
Article https://doi.org/10.1038/s41467-023-37138-z

Enhanced nonlinear optomechanics in a
coupled-mode photonic crystal device

Roel Burgwal 1,2 & Ewold Verhagen 1,2

The nonlinear component of the optomechanical interaction between light
and mechanical vibration promises many exciting classical and quantum
mechanical applications, but is generally weak. Here we demonstrate
enhancement of nonlinear optomechanical measurement of mechanical
motion by using pairs of coupled optical and mechanical modes in a pho-
tonic crystal device. In the same device we show linear optomechanical
measurement with a strongly reduced input power and reveal how both
enhancements are related. Our design exploits anisotropic mechanical
elasticity to create strong coupling between mechanical modes while not
changing optical properties. Additional thermo-optic tuning of the optical
modes is performed with an auxiliary laser and a thermally-optimised device
design. We envision broad use of this enhancement scheme in multimode
phonon lasing, two-phonon heralding and eventually nonlinear quantum
optomechanics.

The field of cavity optomechanics studies the interaction between a
light field and mechanical vibration. On the one hand, the opto-
mechanical interaction imprints the mechanical motion onto the light
field, enabling extremely precise optical detection of position and
spurring the development of highly precise sensors that approach and
even evade fundamental measurement limits set by quantum
mechanics1–3. At the same time, the light field can be used to manip-
ulate the state of the mechanical resonator, which has allowed the
creationofmechanical quantumstates for use inquantum information
technology, as information storage or as tool in the conversion of
superconducting microwave qubits to optical qubits4–8.

Many especially exciting applications have been envisioned that
exploit nonlinear interaction between the light field and mechanical
modes. The optomechanical interaction is in fact inherently nonlinear,
but for current systems the linear component is dominating for
quantum-level mechanical motion. A sufficiently strong nonlinearity
would open up possibilities such as measurement-based non-classical
state generation9, energy-squeezed states10, quantum non-demolition
(QND) measurement of phonon number11,12 or the photon-blockade
effect13,14. Such effects become apparent in the single-photon strong
coupling (SPSC) limit g0/κ > 1, where g0 is the optomechanical vacuum
coupling rate, and κ is the decay rate of the optical resonator. Although

this limit has been reached in atom-optomechanical systems15, these
systems do not satisfy the important condition of sideband resolution.
Creating systems that meet both requirements remains a worthwhile
pursuit.

Nonlinear optomechanical effects can be enhanced in a system of
two coupled optical modes, both optomechanically coupled to one
mechanical mode, often referred to as the membrane-in-the-middle
(MIM) system11. This enhancement is particularly interesting for sys-
tems that approach the SPSC regime, as it makes nonlinear quantum
effects more pronounced14,16. However, enhancement of the non-
linearity in such a multimode system over its magnitude in a com-
parable single-mode system is only possible when fulfilling two
requirements on the systemparameters, namely that the coupling rate
between the two optical modes JO has to equal half the mechanical
frequency Ω (JO =Ω/2), and that the mechanical frequency is larger
than the optical decay rate κ (Ω > κ), i.e. the sideband resolution
condition17.

There have been many realisations of the MIM and related sys-
tems, in membranes11,18, microtoroids19,20, photonic crystals21–23, ultra-
cold atoms24 and levitated particles25. However, the systems in which
nonlinear transduction was studied did not have the required inter-
mode optical coupling (JO ≈Ω/2) and optical decay rate (Ω > κ) to
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exhibit nonlinear effects that were enhanced above the intrinsic
optomechanical nonlinearity and a direct experimental comparison is
lacking. Realising the required parameters in a photonic crystal system
would be specifically interesting, as these are receiving strong atten-
tion due to their large optomechanical coupling, small footprint, and
compatibility with cryogenic operation7,8,26. Importantly, such multi-
mode photonic crystal systems would also be useful to enhance linear
transduction per input optical power27.

Here, we describe a coupled-mode optomechanical crystal device
fulfilling all the above requirements, and use it to demonstrate for the
first time enhanced nonlinear optomechanical coupling in a direct
comparison to a single-mode configuration in the same device. To do
so, we measure nonlinear transduction of thermomechanical motion
in a coupled-mode device, where one of the optical modes can be
selectively and actively detuned to switch between a single and
coupled-mode configuration. In addition, we quantify the enhance-
ment of linear transduction with respect to input power that is also
present in these systems, thus demonstrating two main advantages of
the coupled-mode system. Our device shows strong coupling of opti-
cal and mechanical modes, for which we explored the use of
mechanical anisotropy of silicon to tune mechanical properties with-
out affecting the optical properties of the device. Finally, post-
fabrication tuning of the optical modes, needed to correct inevitable
fabrication imperfections, is achieved using thermal tuningwith a laser
as heat source and a thermally-optimised device design.

Results
Model
In the MIM system, two optical modes with annihilation operators
âL, âR and frequency ω couple to each other with rate JO, and opto-
mechanically to a mechanical mode with unitless position operator
x̂ = b̂+ b̂

y
, b̂ being the mechanical annihilation operator, with vacuum

coupling rates gL, gR. This creates a Hamiltonian (setting ℏ = 1)28

Ĥ = ðω+ gLx̂Þây
LâL + ðω+ gRx̂Þây

RâR � JOðây
LâR + â

y
RâLÞ+ Ĥm, ð1Þ

where Ĥm =Ωb̂
y
b̂ is themechanical HamiltonianwithΩ themechanical

frequency. By moving to a basis of odd and even optical supermodes
âeðoÞ = 1=

ffiffiffi
2

p
ðâL ± âRÞ, the Hamiltonian can be written as

Ĥ = ðω� JOÞây
eâe + ðω+ JOÞây

oâo + x̂
gL + gR

2
ðây

eâe + â
y
oâoÞ

+ x̂
gL � gR

2
ðây

eâo + â
y
oâeÞ+ Ĥm,

ð2Þ

describing a new system with two optical eigenmodes separated in
frequency by 2JO. We consider gL = gR (gL = − gR), in which situation we
call themechanicalmodedescribedby x̂ even (odd). For anevenmode,
we have optomechanical interaction terms of the form x̂ây

eðoÞâeðoÞ, of
similar form to the canonical, single-mode optomechanical system.
However, for an odd mode, interaction terms are of the form
x̂ây

eðoÞâoðeÞ, so-called cross-mode interactions.
For an odd mechanical mode, under the condition of slow

mechanicalmotionΩ≪ JO, it is possible to diagonalise theHamiltonian
to isolate the quadratic coupling

Ĥint ≈
ðgL + gRÞ2

8JO
x̂2ðây

oâo � ây
eâeÞ, ð3Þ

which promises a large nonlinear interaction for small JO11. However, it
was found early on that this form fails to capture remaining linear
interaction29,30, which precludes many applications such as a mea-
surement of phonon number without reaching the SPSC limit. More-
over, it was shown that, in order for nonlinear interaction to be
enhanced, sideband resolution Ω > κ and a specific optical coupling
rate of JO ≈Ω/2 is required14,16,17.

