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a b s t r a c t

This work presents a population genetic model of evolution, which includes haploid selection,
mutation, recombination, and drift. The mutation-selection equilibrium can be expressed exactly in
closed form for arbitrary fitness functions without resorting to diffusion approximations. Tractability
is achieved by generating new offspring using n-parent rather than 2-parent recombination. While this
enforces linkage equilibrium among offspring, it allows analysis of the whole population under linkage
disequilibrium. We derive a general and exact relationship between fitness fluctuations and response
to selection. Our assumptions allow analytical calculation of the stationary distribution of the model
for a variety of non-trivial fitness functions. These results allow us to speak to genetic architecture,
i.e., what stationary distributions result from different fitness functions. This paper presents methods
for exactly deriving stationary states for finite and infinite populations. This method can be applied
to many fitness functions, and we give exact calculations for four of these. These results allow us
to investigate metastability, tradeoffs between fitness functions, and even consider error-correcting
codes.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Mathematical models of natural selection, mutation, recom-
ination, and drift are notorious for becoming intractable when
caled up beyond the simplest situations. Intractability is usually
ealt with by making various simplifying assumptions. The art of
hese assumptions is to make the model tractable without losing
ts biological relevance.

Population genetic models of finite populations typically
enerate population dynamics as Markov chains, which can be
otentially analyzed with the spectral theory of finite matrices.
owever, these models have large state spaces and compli-
ated matrix elements, so approximation and other methods
re necessary. These approaches are used at the outset in the
inite population Wright-Fisher model (Wright, 1931) and Moran
odel (Moran, 1958). For example, Baake and Baake (2003, 2008)
evelop a Moran model incorporating mutation and recombina-
ion, which is exactly solvable for restricted types of selection. The
iologically important case of the evolution of linkage disequilib-
ium of neutral loci linked to a single locus under selection has
een solved by Alberti et al. (2021), Alberti and Baake (2021). The
ate of convergence of a population to equilibrium under various
ypes of recombination has been solved by Caputo and Sinclair

∗ Corresponding author.
E-mail address: c.j.watkins@rhul.ac.uk (C. Watkins).
ttps://doi.org/10.1016/j.tpb.2023.03.005
040-5809/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
(2018). None of these models treat selection with an arbitrary
fitness function defined over multiple loci.

Here we investigate a novel direction for simplifying assump-
tions that allow us to obtain analytical results for multiple loci
under recombination, arbitrary selection, mutation, and drift in a
Moran-based model introduced in Lember and Watkins (2020),
Watkins and Buttkewitz (2014). Our simplifications are straight-
forward. The main simplification is in modeling sexual breed-
ing through recombination. Unlike existing models, which use
two-parent recombination, our model has n-parent recombina-
tion. Genetic material from the whole population is combined
when breeding a new offspring. We suggest that this is a nat-
ural abstraction of evolution with sexual reproduction. This ab-
straction does preserve one essential property of recombination:
genetic elements are drawn from parents independently from one
another.

A major obstacle to tractability in models that include re-
combination is the persistence of linkage disequilibrium in the
dynamics. Linkage disequilibrium is where alleles at different loci
are associated within genomes. In numerous models of unlinked
or loosely linked loci, linkage equilibrium is assumed in order
to make the analysis tractable (Turelli and Barton, 1990; Carter
et al., 2005; Malaspinas et al., 2011; Novak and Barton, 2017). Our
analysis can accommodate linkage disequilibrium in the entire
population. However, our simplification for tractability is that
new offspring are created in linkage equilibrium. Alleles for each
locus are drawn from the entire population, independently from
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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he draw at the other loci. Organisms are haploid, and their single
enome determines fitness.
This sampling assumption, which is effectively n-parent re-

ombination, and several other modeling assumptions, produce
n implementable evolutionary model that exactly satisfies de-
ailed balance at its stationary distributions. The stationary dis-
ribution of this evolutionary model can be given in closed form
or any fitness function. This work shows how to calculate the
tationary distribution for both finite and infinite populations. It
s notable that despite being Markov chains, previous models for
ong multi-locus genomes with recombination and arbitrary se-
ection do not exhibit reversibility, and therefore neither do their
volutionary stationary distributions satisfy detailed balance.
Many people have remarked on the similarity between the

eplicator equation, and Bayesian updating (Harper, 2009; Wat-
on and Szathmáry, 2016; Bürger, 2000). Our evolutionary model
s not just reminiscent of Bayesian updating — it is precisely
Monte-Carlo procedure for sampling from the posterior dis-

