelevant.

Complementing our graph-based theoretical criterion above, the experimental
response of a system to incoherent excitation serves as a signature of a TRS Hamil-
tonian [151], as nontrivial fluxes manifest in the eigenfrequencies (Figure 6.2, right).
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Figure 6.3: QNR transmission in ring networks. (a) Graph representation of a ring with N modes,
featuring a single TMS interaction. The ring is closed byN − 1 BS interactions between the remaining
modes. For arbitrary N the loop product P = −1, indicating preservation of TRS. To obtain qNR
transmission,N must be even. (b) A feature of qNR that only becomes apparent forN > 2 is the pairing
between collective quadratures of even and odd sites in the susceptibility matrix χ, shown here in theory
for J = λ = 2N · γ and φ = 0.

We choose a gauge in which all interactions are real, except for the BS coupling
between modes a1 and a2 present in all three systems studied so far, whose phase
ψ we vary. Thermal fluctuations drive stochastically all mechanical quadratures
homogeneously and lead to a power spectrum insensitive to ψ if there is a gauge
transformation (6.11) that removes this BS phase. In our experiment, this indicates
the TRS of the qNR (Figure 6.2a) and BS Hamiltonians (Figure 6.2c). Conversely,
if the eigenfrequencies tune with ψ, such a gauge transformation cannot exist,
marking the broken TRS of the sNR isolator (Figure 6.2b).

Finally, we stress another consequence of TRS, already visible in the dimer (see
Eq. (6.10)), i.e., that quadratures travel in pairs in opposite directions. In fact, the
transduction xj → p` is accompanied by x` → pj with equal transmission in the
opposite direction, e.g., in Eq. (6.7), |χxj→p` |2 = |χx`→pj |2, see section 6.8.3 for
details. This requirement of counter-propagating pairs of quadratures is reminiscent
of other TRS systems, such as quantum spin Hall systems [36, 38].

6.5. Constructing qNR ring networks
We take now inspiration from the particle-hole graphs and look for qNR inN -mode
ring networks among TRS systems (P = −1), dubbed ‘N-rings’ from now on. To
obtain a ring with qNR transmission, a TRS Hamiltonian is only necessary, not
sufficient. We also have to guarantee that the BS and TMS couplings can interfere.
The particle-hole representation allows a reinterpretation of the quadrature de-
coupling condition discussed along with Eq. (6.6) as constructive and destructive
interference between particle-conserving and particle-non-conserving processes.
This condition brings us to the necessary and sufficient criterion for qNR. Besides
the odd number of TMS couplings (Eq. (6.12)), achieving qNR requires that the ring
consists of an even number of modes. To understand why, we take a closer look at
the 4-mode ring with a single TMS interaction (Figure 6.3a). The corresponding
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Figure 6.4: Experimental realization of the qNR 4-ring. (a) Susceptibility matrices |χ| for theN = 4 ring
realized in experiment. All resonator damping rates γ/(2π) = 10 kHz are equalized using measurement-
based feedback (section 2.8.6). Interaction rates are set to J = λ = 2π × 5 kHz, the largest λ that
permits a linear response to the amplified thermal noise in the experiment. For φ = 0, we obtain a
nonreciprocal χ that shows collective pairing, albeit with reduced contrast compared to Figure 6.3b. For
φ = π/4, χ is reciprocal, showing the qNR of transmission of the ring. (b) Susceptibility matrices in the
basis of even and odd collective quadratures show their pairing for φ = 0, when χ is block-diagonal.
Similarly, reciprocal susceptibility is obtained for φ = π/4. (c,d) The values of selected susceptibility
matrix elements (c: resonator basis; dashed boxes in (a), d: collective basis; dashed boxes in (b)) show
continuous tuning as function of quadrature angle φ, in theory (solid line) and experiment (circles).
Even in theory, the isolation for φ = 0, π/2, π in the resonator basis (c) is not perfect, whereas in the
collective basis (d) it is. Error bars are obtained by repeating the measurement sweep 10 times and
represent the statistical±2σ spread around the average value.

equations of motion for equal couplings (J = λ) read

ẋ1 = −J(p2 − p4)− γ

2
x1 −

√
γx1,in

ṗ2 − ṗ4 = −γ
2

(p2 − p4)−√γ(p2,in − p4,in).
(6.13)

The coupling to x1 vanishes in the second equation for the collective quadrature
(p2 − p4) due to the interference of BS and TMS couplings. Equations (6.13) have a
similar structure as those for the qNR dimer (6.6), the main difference being that x1

couples nonreciprocally to the collective quadrature (p2 − p4) instead of to a local
quadrature. Analogously, x2 couples to (p1−p3) nonreciprocally. As a consequence,
the dominant elements of the susceptibility matrix are coupling (p1 − p3) to−x2

and x4, as well as (p2 − p4) to−x1 and x3. This peculiar non-local pairing between
even and odd quadratures is shown in Figure 6.3b for a 4-ring and carries over
to larger N-rings with even N , independent of system size. The pairing is only
observed if N is even, since it requires an equal number of quadratures on even
and odd sites, respectively. Indeed, this condition can be proven rigorously by using
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Figure 6.5: Steady-state response of a qNR chain. (a-c) Staggering qNR rings with BS links to form a chain,
we obtain a qNR system for which the largest steady-state response is at the opposite end. We show the
numerically calculated steady-state field quadratures 〈xj,l〉/(2

√
γ〈xss;j,l〉), 〈pj,l〉/(2

√
γ〈pss;j,l〉) (of

the site in row j, column `) for a 4-ring qNR chain driven at the a first and b last site; and c a 12-ring qNR
chain. The pairing is clearly visible in the steady state response. (d) End-to-end gain for 4-ring (blue),
8-ring (red) and 12-ring (green) chains and J = λ = 4γ. The gain grows exponentially across the system
and with system size. (e) Suggested non-Hermitian topological invariant exploiting the block-diagonal

form of the Fourier-transformed dynamical matrix with blocksM(1,2)
q (k) (section 6.8.6).

a reduction technique on the particle-hole graphs [248].
We implement the 4-ring shown in Figure 6.3a experimentally. The measured

susceptibility matrix in the resonator quadrature basis, (Figure 6.4a) illustrates its
nonreciprocal response for φ = 0, while the nonreciprocity vanishes completely for
φ = π/4, establishing qNR in this system. For maximum nonreciprocity (φ = 0),
the largest magnitude entries of the susceptibility matrix manifest the non-local
coupling structure between quadratures of even and odd sites. This susceptibility
matrix structure is transparent in the basis of collective quadratures (Figure 6.4b),
where χ is, in fact, block-diagonal for φ = 0. We note that in this basis the nonrecip-
rocal isolation is perfect in theory (Figure 6.4d), whereas in the local basis it is not
(Figure 6.4c).

6.6. Towards qNR lattices
We now take qNR one step further and use qNR rings as building blocks for con-
structing qNR lattices. It can be proven that if a lattice overall preserves TRS and
contains at least one qNR ring, it is itself qNR [248].

Of particular interest are translationally invariant chains of qNRN -rings, which
can combine qNR transmission with non-Hermitian topology [233]. One such
example is given by the bosonic Kitaev chain of Ref. [232], which corresponds to a
2-ring chain with a specific choice of inter-ring coupling phases and is indeed a qNR
system. Thanks to our particle-hole graph framework, we can now consider more
complex scenarios. As an example, we take a chain made by qNR 4-rings connected
through BS interactions. In Figure 6.5a and b, we show the simulated steady-state
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field quadratures for this qNR lattice for φ = 0, given a quadrature-resolved input
at different sites. Nonreciprocal transmission is clearly visible, while changing the
gauge to φ = π/4 (not shown), leads to complete reciprocity, i.e., we recover the
characteristic feature of qNR, Eq. (6.4). The pairing we characterised in the previous
sections also manifests: an input at the p1,1 quadrature (in which the indices stand
for row and column in the array), Figure 6.5a, procures the largest steady-state
response at two sites at the opposite end of the chain. The pairing is evidenced
in larger qNR ring sizes, in which the steady-state response of a 12-ring chain is
most prominent in every second site of the last plaquette, shaping a zig-zag line
(Figure 6.5c).

In this system, qNR is accompanied by amplification with the end-to-end
gain growing exponentially with the chain length (Figure 6.5d). This generalises
the phase-dependent directional amplification predicted in a bosonic Kitaev
chain [232]. Directional amplification with exponential end-to-end gain has been
identified as a proxy of non-trivial topology [233, 270]. Based on previous results
from 2-ring chains, we conjecture a connection with a non-trivial non-Hermitian
winding number calculated from the determinant of a matrix [219], in our case the
dynamical matrix (section 6.8.6). In Figure 6.5e, we plot the theoretical determinant
of each of the diagonal blocks of the Bloch-matrix (each of the blocks accounts for
a set of collective quadratures as shown in the inset) for the 4-ring qNR chain of
Figure 6.5a under periodic boundary conditions. We find that the determinant of
each of these blocks can be assigned a non-trivial winding number that equals in
magnitude and differs in sign corresponding to the two directions of directional
end-to-end gain. The opposite winding sense of these two matrix blocks is an
expression of the TRS of the underlying Hamiltonian.

6.7. Conclusion and outlook
In conclusion, we introduced the novel phenomenon of quadrature nonreciprocity
(qNR). In contrast to standard nonreciprocity, qNR does not break time-reversal
symmetry in the Hamiltonian and presents a characteristic gauge dependence.
We identified the set of bosonic networks that display qNR and reported the first
experimental realisations.

Our results point to a close connection of qNR with the existence of quantum
non-demolition (QND) variables and with back-action evading (BAE) measure-
ments [264, 265]. Indeed, our characterisation of qNR simultaneously provides a
powerful recipe to design systems with collective QND variables. In this context, ex-
ploring the noise properties of qNR networks we introduced will also be interesting.
As they rely on interference between coherent interactions, without the necessity
of dissipation, we can expect quantum-limited performance [163]. This paves the
way towards quantum applications, such as efficient, noiseless sensors, quantum
information routers and the generation and measurement of non-classical states,
including entangled states [147, 232, 269]. Indeed, while we demonstrated the con-
cept in the domain of nanomechanics, it could find application in e.g. classical
electrical circuits [76], acoustics [271], superconducting circuits [31, 254, 255], and
spin ensembles [272].
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Going forward, we envision the construction of lattices from qNR rings that
inherit the qNR properties similar to those of Figure 6.5. Our research opens new
avenues for exploring qNR lattices and networks in which new topological phenom-
ena may emerge similar to the quantum spin Hall effect [36, 38].

6.8. Appendices
The following sections contain further details supporting this chapter.

6.8.1. Quadrature qauge transformations
For a dynamical matrixMa expressed in the basis of the fields {a1, a

†
1, . . . , aN , a

†
N},

a gauge transformation performed on a multi-mode system with N sites can be
expressed via the unitary V ≡ ⊕N

j=1 Vj , with Vj = diag (eiφj , e−iφj ) acting on
an individual site. The dynamical matrix transforms according toM′a({φj}) =

VMaV
†. Moving into the quadrature basis, xj = (aj + a†j)/

√
2, pj = −i(aj −

a†j)/
√

2, we transformM′a via the unitary

W ≡
N⊕
j=1

1√
2

(
1 1
−i i

)
, (6.14)

such that the transformed dynamical matrix in the quadrature basisMq({φj}) is
given by

Mq({φj}) = WVMaV
†W † = WVW †(WMaW

†)WV †W †

= WVW †Mq(0)WV †W † ≡ UMq(0)U†.
(6.15)

Therefore, in the quadrature basis, the dynamical matrix transforms under a gauge
transformation according to

U ≡WVW † =
1

2

N⊕
j=1

(
1 1
−i i

)(
eiφj 0
0 e−iφj

)(
1 i
i −i

)

=

N⊕
j=1

(
cos(φj) − sin(φj)
sin(φj) cos(φj)

)
=

N⊕
j=1

R(φj).

(6.16)

This is a rotation in phase space by φj for each mode j. Setting φ = φj we obtain
the transformation U(φ) = ⊕Nj=1R(φ) used in (6.3).

6.8.2. Resonant driving and analysis
The central relation used to analyse the results of our experiments is the
steady-state response qss of a system of N resonators described by Hamil-
tionan (6.64) to resonant forces driving its quadratures with amplitudes
f (q) = (fx1

, fp1 , . . . , fxN , fpN )T , as discussed in section 2.7.4. Measured in
units of the zero-point fluctuations xzpf,j the response is given by

qss = χφ(0)f (q). (6.17)
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In our experiments, the forcing vector f (q) assumes the role of the quadrature input
ports qin = f (q)/

√
γ defined in section 6.2.

As detailed in section 2.6.1, harmonic driving forces are generated by modula-
tion of the drive laser intensity with frequency ωd, depth cd and modulation phase
φd. The large frequency separation between modes (|Ωj − Ω`| � γj , γ`) ensures
that only a single mechanical resonator is driven by the modulated cavity field,
and results in drive terms fj (2.61) acting on the field operators aj . There, we have
applied the rotating wave approximation to select the positive frequency sideband
of the drive modulation. Conversely, the negative frequency sideband drives the
adjoint a†j , with its drive term f∗j related by conjugation. By transforming the vector

f (a) = (f1, f
∗
1 , . . . , fN , f

∗
N ) to the quadrature basis using the transformation matrix

W (6.14), we obtain f (q) = W f (a).

Before each experiment, we perform a driven reference measurement for each
resonator j to quantify how the modulation depth cd is transduced into the driving
term fj (section 2.8.7). To reconstruct the on-resonance susceptibility matrix χφ(0)
for a given quadrature angle φ, we first refer all (electronic) interaction and LO tones
to a common time origin at which their phases are zero (section 2.8.2). Then, we
shift the LO tone phases by φ to rotate the quadratures they define. We turn on
the modulations that generate the desired interactions, and perform a series of
2N experiments where we drive the quadratures one by one, with arg(fj) = 0 to
drive xj and arg(fj) = π/2 to drive pj for each resonator j while the terms driving

the other resonators are zero. For each of these driving conditions f
(a)
k , we record

the steady state response amplitudes {a1, a
†
1, . . . , aN , a

†
N} in the vector ass,k after

averaging with a low-pass filter (third-order filter, 3 dB bandwidth 2π × 10 Hz).

We collect the driving vectors in the matrixF (a) =
[
f

(a)
1 · · · f

(a)
2N

]
and the steady-

state responses inA(a) = [ass,1 · · ·ass,2N ]. Next, we obtain the real driving matrix

F (q) = WF (a) =
[
f

(q)
1 · · · f

(q)
2N

]
that contains the quadrature driving amplitudes

for each setting. Similarly, the real matrix A(q) = WA(a) =
[
qss,1 · · ·qss,2N

]
con-

tains the steady-state responses in the quadrature basis. Noting that the columns of
F (q) span the entire driving space (and are in fact diagonal), equation (6.17) can be
used to obtain the susceptibility matrix χφ(0) = A(q)(F (q))−1.

To estimate experimental errors, the full φ sweep from 0 to 2π is repeated 10
times. The matrix colour plots in Figure 6.1 and 6.4 show average values over all
sweeps, whereas the plots of single matrix elements feature error bars that represent
the statistical±2σ (i.e. a 95% confidence interval) spread around the average value.

6.8.3. Time-reversal symmetry and transport
Here we derive the implications that a TRS-preserving Hamiltonian has on the
dynamical matrix of a system with added local decay. While (local) gain and loss
explicitly break TRS, they only modify the diagonal of the dynamical matrix such
that the underlying TRS-preserving Hamiltonian still imposes certain symmetries
on the dynamical matrix and susceptibility matrix. This results in the unique trans-
formation properties of qNR. The formalism in this and the following appendices
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was developed primarily by collaborator Clara Wanjura. We include it here for
completeness.