To describe both linear and nonlinear transduction fully, we solve
the Langevin equations of motion derived from the Hamiltonian in Eq.
(1), with operators replaced by their expectation values, a= hâi. The
equations are solved perturbatively to second order to capture non-
linear effects, working in a frame rotating with the optical input field
frequencyωin. Theperturbative approachassumes that themechanical
motion is small, i.e.

ffiffiffiffiffiffiffiffiffi
hx̂2i

q
< κ=g0, which is true for thermal motion in

most of current optomechanical devices.
Using these equations, expressions can be derived (see ‘Meth-

ods’ for details) for the photocurrent I power spectral density (PSD)
SII[ω] of heterodyne detection of light reflected from the opto-
mechanical cavity, which can be compared to spectrum analyser
measurements described below. Themechanical mode is assumed to
be odd (gR = −gL = g) and driven only by the thermal environment,
while only the left optical mode is probed. Then, for linear trans-
duction in a single-mode device, the heterodyne PSD can be
approximated by

SlinII ½Ω�= κ2
ex,Lg

2ninnth
χð�ΩÞ

ΔLð�Ω+ΔLÞ

����
����
2

, ð4Þ

while for the coupled-mode system, it reads

SlinII ½Ω�= κ2
ex,Lg

2ninnth

4
χð�ΩÞ

ð�Ω+ΔL + JOÞðΔL � JOÞ

����
����
2

, ð5Þ

where we have introduced the complex detuning
ΔL(R) = (ωin −ωL(R)) + iκL(R)/2, which contains as a real part the left (right)
laser-cavity detuning, and as imaginary part contains the optical decay
rate κL(R), and κex,L(R) is the outcoupling rate of the cavities to their
respective read-out ports. For simplicity, we assume that all optical
decay rates in both systemshave equal value κ and that for the coupled
systemΔL =ΔR =Δ. The average amount of thermal phonons nth can be
expressed as nth ≈ kBT/(ℏΩ), with kB the Boltzmann constant, T the
temperature, and χðωÞ= 2

ffiffiffi
Γ

p
Ω=ðΩ2 � ω2 � iωΓÞ, the mechanical sus-

ceptibility, with Γ the mechanical decay rate, ignoring here optome-
chanical backaction effects on themechanicalmode athighpowers for
simplicity. Finally, nin is the amount of photons per second in the
optical input field. In the coupled system, for optimal ReðΔÞ= JO and
JO =Ω/2, both terms in the denominator can be minimised simulta-
neously and transduction at the mechanical frequency Ω reaches

maxðSlinII ½ω�Þ=
16κ2

ex,Lg
2ninnth

Γκ4 : ð6Þ

Compared to optimal linear transduction in a single-cavity system,
where it is not possible to minimize both terms in the denominator
simultaneously, that gives an enhancement of optomechanical side-
band power of

Elin =
max ðSlinII ½Ω�Þcoupled
max ðSlinII ½Ω�Þsingle

=
Ω

κ

� �2

: ð7Þ

Thus, for equal optical input power Pin = _ωinnin, the coupled-mode
system can improve linear optical read-out of mechanical motion. The
creation of fluctuations in the cavity field through the optomechanical
interaction can also be viewed as the inelastic scattering of light from
the input frequency to sidebands at frequenciesΩ lower or higher than
ωin. In this picture, the linear enhancement in coupled-mode systems
can be regarded as using the two optical supermodes to achieve
simultaneous resonance of both the input field and the optomecha-
nically scattered sideband27. As a result, the intracavity photon number
is larger in the coupled cavity case than in the single cavity pumped at
equal power Pin.
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Nonlinear optomechanical interaction manifests itself as fluctua-
tions in the reflected light at twice the mechanical frequency. Such
fluctuations can be calculatedwhen solving the EOMs to second order,
where they give a detector PSD that can be simplified for a single-mode
system to

SquaII ½2Ω�= κex,Lg
4ncavn

2
th

π

Z 1

�1
dω0 χðω0Þχð�2Ω� ω0Þ

ð�2Ω+ΔLÞð�2Ω� ω0 +ΔLÞ

����
����
2

, ð8Þ

while for a coupled-mode system it reads

SquaII ½2Ω�= κex,Lg
4ncavn

2
th

2π

Z 1

�1
dω0 χðω0Þχð�2Ω� ω0Þ

ð�2Ω+Δ+ JOÞð�2Ω� ω0 +Δ� JOÞ

����
����
2

,

ð9Þ

where ncav is the amount of photons in the cavity. For derivations and
further details, see the ‘Methods’ section. In contrast to the linear
enhancement, the nonlinear enhancement persists when normalising
to the amount of photons in the cavity, which is the limiting factor in
many experiments7,26,31. Again, the nonlinear transduction can be
optimised in the coupled-mode system for the resonance condition
JO =Ω/2, ReðΔÞ= JO +Ω, where it reads

maxðSquaII ½2Ω�Þ≈ 64κex,Lg
4ncavn

2
th

Γκ4 : ð10Þ

Comparing this to optimal transduction in a single-cavity system, for
which only one term in the denominator can be minimised, we find an
enhancement of nonlinear transduction given by

Equa =
max ðSquaII ½2Ω�Þcoupled
max ðSquaII ½2ΩÞ�Þsingle

= 2
Ω

κ

� �2

: ð11Þ

This factor captures the optimal enhancement of nonlinear transduc-
tion possible in the coupled-mode system,whichwefind limited by the
degree of sideband resolution Ω/κ of the system. As we will discuss in
more detail later, the minimisation of both terms in the denominator
of Eq. (9) can be understood as simultaneous resonance of the linearly
scattered (the first sideband) and nonlinearly scattered light (the
second sideband) with one of the optical supermodes.

Coupled-mode design principle
As a basis for our coupled-mode device, we use a one-dimensional
optomechanical crystal nanobeam in which an optical andmechanical
mode are co-localised in a defect or cavity region to create a large
optomechanical coupling32. Used often in recent quantum

optomechanics experiments4,5,7,8,26,31,33,34, this cavity is particularly
attractive because of its large optomechanical coupling g0, operation
in sideband-resolved regime Ω > κ and potential for ground-state
initialisation in a cryogenic environment because of its high mechan-
ical frequency (Ω/(2π) ≈ 5 GHz). Building a coupled-mode system from
such favourable single-cavity building blocks ensures best possible
performance of the coupled system. Starting from this basis, we create
two optomechanical cavities by writing two crystal defect regions in
the same nanobeam (see Fig. 1a and b). Through overlap of the eva-
nescent fields of the cavity modes, couplings between the two optical
as well as the two mechanical modes are created, characterised by
inter-cavity coupling rates JO and JM, respectively. The mode fre-
quencies (decay rates) are given byωi (κi) andΩi (Γi) for the optical and
mechanical modes, respectively, where i∈ {L, R} indicates the left and
right cavities. Furthermore, we include next to our nanobeam two
waveguides that allow us to couple to either the right or left cavity
individually. These waveguides in turn connect to a dimpled, tapered
optical fibre (see Fig. 1a)35. The cavity-waveguide coupling rates are
given by κex,i.