ribution of a well-known Bayesian model, a factorial Dirichlet
rocess. The interpretation of our model is entirely non-Bayesian,
ut the formal identity to established Bayesian modeling is exact.
he stationary distribution of populations is a product of two
actors: a ‘breeding’ factor, analogous to prior probability, which
epends only on the mutation rate and the population size; and a
selection’ factor, which depends only on the definition of fitness
sed, and which is analogous to a likelihood.
A fundamental property of any evolutionary model satisfy-

ng detailed balance is that, at mutation-selection equilibrium,
t is impossible to determine the direction of time from the
equence of overlapping populations. On a microscopic level,
iological evolution is not reversible because the time direction of
enealogies can be determined: it is possible to identify parent–
hild-parent triples so that it is possible to distinguish between
he genomes of children and their parents. In this way, one
ay identify the direction of time. Our analysis does not keep

rack of genealogies, only population compositions, for which the
ynamics are reversible.
Instead of questions of population history and lineage, we

re interested in genetic architecture. For example, what station-
ry distributions of genomes are induced by different classes of
itness functions? The relationship of organismal fitness to geno-
ype is complex: what are the evolutionary effects of different
appings from genotype to fitness? Our pan-population recom-
ination model is needed to investigate these questions because
he stationary distribution is hard or impossible to calculate for
odels with a more realistic breeding model. We explore this
ith calculations for some example fitness functions in Section 5
elow.
First, in Section 2.3, we introduce a continuous-time Moran

rocess, with recombination, mutation, and selection, imple-
entable as an individual agent-based simulation, which exactly
atisfies detailed balance.
Second, we show that our model is not just analogous to
Bayesian model — it actually is a Bayesian model of a well-
nown type. Section 2.5 describes how our evolutionary model is
ormally identical to a variant of a well-known Bayesian model,
he Dirichlet process mixture model (Neal, 2000; Teh et al., 2010),
ith a prior that is a product of independent Dirichlet processes,
simpler version of the processes considered in Griffiths and
hahramani (2011). However, the motivation and interpretation
f our model is entirely different from these Bayesian models. We
re not interested in data analysis but in an analytically tractable
bstract model of evolution. Our model may give insight into
daptation with complex fitness functions.
Third, in Section 3, we establish a universal relationship be-
ween the fluctuations of population fitness at stationarity and l

29
the gradient of a population’s mean fitness with respect to the
selection intensity. This relationship is valid for all fitness func-
tions. As far as we are aware, this analysis of fitness fluctuations
is new.

Fourth, in Section 5, we explicitly show how to exactly calcu-
late the stationary distribution for four non-trivial fitness func-
tions for both finite and infinite populations. These calculations
provide insight into cases with meta-stable regimes, where accu-
rate simulations require long runs.

Finally, in Section 6.4, we demonstrate that mutational robust-
ness in the form of error-correcting codes, in particular, Hamming
codes, can decrease the genetic load or, equivalently, allow a
given fitness level to be maintained in the face of mutation with
less intense selection.

2. The evolutionary model

We consider a population X of N haploid genomes with L
iallelic loci, each represented as a binary vector of length L. There
re therefore 2N×L possible population states. We consider the
opulation of N genomes as a N × L matrix X of binary values.
ach row represents a genome, and each column represents the
alues at a particular position or locus across all genomes.
We denote genome i as gi = (Xi1,Xi2, . . . ,XiL), the i’th row

f X. The j’th column of X, which represents all values at the
’th locus in each of the N genomes, will be denoted by cj =

X1j,X2j, . . . ,XNj). The k’th element of locus j will be denoted
j(k), and the m’th element of genome i will be denoted gi(m).
We consider evolution as a continuous time Markov chain.

t each state transition, one genome is selected to die, and a
ew genome is immediately ‘bred’ from the remaining genomes
o replace it. The generations are overlapping: only one genome
hanges at each jump in the chain. Lember and Watkins (2020),
atkins and Buttkewitz (2014) describe discrete-time Markov
rocesses that can also be interpreted as evolutionary models
ith the same stationary distribution, but we present a novel
ontinuous-time process here.

.1. Fitness and lifetime

In our model, the fitness of a genome is modeled as its ex-
ected lifetime in the Markov process. We write the fitness of
genome g as f (g), where f is a ‘fitness function’ that maps
inary vectors of length L to strictly positive real numbers. We
ill consider different choices of f below.
It will frequently be convenient to parameterize f in terms

f a ‘weight’ function φ and a parameter β ≥ 0, such that
(g) ≡ exp(−βφ(g)). For a given φ, varying β corresponds to
arying selection intensity. The parameter β is analogous to
nverse temperature in statistical mechanics; we use it to vary
he intensity of selection for a given form of a fitness function.