The scattering matrix of a time-reversal symmetric system
Here we show that a time-reversal symmetric Hamiltonian imposes certain proper-
ties on the scattering matrix of the system with added local gain and loss, namely
that there exists at least one set of gauges for which the system’s transport is recipro-
cal on resonance.

If the system preserves TRS, there exists a set of phases {φj} that make the
Hamiltonian real [73]. Formally, we can express this in terms of the Hamiltonian
matrixH (section 2.7.1),

Ĥ =
∑
j

∑
`

(
a†jHa†j ,a`

a` + a†jHa†j ,a
†
`
a†` + H.c.

)
, (6.18)

where we explicitly distinguish the Hamiltonian operator Ĥ from the matrixH . TRS
is preserved if we can find a gauge transformation V that mapsH to its conjugate,
i.e. that makesH real

(V HV †)∗
!
= V HV †. (6.19)

Note that since V is diagonal, we have V = V T and V † = V ∗. For the systems we
are interested in here (coherent couplings with only local decay), the dynamical
matrix is closely related to the Hamiltonian matrix through

Ma = −i
(
⊕Nj=1σz

)
H − Γ

2
, (6.20)

with dissipation term Γ = diag (γ1, γ1, . . . , γN , γN ) and Pauli matrix σz ≡
(

1 0
0 −1

)
.

Analogously,

H = i
(
⊕Nj=1σz

) [
Ma +

Γ

2

]
. (6.21)

Applying the TRS condition (6.19), we find an analogous relation for the dynamical
matrix (

V

[
Ma +

Γ

2

]
V ∗
)∗

= −V
[
Ma +

Γ

2

]
V ∗. (6.22)

We convert this to an expression for the dynamical matrix in the quadrature basis

V

[
Ma +

Γ

2

]
V ∗ = VW †W

[
Ma +

Γ

2

]
W †WV ∗

= W †U

[
Mq +

Γ

2

]
UTW

!
= −

(
V

[
Ma +

Γ

2

]
V ∗
)∗

(6.23)

= −(W † U

[
Mq +

Γ

2

]
UT︸ ︷︷ ︸

∈RN×N

W )∗ = −WTU

[
Mq +

Γ

2

]
UTW ∗.
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Note that we used that U is real, such that U† = UT. Using the identities

WWT =

N⊕
j=1

1

2

(
1 1
−i i

)(
1 −i
1 i

)
=

N⊕
j=1

σz = Z = W ∗W † (6.24)

we obtain a TRS condition for the dynamical matrix

ZU

[
Mq +

Γ

2

]
UTZ = −U

[
Mq +

Γ

2

]
UT , (6.25)

where Z ≡ ⊕Nj=1σz .
In addition to TRS, we have a second requirement onMq which follows since

H is Hermitian,H = H†. With Eq. (6.21), we find[
Ma +

Γ

2

]†
Z = −Z

[
Ma +

Γ

2

]
⇔ Z

[
Ma +

Γ

2

]
Z = −

[
Ma +

Γ

2

]†
.

(6.26)

It follows for the dynamical matrix of the field quadratures that[
Mq +

Γ

2

]
= −WZW †

[
Mq +

Γ

2

]T

WZW †. (6.27)

With the definition ofW and Z, we obtain

WZW † =

N⊕
j=1

1

2

(
1 1
−i i

)(
1 0
0 −1

)(
1 i
1 −i

)

=

N⊕
j=1

(
0 i
−i 0

)
≡

N⊕
j=1

σ∗y ≡ Y ∗,
(6.28)

where the Pauli matrix σy =
(

0 −i
i 0

)
. Therefore, as a consequence of only coherent

couplings and local dissipation, the dynamical matrix satisfies in the quadrature
basis [

Mq +
Γ

2

]
= −Y ∗

[
Mq +

Γ

2

]T

Y ∗. (6.29)

Combining this result (6.29) with condition (6.25), which we found as a conse-
quence of TRS, the term Γ/2 drops out and we obtain

ZUMqU
TZ = UY ∗MT

qY
∗UT. (6.30)

Note that any diagonal matrix that we add toMq drops out in this step, so diagonal
modifications, such as local decay, do not change the transformation properties of
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the dynamical matrix and hence of the susceptibility matrix. Now, examining UY ∗

and Y ∗UT, we find

UY ∗ =

N⊕
j=1

(
cosφj − sinφj
sinφj cosφj

) (
0 i
−i 0

)
(6.31)

= i

N⊕
j=1

R(φj − π/2) ≡ iU({φj − π/2}),

Y ∗UT =

N⊕
j=1

i
(

cos(−[φj−π/2]) − sin(−[φj−π/2])
sin(−[φj−π/2]) cos(−[φj−π/2])

)
(6.32)

= −i

N⊕
j=1

R(−[φj − π/2]) ≡ −iU({−[φj − π/2]}).

The transformationU({φj − π/2}) is a direct sum of rotation matrices that change
the local phase of each mode j by φj − π/2. With this, condition (6.30) becomes

ZU({φj})MqU({−φj})Z = U({φj − π/2})MT
qU({−[φj − π/2]}). (6.33)

Splitting the rotation matrices U({φj − π/2}) = U({−π/4})U({φj − π/4}) and
U({−[φj − π/2]}) = U({−[φj − π/4]})U({π/4}), and further realising that

ZU({−π/4}) =

N⊕
j=1

(
1 0
0 −1

) ( cos(π/4) sin(π/4)
− sin(π/4) cos(π/4)

)
= U({π/4})Z, (6.34)

U({π/4})Z =

N⊕
j=1

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

) (
1 0
0 −1

)
= ZU({−π/4}), (6.35)

we find

ZU({φj − π/4})MqU({−[φj − π/4]})Z
= U({φj − π/4})MT

qU({−[φj − π/4]}).
(6.36)

We redefine the rotation matrices Ũ ≡ U({φj − π/4}) and Ũ−1 = UT ≡
U({−[φj − π/4]}) where each phase φj has been shifted by−π/4. This leads to a
condition for the dynamical matrix of a TRS-preserving system which only consists
of coherent couplings and local dissipation

ZŨMqŨ
TZ = (ŨMT

q Ũ
T)T. (6.37)

In the final step, we consider how the susceptibility matrix transforms under a gauge
transformation

Ũχ(ω)ŨT = (iω1 +Mq)−1 = (Ũ iω1ŨT + ŨMqŨ
T)−1

= (iω1 + ZŨMT
q Ũ

TZ)−1 = ZŨ(iω1 +MT
q )−1ŨTZ.

(6.38)
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This yields the condition

Ũχ(ω)ŨT = Z(Ũχ(−ω)ŨT)TZ. (6.39)

Taking the absolute value for each element in the site basis and noting that Z can
only change the sign of each element but neither swaps entries nor changes their
modulus, we obtain a condition for the susceptibility matrix of TRS-preserving
system ∣∣∣Ũχ(ω)ŨT

∣∣∣ =
∣∣∣Ũχ(−ω)ŨT

∣∣∣T . (6.40)

On resonance, we find |Ũχ(0)ŨT| = |Ũχ(0)ŨT|T. This implies that for a TRS-
preserving system there exists at least one gauge in which, on resonance, the sys-
tem’s transport is reciprocal.

TRS results in equal transmission for pairs of quadratures
A general susceptibility matrix χ in the quadrature basis is of the form

χ =


χ1,1 ... χ1,j ... χ1,N
...

...
...

...
...

χN,1 ... χN,j ... χN,N

 , (6.41)

where each χj,` represents a block

χj,` ≡
(
χxj ,x` χxj ,p`
χpj ,x` χpj ,p`

)
. (6.42)

The element χqj ,q` with q ∈ {x, p} relates an input quadrature of q` to the steady
state of qj .

Using the TRS conditions on the dynamical matrixMq that follow from combin-
ing only coherent couplings, Eqs. (6.29), we obtain a condition on the susceptibility
matrix

χ(ω) = −Y ∗χT(−ω)Y ∗, (6.43)

or, specifically, for each block χj,`, χ`,j = −σ∗yχT
j,`σ
∗
y . It follows for the elements of

each block that

χ`,j =
(
χx`,xj χx`,pj
χp`,xj χp`,pj

)
=
(

0 1
−1 0

) ( χxj,x` χpj,x`
χxj,p` χpj,p`

) (
0 1
−1 0

)
=
(−χpj,p` χxj,p`

χpj,x` −χxj,x`

)
.

(6.44)

On the other hand, assuming that TRS is preserved imposes another condition on
χ, namely, there exists a gauge in which χ satisfies condition (6.39) such that the
individual blocks χj,` are constrained by

χr
`,j = σz(χ

r
j,`)

Tσz =

(
χr
xj ,x`

−χr
pj ,x`

−χr
xj ,p`

χr
pj ,p`

)
. (6.45)
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Here, the superscript r refers to the set of local gauges {φ1, . . . , φN} in which χ is
reciprocal, see Eq. (6.40).

Equating these two constraints for the elements of χj,` (in the gauge in which χ
is reciprocal), we obtain the following conditions

χr
xj ,x`

= −χr
pj ,p`

= tr1 and χr
xj ,p`

= −χr
pj ,x`

= tr2, (6.46)

with tr1,2 the susceptibility matrix element at the reciprocal gauge. Similarly,

χj,` =

(
tr1 tr2
−tr2 −tr1

)
, and χ`,j =

(
tr1 tr2
−tr2 −tr1

)
. (6.47)

with tr1,2 the susceptibility matrix element in the reciprocal gauge. We now consider

how the matrix block χj,` changes under a gauge transformation U = ⊕Nj=1R(φj)
which acts on each individual block according to

χj,`(φj , φ`) = R(φj)χ
r
j,`R(−φ`), χ`,j(φj , φ`) = R(φ`)χ

r
`,jR(−φj). (6.48)

Applying these rotations to the blocks of the susceptibility matrix (6.47) and the
resulting matrix entries, we obtain constraints on the susceptibility matrix in any
gauge χ(φ1, . . . , φN ) ≡ χ({φj})

χxj ,x`({φj}) = −χp`,pj ({φj}), χpj ,p`({φj}) = −χx`,xj ({φj}),
χxj ,p`({φj}) = χx`,pj ({φj}), χpj ,x`({φj}) = χp`,xj ({φj}). (6.49)

This does not automatically imply reciprocity, |χ| = |χ|T, and gives room for qNR.
The only constraint is that the transmission between certain pairs of quadratures is
the same in opposite directions.

Equal transmission for pairs of quadratures implies TRS
We now prove that the previous statement actually applies in both directions,
i.e. there exists an equivalence between TRS and the equal transmission of cer-
tain pairs of quadratures in opposite directions. We start from a system whose
susceptibility matrix satisfies for any set of gauges {φj}

|χxj ,x`({φj})| = |χp`,pj ({φj})|, |χpj ,p`({φj})| = |χx`,xj ({φj})|,
|χxj ,p`({φj})| = |χx`,pj ({φj})|, |χpj ,x`({φj})| = |χp`,xj ({φj})|, (6.50)

and we ask if this always implies TRS. Indeed, we can answer this question in the
affirmative provided that all the couplings in the system are coherent, i.e. Eq. (6.43)
is valid1. Conditions (6.50) only fix the modulus of the elements of matrix blocks
χj,` and χ`,j such that they can, in full generality, be written as

χj,` =

(
χxj ,x` χpj ,x`
χxj ,p` χpj ,p`

)
, χ`,j =

(
χpj ,p`e

iξ
(1)
j,` χxj ,p`e

iξ
(2)
j,`

χpj ,x`e
iξ

(3)
j,` χxj ,x`e

iξ
(4)
j,`

)
(6.51)

1If we examine a system with dissipative couplings, our arguments can still be applied if we expand
the dissipative coupling into coherent coupling via an auxiliary lossy bath mode which, if eliminated,
would yield the desired non-local dissipator.
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with some phases ξ(1)
j,` = −ξ(4)

`,j , ξ(2)
j,` = −ξ(3)

`,j . Since conditions (6.50) should
hold for any gauges {φj}, we check how these matrices transform and under which

conditions for ξ(1,2)
j,` the susceptibility matrix satisfies conditions (6.50) in any gauge.

We find that we need to require

ξ
(1)
j,` = δj,`, ξ

(2)
j,` = π + δj,`, ξ

(3)
j,` = π + δj,`, ξ

(4)
j,` = δj,` (6.52)

with δj,` = π corresponding to the TRS-preserving case.
Furthermore, condition (6.43) has to be fulfilled, i.e. χ`,j = −σ∗yχT

j,`σ
∗
y ,

σ∗yχ`,jσ
∗
y = σ∗y

(
χpj ,p`e

iδj,` −χxj ,p`eiδj,`

−χpj ,x`eiδj,` χxj ,x`e
iδj,`

)
σ∗y (6.53)

=

(
−χxj ,x`eiδj,` −χxj ,p`eiδj,`

−χpj ,x`eiδj,` −χpj ,p`eiδj,`

)
!
=

(
−χxj ,x` −χxj ,p`
−χpj ,x` −χpj ,p`

)
= −χj,`.

Here, δj,` = π is the only solution which automatically corresponds to a TRS-
preserving system. Therefore, conditions (6.50) can only be satisfied if TRS is pre-
served.

6.8.4. TRS criterion—full loops vs. disjoint loops
Here, we prove the statement in section 6.4 that TRS can be identified from the
graph representing the system’s Hamiltonian matrix in the field basis H . For this
analysis, we break the system down into its minimal simple rings, i.e. such that
there is only one coupling per mode pair (with the exception of the two-mode ring).

The graph representing the block of the dynamical matrix of this ring then
forms one full loop, or consists of disjoint loops. We now show that full loops
identify systems that always preserve TRS, while graphs displaying two disjoint
loops indicate systems that allow to break TRS for certain choices of phases.

As coherent couplings, we first focus on systems with only BS or TMS terms

Ĥ ≡
∑
j,`

Jj,`e
iθj,`a†ja` +

∑
m,n

λm,ne
iψm,naman + H.c. (6.54)

In a later step, we extend the argument to systems that include local squeezing.
TRS implies that there exists a gauge transformation, aj → aje

iφj , that makes the
coefficients of the Hamiltonian real, i.e., we need to check, if we can find a set of
{φj} that removes any possible phases θj,`, ψj,`. By asking if TRS is preserved, we
ask if the following system of equations has a solution for φj

θj,` − φj + φ` = 0, (6.55)

ψj,` + φj + φ` = 0. (6.56)

For a simple ring with N modes, the number of equations above equals N . This
system of equations can be expressed in terms of the adjacency matrixA of a signed,
directed graph representing the graphs of Figure 6.3, in whichAj,` = −1 for BS and



6.8. Appendices

6

125

j < `, andAj,` = +1 for TMS couplings and j < `.Aj,` = 0 otherwise. Eqs. (6.55)
and (6.56) expressed in terms of the adjacency matrix become

(1 +A)Φ = Θ (6.57)

with Φ ≡ (φ1, . . . , φN )T and Θ a vector containing the phases θj,`, ψj,`. If TRS is
preserved, the system of Eqs. (6.55) and (6.56) has at least one solution, i.e., (1 +A)
has full rank. Conversely, if TRS can be broken via a non-vanishing flux, these
equations do not have a solution.

By recursively applying Gaussian elimination we prove next that full loops signal
that TRS is preserved for any θj,`, ψj,`, while two disjoint loops allow to break TRS
through non-vanishing phases θj,`, ψj,`.