If the inter-cavity coupling exceeds the decay rates of the modes,
as well as any possible frequency difference between the two modes,
the local optical or mechanical modes hybridise into odd and even
combinations of the left and right cavities, which are split in frequency
by 2JO or 2JM. Using finite-element method (FEM) simulations, we cal-
culate the optical eigenmode frequencies of a nanobeam design and
deduce JO from the supermode frequency difference. In Fig. 1c, an
example of a simulated optical supermode is plotted. As we require
2JO =Ω for optimal enhancement of optomechanical effects, accurate
control over the optical coupling rate is crucial. Coupling rates can be
varied by changing the number and shape of the holes that make up
the optomechanical crystal between the cavities, i.e. the coupling
region.

After coupling region optimisation for optical coupling rate, the
device design has a mechanical coupling rate that will typically not
allow for strong coupling of the mechanical modes, as fabrication
imperfections induce random frequency differences between the two
mechanical modes that have to be overcome by a sufficiently large
coupling rate. For independent tuningof themechanical coupling rate,
we exploit the anisotropy of the mechanical properties of the device
material, monocrystalline silicon. By fabricating devices at an angle θ
to the 〈010〉 crystal axis, themechanical properties can be varied while
leaving optical properties unaltered.

We studied the behaviour of mechanical modes as a function of
fabrication angle θ using FEM simulations (see Supplementary Note 5
for details). For a non-zero angle, the y-symmetry of the system
(orthogonal to beam axis, in plane) is broken due to anisotropy.
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Fig. 1 | Coupled-modedevice design. aA scanning electronmicroscope image of a
fabricated device with nanobeam, waveguides and support structure. b Schematic
of the mode frequencies and coupling rates in the double-cavity nanobeam. c The
simulated y-component of the electricalfield for the evenoptical supermode.dThe

displacement (∣u∣) profile of a simulated mechanical supermode, which is an odd
combination of the left and right cavitymodes. Note that the depicted amplitudeof
motion is largely exaggerated. An angle of θ = 20∘ between the crystal axis and
nanobeam was used for this simulation.

Article https://doi.org/10.1038/s41467-023-37138-z

Nature Communications |         (2023) 14:1526 3



Although the nanobeam cavities are designed to localise the y-sym-
metric (breathing) mode, other modes exist at the same frequency
with y-antisymmetry that are not confined by the defects. The intro-
duction of non-zero θmixes the breathing and y-antisymmetricmodes
and thus produces a new mode which can leak from the cavity more
easily, resulting in a stronger effective JM and the formation of super-
modes, of which an example is plotted in Fig. 1d. Note that the pre-
sence of higher-order single-cavity mechanical modes means that
more than one pair of supermodes can be created. Altogether, our
simulations indicate that the angle θ can be used to create a set of even
and odd mechanical supermodes that will persist in the presence of
fabrication imperfections.

Optical strong coupling with active control
The devices are fabricated in 220 nm thick underetched silicon (see
‘Methods’ section for details). Due to fabrication imperfections, the
actual optical resonance wavelengths of the left and right modes vary
randomly with a typical difference of the order of 1 nm for a design
wavelength of 1550 nm. As such a detuning will generally prevent the
optical modes from hybridising and precludes enhancement effects, a
post-fabrication tuning technique is needed. To allow active tuning, we
exploit the temperature dependence of the material refractive index,
which in turn controls the resonance wavelength. Creating a variable
thermal gradient over the two cavities then allows for control of the
inter-cavity detuning36.

Here, we create a thermal gradient by illuminating the support
structure at one end of the nanobeam with a 532 nm green laser spot.
We design the support structure (see Fig. 2a) to optimise the strength
of the achieved temperature gradient. Where the device connects to
the support structure, a square pad is thermally isolated from the rest
of the sample by thin, meandering tethers. These tethers limit the flow
of laser-generatedheat into the sample, allowing the suspendeddevice
to reach a higher temperature and thus significantly improving the
tuning range. See Supplementary Note 4 and Supplementary Fig. 2 for
thermal simulations of the support structure.

We characterise the device optical properties by a measurement
of reflectivity through one of the waveguides coupled to a single
cavity. For an untuned device, the reflectivity typically shows one,
localised, optical mode (see Fig. 2c), here with κ/(2π) = 632 MHz and

κex/(2π) = 120 MHz. When the tuning laser is applied, the resonant
wavelength increases, at a faster rate for the mode closest to the
chosen heating pad than for the distant mode. For the correct tuning,
this will lead to an anticrossing between the left and right cavitymodes
(see Fig. 2b). At this point, two optical modes (κo/(2π) = 642 MHz,
κe/(2π) = 653 MHz) are visible through our interrogation of a single
cavity (see Fig. 2d), demonstrating the formation of two delocalised
supermodes. From the minimal distance between the two super-
modes, the inter-cavity coupling can be extracted to be 2JO/(2π) =
5.4 GHz, a value which is less than one optical linewidth away from the
mechanical frequency at around 5 GHz. This, together with a large
sideband resolution factor of Ω/κ ≈ 7.5, means that our device is cap-
able of enhancing linear and nonlinear optomechanical transduction.

Importantly, we see no significant broadening of the optical
modes with increasing tuning power, indicating that the tuning laser
does not induce additional optical absorption and that fluctuations in
the tuning are of a size well below the optical linewidth. Note that, with
the optical modes tuned, the drop in reflectance on resonance is less
pronounced than for a detuned device, because the effective out-
coupling of a supermode to a single waveguide is lower than for a
localised mode, moving the undercoupled device further away from
critical coupling (κex = κ/2). This could be overcome by changing the
designed outcoupling rate of the device accordingly.

Linear transduction of mechanical supermodes in a coupled-
mode system
Wenow study the effect ofmultiple opticalmodes on the transduction
of mechanical motion. We measure the thermomechanical motion at
the mechanical frequency Ω, which has an average amplitude that
remains constant between different measurements (see Discussion
section). In this way, it allows us to compare the strength of the
optomechanical transduction ofmechanical motion between detuned
and tuned systems.