When β = 0, all genomes have expected lifetime 1; there is
o selection effect because all genomes have the same fitness.
or small β > 0, genomes differ only slightly in fitness and
election is weak. For large β , some genomes may have long
ifetimes, while others ‘die’ almost immediately: increased values
f β induce increased differences in genome lifetimes for given
itness weights φ.

A genome g with weight φ(g) has expected lifetime
xp(−βφ(g)). In the Markov process (Section 2.3) below, the
ifetime of gi is an exponentially distributed random variable,
ith mean exp(−βφ(gi)). We assume that a genome’s fitness is

ndependent of other genomes in the population and remains
onstant over its lifetime. The lifetime for each individual with
enome gi is set at birth by drawing a value from its exponential

ifetime distribution φ(gi).
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The probability that the living genome gi dies in a time interval
t is 1

f (gi)
dt . It follows that, in a population of living genomes

1, . . . , gN ,

(next genome to die is gi) =

1
f (gi)

1
f (g1)

+ · · ·
1

f (gi)
+ · · ·

1
f (gN )

. (1)

It follows that the expected time until the next transition in the
Markov chain of populations is

1
exp(βφ(g1)) + · · · + exp(βφ(gN ))

. (2)

Adding a constant to φ, equivalent to multiplying all fitnesses
by a constant factor, does not affect the stationary distribution.

Since f (g) = exp(−βφ(g)), f is invariant if φ is multiplied by
ome constant c , and β is divided by the same constant.

.2. Breeding as gibbs sampling

Our model of breeding is analogous to recombination through
exual reproduction. However, instead of breeding from two-
arent genomes, a new genome is bred by combining randomly
hosen elements from all genomes in the population. We make
this modeling choice for mathematical simplicity: with this
choice, the Markov chain of populations satisfies detailed balance,
and the stationary distribution factorizes into a simple form.

Once genome gi dies, a new genome is instantly bred to
replace it. Fitness does not affect breeding. The new genome g′

i
is resampled from the remaining existing genomes g1, . . . , gi−1,
gi+1, . . . , gN without any dependence on their fitnesses.

2.2.1. Mutation
In this paper, we parameterize mutation in two equivalent

ways: using mutation rates and using concentration parameters
of a Dirichlet process. Parametrizing mutation as a Dirichlet pro-
cess allows us to directly connect with non-parametric Bayesian
statistics and derive the mutation-selection equilibrium in closed
form.

A conventional notation to define mutation rates is as a
column-stochastic allele transition matrix T, defined as:

T = (1 − µ)I + µM (3)

M =

(
1 − u10 u01
u10 1 − u01

)
(4)

where Tij is the probability of a transition from allele j to allele
i, and u01 is the probability that a 1-allele mutates to a 0-allele,
given that a mutation occurs.

Let us define:

u0 = µu01 (5)

u1 = µu10 (6)

u = u0 + u1 (7)

We may now re-express T as:

T =

(
(1 − u) + u0 u0

u1 (1 − u) + u1

)
(8)

We can describe the action of T in two ways. First, as mutation:
a new allele is ‘bred’ by copying an existing allele from a parent,
and then T is applied to stochastically mutate the allele. Second,
as sampling from a base distribution: when a new allele is bred,
it is copied from some parent in the population with probability
1 − u, and the new allele instead is sampled from a ‘base dis-
tribution’ with probability u, with p(0) =

u0
u , and p(1) =

u1
u .

he sampling from the base distribution does not depend on the
urrent composition of the population. Therefore, in our model,
30
mutation can be considered as sampling from a fixed distribution
of possible alleles instead of transforming one allele into another.

In this paper, we only consider the case of two alleles (0 and
1). In this case alone, the two views of mutation are mathemat-
ically equivalent. For more than two possible alleles, the second
‘sampling’ view of mutation imposes restrictions on the structure
of the mutation matrix: this constraint is discussed in Lember and
Watkins (2020), but we do not consider it here.