Disjoint loops allow breaking TRS
First, we show here that if the graph breaks up into two disjoint loops, the system
can break TRS. Recursively applying Gaussian elimination to (1 +A), we show that
the matrix rank is smaller than the number of modes N when the graph decom-
poses into two loops. If all sites are either coupled via beamsplitter of parametric
interactions, we can, without loss of generality, reorder the matrix (1 +A), so that
it takes the following form

(1 +A) =


1 ±1 0 0 ... 0 0
0 1 ±1 0 ... 0 0
0 0 1 ±1 ... 0 0

...
0 0 0 0 ... 1 ±1
1 0 0 0 ... 0 ±1

 . (6.58)

We start by examining systems whose graphs decompose into two disjoint graphs.
We note that this requires an even number of parametric couplings (pairs of +1, +1
in Φ) and any number of beamsplitter couplings.

Beamsplitter coupling followed by beamsplitter coupling
We consider the case that both mode pairs j and (j − 1) as well as j and (j + 1) are
coupled via BS links. In this case, we can eliminate the jth row in (1 +A) such that
the resulting matrix looks like a direct connection between (j − 1) and (j + 1)

(1 +A) =

( ...
... 1 −1 0 ...
... 0 1 −1 ...

...

)
→
( ...
... 1 −1 0 ...
... 1 0 −1 ...

...

)
. (6.59)

If the loop only consists of beamsplitter interactions, then we can repeat this elimi-
nation step throughout the matrix until the last row equals the second to last row.
Subsequently, the last row can be eliminated, the system does not have full rank,
therefore no solution and we can, through a non-vanishing phase θj,`, ψj,` break
TRS. This is a well know result [73].

Beamsplitter coupling followed by parametric coupling (or vice versa)
Here we can show that beamsplitter coupling between (j − 1) and j followed by
parametric coupling between j and (j + 1) can, in (1 +A), be reduced to a row
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that has the same form as parametric coupling between (j − 1) and (j + 1)

(1 +A) =

( ...
... 1 −1 0 ...
... 0 1 1 ...

...

)
→
( ...
... 1 −1 0 ...
... 1 0 1 ...

...

)
. (6.60)

An even number of parametric couplings
An even number of parametric couplings looks like beamsplitter couplings. If they
follow right after each other, the following argument holds:

(1 +A) =

( ...
... 1 1 0 ...
... 0 1 1 ...

...

)
→
( ...
... 1 1 0 ...
... 1 0 −1 ...

...

)
. (6.61)

If there are beamsplitter couplings in between, these can be reduced firstly, for
instance,

(1 +A) =


...
... 1 1 0 ... 0 0 0 ...
... 0 1 −1 ... 0 0 0 ...

...
... 0 0 0 ... 1 −1 0 ...
... 0 0 0 ... 0 1 1 ...

...

→

...
... 1 1 0 ... 0 0 0 ...
... 1 0 1 ... 0 0 0 ...

...
... 0 0 0 ... 1 −1 0 ...
... 0 0 0 ... 0 1 1 ...

...



→ · · · →


...
... 1 1 0 ... 0 0 0 ...
... 1 0 1 ... 0 0 0 ...

...
... 1 0 0 ... 0 1 0 ...
... 0 0 0 ... 0 1 1 ...

...

→

...
... 1 1 0 ... 0 0 0 ...
... 1 0 1 ... 0 0 0 ...

...
... 1 0 0 ... 0 1 0 ...
... 1 0 0 ... 0 0 −1 ...

...

 . (6.62)

Therefore, for an even number of parametric couplings, the matrix (1 +A) can
be reduced such that the last and second to last row are the same (both look like
beamsplitter couplings between mode 1 and N ) and one row can be eliminated.
Thus, the matrix does not have full rank.

Single-mode squeezing terms / local parametric terms
Examining the graph of a system containing single-mode squeezing∝ ηjeψja2

j +
H.c., we note that as soon as the single-mode squeezing is part of a simple ring, it
decomposes the graph into two disjoint loops. This is because single-mode squeez-
ing closes the loop on the same site2. In this case, TRS can again be broken through
non-vanishing phases, since single-mode squeezing acts locally and fixes one phase
φj of one of the operators aj in Eq. (6.54) (e.g. if the Hamiltonian contains a term
ηje

ψja2
j + H.c. then this fixes the phase φj = ψj/2 of aj).

Multiple couplings per link in a single ring
The only simple ring with multiple (distinct) couplings per link, is the qNR dimer
(main text), combining BS and TMS couplings which does not break TRS, since

(1 +A) =

(
1 −1
1 1

)
→
(

1 0
0 1

)
, (6.63)

has full rank. This is the only possibility for multiple links in a simple ring.

2In this case, the number of rows of (1 +A) exceeds the number of modes in the ring.
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Full loops and their conglomeration preserve TRS
We noted that disjoint loops require an even number of TMS, while a full loop
occurs for an odd number of parametric couplings. In the previous calculations
we showed that TRS can be broken when the number of TMS couplings is even, by
bringing (1 +A) to a form in which the second-to-last and last row were equal so
that we could eliminate one to show that the matrix does not have full rank. With
an odd number of couplings the second-to-last and last row are not equal, so that
we cannot eliminate the last row and the matrix has full rank. This implies that TRS
is always preserved when the graph of the ring displays one full loop.

In a system consisting of multiple rings, we can show using the same elimination
technique that as soon as one ring with a graph displaying two disjoint loops is
contained, TRS can be broken. Otherwise, TRS is automatically preserved.

6.8.5. Linear response and interference of beamsplitter and squeez-
ing interactions

We recall from section 2.6.3 that a general quadratic, bosonic Hamiltonian can be
written in the field basis of creation and annihilation modes, {ai, a†i}, as

Ĥ =
∑
i,j

{
a†iAijaj +

1

2
(a†iBija†j + aiB∗ijaj)

}
, (6.64)

where overall constant shifts have been removed. Here, the matrix elementsAij =
Jije

−iϕij , Aji = A∗ij of the Hermitian hopping matrix A encode beamsplitter
interactions that conserve the total number of excitations. Similarly, we define the
symmetric squeezing matrix B that encodes the particle-non-conserving squeezing
interactions in its elements Bij = λije

iθij , Bji = Bij .

In the quadrature basis xj = (aj + a†j)/
√

2 and pj = i(a†j − aj)/
√

2, Eq. (6.64)
reads

Ĥ =
∑
i,j

{
Tijpipj + Vijxixj + Uijxipj + UTijpixj

}
, (6.65)

where we define the effective potential matrices U = Im(B −A), V = Re(A+ B)
and kinetic energy T = Re(A − B) as in section 2.7.3 [161]. The corresponding
Heisenberg equations of motion read(

ẋj
ṗj

)
=

N∑
k=1

(
Ukjxk + Tjkpk
−Vjkxk − Ujkpk

)
−
(
γjxj
γjpj

)
. (6.66)

In our platform, quadratic Hamiltonians of the form Eq. (6.64) are effectively
conceived in a rotating frame of reference that oscillates at the natural frequencies
of the resonators. As such, free energy terms ∝ a†iai are absent, and the matrix
elements for U, V, T read

Vij , Tij =Jij cos(ϕij)± λij cos(θij),

Uij =λij sin(θij) + Jij sin(ϕij). (6.67)
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These expressions show that matching interaction amplitudes and complex
interaction phases can lead to a cancellation of different contributions in Eq. (6.65),
decoupling quadratures from different resonators in the dynamics governed
by Eq. (6.66) [162, 232]. This is the case for λij = Jij and θij = ϕij = nπ/2, n ∈ Z,
where T = V = 0. This can be interpreted as destructive interference in the
particle-hole space [151].

6.8.6. Non-Hermitian topological invariant
To analyse the topological properties of the chain of 4-rings shown in Figure 6.5a,
we write the dynamical equations for the quadratures under periodic boundary
conditions, J = λ, and obtain the dynamical matrix in the plane-wave basis. We
label the four resonators of each unit cellA` for the resonators in the left column,
with ` ∈ {1, 2} the row index, andB` for the right column. The resulting dynami-
cal equations decouple into two respectively closed sets of equations for the sets
of quadratures {xA1

j , xB2
j , pB1

j , pA2
j }, where j denotes the index of the unit cell,

namely,

ẋA1
j =− γ

2
xA1
j + JpA2

j − JpB1
j + JpB1

j−1 −
√
γxA1

j,in,

ẋB2
j =− γ

2
xB2
j + JpA2

j − JpB1
j −

√
γxB2

j,in,

ṗB1
j =− γ

2
pB1
j − JxA1

j − JxB2
j − JxA1

j+1 −
√
γpB1

j,in,

ṗA2
j =− γ

2
pA2
j − JxB2

j − JxA1
j −

√
γpA2

j,in, (6.68)

and {xA2
j , xB1

j , xA1
j , xB2

j }, reading

ẋA2
j =− γ

2
xA2
j + JpA1

j + JpB2
j −

√
γxA2

j,in,

ẋB1
j =− γ

2
xB1
j − JpA1

j + JpB2
j + JpA1

j+1 −
√
γxB1

j,in,

ṗA1
j =− γ

2
pA1
j − JxA2

j − JxB1
j − JxB1

j−1 −
√
γpA1

j,in,

ṗB2
j =− γ

2
pB2
j − JxA2

j − JxB1
j −

√
γpB2

j,in. (6.69)

The fact that these two sets decouple is a consequence of the pairing we found for
qNR rings. We now switch to reciprocal space, |j〉 ≡ 1√

N

∑
k e
−ika|k〉, in which

we used Dirac notation to denote the basis vectors {|j〉} and {|k〉} and amimics a
lattice spacing (we set a = 1). We obtain two dynamical matrices for each of these
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sets

M(1)
q (k) =


−γ2 0 J(−1 + e−ik) J
0 −γ2 J J

−J(1 + eik) −J −γ2 0
−J −J 0 −γ2

 ,

M(2)
q (k) =


−γ2 0 J J
0 −γ2 J(−1 + eik) J
−J −J(1 + e−ik) −γ2 0
−J −J 0 −γ2

 . (6.70)

We calculate a topological invariant from each matrix, namely the winding number
of their determinant

ν1,2 =
1

2πi

∫ 2π

0

dk detM(1,2)
q (k). (6.71)

We find

detM(1,2)
q (k) =− 2J4 cos(k) +

1

16

(
γ4 + 16J4 + 12γ2J2

)
± i
(

2J4 +
γ2J2

2

)
sin(k), (6.72)

in which we choose the (−) sign for detM(1)
q (k) and the (+) sign for detM(2)

q (k).
These two curves wind in opposite directions in the complex plane, as k evolves
from 0 to 2π, inducing the opposite sign for ν1 and ν2 (see Figure 6.5e).

Above, we used the plane-wave basis to identify the non-trivial topology of each

blockM(1)
q (k),M(2)

q (k). The eigenvalues ofM(1)
q (k) are also the eigenvalues of

M(2)
q (k), albeit for a different k. Together they form a degenerate sub-space. To

obtain the physical (and real) eigenvectors, i.e. pairs of canonically conjugated, real
valued quadratures, we need to superpose eigenvectors from these sub-spaces.





7
Optomechanical realization of

the bosonic Kitaev chain

We report an experimental realization of the bosonic Kitaev chain, a one-dimensional
non-Hermitian topological system which features unidirectional phase-dependent
amplification and stability that depends strongly on boundary conditions. Analogous
to the fermionic Kitaev-Majorana chain, we induce both hopping and pairing inter-
actions between mechanical modes in a chain, through parametrically modulated
radiation pressure forces of a laser control field. In a four-mode system, we investigate
the characteristic exponential phase-dependent amplification, and show that the
localization of mechanical energy in and dynamical stability of the chain depend
crucially on its boundary conditions. These results represent the demonstration of
non-Hermitian synthetic topological lattices with bosonic dynamics that do not
have fermionic counterpart, and establish a model system to study non-Hermitian
topology and its applications.
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7.1. Introduction
In previous chapters, we studied the interplay between particle-conserving beam-
splitter interactions and particle-non-conserving parametric amplification, and
the resulting non-Hermitian dynamics in small systems. For extended lattices, non-
Hermitian dynamics combined with suitable lattice symmetries are known to result
in unique, non-Hermitian topological phases [106, 107, 217, 219, 222, 273–276].
Whereas topological invariants in Hermitian systems are always defined on the
structure of their eigenvectors [36, 69], non-Hermitian systems may also exhibit
topology in the band structure of their complex eigenvalues (section 1.5) [106, 218,
223, 225, 273, 274, 277–279]. The topological description of periodic non-Hermitian
systems is further enriched by complementing the eigenvector topology characteriz-
ing Hermitian topological insulators by the topological nature of exceptional points
[107]. A rigorous classification of non-Hermitian topological phases analogous to
the Hermitian case was constructed [273, 274].

In addition to line gaps, which map to regular band gaps in Hermitian systems
[219, 274], the spectral topology of non-Hermitian systems is characterized by point
gaps: Regions in the complex plane that are enclosed by a non-Hermitian band, to
which an eigenvalue winding number can be assigned [107, 219]. A widely studied
phenomenon related to such spectral structure is the non-Hermitian skin effect
(NHSE), i.e. the accumulation of a macroscopic number of states at system bound-
aries [112, 280–285], which was observed experimentally in various systems from
photonics to acoustics and cold atoms [227–230, 286–289]. While the significance
of the topological origin of the NHSE is a topic of debate [107, 217, 219, 230, 233,
282, 283, 285, 290, 291], its central feature, a strong sensitivity to boundary condi-
tions, is clear: With periodic boundary conditions the system features a winding,
typically unstable complex spectrum with delocalized states, while the spectrum of
a system with open boundaries collapses to a line with localized eigenvectors and
typically stable dynamics — illustrating the breakdown of the conventional relation
between infinite and finite systems that underlies the Hermitian bulk-boundary
correspondence [106].

In this field, recently a bosonic analogue was proposed [232] of the electronic
Kitaev chain that underlies topologically protected Majorana zero modes in specific
one-dimensional superconductors [292]. This bosonic Kitaev chain (BKC), formed
by coupling an array of bosonic modes with beamsplitter (i.e. hopping) and two-
mode squeezing (i.e. pairing) interactions, has remarkable properties, including
quadrature-dependent chiral transport, crucial sensitivity to boundary conditions
and phase-sensitive amplification that is not limited by a standard gain-bandwidth
product [232]. It has also been predicted to offer applications in quantum sensing,
allowing an exponential boost of sensitivity to a signal that perturbs the end of
the chain as a function of chain length [293]. Its amplification behaviour can be
linked to the topological properties of its dynamical matrix [233]. In the presence of
dissipation, the ends of the chain are expected to support metastable edge states
that have been considered by some as bosonic Majorana zero modes [261].

Similar to its fermionic counterpart, the bosonic Kitaev chain is best understood
in terms of the Hermitian quadrature operators xj and pj of each bosonic site j. By
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setting appropriate interaction phases, the xj quadratures completely decouple
from their pj counterparts, with the couplings in the two subchains asymmetric in
direction. This resembles the physics of the non-Hermitian Hatano-Nelson chain
[110] or the chiral transport in the quantum spin Hall effect [36]. However, despite
its appealing features, it is yet to be realized in experiment.