We use a setup that directly detects intensity fluctuations in the
reflected light, using an erbium-doped fibre amplifier (EDFA) and a fast
photodiode (see ‘Methods’ section for details). In Fig. 3a, we plot the
photocurrent power spectral density (PSD) for the system with
detuned optical modes while varying the detuning between the infra-
red laser and optical mode. We observe three mechanical modes,

Fig. 2 | Thermal tuning of the opticalmodes for frequencymatching of coupled
modes. a False-coloured scanning electron microscope image of the thermally-
optimised tuning structure connecting device (bottom) and substrate (top, pur-
ple). The meandering tethers (green) limit the flow into the substrate of heat
generated by the green laser that is focused on the pad (orange, white circle indi-
cation of laser focus scale). b Spectrogramof IR probe reflection for varying power

of the tuning laser, showing how a localised mode is tuned to form supermodes at
the anticrossing with the other cavity optical mode. c An example optical reflec-
tivity tracewithout thermal tuning. d Reflectivity tracewith opticalmodes tuned to
the same frequency. Reflectivity traces have been normalised to 1 for off-resonant
optical input.
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which we label α, β and γ in order of increasing frequency. For all
modes, the transduced signal peaks at ReðΔLÞ= �Ω and ReðΔLÞ=Ωm,
corresponding to the resonance condition for the upper and lower
sideband, respectively (as per Fig. 3d). In addition, transduction for
these modes also peaks when approaching laser resonance
(ReðΔLÞ=0) from the blue side. For the hatched area, which contains
the exact condition of laser resonance, no data could be taken, as for
the required input power (≈1μW) these values of Δ are not reachable
due to thermo-optical bistability.

By performing these measurements via both the right and left
waveguide, interrogating the right and left localised optical modes, we
find that these mechanical modes are present in both optical cavities
with comparable coupling strengths, showing that the mechanical
modes are delocalised supermodes. In a perfect system, these super-
modes have either an odd or even symmetry between the left and right
halves of the device.We calibrate the vacuumoptomechanical coupling
rates gi,j (i∈ {L, R}, j∈ {α,β, γ}) using frequency noise calibration37

(see ‘Methods’ section for more details). We find that ∣gL,j∣/(2π) =
(229, 517, 505) kHz and ∣gR,j∣/(2π) = (375, 608, 443) kHz.

Next, in Fig. 3b, we perform similar measurements for the tuned
system. Note that for this configuration, ReðΔLÞ=ReðΔRÞ=ReðΔÞ and
ReðΔÞ=0 when the measurement laser is exactly between the two
optical supermodes. Strikingly, the transduction is now largest when
the laser approaches one of the two supermodes (ReðΔÞ= ± JO). Here,
importantly, only modes α and γ are visible. Figure 3c shows an addi-
tional dataset taken around sideband resonance ReðΔÞ= JO +Ω with
more optical power, showing that, conversely, for this detuning, only
mode β is significantly transduced onto the optical field. Note that
there are now two hatched regions, corresponding to the inaccessible
red flanks of the two optical supermodes.

The difference in transduction between modes α and γ and β is
determined by the symmetry of themodes. As explained below Eq. (2),
odd mechanical modes create a cross-mode coupling, meaning that
they create sidebands in the optical mode with opposite symmetry to
that of the carrier light, whereas even mechanical modes create self-
mode coupling and thus sidebands with the same symmetry. The data
in Fig. 3b and c suggests that mechanical modes α and γ are

predominantly odd, whilst mode β is even. Figure 3e illustrates this
argument: the carrier, predominantly exciting the even mode, has
sidebands ofmodes α, β and γ that have the same frequency as the odd
optical mode. However, only the sidebands scattered from modes α
and γ have the odd optical symmetry and are thus resonantly
enhanced. The mode β sideband is effectively off-resonance. In fact,
modes α and γ experience the enhancement of linear transduction
mentioned in the introduction, which we discuss in more detail in the
following.

Enhanced linear transduction in a coupled-mode system
We now quantify the strength of the transduction signal by using
heterodyne detection. This allows for better signal-to-noise ratio and
for quantitative comparison between linear and nonlinear transduc-
tion later on. Using this setup, we perform narrow sweeps around
optimum laser-cavity detunings in detuned and tuned systems. For
each sweep, the tracewith the largest transduction is plotted in Fig. 4a,
normalised to 1μW of input power. By keeping track of other experi-
mental parameters, direct quantitative comparison between traces is
possible (see ‘Methods’ for more details).

We compare the optimum transduction per input power for a
detuned cavity (blue data, ReðΔLÞ=Ω) to that of a tuned cavity (purple
data, ReðΔÞ= JO) and see a clear enhancement for odd mechanical
modes α and γ, but suppression of even mode β, just as in Fig. 3. The
enhancement of mode γ is stronger than for α, which is expected as
mode α also has a significant component of even symmetry, as can be
seen from the different magnitudes of gL,α and gR,α. We also show a
trace for tuned cavities with a different detuning (green data,
ReðΔÞ= JO +Ω), which exhibits the opposite effect: a stronger sup-
pression of modes α and γ than of mode β, which can also be under-
stood by comparing the sideband frequencies and symmetries to the
optical modes.

These effects can be explained using the theoretical model
described above. From Eq. (5) for an odd mechanical mode in a tuned
system, it can be seen that transduction can be optimised for
ReðΔÞ= JO, JO =Ω/2. Both terms in the denominator are minimised
simultaneously, which can be interpreted as resonance of both the

Fig. 3 | Linear transduction of mechanical modes with different symmetries.
Panels a–c show spectrograms of photocurrent PSD for various laser-cavity
detunings Δ normalised to 1μW input power. a Spectrogram for detuned cavities.
b Spectrogram for a tuned cavity, with c an additional narrow sweep with more
optical power, scaled to match data in (b). Hatched regions indicate Δ values not
accessible due to thermo-optical bistability. The vertical dashed lines represent
resonant detunings, where either carrier or sideband resonates with an optical

mode.Optical input powersused: 1.3μW(a), 1.5μW(b) and 6.8μW(c). Panels d and
e are diagrams illustrating the different frequency components and resonance
conditions. d Diagram for detuned devices and ReðΔLÞ=ð2πÞ=Ω=ð2πÞ≈4:9 GHz,
showing the sideband resonance condition from single-mode optomechanics.
e Diagram for tuned devices and ReðΔÞ=ð2πÞ= JO=ð2πÞ≈ 2:7 GHz, showing
enhancement per input power for odd mechanical modes. DOS: density of states.
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input light and a sideband, as in Fig. 3e. Such simultaneous resonance
is not possible if the mechanical mode has even symmetry or if the
optical modes are detuned and thus the coupled-mode system shows
transduction that is enhanced with respect to a single mode system.
The full equations of our model (see ‘Methods’ section) are plotted as
red lines alongside the data in Fig. 4. Themodel uses as parameters the
independentlymeasured optical parameters (κi, κex,L, JO), OM coupling
constants (gi,j) and the mechanical frequencies and linewidths extrac-
ted from a fit of the detuned cavity data with low optical power. The
model prediction is scaled overall to the detuned cavity data (blue) to
find the unknownphotodetector conversion factor, but after thatgives
completely independent predictions for the tuned cavity transduction.
We find excellent agreement between the model and measured data,
further strengthening our conclusion about the symmetries of the
mechanical modes and the enhancement mechanism at play. The
shaded areas around the red lines indicate possible variation in the
predicted trend due to uncertainty in the input parameters.