In what follows, we will gain both convenience and insight by
defining new parameters α0, α1, and α, in terms of u0, u1, u and
:

0 := (N − 1)
u0

1 − u
α1 := (N − 1)

u1

1 − u
(9)

α := α0 + α1 (10)

In the context of Dirichlet processes used in non-parametric
ayesian statistics, α0, α1 and α are known as concentration
arameters. However, our presentation does not assume previous
nowledge of this area of statistics.
Note that α is close to the standard genetic parameter Nu. To

convert from α back to u we have:

u0 :=
α0

α + N − 1
u1 :=

α1

α + N − 1
(11)

Introducing α, α0, α1 enables the stationary distribution of the
umbers of 0 and 1 alleles to be written in a convenient closed
orm, which we now do.

.2.2. Breeding a new allele
Consider a population of N genomes, each consisting of one

llele, which may be either 0 or 1. Let us denote the population
s X = (g1, . . . , gN ), with the genomes gi having values in {0, 1}.
We repeatedly randomly remove a single genome – it ‘dies’
and then a new genome is bred. This breeding happens by

ampling the new genome conditionally on the N − 1 remaining
enomes in the following way. With probability u =

α
α+N−1

here is a mutation, and a new allele is sampled from the base
istribution p(0) =

α0
α
, p(1) =

α1
α
. With probability (1 − u) =

N−1
α+N−1 , the new allele is a copy of an allele uniformly selected
from the N −1 existing alleles. With our definitions of α0 and α1,
his is exactly breeding with mutation rates u0 and u1.

If individuals are chosen uniformly at random to die, what is
he stationary distribution of the numbers of 0 and 1 alleles?

When sampling – that is, when ‘breeding’ – a new allele given
population of N existing alleles, g1, . . . , gN , comprising n0 0-
lleles and n1 1-alleles, with n0 + n1 = N , with given α0, α1, we
ave :

b(gn+1 = 0 | g1, . . . , gn) =
α0 + n0

α + n
,

Pb(gn+1 = 1 | g1, . . . , gn) =
α1 + n1

α + n
(12)

where Pb(gn+1 = 0 | g1, . . . , gn) denotes the probability of
reeding an allele of the given type.
Breeding is done by sampling from the population, which

s invariant to the ordering of the genomes. Any genome may
die’; if the ith genome of X dies, it leaves the population X\i =

g1, . . . , gi−1, gi+1, . . . , gN ). From Eq. (12), and using that breeding
is invariant to genome ordering, we have

Pb(X) = Pb(X\gi )Pb(gi|X\gi ). (13)

his equation shows a key property of Pb: by symmetry, it is clear
b is exchangeable. Eqs. (12) and (13) together define the distribu-
ion Pb over populations. Pb denotes the stationary distribution of
opulations under breeding without selection. We also use Pb to
enote the distribution of allele frequencies and the conditional
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istribution of single genomes bred conditionally from the popu-
ation; we overload notation by using Pb to cover all distributions
rising from the stationary distribution over populations.
But what is an explicit expression for Pb? We can obtain a

ealization of X by repeatedly applying Eqs. (12) and (13) for
= 1, 2, . . . ,N . This samples a sequence of genomes, with each
enome sampled conditionally on the genomes already sampled.
he first genome is 1 with probability α1

α
. It is a ‘pure mutation’.

g2 is sampled conditionally on g1: if g1 = 1, the probability that
g2 = 1 is α1+1

α+1 . Suppose that k genomes have been sampled, of
hich k0 are 0 and k1 are 1: then the probability that k + 1th
enome is 1 is:

α1 + k1
α + k

(14)

he probability of a population of N genomes with n0 zeros and
1 ones is the product of N terms of the form αg+kg

α+k . Here g is
zero or one, and k0 and k1 are the numbers of 0s and 1s in the
irst k samples. Multiplying all these terms together, we obtain
he probability of a realization of a population X = (g1, . . . , gN )
explicitly as:

Pb(X) =
α0(α0 + 1)...(α0 + n0 − 1) × α1(α1 + 1)...(α1 + n1 − 1)

α(α + 1)...(α + N − 1)
.

(15)

ecause the product of all terms of the form
α0 + k0
α + k

α1 + k1
α + k

(16)

contains numerators in α0, α0 + 1, . . . , α0 + n0 − 1, and α1, α1 +

, . . . , α1 + n1 − 1, over a product of the denominators α, α +

, . . . , α+N −1. The sequence of genomes described is a realiza-
tion of a Polya urn process, which is known to be exchangeable.
The advantage of this ‘trick’ of sampling starting with an empty
population, and a steadily reducing mutation rate, is that we get
an explicit formula for Pb.