Here we use the quadrature nonreciprocal (qNR) dimer introduced in the pre-
vious chapter as a building block to realize the bosonic Kitaev chain in a nanome-
chanical setting. By balancing the required hopping and two-mode squeezing
interactions, we observe that phase-dependent transport in the chain becomes
fully nonreciprocal, with directionality controlled by the quadrature of the injected
signal. Furthermore, we demonstrate that each link of the chain acts as an amplifier,
such that signals may grow (or decay) exponentially along the chain. This strikingly
impacts the dynamics of chains with periodic boundary conditions: As the per-link
gain exceeds unity, signals are amplified indefinitely and the chain becomes dy-
namically unstable. We observe this transition by studying the thermomechanical
spectrum of the closed chain. In contrast, we demonstrate that the open chain re-
mains stable, marking the crucial sensitivity of the chain to its boundary conditions
— a consequence of the non-Hermitian skin effect. Finally, we study the importance
of the phases of the hopping and squeezing interactions in the chain, and observe
that tuning them allows to transition from a global to a local response of the chain.
These results demonstrate the interesting physics of bosonic topological systems
with non-Hermitian dynamics.

7.2. The bosonic Kitaev chain
In Figure 7.1a we show the bosonic Kitaev chain (BKC) proposed in [232]: A one-
dimensional array of modes coupled simultaneously by beamsplitter (BS) and
two-mode squeezing (TMS) interactions with complex rates J and λ, respectively.
The Hamiltonian that describes this system reads

HBKC =
∑
j

(
Ja†j+1aj + λa†j+1a

†
j + H.c.

)
, (7.1)

where the modes are described by their annihilation operators aj and labelled by
the index j.

Hamiltonian (7.1) describes a chain of quadrature nonreciprocal (qNR) dimers
as introduced in the previous chapter. It is thus most naturally described in terms
of the mode quadratures

xj = (aj + a†j)/
√

2, pj = (aj − a†j)/(i
√

2). (7.2)

The coupling between the quadratures, expressed for example in their equations of
motion (Figure 7.1b), depends on the phase of the BS and TMS interactions. In the
previous chapter, we chose J and λ to be real. For a single qNR dimer, this choice is
not essential — any interaction phase can be removed by changing the gauge that
defines the quadratures xj , pj .
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BS

TMS

. . . . . .

a c d

e fb

imaginary J = λ  
real J = λ  

Figure 7.1: Bosonic Kitaev chain (BKC) and quadrature-dependent chiral transport. (a) In the BKC,
modes aj are simultaneously coupled in a chain by beamsplitter (BS) and two-mode squeezing in-
teractions (TMS) with rates J and λ, respectively. Modes are subject to dissipation with rate γ. (b)
Representation of the BKC equations of motion. For a chain where J = λ = iµ only have a positive
imaginary part µ > 0, i.e. the BKC proper [232], xj (pj ) quadratures exclusively drive their right (left)
neighbours (solid arrows). For positive, real J = λ > 0, quadratures pj are driven by xj quadratures of
both neighbours (dashed arrows). (c) Measured susceptibility matrix χ2 (squared element-wise) for an
open BKC withN = 4 modes and imaginary coupling rates J = λ = iµ. The chain is implemented
using four nanomechanical modes (resonances 1-4 in Figure 2.3 subject to light-mediated BS and
TMS interactions with strengths µ/(2π) ≈ 2 kHz. Feedback (section 2.8.6) is employed to equalize
the resonator damping rates γj/(2π) ≈ γ ≈ 8 kHz. Excitations propagate chirally along the chain
with a quadrature-dependent direction, and experience an amplitude gain per link given by the ratio
G = 4µ/γ ≈ 1. (d) Similar, with µ ≈ 2.5 kHz such that excitations are amplified along the chain with
per-link gain G ≈ 1.25 > 1. (e) Here, µ ≈ 1.5 kHz. Excitation amplitudes decrease in transport as
G ≈ 0.75 < 1 (f ) Susceptibility matrix elements χ2

xj ,x1
(χ2
pj ,p4

) are shown in the left (right) panel,

corresponding to the first (last) column of panels (c-e), and illustrate the propagation of energy injected
in the left-most quadrature x1 (right-most quadrature p4) through the chain. Solid lines represent
nominal per-link gainsG = {0.75, 1, 1.25}. We see that the observed responses are better explained by
interaction rates µ increased by 5%, which carries over toG (dashed lines). Error bars are obtained by
repeating the measurement sweep 5 times and represent the statistical±2σ spread around the average
value.

This is, however, not the case for a chain. Setting the rates J = λ = µ > 0 to be
purely real, positive and balanced, instantiates a chain of quadrature-converting
qNR dimers: Each quadrature pj is coupled to both of its neighbours xj−1 and xj+1,
whereas pj itself does not drive any neighbouring quadratures (Figure 7.1b, dashed
lines). In section 7.5 we will see that this chain has a purely local response.

On the contrary, the BKC proper — the system discussed in [232] — is obtained
by setting the rates J and λ to be purely imaginary. This completely decouples
the xj quadratures from the pj quadratures. Moreover, for the particular case of
balanced rates J = λ = iµ with positive imaginary part µ > 0, the couplings
become fully unidirectional: Quadratures xj are only forced by their neighbour xj−1

on the left, whereas pj are only forced by their neighbour pj+1 on the right. The
BKC then decouples into two fully directional chains of coupled quadratures with
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opposite orientations (Figure 7.1b, solid lines), reminiscent of counter-propagating
spin-polarized edge currents in the quantum spin Hall effect [36]. Furthermore,
these subchains of quadratures coupled by asymmetric hoppings resemble the
Hatano-Nelson chain [110], where mode operators are coupled by beamsplitter
interactions with asymmetric amplitudes. However, we emphasize that the Hatano-
Nelson Hamiltonian is fundamentally non-Hermitian, while the HamiltonianHBKC

in (7.1) underlying the BKC is Hermitian.

7.3. Quadrature-dependent chiral transport
We implement a BKC withN = 4 modes in experiment, using the flexural mechani-
cal resonances of the sliced nanobeam introduced in chapter 2. Nanomechanical
BS and TMS interactions are induced between the detuned mechanical modes
(resonance frequencies Ωj) through modulated radiation pressure forces, exerted
by the field of a common nanocavity coupled to all modes. By suitable modula-
tions of a drive laser, effective mechanical interactions are tunable both in strength
and in phase. Furthermore, we build on the experimental methods laid out in the
previous chapters to actuate and detect nanomechanical motion with quadrature
resolution (sections 2.8.2, 6.8.2), and use measurement-based feedback to equalize
the damping rates of all modes to γj = γ = 8 kHz (section 2.8.6).

First, we probe the response of the open BKC to resonant driving with mod-
ulated radiation pressure. We collect the steady-state amplitudes in the vector
~q = (x1, p1, . . . , xN , pN )T , and the drive term acting on each quadrature in the

vector f (q) = (fx1
, fp1 , . . . , fxN , fpN ). The real matrix χ that relates these quanti-

ties through ~q = χf (q) is called the susceptibility matrix (section 2.7.4). In signal
transport, one is often concerned with the transmitted energy x2

j , p2
j rather than

amplitude xj , pj . This is characterized by the matrix χ2, where the square (·)2 is
applied element-wise.

In Figure 7.1c, we show the energy susceptibility matrix χ2 for the BKC with
N = 4 modes and J = λ = iµ, µ/(2π) ≈ 2 kHz. The measured matrix is block-
diagonal, indicating the decoupling of xj and pj . Moreover, within each block
we clearly observe chiral transport: The block describing the xj quadratures is
lower triangular, indicating that energy injected in xj only travels to the right.
Conversely, the other block, describing the pj quadratures, is upper triangular
and reveals leftward transport of energy. Notably, this isolates excitations in the
quadratures x4 and p1 from the rest of the chain, in a fashion resembling the
edge-localized Majorana zero modes in the fermionic Kitaev chain. However, as x4

and p1 commute, their ‘quasiparticle’ superposition can never form a delocalized
canonical bosonic mode like their fermionic Majorana counterparts [232]. Still,
these states have been theoretically analyzed for their specific stability, localization,
and sensitivity properties [232, 261] (and dubbed ‘Majorana bosons’ by some [261]).

As discussed in the previous chapter, a qNR dimer offers the opportunity to
amplify signals in transport through the presence of two-mode parametric gain.
Since it constitutes a chain of concatenated qNR dimers, this carries over to the
BKC. The output of each dimer serves as the input for the next, in a way that is
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formally equivalent to a cascaded quantum system [268, 269]. As the parametric
amplification competes with incoherent dissipation, the amplitude gain per link in
the balanced BKC (with J = λ = iµ) is given by the ratioG = 4µ/γ.

For the experiment shown in Figure 7.1c, the interaction rate setting µ/(2π) =
2 kHz induces a per-link gain G ≈ 1 close to unity. A signal injected in any site
xj (pj) thus emerges at all sites xk>j to the right (pk<j to the left) with equal
amplitude. In Figure 7.1d,e, interaction rates µ/(2π) = {2.5, 1.5} kHz induce
per-link gainsG = 1.25 and 0.75, respectively, such that injected energy emerges
with exponentially growing or decaying magnitude along the chain (Figure 7.1f).
The corresponding theoretical energy susceptibility matrix for all three cases is
given in the basis {x1, . . . x4, p1, . . . , p4} by

χ2 =
4

γ2



1
G2 1
G4 G2 1
G6 G4 G2 1

1 G2 G4 G6

1 G2 G4

1 G2

1


. (7.3)

7.4. Boundary conditions and stability
In a perfectly balanced, open BKC, the linear per-link gainG can be made arbitrarily
large by increasing µ, while the total signal amplification GN along the chain re-
mains bound by its finite lengthN . The open BKC thus remains dynamically stable
for any value of µ. [232]

This is markedly different in the closed BKC: By connecting the last resonator
aN to the first resonator a1, excitations can circulate along the loop. If the per-link
gain G > 1 then exceeds unity, excitations grow indefinitely and the closed BKC
becomes unstable. As pointed out in [232], the boundary conditions of a BKC thus
dramatically impact its dynamics, complex eigenfrequencies and eigenmodes. This
holds true for unbalanced (J 6= λ) BKCs as well, and links to the dependence of the
dynamical (topological) properties of non-Hermitian asymmetric hopping models
— such as the Hatano-Nelson chain [110] and the BKC itself — on their boundary
conditions [107, 112, 219, 290].

In Figure 7.2, we probe the stability of a four-mode balanced BKC (J = λ = iµ)
under thermal driving of all quadratures. For the open chain, the thermomechanical
spectrum of resonator 1 (Figure 7.2a, left) shows an increase in spectral intensity
with increasing µ, while the lineshape of the thermal resonance remains similar. In
contrast, the spectrum of the closed chain (Figure 7.2a, right) shows a resonance
with narrowing linewidth as µ approaches the instability threshold at µ = γ/4,
whenG = 1. Beyond this threshold, the amplitude of the resonators is bound by
nonlinearities and a sharp resonance peak remains.

By integrating the spectra in Figure 7.2a, we obtain an estimate for resonator 1’s
average energy in the thermal steady-state, as illustrated in Figure 7.2b. We see that
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Figure 7.2: Boundary-dependent stability. (a) Thermomechanical spectra of the BKC proper around the
resonance of lowest-frequency mode 1, for open (left) and closed (right) boundary conditions and equal
dissipation rates γ ≈ 8 kHz. As the coupling µ = J/i = λ/i is increased, the spectral intensity of the
thermally driven open chain increases, whereas its linewidth remains similar. In contrast, the resonance
linewidth of the closed chain decreases with increasing µ, until the linear system becomes unstable
beyond threshold µ = γ/4 (dashed lines). In the experiment, amplitudes are bound by nonlinearities
and a narrow resonance peak remains. (b) Thermal steady-state energy in the lowest-frequency resonator
1 of the open and closed BKCs, obtained by integrating the spectra in (a) and expressed relative to the
thermal energyEth in the uncoupled resonator (when J = λ = 0). The open chain shows amplification
of thermal energy injected into the chain, bound by the finite length of the chain. The linear closed
chain has an infinite effective amplification length, such that the steady-state amplitude of amplified
fluctuations diverges as the per-link gain G = 4µ/γ → 1 approaches unity (dashed line). Thermal
energies predicted from (7.4) and (7.5) are shown (black lines) and correspond well with the measured
values.

the amplification of thermal fluctuations is much larger in the chain with periodic
boundary conditions than in the open chain.

By solving the Sylvester equation (4.13) for the correlator matrix in the thermal
steady-state, derived in section 4.2.2 from the quantum regression theorem, we
calculate the average thermal energies in the open and closed chains. For simplicity,
we assume equal population nth = nth

j in the baths coupled to each resonator. The
average thermal populations in resonator 1 are then given by

nOBC
1 = nth

(
1 +G2/4 + 3G4/16 + 5G6/32

)
, (7.4)

nPBC
1 = nth

(
1 +

1

2

G2

1−G2

)
(7.5)

for open and periodic boundary conditions, respectively. As shown in Figure 7.2b,
these expressions predict our measured energies well, since the effective occupa-
tions of the thermal baths are tuned closer by the feedback we apply. Importantly,
we see from (7.5) that the amplification is expected to diverge in the closed chain
as the per-link gainG = 4µ/γ → 1 approaches unity. This is where the correspon-
dence with the measurements breaks down, as the experimental amplitudes are
limited by nonlinearities.

Since the closed chain with equal bath occupations is translationally invariant,
expression (7.5) holds in fact for all resonators. This does not apply to the open
chain, where we find that the two outer sites nOBC

1 = nOBC
4 have equal populations,

whereas the inner sites have populations

nOBC
2 = nOBC

3 = nth
(
1 +G2/2 + 3G4/16

)
(7.6)
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Figure 7.3: Transition from global to local response tuned by interaction phase. Measured susceptibility
matrices χ2 (top row, squared element-wise), for chains with N = 4 modes (dissipation rates γ =
8 kHz) coupled by BS and TMS interactions with rates µ ≈ 1.5 kHz. Chains (illustrated in the bottom
row) are constructed with open or closed boundaries and either purely real or imaginary interactions,
dictating the connectivity between quadratures (Figure 7.1a). (a) When the interaction rates λ = J =
iµ, µ > 0 are purely imaginary, the chain shows a global response to excitations with quadrature-
dependent directionality. In this case, open boundary conditions truncate the propagation of energy
at the outermost quadratures x4 and p1. The same experiment is shown in Figure 7.1e and repeated
for clarity. (b) Closing the chain allows energy to circulate along the loop. Here, the per-link gainG < 1
is smaller than unity, so that excitations eventually die out and the loop remains stable. Quadratures
of different type xj and pj remain completely decoupled. (c) Setting the interaction phases to purely
real, positive rates J = λ = µ > 0 changes the connectivity between quadratures and leads to a local,
nearest-neighbour-only response. Note that for clarity, the basis in which χ is described is reordered.
(d) For this setting of interaction phases, the response remains local in the closed chain. The effective
amplification length of just 1 site thus procures stable linear dynamics regardless of the value of µ.

that grow as a polynomial in G with lower degree than in (7.4). This reflects the
shorter length of the effective amplification chains that feed the inner sites.

7.5. Transition from global to local response
Finally, we return to the effect of the phases of the BS and TMS interactions. We
have seen that the BKC proper, with imaginary interaction rates, is characterized by
a global response. Interestingly, choosing the rates J ,λ to be real and balanced in
magnitude (|J | = |λ|) results in a chain characterized by a local response instead.

We study this transition in Figure 7.3 for chains with interaction rate magnitudes
µ ≈ 1.5 kHz and per-link gain G = 0.75 < 1 smaller than unity. In Figure 7.3a, b
we choose imaginary interaction rates J = λ = iµ. For clarity, the response of the
open chain (Figure 7.1e) is repeated in Figure 7.3a. In addition, Figure 7.3b shows
the response measured in the corresponding closed chain. While the decoupling
between xj and pj remains, excitations now wrap around from x4 → x1 and
p1 → p4. Overall, the continued propagation of energy around the loop leads to a
higher response than in the open chain, in line with the difference in amplification
observed for thermal fluctuations (Figure 7.2b).