Finally, we quantify the enhancement of transduction for mode γ
by fitting the total area of the signal, giving us the total transduced
power. In Fig. 4b, we plot this power as a function of the laser-cavity
detuning around the optimum point for tuned and detuned cavities.
We find an enhancement of a factor of 32.9 ± 0.5 (+15.2 dB) between

the optimal transduced powers, where uncertainty is dominated by
error on the measurement of the low input power. Note that this
enhancement is for constant input power to both the detuned and
tuned system. Again, the red lines give the powers extracted from
the model, using independent parameters and using the same scaling
as in Fig. 4a. We compare this enhancement to the ideal value of
Ω=κ
� �2

≈ 56. As confirmed by numerical calculations, the lower rea-
lised enhancement can be explained well by the non-ideal value of JO,
namely that JO −Ω/2 ≈0.8κ.

Multimode enhancement of optomechanical nonlinearity
Nonlinear transduction of mechanical motion is detectable as optical
fluctuations at twice the mechanical frequency. In the weak coupling
regime, nonlinear sidebands can be viewed as being created by
sequential scattering of light from first-order sidebands17. This process
can involve the same mechanical mode twice, or combine different
modes, and results in fluctuations at Ωj +Ωk, where j, k∈ {α, β, γ}.
Classically, a nonlinear sideband contains information about xjxk, the
position-product of mechanical modes j, k creating the sideband. In
the quantum regime, a sideband-resolved system does not allow
detection of position-squared, as can be seen by filling in
x̂ = xzpf ðb̂

y
+ b̂Þ in Eq. (3): not all resulting terms will be resonant

simultaneously11. Instead, for on-resonant driving, the optical fre-
quency is determined by the phonon number b̂

y
b̂, in principle allowing

for QNDmeasurement of phonon number. The resulting signal will be
centred around zero frequency, making it very hard to detect in our
setup. In our experiment, we detect second-order sidebands at −2Ωm

away from the carrier, which, in termsof theHamiltonian, corresponds
to the term / b̂

y
b̂
y
that can be used for mechanical squeezing38 and

heralded two-phonon generation17.
In Fig. 5a and b, we show the photocurrent spectra of nonlinear

transduction in detuned (a) and tuned cavities (b) for optimaldetuning
(ReðΔLÞ=Ω and ReðΔÞ= JO +Ω, respectively). The spectra are normal-
ized to one intracavity photon, isolating enhancement of the nonlinear
optomechanical processes inside the device from input resonance
effects, such as the linear enhancement. Moreover, the intracavity
photon number is the limiting factor in many experiments due to
heating7,26,31. Normalising to input power instead would reduce the
tuned cavity PSD by a factor of roughly 2.

The nonlinear spectra contain several peaks, which can all be
attributed to a specific mixing of two mechanical modes by matching
the frequency to the sum frequency of two linear transduction peaks
(see Fig. 5a and b). There is a clear enhancement of signal from several
nonlinear scattering processes, most notably β + γ, α + β and 2γ. For an
intuitive understanding of the relative strength of these processes, we
have a closer look at the largest peak, β + γ. In Fig. 5c, we depict
schematically how this particular scattering achieves the optimal
resonance condition. The carrier light, exciting mostly the odd optical
mode, is resonantly scattered into the odd mode through even
mechanical mode β, and subsequently scattered resonantly by odd
mode γ into the even (opposite symmetry) optical mode. As such, the
process is resonant and symmetry-conserving, ensuring maximal
enhancement. The 2γ process is also enhanced and can be described
by the simplified transduction expression in Eq. (9). For ReðΔÞ= JO +Ωγ

and JO =Ωγ/2, both terms in the denominator areminimized, which can
be interpreted as simultaneous resonance of first and second side-
bands, and transduction is enhancedover a single-modedevice. The 2γ
peak is less strong than the β + γ peak, as the former requires carrier
occupation of the even optical mode, which is further detuned from
the laser.

We compare our experimental results to the model for nonlinear
transduction. Note that thismodel gives an independent prediction, as
it is calculated with independently measured system parameters and
scaled only once to linear transduction data of the detuned system. In
Fig. 5, we plot this model as a red line. We see that the different

Fig. 4 | Enhanced linear transduction in coupled-mode devices. a Photocurrent
power spectral density (PSD) per μW input power for detuned and tuned devices
for several interesting laser-cavity detunings Δ around the optimum value Δmax,
showing enhancement of transduction for tuned devices. Red curve shows the
model scaled only to the blue trace, with the highlighted area displaying possible
variation due to parameter uncertainty. Input powers used: 36μW (blue), 68μW
(green), 109 nW (purple), exact values of ReðΔmaxÞ=ð2πÞ: 5.00 GHz (blue), 7.61 GHz
(green), 2.45 GHz (purple). b The fitted area of mode γ for detuned and tuned
cavities, varying Δ around the optimum value. Vertical error bars are standard
deviations in the area due to fit uncertainty and input power uncertainty. Hor-
izontal error bars are givenby standarddeviation of the cavity resonance frequency
fit. Both are smaller than the marker size.
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nonlinear transduction peaks and their relative sizes are captured well
by the model. Overall, the model is found to predict a smaller signal
than measured experimentally, with a difference larger than expected
based on statistic uncertainty in the estimated system parameters. We
provide details on those estimations in Supplementary Notes 8 and 9.
The deviation of the absolute transduced signal from the model must
thus be due to a systematic error, as we discuss further in the Dis-
cussion section. Notably, we observe that the deviation affects both
the single-cavity and coupled-cavity measurements.

To quantify the degree of enhancement due to multimode inter-
actions, we compare the total power of scattering process β + γ for
detuned and tuned cavities. In Fig. 5d, we plot the fitted areas and the
model for a sweep of laser-cavity detuning Δ around the optimal value
Δmax. We find an enhancement of a factor 8.4 ± 0.6 (+9.3 dB),
demonstrating enhanced nonlinear optomechanical processes in a
coupled-mode device by direct comparison to a single-mode config-
uration in the same device. The full model, based on the fitted device
parameters, predicts an enhancement at resonant detuning of a factor
8.7, in good agreement with the experimental data obtained by
dividing the data of single and coupled-cavity device configurations. In
Fig. 5e, we show the enhancement factor, defined as the ratio in
transduced powers between the tuned and detuned cavity case for
varying laser-cavity detuning around the respective optimal values. In
addition, we plot the model prediction for this enhancement. We find
that themodel predicts the enhancement factor well, showing that it is
able to predict correctly how nonlinear transduction changes between
the tuned and detuned configuration, as well as for different values of
laser-cavity detuning.