One must be careful to distinguish between the probability of
single, ordered realization X and the probability of observing
ny realization with n0 0s and n1 1s. The stationary distribu-

tion of realizations with particular numbers of 0s and 1s is the
Beta-Binomial distribution

Pb(n0, n1)

=

(
n
n0

)
α0(α0 + 1)...(α0 + n0 − 1) × α1(α1 + 1)...(α1 + n1 − 1)

(α0 + α1)(α0 + α1 + 1)...(α0 + n0 + n1 − 1)
.

(17)

neater notation is to use the bracket notation for the rising
actorial function, which is defined as

α)n := α(α + 1)(α + 2)...(α + n − 1) (18)

sing this

b(n0, n1) =

(
n
n0

)
(α0)n0 (α1)n1

(α0 + α1)n0+n1
. (19)

n Section 4 below, we will use that the Beta-Binomial distri-
ution can be expressed as a mixture of Binomial distributions,

b(X) =

(
n
n1

)∫ 1

θ=0
Beta(θ |α0, α1)(1 − θ )n0θn1dθ (20)

2.2.3. Breeding a multi-locus genome
During the evolutionary process, when an individual ‘dies’, its

whole multi-locus genome is removed at once, and a new genome
is bred from the remaining N − 1 genomes to replace it.
 a

31
At each locus of the new genome, the new allele is sampled
independently of the new values at other loci. It follows there is a
separate Polya urn process at each locus, and these processes are
independent so that in the absence of selection (that is, if each
genome dies with equal probability), the breeding probability of
a given population X is then

Pb(X) =

L∏
j=1

Pb(cj). (21)

where cj denotes the N alleles at locus j. The distribution Pb
functions as a ‘prior’ distribution; fitness then plays the role of
likelihood. This is the key simplification of this work, granting
tractability to the model.

2.3. A continuous-time evolutionary process

We model evolution as a continuous-time Markov chain of
overlapping populations, where successive populations differ by
only one individual. An algorithm for simulating the Markov chain
is as follows:

1. Given: genomes g1, . . . , gN with fitnesses f1, . . . , fN
2. For 1 ≤ i ≤ N do: sample ωi ∼ Exponential( 1fi )

// ωi is the time of death of gi
3. For l = 1 to ∞ do: // l indexes transitions

(a) Let i = argmin(ω1, . . . , ωN ), and let τl = ωi
// gi is the first genome to die; time of l’th transition is
τl = ωi

(b) Reject gi
(c) Sample new gi ∼ Pb(· | g1, . . . , gi−1, gi+1, . . . , gN )
(d) fi := f (gi)
(e) Sample ϵ ∼ Exponential

(
1
fi

)
//compute lifespan of

new gi
(f) Set ωi := τl + ϵ

//sets death date of new gi as current time τl plus
lifespan ϵ

.4. Stationary distribution of the Markov chain of populations

Since each population depends only on the previous popula-
ion, the sequence of populations is a Markov chain. This chain
as a finite state space because we consider states consisting of
genomes of length L. Moreover, the chain is irreducible because
utations can enable any population to transition into any other
opulation over a sequence of N transitions. It follows that the

chain has a unique stationary distribution.
We make an ansatz that the stationary distribution Ps factor-

zes into Pb reweighted by the product of fitnesses of genomes in
he population:

s(X) =
1
Z
Pb(X)

n∏
i=1

f (gi), (22)

here Z is a normalizing factor that sums over all possible pop-
lations X:

(N, L, f ) =

∑
X∈{0,1}N×L

Pb(X)
n∏

i=1

f (gi) (23)

ote that Pb depends on α0, α1 and Z depends upon N , L, α0,
1 and f , but we do not explicitly state these dependencies
hroughout. We now show that this ansatz satisfies the detailed
alance equations, proving that it is the stationary distribution.
In the Markov chain, a transition from one population to

nother occurs when a single genome dies, and a newly sampled
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enome replaces it. Hence we need only consider transitions
etween pairs of populations that differ in only one genome.
onsider two populations X = (g1, . . . , gi, . . . , gN ) and X′

=

g1, . . . , g′

i, . . . , gN ), which differ only in their i’th genome.
The detailed balance equations are, for each pair X,X′ differing

n at most one genome:

s(X)T (X → X′) = Ps(X′)T (X′
→ X) (24)

here T (X → X′) is the rate for population X to transition to X′.
For a transition from X to X′ to occur, genome gi in X must die,

and then genome g′

i must be bred from the remaining genomes,
which we denote as X\i = g1, . . . , gi−1, gi+1, . . . , gN .