The measured response strikingly changes when we chose real interaction rates
J = λ = µ instead (Figure 7.3c, d). The susceptibility matrices then show that
energy injected in a quadrature xj only elicits a response in the neighbouring
quadratures pj−1, pj+1. In turn, the quadratures pj do not drive their neighbours at
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all, truncating further propagation of energy. In this case, the only effect of closing
the chain (Figure 7.3d) is to equip the outermost sites with two neighbours instead
of one. Notably, the response of the chain remains local, and as a consequence, the
stability of the chain is no longer affected by its boundary conditions.

After swapping the role of the quadratures x2j and p2j in every other site 2j, the
chain with real interactions can be viewed as a chain of qNR dimers with opposing
directionalities (Figure 7.3c, d, bottom row). While real interactions guarantee
that only quadratures of opposite flavours are coupled, the directionality of this
coupling is controlled by the relative sign of J andλ. This inspires a way to construct
a proper BKC with real interaction rates: By setting λ = −J for every other link, the
propagation directions align and two decoupled chains of alternating quadrature
flavours emerge. While this has been pointed out before in [232], here we link it to
the connectivity of the underlying qNR dimers.

7.6. Conclusions and outlook
In conclusion, we realized a nanomechanical implementation of the bosonic Kitaev
chain through optomechanical parametric driving, and demonstrated its charac-
teristic dynamic stability and phase-dependent unidirectional transport. Moving
forward, we note that many interesting properties of the BKC are still left unexplored,
including its different resilience to perturbations in dissipation and detuning. Fur-
thermore, the BKC implemented here could serve as an experimental testbed to
study the topological invariants underlying directional amplification in arrays [233],
the exploration of non-Hermitian nonreciprocal and topological phenomena in
more complex networks and two-dimensional lattices, and the conditions for the
non-Hermitian skin effect. This model, and the general driving methods we employ
to implement it, could be extended to other parametrically driven systems including
optical resonators and superconducting circuits, and find potential applications in
signal amplification and sensing [293].





8
Conclusions and outlook

In this thesis, we have developed an experimental platform that allows explor-
ing the effects of breaking time-reversal symmetry and Hermiticity in the domain
of nanomechanical resonators. With this platform, we demonstrated several key
results on nonreciprocal responses, unidirectional amplification, tuning of non-
Hermitian dynamical phases, signatures of Hermitian and non-Hermitian topologi-
cal features, manipulation of thermal flows and resulting refrigeration performance,
and pattern formation and localization in nanomechanical networks. In this fi-
nal chapter, we discuss implications of our findings and present an outlook on
opportunities for further research. In this spirit, we conclude by presenting some
preliminary experiments that demonstrate light-mediated effective mechanical
nonlinearities.

8.1. Control, coherence and interactions
The optomechanical methods that form the basis of the platform offer a high degree
of control. This allowed us to present the general capability to realize arbitrary
quadratic bosonic Hamiltonians in small resonator networks. The platform thus
serves as a powerful model system to study the physics of such networks. In par-
ticular, this connects to the field that studies topological phases in bosonic matter;
both Hermitian phases such as the quantum Hall effect, as well as non-Hermitian
topological phases. At the same time, our results on the tuning of dynamical phases
associated with parity-time (PT ) symmetry constitute the first implementation of a
PT -symmetric system where the required non-Hermiticity is induced by coherent
interactions, as was put forward recently [163].

The high coherence of our nanomechanical resonators combined with sensitive
optical readout, which readily resolves thermal fluctuations, allows accurate obser-
vation of dynamics. We demonstrated that high effective interaction strengths can
be easily achieved, to allow operation in the mechanical strong coupling regime.
In fact, we foresee that they could also approach the regime where they exceed the
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mechanical frequency itself, for example by increasing the optical input efficiency
[64]. This would allow studying networks in the ultrastrong coupling regime where
the rotating wave approximation breaks down.

Furthermore, we note that the coherence in our systems could be enhanced
straightforwardly by operating them at lower temperatures [146]. Alternatively,
one could turn to ultralow-dissipation resonators such as those in softly-clamped
and/or stressed silicon nitride structures [294–296], or actively control the decay
through feedback, as we have already demonstrated.

Another opportunity that we did not yet explore in this work, but could be
readily implemented, is to rapidly vary couplings in strength and/or phase; faster
than the dissipation in the system or even its evolution (oscillation period) itself.
In principle, this offers a wide range of research prospects, including the study
of synthetic electric fields (i.e. varying magnetic fields) and the physics that they
induce such as Bloch oscillations and dynamic localization [297–301].

Additionally, the dynamically unstable regime presents possibilities for fur-
ther research. For example, if we look at the singly conjugated trimer in the self-
oscillating regime (e.g. as shown in Figure 5.9b), the high-amplitude oscillations
would themselves cause strong modulation of the intracavity field. Those modula-
tions in term influence the mechanics through backaction. An interesting question
is whether the broken time-reversal symmetry of the self-oscillating system then
persists if would we stop the driving, which induced the symmetry-breaking time-
modulation in the first place, and what the associated dynamics are. Such behaviour
would be an example of a dynamical gauge field [136]. Moreover, coupled resonators
that self-oscillate in mode-locked (synchronized) fashion are known to be more
stable than single limit-cycle resonators [29, 30]. We do not know yet whether bro-
ken time-reversal symmetry could generally impact the stability (phase noise) of a
self-oscillating network.

8.2. From small to large networks
The high degree of control over network nodes and their connectivity creates a
versatile testbed to study interesting phases of matter. In particular in the areas of
non-Hermitian and nonlinear topological matter, a complete overview of possibil-
ities is currently lacking. We envision that the parametrically induced squeezing
interactions that we demonstrate could serve as building blocks of a variety of
non-Hermitian topological systems of different dimensions, beyond the proof-of-
concept demonstrations we presented.

While Hermitian and non-Hermitian topological systems are theoretically stud-
ied usually in infinite lattices, we showed that some key associated phenomena can
be observed in systems as small as 4 or 5 resonators. Still, it could be very interesting
to increase the number of available nodes. We note that the current networks are in
principle not limited by fabrication disorder on the frequencies: One can simply
dial in the precise modulation frequency needed given the observed mechanical
frequencies. However, increasing the number of resonators will ‘crowd the spectrum’
and increase the risk of unwanted resonances between (mixed) harmonics of the
various resonator frequencies, negatively impacting the individual addressability of
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Figure 8.1: Scaling up in real space. Typical thermomechanical spectra of the double-cavity sliced
nanobeam nanostructure, imprinted on a laser reflected from three different focus positions (indicated
by arrows). The three nanobeams in the system are schematically represented on the right. Seven
distinct, optomechanically-active nanomechanical resonances are observed. These are colour-matched
with their corresponding oscillating nanobeam. Whereas in the top and bottom spectra the laser only
interacts with a single cavity and its mechanical modes, the middle spectrum is obtained by aligning the
laser in the middle, such that it interacts simultaneously with both cavities. Experiments in this thesis
have employed optical excitation of a single cavity (bottom row) coupled to the 5 five flexural modes
at frequencies Ωj/(2π) = {3.7, 5.3, 12.8, 17.6, 26.2}MHz. Additional peaks are caused by nonlinear
optomechanical transduction [146].

effective interactions. A possible countermeasure to this challenge lies in increased
coherence of the resonators, as discussed above.

On the other hand, one could also deal with the issue of spectral crowding by
embracing degeneracies instead. By realizing a structure with physically distinct but
equally designed resonators on a chip, multiple transitions can be simultaneously
addressed by the same modulation [64]. Although this reduces the number of
individually controlled phases, that is not necessarily a problem to study large-scale
phenomena such as topological phases [64, 74].

In this spirit, we can think of scaling up by addressing multiple cavities similar
to our system. In fact, the device we have used in this thesis, shown in Figure 2.1
and featuring two optical cavities coupled to three vibrating elements, was already
designed with this in mind. We show a proof-of-concept experiment in Figure 8.1,
where we see that 7 modes can be addressed through a single laser beam that
couples to two cavities from normal incidence. Mathew et al. have argued how this
could be extended into a large lattice [64].

Alternatively, the cavities could be positioned along a single waveguide, such
that they interact optically through the waveguide, with each cavity addressing
a certain number (e.g. 6-8) of strongly coupled mechanical modes. Furthermore,
other mechanical systems could be interesting, especially those that host a large
number of mechanical resonances by design, for example long on-chip mechanical
waveguides [302] or bulk acoustic wave resonators [303].
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8.3. Stochastic thermodynamics
We have used the tunable interactions in our platform to image and manipulate
thermal flows in resonator networks. In particular, broken time-reversal symmetry
was seen to impact the performance of refrigeration. Some aspects of this process
remain to be uncovered: For example, how do we quantify the work supplied by
the optical driving field to refrigerate, or the production of entropy? Moreover,
can we then quantify the efficiency of the refrigeration process? Does breaking
time-reversal symmetry improve that efficiency in some regimes?

Conversely, it would be an interesting goal to construct a microscopic thermal
engine [186] using our platform. Of particular interest would be the bounds on its
efficiency at finite power when time-reversal symmetry is broken, which is still a
topic of debate [203–206]. A candidate process to induce the nonlinearity required
to create an autonomous engine will be discussed in section 8.6.

Alternatively, our system could serve as an interesting testbed in the field of
stochastic thermodynamics [23, 24], to probe for example fundamental aspects of
out-of-equilibrium fluctuations [187] or heating and cooling in anti-parity-time
symmetric systems [216]. Another route would be to study heat transport in topo-
logical insulators [201]. Finally, it could be interesting to study the performance of
thermodynamic systems when quantum fluctuations are significant, i.e. to perform
fundamental experiments in ‘quantum thermodynamics’ [21].

8.4. Towards the quantum regime
A natural question to ask is whether the concepts and methods developed in this
thesis could be extended down to the quantum regime, i.e. for mechanical signals
at the few-phonon level, nonclassical mechanical quantum states, and vacuum
fluctuations. Such an extension would be particularly timely, as phonons are now
actively considered as media for transporting quantum information on a chip, owing
to their high coherence and their ability to interface different quantum systems.
As such, they can serve as a bus for quantum information, transducers from one
degree of freedom to another, and as quantum memory elements [21, 304].

In that context, the symmetry breaking and parametric amplification that we
study can have interesting applications. Unidirectional quantum-limited amplifica-
tion is one example [134]. Circulation is highly useful in routing quantum informa-
tion efficiently among nodes in a network, and isolators serve to shield quantum
systems from unwanted back-propagating noise that would decohere them. More
broadly, manipulating the flow of noise and general strategies to shield sensitive
quantum systems is thus an important topic for further research.

However, when extending the methods we deployed down to the quantum
regime, we need to be mindful of quantum backaction: The quantum fluctuations
of the laser that is used to establish the couplings add incoherent mechanical
fluctuations. These are significant if the quantum cooperativity 4g2/(κγ(nth+1)) >
1 exceeds unity, which is to be expected if one wishes to reach strong mechanical
coupling in the quantum regime (nth ≈ 0). In optomechanics, approaches to
mitigate the effect of quantum (radiation pressure) backaction include on the one
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hand feedback, and on the other hand operation in the resolved sideband regime
[118].

The latter seems especially useful to achieve strong quantum-coherent mechani-
cal coupling, and was in fact considered in theory in different cavity optomechanical
systems [134]. It likely requires rethinking the precise way the systems are driven
(temporally modulated), as that would differ from the temporal drives we use now
in the bad-cavity limit. We note that it is theoretically known that effective quadratic
mechanical Hamiltonians can be implemented also in sideband-resolved systems
[305]. The development of suitable systems is still an interesting endeavour: The
aforementioned phononic waveguides and bulk acoustic resonators come to mind,
as in those a large number of resonators can be coupled with high cooperativity to
a single optical mode [302] or superconducting qubit [303].

8.5. Sensing
Nanomechanics is especially interesting for precise sensing of small forces, elec-
tromagnetic fields [306], and masses [17, 18]. An interesting question is whether
smartly designed resonator networks, and in particular the breaking of symmetries
could help sensing. In recent years, many researchers have turned to parity-time
symmetric systems to potentially assist sensing [100, 104, 105, 307]. However, the
actual enhancement of sensitivity in such systems is still under debate [101, 239,
308].

The precise way in which our methods can induce and control exceptional
points could provide an interesting testbed in that context. Moreover, we could
study both in the passive and near the unstable regime. Indeed, marked differences
in fluctuation dynamics have been predicted between those [309].

Interestingly, it has been predicted that nonreciprocal networks could lead to a
real performance advantage in sensing, by effectively enhancing a signal due to a
perturbation that breaks a nonreciprocal state without adding noise [239]. More-
over, in the bosonic Kitaev chain we realized in chapter 7, it has been predicted
that sensitivity to a perturbation of the last resonator in the chain would be expo-
nentially enhanced as a function of the number of resonators in the chain [293].
Testing whether these and other networks with broken time-reversal symmetry
and Hermiticity could give a true advantage to sensor performance would be a
highly important undertaking — in which any advantageous nano-optomechanical
approach could be directly applied to e.g. force or mass sensing.

8.6. Controlled nanomechanical nonlinearities
In Figure 5.9b, we observed the effects of optomechanical nonlinearity limiting the
amplitude of the self-oscillating singly conjugated trimer. In fact, our systems are
nonlinear already at low amplitudes [146], which arises from the fact that the me-
chanical displacement detunes the cavity away from resonance by such an amount
that the change in intracavity field (and thus the radiation pressure backaction) is
no longer linearly proportional to the displacement (Figure 8.2a). In particular, this
means that the optical spring effect would be nonlinear.
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Adding nonlinearity in our networks could have some fascinating possibilities.
First, it could enable the engines we mentioned above, and lead to modified energy
transport in microscopic power grids [310].

Second, it could be a resource for information processing. An example is reser-
voir computing, where nonlinear resonators are coupled to perform together a
specific computing task on an input encoded on the resonator drives. In reservoir
computing, one carefully trains the way in which one reads out the network in order
to perform the wanted task. Instead, we could tune all parameters in the network
to reconfigure it fully and attempt to achieve optimal computing performance.
Moreover, we could study thermal noise, and thus thermal limits to computation
[311].

Third, it could be a versatile testbed to study nonlinear topological phases of
matter and resulting emergent phenomena [38, 312–318]. In a system where the
hopping between resonators depends nonlinearly on their excitation amplitude, it
can happen that a topologically nontrivial domain is induced through the excitation
of the edge state it hosts [319–321]. This edge state is then a topological soliton
that can travel dynamically through the system, changing the topological structure
while it does. Various other intriguing phenomena have recently been observed.
These include the observation of nonlinear soliton edge states in quantum-Hall-like
waveguide arrays [315], quantized nonlinear Thouless pumping [322], and even
behavior reminiscent of fractional quantization [323]. Whether this is linked to the
fractional Hall effect in strongly correlated electron systems is not yet understood.

8.6.1. Cavity-mediated Duffing nonlinearity
Because of the high appeal of nonlinearity in future studies, we conclude this out-
look with an experimental exploration of the nonlinearities that we can induce and
control in our nano-optomechanical platform. While optically-mediated mechani-
cal nonlinearities have been considered before [324–326], here we focus on their
tunability, their effect on thermal fluctuations, and importantly, their extension to
light-mediated mechanical interactions. In particular, we present a light-induced
tunable mechanical Duffing nonlinearity, as well as a nonlinear beamsplitter inter-
action that can modify the dynamics and spectral response of a two-mode system.
The latter could be a potential building block for nonlinear mechanical topological
insulators [319].