We note that the ideal theory for optimally detuned coupling
predicted an enhancement of 2 Ω

κ

� �2
for nonlinear scattering from a

single mechanical mode. For this particular scattering β + γ with two
different modes, nonlinear sideband power in the tuned system is
reduced by a factor 4, as only scattering from β then γ is enhanced,
while scattering from γ then β is off-resonant. In thedetuned case, both
processes have equal amplitude, which means the expected
enhancement is 1

2
Ω
κ

� �2
≈ 28. We have confirmed numerically that this is

a good approximation for a system with 2JO =Ω, and that our lower
observed enhancement can be explained through the non-ideal value
of JO.

Discussion
We have demonstrated in direct comparison an 8-fold enhanced non-
linear transduction in our coupled mode system, as well as a 33-fold
enhanced linear transduction with respect to input power. This
demonstration confirms experimentally the idea that optomechanical
nonlinearity can be enhanced in a sideband-resolved coupled-mode
system. The enhancement was determined by using two configurations
of the same device, either tuning the two optical modes to the same
frequency, or detuningone completely, effectively removing it from the
systemand leaving a single-modedevicewith the sameparameters. The
mechanical modes remain delocalised, giving multiple mechanical
modes even in the single-cavity configuration, at the cost of the vacuum
optomechanical coupling g0 being reduced by

ffiffiffi
2

p
from an uncoupled

single cavity, due to the increased mass of the modes.
In addition, we have provided a theoretical framework that pre-

dicts the linear and nonlinear transduction based on independently

Fig. 5 | Enhanced nonlinear transduction. In panels a and b, we compare the
optimal nonlinear part of the power spectral density (PSD) for detuned (a) to tuned
(b) modes. PSD was normalised to per cavity photon. The red line is the indepen-
dent model prediction, the shaded region is the estimated uncertainty on the
model. The detuning (power used) was 5.15 GHz (69μW) and 7.52 GHz (152μW) for
(a) and (b), respectively. c A schematic representation of the optimal resonance
condition for scattering frommode β and thenmode γ.dThe fitted area of the β + γ

tone for detuned and tuned modes while varying Δ around the optimal point. The
inset is a zoom-in of the detuned cavity data. Vertical error bars are standard

deviations in area due to fit uncertainty, horizontal error bars are standard devia-
tion inmeasurement ofΔ. e The enhancement of nonlinear transduction expressed
as transductionpowerofmodeβ + γ for a tuned systemdividedby thatof a detuned
system (the purple and green data in panel d, respectively), around optimum
detuning Δmax. To do this, the purple data was interpolated. As before, the red line
with shaded area shows the model value and corresponding uncertainty. The ver-
tical error bars correspond to propagated standard deviation from fit uncertainties
in area.
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measured optical, mechanical and optomechanical parameters. The
observed enhancement in the coupled-cavity configuration is
explained well by the model. A discrepancy exists between the overall
ratio of linear to nonlinear transduction in the data and the model as
seen in Fig. 5d, leading to an underestimation of nonlinear transduc-
tion by the model. An error in the determination of the model para-
meters could affect this predicted ratio. In Supplementary Notes 8 and
9, we provide an extensive discussion of the determination of vacuum
optomechanical coupling rates gL(R),j, the optical linewidths κL(R) and
cavity-waveguide outcoupling rates κex,L(R). The estimated uncertain-
ties on these parameters were used to determine the error region on
the model in Figs. 4 and 5, from which we conclude that these uncer-
tainties are not sufficient to explain the overall scaling difference
between the model and data for nonlinear transduction.

Another relevant model parameter is the amplitude of thermo-
mechanical motion, which we assume implicitly to be constant
between measurements. This motion is determined by, among other
factors, the effective mechanical decay rate and the temperature of
the environment. As we use thermal tuning, we do affect the mode
environment temperature slightly, although the estimated tem-
perature increase is only 6.4 K (see Supplementary Note 4 for
details), which is marginal compared to the base temperature of 293
K and would lead to an overestimation of nonlinear transduction by
4%. Therefore, we neglect the effect of this temperature increase in
analysis. Next, the effective mechanical decay rate could be changed
through the optomechanical interaction via dynamical backaction. In
our model, we have included this effect (see ‘Methods’ section). At
the same time, care was taken to keep dynamical backaction effects
small during the experiments described here. Still, these effects alter
the mechanical position variance slightly, most prominently for
mode β. For the linear enhancement measurement we estimate
hx2βituned=hx

2
βidetuned ≈0:93 and for the nonlinear enhancement mea-

surement we estimate hx2βituned=hx
2
βidetuned ≈0:96. The enhancement

factors given in the results section have been compensated for this
small effect of dynamical backaction.

Together, the above considerations do not yet fully explain the
discrepancy between nonlinear transduction in the data and model. In
further research, it may be of use to investigate the effect of photo-
thermal effects on the system39 which may cause unexpected dynami-
cal backaction effects, and to study the transduced signal as a function
of environmental temperature. With reduced dissipation at cryogenic
temperatures it could also be possible to use dynamical backaction
instabilities to estimate optomechanical coupling rates, thus providing
independent verification of their magnitude and the expected
nonlinearity40. Also, it might be possible that strong optical fields
induce correlations between different mechanical modes41, which
could potentially affect the ratio of nonlinear to linear transduction.

For the coupled-modedevice, we identifiedoptimal enhancement
values of optomechanically scattered powers of Elin = Ω

κ

� �2
and

Equa = 2 Ω
κ

� �2
for linear and nonlinear transduction, respectively. These

enhancement factors could, however, both be increased to 2 Ω
κ

� �2
.

Tuning the system from effectively single-mode to coupled-mode
reduces the effective coupling rate of the optical eigenmodes with the
outcoupling waveguide, resulting in less cavity photons and smaller
cavity-to-detector efficiency thus giving the lower theoretical maxima
we find. This can be overcome bydesigning the individual cavities with
a larger κex,L(R). Next, when comparing the experimentally found
enhancement to these theoretical values, we find a deviation because
of the non-ideal optical coupling rate. A further fine tuning of the
optical coupling rate JO will allow the device performance to approach
optimal enhancement. We also note that some nonlinear scattering
processes can be selected by optical excitation of only one particular
supermode, which can be achieved by exciting via both on-chip
waveguides simultaneously and (anti)symmetrically. Altogether, the
maximal nonlinear enhancement of (2Ω/κ)2 ≈ 225 canbe approached in

this device by simple redesign within existing possibilities, without the
need to further increase optical quality factor.