Let us write the fitnesses f (g1), . . . , f (gN ) as f1, . . . , fN for
revity. The hazard rate for gi to die is then 1

fi
. The probability

f breeding g′

i from X\i is Pb(g′

i | X\i), so that

T (X → X′) =
1

f (gi)
Pb(g′

i | X\i) (25)

hence we obtain

Ps(X)T (X → X′) =
1
Z
Pb(X)f1 · · · fN

1
fi
Pb(g′

i | X\i) (26)

=
1
Z
Pb(X)Pb(g′

i | X\i)f1 · · · fi−1fi+1 · · · fN (27)

nd since Pb(X) = Pb(X\i)Pb(gi | X\i),

=
1
Z
Pb(X\i)Pb(gi | X\i)Pb(g′

i | X\i)f1 · · · fi−1fi+1 · · · fN

(28)

The last expression is symmetric in gi and g′

i , showing that de-
tailed balance holds, proving the ansatz in Eq. (22) is indeed the
stationary distribution.

The stationary distribution can be written as:

Ps(X) =
1
Z

L∏
j=1

Pb(cj)
N∏
i=1

f (gi), (29)

which shows that the stationary probability of a population is
proportional to the product of column-factors, one calculated
for each column of X, c1, . . . , cL, multiplied by the product of
row-factors, one calculated for each row of X, g1, . . . , gN . The
column-factors relate only to breeding: they depend only on the
population size and mutation rate. The row factors are individual
genomes’ fitnesses (or expected lifetimes). In this model, these
fitnesses are assumed to be a function of the genome sequence
only and not dependent on the other genomes in the population.

While the breeding processes at each locus are independent,
the fitness functions can cause dependencies between the loci
on the genome at the point of death. Hence, dependencies be-
tween columns of X are introduced by selection. In genetic lan-
guage, breeding without selection gives a population in linkage
equilibrium, but selection introduces dependencies between loci.

2.5. Formal equivalence to Bayesian inference

This section discusses the relationship between evolution and
Bayesian inference. While interesting, it is independent of the rest
of the paper. Readers should feel free to skip ahead.

Many people have suggested analogies between Bayesian in-
ference and evolution. Our model is not just analogous to Bayesian
inference — it is formally equivalent to a factorial Dirichlet pro-
cess model, which is a standard non-parametric latent vari-
able Bayesian model (Neal, 2000; Teh et al., 2010; Griffiths and
Ghahramani, 2011).

Suppose we have N data samples y1, . . . , yN . For each sam-
ple, we wish to infer L latent attributes. Each attribute may be
32
either present or absent, coded as 1 or 0, respectively. The latent
variables form a N by L matrix X of binary values, each row
corresponding to a sample, each column corresponding to an
attribute. We may formulate a model as follows:

Given: sample size N , number of factors L, Dirichlet parame-
ters α0, α1 > 0, and a likelihood function f .

θj ∼ Beta(α0, α1) for 1 ≤ j ≤ L (30)

Xij ∼ Bernoulli(θj) for 1 ≤ j ≤ L, 1 ≤ i ≤ N (31)

yi ∼ p(· | Xi1, . . . ,XiL) for 1 ≤ i ≤ N (32)

here we use the fact that the Beta-Binomial distribution is a
ixture of binomial distributions:

eBi(c) =

∫ 1

θ=0
P(c | θ )Beta(θ; α0, α1)dθ. (33)

Although we have constructed an evolutionary model with the
orm of a well-known Bayesian non-parametric model, our justi-
ication is in the reverse direction of every step of the standard
ayesian argument. In Bayesian statistics, one starts with data
nd prior beliefs about the data. These beliefs are expressed as a
enerative model: a prior distribution over latent parameters and
likelihood function that gives the probability of the data accord-
ng to the model. The Bayesian wishes to know the distribution of
he latent parameters, given the data. The full Bayesian analysis
ould require summing over all values of the latent parameters;
s this is typically infeasible, it is necessary to devise a Monte-
arlo Markov chain (MCMC) sampling scheme to sample sets of
atent parameters. The Bayesian model above can be described by

(X | α0, α1, y) =
p(X | α0, α1)p(y | X)

p(y | α0, α1)
(34)

=
1

p(y | α0, α1)

L∏
j=1

p(cj | α0, α1)
N∏
i=1

p(yi | Xi).

(35)

q. (35) has a simple form: the posterior probability of X is pro-
ortional to the product of the prior probabilities of its columns
j and the likelihoods of its rows gi. However, because of the large
umber of possible discrete values of X, it is not straightforward
o sample from its posterior distribution nor to compute the
vidence p(y). Typically a Monte-Carlo method must be used. The
ontinuous-time Markov chain described in Section 2.3 above is,
y the standards of Monte-Carlo statistical methods, a straight-
orward and naive method of sampling from the posterior over
he latent parameters X.