In an optomechanical cavity driven by a fixed drive laser with dimensionless
detuning u0 = 2∆0/κ, the displacement x of the mechanical resonator modulates
the intracavity photon numbernc ∝ h(u0+2Gx/κ). Here,G is the optomechanical
coupling strength and we assume operation in the bad cavity limit κ� Ω with Ω
the mechanical frequency. Because the dimensionless cavity response function

h(u) =
1

1 + u2
, (8.1)

given before in (2.18), is nonlinear, mechanical motion is nonlinearly transduced
onto the intracavity intensity, and generates harmonics of the mechanical oscilla-
tion in the reflected intensity [146]. Particularly, when the displacement-induced
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shift of the optical resonance is on the order of the cavity linewidth, Gx ∼ κ, the
nonlinearity of the cavity response function becomes important. In our device,
this happens already at a few times the average thermal amplitude of the room-
temperature resonators.

The modulated intracavity field also acts back on the mechanical resonator
through radiation pressure, resulting in the optical spring effect. In section 2.3.4,
we determined the linear optical spring shift δΩ from the linear term in the Taylor
expansion (2.21) of nc(x), and neglected the higher-order terms. In this section, we
revisit that approximation.

In particular, as the quadratic term vanishes when the linear spring shift is
maximal, we focus on the term cubic in x. Generally, the nondimensionalized dis-
placement z(t) of a resonator with a third-order nonlinearity satisfies the differential
equation

z̈(t) = −αz(t)− γż(t)− βz(t)3 + f(t) (8.2)

where α is the linear stiffness, γ the damping rate, β the nonlinear stiffness co-
efficient, and f(t) the force acting on the resonator. This equation of motion is
known as the Duffing equation, and corresponds to a symmetric quartic potential.
Its dynamics have been widely studied, and are known to give rise to bistability,
hysteresis, bifurcations, and chaos [156, 327–329].

In line with section 2.3.4, we express the displacement of the mechanical res-
onator using the dimensionless coordinate z ≡ x/xzpf. Expanding nc(z) up to third
order, as illustrated in Figure 8.2a, then gives the form

β =
8Ωg4

0nmaxh
′′′(u0)

3κ3
= −6ΩδΩ

g2
0

κ2
(8.3)

for the nonlinear coefficient. The last expression is valid for the two detunings
u0 = ±1/

√
3 where the linear spring shift δΩ is maximally positive and negative,

respectively. Interestingly, as the intensity of the laser drive enters (8.3) through
nmax, or equivalently through δΩ, the interaction with the cavity induces a tunable
effective mechanical Duffing nonlinearity.

8.6.2. Nonlinear spring shift
In the following, we explore the effects of this tunable nonlinearity in our platform.
We start with an experiment where resonator 3 (frequency Ω3/(2π) = 17.6 MHz,
estimated photon-phonon coupling rate g0/(2π) = 3.1 ± 0.9 MHz) is driven co-
herently to high amplitudes by the modulations of a weak ‘force’ laser (intensity
Pf = 0.1 mW) that is resonant with the cavity. In addition, a strong ‘spring’ laser
(intensity Ps = 1.0 mW) detuned by u− = −1/

√
3 (u+ = 1/

√
3) induces the op-

timal negative (positive) optical spring shift δΩ/(2π) ≈ ±30 kHz in the resonator.
Finally, motion is read out from the modulations imprinted on a third, far-detuned
(udet = −5.0) ‘detect’ laser reflected off the cavity (intensity Pdet = 1.0 mW).

As shown in Figure 8.2b, we measure the thermomechanical spectrum of the
resonator as a function of the modulation depth cd driving the resonator. The coher-
ent high-amplitude oscillations appear as a narrow peak with increasing amplitude,
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Figure 8.2: Cavity-mediated Duffing nonlinearity. (a) Cavity response h(u) as a function of dimen-
sionless detuning u = 2∆/κ. The dashed line indicates the detuning u− = −1/

√
3 where the linear

spring shift δΩ, derived from the linear approximation to h(u) (blue line), is maximally negative. As
the second-order derivative h′′(u−) vanishes, the next-higher-order approximation is cubic in u (red
curve). The grey area corresponds to the largest mechanical amplitudes measured in panels (b) and (c)
for cd = 1. (b) Thermomechanical spectra of resonator 3 while coherently driven by modulations (depth
cd) of a weak ‘force’ laser resonant with the cavity. A strong ‘spring’ laser detuned by ∆ = −κ/(2

√
3)

(∆ = κ/(2
√

3)) induces a negative (positive) optical spring shift in the left (right) panel, while resonator
motion is read out from modulations imprinted on a third, far-detuned (∆det = −2.5κ) ‘detect’ laser re-
flected off the cavity. The spectra show an intense, narrow contribution of driven oscillations, saturating
the colour scale. In addition, two bands are observed with different intensities. The most intense band
shifts up (down) in frequency for negative (positive) spring shift and corresponds to thermal fluctuations
on top of the driven amplitude. The weaker band is a ‘ghost’ that arises from nonlinear transduction. (c)
Fitted center frequency of the thermal contribution plotted against the square of the driven amplitude
measured from linear transduction. For each detuning u±, two different drive laser intensities P± are
shown. The dashed line corresponds to the mechanical displacement that induces a shift of magnitude
|u±| in the cavity resonance. Black lines in (b) and (c) show the estimated frequency shift (8.10) of the
nonlinear susceptibility.

saturating the colour scale. Remarkably, the broad spectrum of thermal vibrations
now shifts in frequency, with the direction of the shift depending on the spring laser
detuning: For negative linear spring shift the thermal band moves up in frequency
(Figure 8.2b, left), while for negative linear spring shift it moves down (Figure 8.2b,
right). In addition, a weak, frequency-reflected ‘ghost’ band appears that moves
in the other direction, presumably arising from nonlinear transduction [146] that
mixes the thermal fluctuations with the strong coherent oscillations. Alternatively,
the additional weaker band could also reflect actual frequency content of the mo-
tion, as observed before in nonlinear electromechanical [236] and microwave [330]
systems. As these two effects arise in part from interactions with different laser fields,
they could potentially be distinguished by varying the detection laser intensity or
detuning.

From this measurement, we observe that the strong coherent oscillation alters
the susceptibility of the resonator to thermal forces. In an attempt to model the
nonlinear susceptibility to an additional small force on top of the strong coherent
driving, we employ the method of harmonic balance [331, 332]. This approach,
commonly used to evaluate the dynamics of Duffing oscillators [328], relies on
expanding the motion z(t) as a Fourier series and then truncating that expansion
beyond a specified order, while balancing the amplitudes of the remaining harmon-
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ics. We assume the form

f(t) = fd cos(ωdt+ φd) + fp cos(ωpt+ φp) (8.4)

for the force driving the resonator, which includes the strong drive with amplitude
fd, frequency ωd, and phase offset φd and a (small) additional periodic driving force
described likewise by fp, ωp and φp. We will call the small drive the ‘probe’ force,
while referring to the strong drive as the ‘pump’. For simplicity, we assume that the
frequencies ωd are incommensurate, such that the phase offsets are not essential
and we can set φd = φp = 0 without affecting the dynamics.

In response to this composite force, we seek an approximate solution to the
resonator evolution of the form

z(t) = z1 cos(ωpt+ φ1) + z2 cos(ωpt+ φ2). (8.5)

We insert (8.5) and (8.4) into the Duffing equation (8.2) and balance the funda-
mental harmonics at ωp and ωd. First, we solve for the ‘pump’ amplitude z1 while
neglecting the ‘probe’ amplitude (z2 = 0). This results in the well-known equation

z2
1

[(
ω2

d − α−
3

4
βz2

1

)2

+ (γωd)2

]
= f2

d (8.6)

that describes the frequency response of a Duffing oscillator to a single driving tone.
Next, we solve for the probe amplitude z2 in the presence of the pump,

z2
2

[(
ω2

p − α−
3

4
β
(
2z2

1 + z2
2

))2

+ (γωp)2

]
= f2

p . (8.7)

Assuming that z1 � z2 in the term in brackets, we arrive at the approximation

z2 =
f2

p

(µ2 − ω2
p)2 + γ2ω2

p

(8.8)

for the amplitude of motion at the probe frequency. This corresponds exactly to the
susceptibility of a linear harmonic oscillator with natural frequency µ. Its nonlin-
early shifted frequency µ is given by the expression

µ2 = α+
3

2
βz2

1 . (8.9)

Finally, after plugging the expression (8.3) for the radiation-pressure-induced β into
(8.9), we arrive at the expression

δΩnl = −9

2
δΩ

g2
0

κ2
z2

1 (8.10)

that describes this nonlinear contribution to the spring shift of the probe suscepti-
bility, derived under the assumption that δΩnl � Ω.
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Figure 8.3: Frequency response and ringdown of a single resonator with tunable nonlinearity. (a)
Amplitude response to coherent force laser modulations with a fixed depth cd ≈ 0.5 as a function of
detuning ∆d = ωd − Ω3 of the driving tone, for spring laser detuning u1 = u+ (left) and u1 = u−
(right). The intensity of the spring laser is varied from Ps = 0.0 mW to Ps = 1.0 mW, with the corre-
sponding responses offset for clarity. Forward and backward detuning sweeps are indicated by blue and
red lines, respectively. Predicted response amplitudes from (8.6) are shown in black for photon-phonon
coupling g0 = 3.4 MHz, with dashed lines indicating the unstable branch (b) Time-resolved ring-up
and ring-down of the nonlinear resonator obtained in a pulsed experiment, for spring laser detuning
u1 = u−. Coherent modulations are applied on the force laser width depths cd = {0.1, 0.2, 1.0}. (c,
left) Demodulated phase α(t) as the nonlinear resonator rings down. Traces are shown for two different
spring laser detunings u± and three different modulation depths c± = {0.1, 0.5, 1.0}, where the
index± indicates the corresponding laser detuning. (c, right) Instantaneous frequencies Ωnl calculated
from the derivative of the phases shown in the left panel, expressed relative to the intrinsic mechanical
frequency Ω̃3 of the resonator. During the ringdown, when the resonator is evolving freely, Ωnl is seen to
approach the intrinsic frequency regardless. Time-resolved measurements are averaged coherently over
1000 runs.

We calculate δΩnl for the pump amplitudes measured in Figure 8.2b (black lines).
Even though (8.10) is derived for a coherent probe tone, it appears to predict the
nonlinear shift of the susceptibility to incoherent thermal forces reasonably well.
As shown in Figure 8.2c, the sign and magnitude of β are tuned by the detuning
and intensity of the spring laser. Finally, we note that the pump squared amplitude
z2

2 is measured from its linear transduction on the detection laser, which results in
an underestimate for higher amplitudes [146]. Presumably, this contributes to the
underestimation of δΩnl observed in Figure 8.2c for higher amplitudes. More precise
measurements (including an improved estimate of g0) and a further theoretical
analysis to treat incoherent driving are warranted.

8.6.3. Response to coherent driving
Next, we investigate the frequency response to strong coherent driving. In Fig-
ure 8.3a, we show the response of the resonator to modulations of the force laser
with a fixed depth cd ≈ 0.5 and variable detuning ∆d = ωd − Ω3 relative to the
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(linearly spring-shifted) resonance frequency Ω3. When the spring laser is off, we ob-
serve a resonance that is approximately symmetric, indicative of a linear resonator
response.

Turning on the spring laser with detuning u1 = 1/
√

3 induces a softening
Duffing nonlinearity β < 0 that increases in magnitude for increasing spring
laser intensity Ps. For the given amplitude of the driving force, bistability in the
response amplitude is observed for Ps ≥ 0.6 mW. The low- and high-amplitude
stable branches can be probed by sweeping the detuning forward and backward,
respectively. Conversely, by turning on the spring laser with detuning u1 = −1/

√
3,

a hardening Duffing nonlinearity β > 0 is induced. In that case, the characteristics
of the response appear reflected in frequency. In both cases, the frequency response
can be modelled by (8.6). We find that this agrees well with experiment upon adjust-
ing the value of the photon-phonon coupling to g0 = 3.4 MHz, which is within the
error bounds of the previous, independently measured value g0 = 3.1± 0.9 MHz.

8.6.4. Nonlinear ringdown
We can also probe the dynamics of the nonlinear resonator in the time domain. In
Figure 8.3b, we show a pulsed, time-resolved experiment where a coherent driving
tone (ωd = Ω3) is turned on at t = 0 and turned off at t = 5 ms in the presence of a
strong spring laser. For a small driving force, the steady-state amplitude is reached
without overshooting, as expected for a linear resonator. However, for larger driving
forces, the amplitude is seen to overshoot and oscillate until steady-state is reached.

After the driving is stopped, the resonator rings down. It is then free to evolve
at its natural frequency, which for a Duffing oscillator is known to depend on
amplitude [328, 329]. In experiment, we can estimate the instantaneous frequency
Ωnl(t) from the evolution of the demodulated phase

α(t) =

∫ t

t0

[Ωnl(τ)− ωd] dτ (8.11)

relative to the local oscillator at frequency ωd used to analyse the resonator signal.
In Figure 8.3c, left, we show the demodulated phase α(t) as the resonator rings
down for two different spring laser detunings u± and three different modulation
depths c± = {0.1, 0.5, 1.0}, where the index± indicates the corresponding laser
detuning. To reach higher driven amplitudes, these modulations are now imprinted
on the stronger spring laser.

From these, we calculate the corresponding instantaneous frequencies Ωnl(t) =
α′(t) + ωd as shown in Figure 8.3c, right. These reveal that for higher amplitudes,
the frequency of free oscillations tends towards the intrinsic, non-spring-shifted
mechanical frequency. Intuitively, this makes sense: For larger and larger vibrations,
the cavity resonance frequency is far-detuned from the drive laser most of the time,
and radiation pressure should therefore impact the resonator dynamics less and
less. The nonlinear optical spring shift thus counteracts the linear optical spring
shift, as seen in (8.10) as well.
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Figure 8.4: Evolution of nonlinearly coupled resonators. (a) Time-resolved, pulsed experiment involving
one strong spring laser (detuning u−, intensity P = 1 mW) and one detect laser. Resonator 4 (top) is
excited to high amplitude by strong coherent modulations of the spring laser, with depths up to cd = 1.0.
At time t = 2.5 ms, the drive tone is switched off and a spring laser modulation at the frequency
difference Ω4 − Ω3 between resonators 3 (bottom) and 4 is turned on, with depth cm = 0.5. Through
the cavity-mediated nonlinear optical spring, this modulation induces a nonlinear coupling between
them with a rate J that depends on their amplitudes. In addition, the resonators experience individual
nonlinear spring shifts. Traces are coherently averaged over 1000 runs. (b) The pulsed experiment is
repeated in the presence of an additional strong spring laser tuned to induce the optimal positive spring
shift (detuning u+). The intensity of this laser is matched to that of the negative spring laser, such that
the individual resonators experience no net spring shift. This allows higher driven amplitudes to be
reached for the same modulation depth, and we reduce the range of modulation depths accordingly
to achieve similar driven amplitudes as in panel (a). Modulations on the negative spring laser again
induce a nonlinear coupling. (c) Cavity response h(u), with red dashed lines indicating the opposite
detunings u± of the two spring lasers. (d) Measured frequency response as function of the detuning of
a small modulation tone driving resonator 4. The cavity is illuminated by two balanced spring lasers
with intensities P± ≈ 1 mW. Drive modulations are imprinted on the positive spring laser. For similar
mechanical amplitudes as attained in Figure 8.3a for a single spring laser, we observe the symmetric
response characteristic of a linear resonator, and no bistability.