We have identified the fabrication angle between the device and
silicon crystal axis as a degree of freedom to control the mechanical
properties of the device, without affecting optical properties. Effec-
tively, additional inter-cavity coupling JMwas created by leveraging this
angle to introduce a new cavity decay channel. Although this, in prin-
ciple, also increases mechanical radiative decay into the substrate and
thus decreases mechanical quality factor, such decrease had only lim-
ited effect on our experiment, as these mechanical modes are limited
by non-radiative decay channels at room temperature42. Moving for-
ward, to recover the mechanical quality factor, cryogenic operation
would be crucial. In addition, one could terminate nanobeam ends into
a structure that has a full phononic bandgap32 to lower radiative decay.
Alternatively, further optimisation of coupling region to optimize JM
and JO simultaneously without using anisotropy could be performed.

Optical post-fabrication tuning was performed through thermal
tuning with an auxiliary laser and a thermally isolated device design.
Themain advantages of thismethod are the accuracy, reversibility and
ease of use. Although temperature increase in the device is only a few
Kelvin, the requirement of constant heating can possibly be difficult in
cryogenic conditions. Moving forward, it would thus be highly
opportune to investigate replacing the tuning method by other
methods that are compatible with cryogenics and quantum experi-
ments, such as oxidation tuning43,44, light-induced chemical etching45

or laser-induced gas desorption46.
Looking ahead, the coupled-mode system presented here has

several applications, both in the classical and in the quantum regime.
First, two optical supermodes at specific frequency separation, com-
bined with several closely spaced mechanical modes provide a very
interesting platform for studying mechanical lasing in multiple modes
and optomechanical frequency combs47,48, for which no further device
improvements arenecessary. In particular,multiple optical resonances
allow for the resonant enhancement of specific frequencies from fre-
quency combs, allowing for selective frequency multiplication. For
many different applications, our design can be applied to reduce the
input power for optical measurement, especially useful in cryogenic
applications involving superconducting circuits next to optical com-
ponents, where optical absorption can degrade performance7. Still in
the weak coupling regime, non-classical states can be generated by
heralding, and our device can be used for heralded creation of two-
phonon states17.Moreover, the enhancednonlinearity could beused to
reveal the granularity of mechanical energy by detecting phonon shot
noise12.

Importantly, in the weak coupling regime, a strong linear coupling
persists next to the nonlinear coupling, which can be an important
factor of decoherence in the generation of non-classical mechanical
states17,29. One possible method to mitigate the effect of linear deco-
herence and allow for measurement-based non-classical state genera-
tion is the use of feedback9. Alternatively, with further improvements to
the vacuum coupling rate g0 and reduction of optical decay rate κ,
approaching the SPSC regime, other quantum applications will come in
reachmore quickly by use of the coupled-mode device presented here,
even in the presence of linear decoherence. These include the photon
blockade effect for the deterministic generation of single-photon
states14 and phonon number measurements16.

Methods
Device fabrication
Devices were fabricated from a silicon-on-insulator wafer with a
220 nm Si device layer on top of a 3 μm SiO2 sacrificial layer. The
Si device layer follows the (100) crystal plane and devices were
fabricated at an angle of θ = 15∘ to the 〈010〉 axis. E-beam exposure
was used to pattern an HSQ resist layer, followed by development
in 25% TMAH. Anisotropic plasma etching was performed using a
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mixture of HBr, O2 and Cl2 to etch the silicon device layer. Finally,
the SiO2 layer was removed using a 40% HF etch. After this etch,
the device is transported to the setup vacuum chamber within
half an hour to prevent oxidation of the Si surface.

Direct detection setup
The sample is placed in a vacuum chamber which is pumped
down and filled with nitrogen back to 0.25 bar to prevent oxi-
dation of the nanobeam surface. Optical connection to the sam-
ple was made via a dimpled optical fibre49. Light from a tunable
diode laser (Toptica CTL 1500) was sent into the nanobeam and
upon reflection was amplified in an erbium-doped fibre amplifier
(EDFA, Calmar Coronado) and detected on a 12 GHz photodiode
(New Focus 1544-B). The photocurrent was analysed on a real-
time spectrum analyser (Agilent MXA N9020A). To keep track of
the optical modes, an additional tunable laser (New Focus TLB-
6728) was swept across the optical modes intermittently with low
optical power of ≈100 nW. The laser was modulated strongly at 1
MHz and a measure of reflection was obtained with a lock-in
measurement of reflected power to overcome detector electronic
noise. Determination of optomechanical vacuum coupling rate
was done using frequency noise calibration with an electro-
optical phase modulator calibrated using a fibre-loop cavity37,50,
of which details are discussed in Supplementary Note 8. In Sup-
plementary Notes 1, 2 and 3 and Supplementary Fig. 1 we describe
the further details of the experimental setups.

Heterodyne setup
For theheterodyne setup, an additional TopticaCTL tunable diode laser
was used as a local oscillator (LO). The twoToptica laserswere locked at
a fixed frequency offset by creating sidebands on one laser using an
electro-optic modulator and locking the other laser to this sideband.
The lock was achieved using a Red Pitaya digital signal processor,
applying feedback to thediode current and tuningpiezoof the LO laser,
and the resulting beating between the two lasers has a linewidth much
smaller than the mechanical linewidth. To be able to quantitatively
compare different measurements, care was taken to keep constant the
LOpower, aswell as thepolarisationoverlapbetween the two lasers and
the dimple-to-waveguide coupling efficiency.

Coupled-mode model
To derive a model that can predict the photocurrent based on para-
meters of the mechanical and optical modes, we start with the
equations-of-motion (EOMs) for the classical optical field amplitudes
of left and right opticalmodes andmechanicalmode displacements of
modes α, β, γ in a frame rotating at optical input frequency ωin

51

_aLðRÞ = i ΔLðRÞ +
X

j =α,β,γ

gL,jxj

0
@

1
AaLðRÞ + iJOaRðLÞ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κex,LðRÞ

p
ain,LðRÞ, ð12Þ

€xj + Γj _x +Ω
2
j x =2

ffiffiffiffi
Γj

q
Ωjpin,j +2 gL,j ∣aL∣

2 + gR,j ∣aR∣
2

� 	
, ð13Þ

where ΔL(R) = (ωin −ωL(R)) + iκL(R)/2 contains both detuning
between input field and the optical mode frequencies ωL(R) and
the optical decay rate κL(R). The mechanical modes j∈ {α, β, γ}
have frequencies (decay rates) Ωj (Γj). Inter-mode optical coupling
is given by JO and optomechanical coupling is given by gL(R),j.
Position is expressed as unitless position xj = qj/xzpf, where qj is

the mode amplitude in metres and xzpf =
ffiffiffiffiffiffiffiffi
_

2mΩ

q
is the zero-point

amplitude of the mode, with m the mode effective mass. Finally,
optical modes are connected to input fields ain,L(R) and mechan-
ical modes to thermal bath momenta pin,j.