Our reasoning is, in fact, the opposite of this. To develop
ur genetic model, we start instead with our specific Monte-
arlo Markov chain sampling algorithm, outlined above, which
s abstractly similar to sexual reproduction with recombination,
election, and mutation. We ensure that the sampling algorithm
atisfies detailed balance through careful design choices. Con-
equently, its stationary distribution is easy to derive and can
e written in a simple closed form. The stationary distribution
actorizes cleanly as a ‘breeding’ term multiplied by a ‘selection’
erm. To our surprise, this stationary distribution is formally iden-
ical to the posterior over latent parameters of a well-known non-
arametric Bayesian model. The prior distribution of the model
orresponds to the probability of breeding a specific genome in
ur model, and the fitness function used for selection corresponds
ormally to the likelihood function of the model. Happily, we have
tarted with an abstract evolutionary model and found that it can
e viewed as an MCMC sampling procedure for latent parameters
f a well-known non-parametric Bayesian model (a product of
irichlet processes).
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We give X a physical meaning: a set of N genomes of length
. Each element Xij corresponds to locus j in genome i, with each
ow of X corresponding to one genome. We replace the likelihood
ith a fitness function. A genome’s fitness is denoted by f (gi),
ith all genomes having the same fitness function f . It is as if the
ata set consisted entirely of a single value so that y1 = · · · = yN ,
nd f (gi) = p(yi | Xi) for each i. Our fitnesses can have any value
trictly greater than zero: in our model, f (gi) can be interpreted
s the expected lifetime of the individual gi. So, instead of the
tandard Bayesian equations (Eq. (34),Eq. (35)) above, we write
nstead:

(X | α0, α1) =
p(X | α0, α1)f (X)

Z(f , α0, α1)

=
1

Z(f , α0, α1)

L∏
j=1

p(cj | α0, α1)
N∏
i=1

f (gi) (36)

where

Z(f , α0, α1) =

∑
X

p(X | α0, α1)f (X), (37)

is a normalizing constant where, f (X) =
∏N

i=1 f (gi). This sam-
pling method seems as plausible a model of evolution as many
other proposed simple algorithms such as Harvey (2009), but
with the advantage that the Markov chain is reversible.

3. Fitness fluctuations

With finite population size, how large are the fluctuations
in population fitness at stationarity? This question is interesting
because extinction is possible if the fitness of a finite population
of organisms in nature fluctuates too much. We derive a general
relationship between fitness fluctuations and sensitivity of mean
log fitness to β .

Recall that we may write fitness in terms of either f or φ,
ith f (g) = exp(−βφ(g)), where β > 0 specifies the strength
f selection.

s(X) =
1
Z
Pb(X) exp

(
−β

N∑
i=1

φ(g)

)
sing the notation φ(X) :=

∑N
i=1 φ(g) we write

=
1
Z
Pb(X) exp(−βφ(X)) (38)

where the normalizing constant Z is

(N, L, α⃗, β, φ) =

∑
X∈{0,1}N×L

Pb(X) exp(−βφ(X)) (39)

Z depends on β in the term exp(−βφ(X)) only, so differentiating
with respect to β we obtain
∂ log Z

∂β
=

1
Z

∑
X

−φ(X)Pb(X) exp(−βφ(X))

= −⟨φ(X)⟩X∼Ps (40)

Differentiating with respect to β again,

∂2 log Z
∂β2 =

−1
Z2

(∑
X

−φ(X)Pb(X) exp(−βφ(X))

)2

+

1
Z

∑
X

φ(X)2Pb(βX) exp(−βX) (41)

= −⟨φ(X)2⟩ + ⟨φ(X)⟩2 (42)

= −Var {φ(X)} (43)
X∼Ps

33
Hence, for any weight function φ, for an evolutionary process
with fixed population size, the following relation holds at station-
arity:

−
∂

∂β
⟨φ(X)⟩ = Var{φ(X)} (44)

Note that Var{φ(X)} is the variance of total fitness-weight of
the population, not the variance of fitness within a population,
nor the variance of fitness-weights of a genome drawn from
the stationary distribution. This result is general, exact, and, we
believe, novel.

We examine the consequences of this result in Section 6.2.
There we give an example of a bimodal stationary distribution,
where ∂

∂β
⟨φ(X)⟩ diverges as N → ∞, which corresponds to a

critical value of β at which there is a transition between two
meta-stable regimes.