8.6.5. Optically-mediated nonlinear interactions
The cavity-mediated effective mechanical interactions we have used throughout this
thesis rely on the linear, ‘cross-resonator’ optical spring. The nonlinear contribution
observed here is therefore also expected to impact the effective coupling rate J
when such coupling is established between resonators. Such a dependence of the
coupling rate J on mechanical amplitude is of potential interest; for example, it is
precisely the ingredient that is necessary to yield nonlinear topological solitons in
the theory of Hadad et al. [319, 320].

In Figure 8.4a, we show experimental signatures of such nonlinear coupling. In
these experiments, resonator 4 is coherently driven at various amplitudes cd, until
at t = 2.5 ms the drive is switched off and a difference-frequency tone that couples
resonator 4 to resonator 3 is switched on. We observe Rabi oscillations similar to
those in Figure 2.6b. However, for large driving, the period of the Rabi oscillations is
altered, revealing a nonlinear dependence of J on the mechanical amplitude. In
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Figure 8.5: Frequency response of nonlinearly coupled resonators. (a) Measured response amplitude
of resonator 3 in the presence of a single negative spring laser. The detuning of weak (top, cd = 0.01)
and strong (bottom, cd = 0.08) modulations driving resonator 3 is swept forward (blue) or backward
(red). A coupling tone with depth cm = 0.5 is imprinted on the negative spring laser to induce nonlinear
coupling between resonators 3 and 4. (b) Similar, with the addition of a strong positive spring laser
to cancel the single-resonator spring shift. Modulation depths are adjusted (top, cd = 0.005; bottom,
cd = 0.045) to attain similar driven amplitudes. (c) Colour plots of the response amplitude of resonator
3 for forward detuning sweeps in the presence of a single negative spring laser (top) or double-laser
driving (bottom). The modulation depth cd of the coherent tone driving resonator 3 is varied. For a
single spring laser, both response peaks shift in the same frequency direction as cd is increased. For the
double-laser driving condition, the two response peaks are seen to approach each other.

addition, we see that the visibility of the Rabi oscillations diminishes. This is due
to the nonlinear frequency shifts of the individual resonators, which detunes their
frequency difference from the applied modulation frequency and causes the Rabi
oscillations to be incomplete.

Interestingly, one can create a pure cross-resonator nonlinearity by simultane-
ously applying two ‘spring’ lasers, at detunings u+ and u− (see Figure 8.4c). As the
spring shifts of the lasers have opposite signs, the optical spring on the individual res-
onators can be cancelled. Indeed, we see in Figure 8.4d that the individual-resonator
Duffing nonlinearity vanishes under that condition. However, modulating one of
the laser intensities around its mean still induces a cross-resonator spring effect,
with associated nonlinearity. The resulting amplitude-dependent Rabi oscillations
are shown in Figure 8.4b, where we observe that the fringe visibility is recovered.
We now also clearly recognize that the coupling rate J in fact increases during the
ringdown, as the average resonator amplitude decreases due to dissipation.

These mechanisms are also apparent in spectroscopy of the nonlinearly coupled
resonators. Figure 8.5a,b show the driven response of resonator 3 in the presence of
a coupling tone, for low (top) and high (bottom) drive amplitudes. In panel a, a single
‘spring’ laser is applied, whereas in panel b two lasers cancel the single-resonator
spring shifts. In the latter case, large amplitudes cause an apparent reduction of
the mode splitting. Note moreover that the bistabilities apparent in the difference
between up- and down-scans of probe frequency are negligible when the individual
spring shifts are cancelled. Figure 8.5c shows this behavior in more detail, plotting
the response spectra as a function of drive strength for the single ‘spring’ laser (top)
and the double-laser condition (bottom).
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In conclusion, we demonstrated a highly tunable optically-induced mechanical
Duffing nonlinearity that originates from the intrinsic nonlinearity of a cavity op-
tomechanical system. The fact that the sign and magnitude of the single-resonator
nonlinear coefficient, as well as the change of coupling rate J with mechanical
amplitude can be individually controlled presents interesting opportunities for the
creation of tailored nonlinear mechanical networks. We envision that those could
be used to study information processing and computing capabilities as well as
nonlinear topological phases in combination with time-reversal symmetry breaking
and non-Hermiticity in optomechanical metamaterials [319, 320].
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Summary

Orchestrating nanomechanical motion with light

Light is a versatile tool to perceive and measure the world around us. It can also
be used to actively move or even shape objects, for example in optical tweezers
or laser cutting. In this thesis, we use carefully configured laser light to detect and
control the motion of nanomechanical resonators. In particular, we use the light as
a medium to connect multiple mechanical resonators into small, highly tunable
networks. These networks can be seen as small instances of ‘metamaterials’, with
resonators as building blocks and optically controlled couplings. The flexibility of
the optical driving allows to break fundamental symmetries such as time-reversal
(T ) symmetry and the conservation of energy, and endows our nanomechanical
networks with unusual properties and responses.

Nanomechanical resonators are conceptually simple, yet surprisingly versatile
physical systems. Their ability to interface with many different degrees of freedom
puts them forward as sensors and transducers even for quantum signals, while their
high coherence and tunability find application in signal filtering and processing. In
addition, nanomechanical resonators are used to create computational elements
and perform fundamental tests of (quantum) mechanics. Studying and controlling
the physics of nanomechanical resonators is therefore a worthwhile endeavour.

We develop an experimental platform to construct networks of nanomechanical
resonators connected via time-modulated radiation pressure, and explore their
dynamics. Multiple nondegenerate flexural mechanical resonances of a silicon
nanostructure couple simultaneously to a photonic crystal nanocavity, allowing
sensitive optical readout of mechanical motion with a resolution well below the
thermal fluctuation level. By suitable modulation of a detuned drive laser, light-
mediated effective mechanical couplings are established. Both beam-splitter and
squeezing interactions can be induced by stimulating the appropriate frequency
conversions. We implement a phase-coherent driving and detection scheme that
allows the construction of arbitrary multi-mode quadratic phononic Hamiltonians
in (synthetic) space and time. Finally, we have control over mechanical damping
rates both through feedback and dynamical optothermal backaction.

We first focus on beam-splitter interactions and construct phononic networks
that are subject to T -breaking synthetic magnetic fields. For a three-mode net-
work with a single plaquette, we observe chiral circulation of coherent vibrations.
For networks featuring multiple plaquettes, we demonstrate interference between
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aligned and opposed magnetic fluxes. Finally, in a small nanomechanical metama-
terial comprising a five-mode lattice pierced by a homogeneous synthetic flux, we
demonstrate the emergence of chiral transport of phonons along the edge, akin
to the topological quantum Hall effect observed in two-dimensional electronic
materials.

Next, we turn our attention to the interplay of synthetic magnetism and thermal
fluctuations in the single-plaquette three-mode loop. The chirality imposed ear-
lier on coherent excitations is shown to carry over to thermally excited vibrations.
Combined with the different Bose occupations of the thermal baths feeding the
mechanical resonators, flux-dependent circulation of energy leads to a redistribu-
tion of thermal energy in the loop. We develop a procedure to directly measure the
flow of heat along the network’s links, revealing flux-controlled reversal of thermal
flow. Interestingly, we find that the breaking of time-reversal symmetry assists in
the refrigeration of a hot mode in a strongly coupled loop, thus providing insight in
the performance of thermodynamic processes under broken T -symmetry.

Exploiting the opportunity to induce non-Hermitian nanomechanical dynamics
through optomechanically-induced squeezing, we reveal a non-Hermitian version
of the Aharonov-Bohm effect, and demonstrate it in two different systems. The
first comprises a beam-splitter coupled dimer where both modes additionally ex-
perience single-mode squeezing. We show that this ‘squeezing dimer’ features
a geometric phase, revealed diagrammatically after applying the Bogoliubov-de
Gennes formalism — treating the modes’ creation and annihilation operators as
separate particle-like and hole-like degrees of freedom. This geometric phase, acting
as a flux through the non-Hermitian particle-hole loop, now tunes both frequency
and linewidth of the dimer’s normal modes. Moreover, squeezing, stability, and the
occurrence of exceptional points are all tuned by the flux as well.

The second system is a three-mode loop closed by a single beam-splitter and
two two-mode squeezing interactions, which features a flux-tunable third-order ex-
ceptional point and unidirectional phononic amplification. Altogether, this rich phe-
nomenology points the way to exploring new non-Hermitian topological bosonic
phases and applications in sensing and transport that exploit spatiotemporal sym-
metry breaking.

Non-reciprocal transport is generally associated with the breaking of T -
symmetry. However, for quadrature-resolved signal transmission, we introduce
an extended notion of unidirectional transmission, dubbed ‘quadrature non-
reciprocity’ (qNR), that does not rely on the breaking of T -symmetry. Instead, it
relies on the interference of beam-splitter and two-mode squeezing interactions.
We develop a theoretical framework to characterize and identify qNR for arbitrary
systems, and test it in experiment for a two-mode dimer and a four-mode ring. The
topological structure of the non-Hermitian eigenspectrum of chains comprising
qNR elements is studied in theory, and linked to the occurrence of directional
amplification in such chains.

To study quadrature-resolved dynamics in extended systems, we implement
one of the seminal models put forward earlier in this field: the bosonic Kitaev chain
(BKC). We show that the transmission of excitations through the BKC is chiral, with
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the direction of propagation depending on the excited quadrature. The BKC has
other unusual properties as well, that have no analogue in its extensively studied
fermionic counterpart. In particular, the presence of squeezing interactions allows
to amplify or damp signals that propagate along the chain. By closing the chain
into a ring, a dramatic change in stability is observed as signals are then allowed to
amplify indefinitely. The strong dependence of the BKC’s dynamics on its boundary
conditions is a uniquely non-Hermitian effect that links to the non-Hermitian skin
effect. By tuning the phases of the hopping and squeezing interactions, we show a
transition from global to local response in the chain.

Finally, as an outlook, we move beyond the linear response of our optomechan-
ical resonators. We present experiments demonstrating that the cavity response
can induce a highly-tunable effective Duffing nonlinearity for mechanical motion.
The nonlinearity is shown to carry over to light-mediated effective mechanical
interactions, while it can be cancelled on the single-resonator level by a two-laser
driving scheme. These tunable nonlinear interactions could provide a toolbox to
study nonlinear topological phenomena.





Samenvatting

Nanomechanische beweging manipuleren met licht

Licht is een veelzijdig hulpmiddel: we gebruiken het als de primaire manier om
de wereld om ons heen waar te nemen, en technieken op basis van licht zijn tot
uiterst precieze metingen in staat. Ook kan licht gebruikt worden om objecten te
verplaatsen of zelfs vorm te geven, bijvoorbeeld in optische pincetten of lasersnij-
technieken. In dit proefschrift gebruiken we zorgvuldig geconfigureerd laserlicht
om de beweging van nanomechanische resonatoren te detecteren en te besturen.
Preciezer gezegd; we gebruiken het licht als medium om meerdere mechanische
resonatoren met elkaar te verbinden zodat ze kleine, uitzonderlijk goed regelbare
netwerken vormen. Deze netwerken kunnen worden beschouwd als kleine stukjes
’metamateriaal’, met resonatoren als bouwstenen en optisch gestuurde koppelingen.
Net als in een gewoon materiaal worden de collectieve eigenschappen van een me-
tamateriaal bepaald door door die bouwstenen en koppelingen. De flexibiliteit van
de optische aandrijving maakt het echter mogelijk om fundamentele symmetrieën
te breken, zoals tijdomkerings-(T -)symmetrie en behoud van energie, en geeft onze
netwerken ongebruikelijke eigenschappen en responsen.

Nanomechanische resonatoren zijn conceptueel eenvoudige, doch verrassend
veelzijdige fysieke systemen. Hun vermogen tot wisselwerking met een breed scala
aan andere fysische vrijheidsgraden maakt ze goede sensoren en signaalomzetters,
zelfs voor kwantumsignalen, terwijl hun hoge coherentie en grote mate van afstem-
baarheid toepassing vinden in signaalfiltering en -verwerking. Daarnaast kunnen
nanomechanische resonatoren gebruikt worden om informatie te verwerken en
fundamentele testen van (kwantum)mechanica uit te voeren. Dit alles maakt het
bestuderen en beïnvloeden van de fysica van nanomechanische resonatoren de
moeite waard.

Dit proefschrift beschrijft de ontwikkeling van een experimenteel platform
waarin we netwerken van nanomechanische resonatoren kunnen construeren, die
verbonden zijn via tijdgemoduleerde stralingsdruk, en verkennen hiermee de door
het licht gecontroleerde mechanische dynamica. Meerdere niet-ontaarde mecha-
nische buigingsmodi van een silicium nanostructuur koppelen tegelijk aan een
optische nanotrilholte, gedefinieerd in een fotonisch kristal. Hierdoor is een ge-
voelige optische uitlezing van mechanische beweging mogelijk, met een resolutie
die ver onder het niveau van thermische fluctuaties ligt. Door geschikte intensi-
teitsmodulatie van een verstemde aandrijflaser, worden door licht bemiddelde,
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effectieve mechanische koppelingen tot stand gebracht. Zowel conservatieve (of
‘beamsplitter’) interacties, als parametrische versterking (of ‘squeezing’) kunnen
worden geïnduceerd door de juiste frequentieconversies te stimuleren. We im-
plementeren een fase-coherente meet- en aandrijfmethode, zodat willekeurige,
multi-modale kwadratische fononische Hamiltonianen kunnen worden aangelegd
in (synthetische) ruimte en tijd. Ten slotte hebben we controle over mechanische
demping, zowel door terugkoppeling op basis van gemeten verplaatsing, als door
dynamische optothermische krachten.

We richten ons eerst op conservatieve interacties en construeren fononische
netwerken die onderhevig zijn aan T -brekende synthetische magnetische velden.
Voor een netwerk met drie modi en een enkele plaquette observeren we chirale
circulatie van coherente trillingen. Voor netwerken met meerdere plaquettes de-
monstreren we interferentie tussen gelijkgerichte en tegengestelde magnetische
fluxen. Ten slotte construeren we een klein nanomechanisch metamateriaal be-
staande uit een rooster van vijf modi doorkruist door een homogeen magnetisch
veld, en demonstreren hierin het ontstaan van chiraal fonontransport langs de rand
van het materiaal — vergelijkbaar met het topologische kwantum-Hall effect in een
tweedimensionaal elektrongas.

Aansluitend richten we ons op het samenspel tussen synthetisch magnetisme
en thermische fluctuaties, in een lus van drie trillingsmodi met een enkele plaquette.
De chiraliteit die eerder werd waargenomen voor coherente excitaties blijkt ook
van toepassing op thermisch aangeslagen trillingen. In combinatie met de verschil-
lende Bose-bezettingen van de thermische baden die de trillingsmodi opwarmen,
leidt de fluxafhankelijke circulatie van energie tot een herverdeling van thermische
energie in de lus. We ontwikkelen een procedure om de warmtestroom langs de
verbindingen van het netwerk rechtstreeks te meten. Hiermee laten we een flux-
gestuurde omkering van warmtestromen zien. Bovendien ontdekken we dat het
breken van de tijdomkeringssymmetrie helpt bij het koelen van een warme trillings-
modus in een sterk gekoppelde lus. Hierdoor krijgen we inzicht in de prestaties van
thermodynamische processen onder gebroken T -symmetrie.