The EOMs are solved in a perturbative fashion17,
aLðRÞðtÞ= �aLðRÞ +a

ð1Þ
LðRÞðtÞ+að2Þ

LðRÞðtÞ+ :::, where �aLðRÞ is the steady-state
cavity field and ai

LðRÞ contains all terms of i-th order in gL(R),j. This
requires that thermomechanical motion is sufficiently small, i.e. that
gLðRÞ,j

ffiffiffiffiffiffiffiffiffi
nth,j

p
, with thermal phononoccupation nth,j = kBT/(ℏΩj), kB being

the Boltzmann constant and T temperature, is smaller than the optical
linewidth κ. For our system, gLðRÞ,j

ffiffiffiffiffiffiffiffiffi
nth,j

p
=κ ≈0:04 and we are thus well

in theperturbative regime.Also,we assumeweconnect optically to the
left cavity, i.e. κex,R = 0.

Solving is done in the frequency domain, for which we use the
Fourier transform

A½ω�=
Z 1

�1
aðtÞeiωtdt: ð14Þ

To transform a product of functions, we use the following identity:

ðABÞ½ω�=
Z 1

�1
bðtÞaðtÞeiωtdt

= 1=ð2πÞ
Z 1

�1
A½ω0�B½ω� ω0�dω0

= 1=ð2πÞA½ω�*B½ω�:

ð15Þ

We find

�aL =
i

ffiffiffiffiffiffiffiffiffiffi
κex,L

p
ΔR

ΔLΔR � J2O
�ain,L, ð16Þ

�aR =
�iJO

ffiffiffiffiffiffiffiffiffiffi
κex,R

p

ΔLΔR � J2O
�ain,L, ð17Þ

Að1Þ
LðRÞ½ω�=

X
j =α,β,γ

JOgRðLÞ,j�aRðLÞ � ðω+ΔRðLÞÞgLðRÞ,j�aLðRÞ
ðω+ΔRÞðω+ΔLÞ � J2O

Xj ½ω�

=
X

j =α,β,γ

eMLðRÞ,jðωÞXj ½ω�,
ð18Þ

Að2Þ
L ½ω�= 1

2π
1

ðω+ΔRÞðω+ΔLÞ � J2O

X
k =α,β,γ

JOgR,kðAð1Þ
R ½ω�*Xk ½ω�Þ

�

� ðω+ΔRÞgL,kðAð1Þ
L ½ω�*Xk ½ω�Þ

	
,

ð19Þ

where Xj is the Fourier transform of mechanical displacement xj and

eMLðRÞ,j =
JOgRðLÞ,j�aRðLÞ � ðω+ΔRðLÞÞgLðRÞ,j�aLðRÞ

ðω+ΔRÞðω+ΔLÞ � J2O
: ð20Þ

We are interested in the power spectral density (PSD) of photo-
current I, which is given by52

SII½ω�=
1
2π

Z 1

�1
hI½ω�I½ω0�idω0: ð21Þ

The photocurrent is equal to the optical power (removing the
proportionality constant), which for the heterodyne detection is given
by

I½ω�= ffiffiffiffiffiffiffiffi
nhet

p ffiffiffiffiffiffiffiffiffiffi
κex,L

p
AðiÞ
out½ω��+ ðAðiÞ

out½�ω+ �Þ
*� 	
, ð22Þ

withω− =ω −ωhet andω+ =ω +ωhet,ωhet the heterodyne frequency and
nhet the amountofphotons in the LO. The cavity reflected light for non-

zero ω is given by the input-output relation AðiÞ
out =

ffiffiffiffiffiffiffiffiffiffi
κex,L

p
AðiÞ
L .
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Now,weneed to specify themotion ofXj[ω]. FollowingBowen and
Milburn52, we define this to be

Xj½ω�= χ jðωÞPin,j ½ω�, ð23Þ

where χj(ω) is the susceptibility of mechanical mode j, with first-order
dynamical backaction correction

χ jðωÞ=2
ffiffiffiffi
Γj

q
Ωj Ω2

j � ω2 � iωΓj � 2Ωj

h
gL,j�aL

eM*
L,jð�ωÞ+ gL,j�a

*
L
eML,jðωÞ

�
gR,j�aR

eM*
R,jð�ωÞ+ gR,j�a

*
R
eMR,jðωÞ

	i�1
,

ð24Þ

and Pin,j the thermal bath forcing (momentum) term, which is a white
noise with correlation function

hPin,j ½ω�Pin,k ½ω0�i =2πnthδj,kδðω+ω0Þ: ð25Þ

In the calculation of second-order PSD, the correlation function of
a product of four thermal bath momenta has to be calculated. To
evaluate this,weuse the fact that, in thermal equilibrium, themomenta
are normally distributed to employ the Isserlis-Wick theorem9. In
particular, the expectation value of the product of four normally-
distributed random variables Yl can be reduced to

hY 1Y 2Y 3Y 4i= hY 1Y 2ihY 3Y 4i+ hY 1Y 3ihY 2Y 4i+ hY 1Y 4ihY 2Y 3i: ð26Þ

Combining all of the previous steps, we can write down expres-
sions for the first and second-order components of SII

Sð1ÞII ½ω�= κex,Lnhetnth

X
j

Mjðω�ÞMjð�ω�Þ
h

+Mjðω�ÞðMjðω�ÞÞ*ðMjð�ω+ ÞÞ*Mjð�ω+ Þ
+ ðMjð�ω+ ÞÞ*ðMjðω+ ÞÞ*

i
,

ð27Þ

with

MjðωÞ=ML,jðωÞ= eML,jðωÞχ jðωÞ, ð28Þ

and we remember that our experiment only probes the left cavity L.
Note thatMR,j is obtained fromML,jby swapping subscripts R and L. For
nonlinear transduction, we find

Sð2ÞII ½ω�= κex,Lnhetn
2
th

2π

Z
dω0 X

j,k =α,β,γ

Nj,kðω�,ω
0Þ

�

Nj,k ð�ω�,� ω0Þ+Nk,jð�ω�,ω
0 � ω�Þ

h
+N*

j,kðω�,ω
0Þ+N*

k,jðω�,ω� � ω0Þ
i

+N*
j,kð�ω+ ,ω

0Þ Nj,kð�ω+ ,ω
0Þ

h
+Nk,jð�ω+ ,� ω+ � ω0Þ+N*

j,k ðω+ ,� ω0Þ
+N*

k,jðω+ ,ω
0 +ω+ Þ

i	
,

ð29Þ

with

Nj,kðω,ω0Þ= 1

ðω+ΔRÞðω+ΔLÞ � J2O
JOgR,kMR,jðω� ω0Þ

�

� ðω+ΔRÞgL,kML,jðω� ω0Þ
	
χkðω0Þ:

ð30Þ

Data availability
The data in this study are available from the Zenodo repository at
https://doi.org/10.5281/zenodo.7307901.

Code availability
The code used in the present work is available from the authors upon
request.
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