Vervolgens maken we gebruik van de mogelijkheid om niet-Hermitische be-
wegingen te induceren middels optomechanisch geïnduceerde parametrische ver-
sterking, of squeezing. We leggen een niet-Hermitische versie van het Aharonov-
Bohm-effect bloot, en demonstreren dit in twee verschillende systemen. Het eerste
omvat een conservatief gekoppeld dimeer, waarbij beide modi daarnaast ook in-
dividueel parametrisch versterkt worden. We laten zien dat dit ‘squeezing dimeer’
een geometrische fase heeft, die schematisch kan worden onthuld door toepassing
van het Bogoliubov-de Gennes-formalisme — waarbij de creatie- en annihilatie-
operatoren van de trillingsmodi worden beschreven als onafhankelijke, deeltje- en
gatachtige vrijheidsgraden. Deze geometrische fase, die werkt als een flux door de
niet-Hermitische lus van deeltjes en gaten, beïnvloedt nu zowel de frequentie als
de lijnbreedte van de eigentrillingen van het dimeer. Bovendien worden squeezing,
stabiliteit en het voorkomen van uitzonderlijke punten (‘exceptional points’) ook
alle beïnvloed door de flux.

Het tweede systeem is een lus van drie trillingsmodi, die wordt gevormd door
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een enkele conservatieve koppeling en twee intermodale parametrische verster-
kingsprocessen. Dit systeem vertoont een fluxgevoelig uitzonderlijk punt van derde
orde en richtingsgevoelige versterking van vibraties. Al met al wijst deze rijke feno-
menologie de weg naar de verkenning van nieuwe, niet-Hermitische topologische
bosonische fasen, en toepassingen in sensoren en signaaltransmissie die gebruik
maken van gebroken symmetrieën in ruimte en tijd.

Richtingsgevoelige (niet-reciproke) transmissie wordt over het algemeen in
verband gebracht met het breken van T -symmetrie. Voor kwadratuur-opgeloste sig-
naaloverdracht introduceren we echter een uitgebreider begrip van unidirectionele
transmissie, ‘kwadratuur-niet-reciprociteit’ (kNR) genaamd, dat niet afhankelijk
is van het breken van T -symmetrie. In plaats daarvan vindt het zijn oorsprong
in de interferentie tussen conservatieve interacties en intermodale parametrische
versterking. We ontwikkelen een theoretisch raamwerk om kNR voor willekeurige
systemen te herkennen en te karakteriseren, en testen het experimenteel in een
dimeer van twee en een ring van vier resonatoren. We bestuderen in theorie de topo-
logische structuur van het niet-Hermitische (complexe) eigenspectrum van ketens
bestaande uit kNR-elementen, en relateren dit aan het optreden van directionele
versterking in zulke ketens.

Om kwadratuur-opgeloste dynamiek in uitgebreide systemen te bestuderen, im-
plementeren we een van de elementaire modellen die eerder op dit gebied te berde
zijn gebracht: de bosonische Kitaev-keten (BKK). We laten zien dat de overdracht
van excitaties in de BKK een chiraal karakter heeft, waarbij de voortplantingsrichting
afhangt van de aangeslagen kwadratuur. De BKK heeft ook andere ongebruikelijke
eigenschappen, die geen overeenkomst hebben in zijn uitgebreid bestudeerde,
fermionische tegenhanger. In het bijzonder maakt de aanwezigheid van parame-
trische versterking het mogelijk om signalen dit zich langs de keten voortplanten
te versterken of te dempen. Door de ketting tot een ring te sluiten, vindt een in-
grijpende verandering in stabiliteit plaats, aangezien signalen vervolgens eeuwig
versterkt kunnen worden. De dynamiek van de BKK is dus sterk afhankelijk van
haar randvoorwaarden — een uniek, niet-Hermitisch effect dat samenhangt met
het niet-Hermitische skineffect. Door de fasen van de conservatieve en de parame-
trische processen te variëren, tonen we een overgang in de keten van globale naar
lokale respons.

Tot slot kijken we, bij wijze van vooruitzicht, voorbij de lineaire respons van
onze optomechanische resonatoren. We presenteren experimenten, waarin we aan-
tonen dat de frequentierespons van de trilholte een bijzonder regelbare effectieve
Duffing-niet-lineariteit voor beweging voortbrengt. In het bijzonder wordt deze
niet-lineariteit ook overgedragen op door licht bemiddelde effectieve mechanische
interacties, terwijl deze voor enkele resonatoren kan worden opgeheven middels
een aandrijfschema met twee lasers. Deze regelbare niet-lineaire interacties zou-
den een essentiële bouwsteen kunnen zijn voor het bestuderen van niet-lineaire
topologische verschijnselen.





Acknowledgments

Welcome! We both made it all the way to the end of my thesis — I hope you enjoyed
reading it. I would like to dedicate this final section to the process of its creation,
focusing in particular on the many people that have helped me along the way. While
every PhD project has its ups (intriguing yet sensible results, paper accepted, presen-
tation well-received) and downs (stumbling in the dark, failed fabrication, endless
days in lab), overall I look back on these four+ years with a sense of achievement
and most importantly, fond memories.

In a large part, this feeling is the result of the very fruitful collaboration with my
promotor and group leader, Ewold. Over these four years, you gave me the freedom
to grow while never losing me out of sight. Thank you for being both extremely
enthusiastic and dependable, despite the many balls that you keep in the air. Your
scientific eagerness always inspires me, and has often helped me regain motivation
when I had had enough. I have learned a lot from you, especially when it comes to
the art of writing down and presenting results. Your input to this thesis has been
invaluable.

Javier, I am grateful to have always had you on my side, despite your moving to
Zürich halfway through. You have been a great mentor and friend, and I thoroughly
enjoyed our nearly daily chats about physics and life. This thesis would have been
impossible without you.

Andreas, thank you for the many interesting discussions and, of course, being
my copromotor. The same goes for the rest of the qNR team, Clara & Matteo: While
the six of us never met together in person, I am proud of what we have achieved by
collaborating digitally!

These experiments would not have been possible without the excellent support
staff at AMOLF. Let me start with a shout-out to our lab technicians, Jan Bonne and
Daniël, who kept the place running smoothly and safely. A big thank you also to
the NanoLab staff for their endless efforts to keep the cleanroom up: Bob, Dimitry,
Andries, Igor, Dylan, Arthur, Laura and Hans. From the electronics department, I’d
like to honour Bob and especially Ronald for their help in extending the capabilities
of my set-up. My gratitude also goes out to Niels and Petra, who have helped me on
various occasions.

My closest colleagues from the Photonic Forces group have been central to my
time at AMOLF, both scientifically and socially. John, thank you for showing me
the ropes on the nanobeam set-up while sitting on your throne in lab. Giada, I
have fond memories of the many hours we spent together in the cleanroom and I

185



186 Acknowledgments

wish you all the best on your quest to combine art and science. Roel, mijn kerel, I
appreciate the many conversations we had; it was great to share this experience with
you and I’m happy to have you as my paranymph. Jente, my other contemporary,
your enthousiasm and ability to keep going are inspirational, as is your knowledge
of beers and fries. René, I had great fun sharing an office with you and admire your
dry-witted, impeccably timed humorous remarks — defying the German stereotype.
Pascal, I enjoyed very much our times together in the lab and in particular our wild
ride home from Erlangen. Robin, the many discussion we had over lunch and coffee
about broad-ranging topics were always a delight. Thank you, Nikhil, Georgios and
Johneph, who is no longer with us, for putting up with me in the office. Finally, I
thank Cesare, Laura, Karel, Lars, Alejandro, Menno and Fons for their contribution
to the great PhoFo atmosphere.

As a place of scientific collaboration, AMOLF is unique. I learned a great deal
from discussions with other group leaders, in particular Femius, Said and Marc.
Also unique is the supportive and positive social atmosphere. This is embodied by
the countless friendly interactions I had over lunch, in the works council, at the
coffee table, in the cleanroom, and in the hallway, with a long list of wonderful
people including Alex, Andrea, Annemarie, Ariane, Deba, Eline, Evelijn, Falco, Giel,
Giorgio, Hugo, Imme, Isabelle, Jan, Jenny, Jorijn, Joris, Kevin, Lucie, Lukas, Manuel,
Mareike, Marnix, Matthias, Nasim, Nelson, Nick, Nika, Ramon, Ronald, Ruslan,
Rutger, Sanghamitra, Simone, Susan, Tom, Vashisht, and Zhou. I hope to see you all
again some time!

Outside of work, there are many people that have supported me and coloured
my life. To my housemates Michiel, Bas (2x), Marie and Jordy, supplemented by
Shweta, Marcella and Jan: It was always a pleasure to come home to you after a
long day in the lab, or to game excessively during lockdown. A special thanks to my
bicycle mate Stijn, with whom I have had the pleasure to share many micro- and
macro-adventures. The same goes for my brothers-in-arms Daan, Michiel, Robbert,
and Tom. I am glad for the many other friends I made in Delft and Rotterdam as well,
including Jelle, David, Tom, Tom, Laurie, Dirk-Jan, Anne-Nynke, Daan, Evert, Joeri,
Bauke, Lennart, Duco, Lieske, Willemijn, Terry, Marijke, Marlies, Hanna, Maartje
and Rik.

You can take the Groninger out of Groningen, but you can’t take Groningen out
of the Groninger — at least not out of this one. Thank you, Bram, Karst Jan, Cyntha,
Jan-peter, Dennie, Hans, Thomas, Luuk, Luurt, Willemijn, Sanne, Robbert, Ger, Bas,
Rik, Valerie, Thibauld and Flip, for looking after the place in my absence and for
always welcoming me back into your lives when I’m there. I wouldn’t have been
the same without you. I’m also happy to have stayed in touch with those who have
fanned out: George, Steven, Thomas, Pien, Marte Sophie and Jop.

Finally, I want to express my gratitude to my wonderful family. To my parents:
Thank you for always being there for me. I’m very proud of my (little) sister and
paranymph Mieke, the original dr. Slim. And last but not least, I want to thank my
dearest partner Juliette, who has supported and encouraged me without fail. I hope
to go on many more adventures with you, both big and small. You are always in my
heart.



About the author

Jesse Slim was born in 1992 in Groningen, the
Netherlands. He studied Applied Physics and Ap-
plied Mathematics at Delft University of Technology,
obtaining a Bachelor’s degree in both in 2015. In his
final research project for this double degree pro-
gramme, he imaged the mode shapes of graphene
microdrums using laser interferometry, in the lab of
Warner Venstra and Herre van der Zant.

He went on to obtain a Master’s degree in Ap-
plied Physics from the same university in 2018, after
completing three research rotations. First, he joined
the long-distance quantum communication group
led by Rupert Ursin, at the Institute for Quantum Op-
tics and Quantum Information (IQOQI) in Vienna,
where he worked on a set-up to measure atmospheric turbulence. He then com-
pleted his thesis project in the diamond quantum network group led by Ronald
Hanson, at Delft University of Technology. There, he developed and demonstrated
fast feed-forward control to realign nuclear-spin memory qubits after entanglement
attempts between remote NV center electron spins. For his last rotation, he worked
with David DiVincenzo at RWTH Aachen in the quantum information theory group
on extending the rotating wave formalism — commonly applied in qubit control —
to higher orders.

After graduating, Jesse worked at Hukseflux Thermal Sensors B.V. as a research &
development assistant for six months. Subsequently, he joined the Photonic Forces
group at AMOLF in Amsterdam as a Ph.D. researcher. There, he worked on a project
to control nanomechanical motion with light under the supervision of prof. Ewold
Verhagen. The results of this project are presented in this thesis.

Jesse presented his work at several national and international conferences,
receiving the Oral Presentation Award at WOMBAT 2022 in Erlangen. In addition,
he was elected to the AMOLF works council for a two year term to represent the
interests of AMOLF employees, assisted in teaching the AMOLF Python course, and
participated in a number of outreach activities.

Jesse enjoys programming, cycling, ice skating, good food and travelling.

187




	Introduction
	Metamaterials
	Nanomechanical resonators
	Breaking time-reversal symmetry
	Quantum Hall effect and topological insulators
	Non-Hermitian dynamics
	Cavity optomechanics
	Outline of this thesis

	Effective mechanical interactions mediated by radiation pressure
	Introduction
	Radiation pressure
	Cavity optomechanics
	Toy model: moving-mirror cavity
	Mechanical resonator
	Sliced nanobeam device
	Optical spring shift
	Optical detection of mechanical motion
	Thermal fluctuations and spectral density

	Dynamic modulation of the optical spring
	Quantum optomechanics
	Optically-mediated mechanical interactions
	Control field modulation
	Interaction Hamiltonian
	Time-independent effective Hamiltonian
	Basic consequences of interactions

	Bogoliubov-de Gennes (BdG) formalism
	BdG dynamical matrix and symmetries
	Open-system dynamics
	Quadrature evolution
	Susceptibility

	Experimental platform
	Analysis of the displacement signal
	Phase-coherent control signals
	Optomechanical characterization
	Opto-thermal linewidth tuning
	Calibration of control signals
	Modulating damping by feedback
	Coherent driving and propagation delay

	Appendix: Implementing large numbers of phase-coherent control signals

	Synthetic magnetism in multi-plaquette phononic networks
	Introduction
	Synthetic flux in a ring of resonators
	Phonon circulator/isolator

	Two interfering Aharonov-Bohm loops
	Emergence of edge states
	Conclusion and outlook

	Chiral thermal flows in a flux-biased nano-optomechanical system
	Introduction
	Correlations in thermally driven systems
	Onsager regression principle
	The quantum regression theorem
	Hermitian closed-system dynamics

	Brownian motion of single resonators
	Statistical analysis

	Thermodynamics of a dimer
	Energy, heat flow and temperature

	Fluctuations in a phonon circulator
	Circulating fluctuations
	Chirality and heat flows

	Competing energy transfer and thermalization
	Conclusions and outlook
	Appendix: Instrument noise in auto-correlations

	Non-Hermitian chiral phononics through optomechanically induced squeezing
	Introduction
	Experimental platform
	Non-Hermitian Aharonov-Bohm effect
	Quadrature couplings

	Flux-controlled PT symmetry
	Higher-order EPs and chiral amplification
	Disjoint particle-hole loops
	The singly conjugated trimer

	Conclusion and outlook
	Appendices
	Error estimation
	Subdominant and non-Lorentzian spectral features in the squeezing dimer
	Passive PT symmetries
	Hermitian vs. non-Hermitian Aharonov-Bohm effect
	Phase-space distributions in the SD
	Flux-asymmetries in thermomechanical spectra of the SCT


	Quadrature nonreciprocity: unidirectional bosonic transmission without breaking time-reversal symmetry
	Introduction
	Defining quadrature nonreciprocity (qNR)
	qNR dimer: the simplest qNR system
	Time-reversal symmetry and qNR
	Constructing qNR ring networks
	Towards qNR lattices
	Conclusion and outlook
	Appendices
	Quadrature qauge transformations
	Resonant driving and analysis
	Time-reversal symmetry and transport
	TRS criterion—full loops vs. disjoint loops
	Linear response and interference of beamsplitter and squeezing interactions
	Non-Hermitian topological invariant


	Optomechanical realization of the bosonic Kitaev chain
	Introduction
	The bosonic Kitaev chain
	Quadrature-dependent chiral transport
	Boundary conditions and stability
	Transition from global to local response
	Conclusions and outlook

	Conclusions and outlook
	Control, coherence and interactions
	From small to large networks
	Stochastic thermodynamics
	Towards the quantum regime
	Sensing
	Controlled nanomechanical nonlinearities
	Cavity-mediated Duffing nonlinearity
	Nonlinear spring shift
	Response to coherent driving
	Nonlinear ringdown
	Optically-mediated nonlinear interactions


	Bibliography
	Summary
	Samenvatting
	Acknowledgments
	About the author