4. Stationary distribution in the infinite population limit: the
δ-function method

We now move on to exact calculation of stationary distribu-
tions in the infinite population limit, with an alternate presen-
tation of the method developed and introduced in Lember and
Watkins (2020), Section 6. We let the population size N → ∞

while keeping the mutation rate u = u0 + u1 constant: we take
he limit in this way because, from a biological point of view,
e do not expect the mutation rate to vary with population size.
iven the relationship α0 = N u0

1−u , and the corresponding rela-
tionship for α1, it follows that to construct models with different
opulation sizes but the same mutation rate u, the concentration
arameters α0, α1 must vary linearly with N . We will write:

α′

0 :=
u0

1 − u
0(N) := Nα′

0

α′

1 :=
u1

1 − u
α1(N) := Nα′

1

(45)

In deriving the infinite population limit, it is convenient to define
α0, α1 using N rather than N − 1; this simplifies the algebra, and
makes no difference as N → ∞.

An important point is that as we take the limit N → ∞ both
α0andα1 depend on N , while u0andu1 are constant, independent
f N . Note that this variation of α with N is in direct contrast with
ayesian modeling, in which the concentration parameters α0, α1

express a fixed prior belief that is independent of sample size. For
notational simplicity, we will write α⃗ = (α0, α1), and u⃗ = (u0, u1).

We now examine the effect of letting N → ∞ while keeping
u⃗ constant in the case of a population with a single locus. As
shown in Lember and Watkins (2020), we may elegantly obtain
the behavior of Ps as N → ∞ by considering the posterior
distribution of θ .

Recall that, in the absence of selection, the distribution of the
number of 1’s at a locus is Beta-Binomial as given in Eq. (19),
and it is well known (see for example Bernardo and Smith,
2009) that this may be expressed as a continuous mixture of
binomial distributions. Writing the binomial parameter as θ , the
prior distribution (i.e., the mixing distribution) over θ is the Beta
distribution:

P(θ | α0, α1) =
1

B(α0, α1)
(1 − θ )α0−1θα1−1. (46)

ith L loci, there are L binomial parameters θ⃗ = (θ1, . . . , θL), and

P(θ⃗ | α0, α1) =

(
1

B(α0, α1)

)L L∏
j=1

(1 − θj)α0−1θ
α1−1
j (47)

We will often omit explicit dependence on α⃗ for clarity so that
P(θ⃗ ) = P(θ⃗ | α , α ), P(x | θ⃗ ) = P(x | θ⃗ , α , α ), and so on.
0 1 0 1
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We then express the stationary distribution Ps in terms of θ⃗ as
follows:

1 =

∑
X∈{0,1}N×L

Ps(X),

=
1

Z(N)

∑
X∈{0,1}N×L

Pb(X)f (X). (48)

Using the representation of Pb as Pb(X|θ⃗ ) =
∫

θ⃗
P(X|θ⃗ )P(θ⃗ )dθ⃗ ,

where P(θ⃗ ) is the parameter of a Dirichlet prior for θ⃗ , and P(X|θ⃗ )
is the product of one binomial distribution for each locus, with
parameters θ⃗ , we obtain

=
1

Z(N)

∑
X

∫
θ⃗

f (X)P(X | θ⃗ )P(θ⃗ )dθ⃗ , (49)

=
1

Z(N)

∫
θ⃗

(∑
X

f (X)P(X | θ⃗ )

)
P(θ⃗ )dθ⃗ ,

=
1

Z(N)

∫
θ⃗

EX∼θ⃗ [f (X)] P(θ⃗ )dθ⃗ . (50)

ote that the rows of X are conditionally independent given θ⃗ so
hat the expectation of the product of row-fitnesses is equal to
he product of expected row fitnesses so that we obtain:

=
1

Z(N)

∫
θ⃗

Eg∼θ⃗ [f (g)]
N P(θ⃗ )dθ⃗ . (51)

xpanding P(θ⃗ ) using Eq. (47) and recalling α⃗ = Nα⃗′ gives

=
1

B(α0, α1)LZ(N)

∫
θ⃗

Eg∼θ⃗ [f (g)]
N

L∏
j=1

(1 − θj)Nα′
0−1θ

Nα′
1−1

j dθ⃗ ,

(52)

=
1

B(α0, α1)LZ(N)

∫
θ⃗

⎛⎝Eg∼θ⃗ [f (g)]
L∏

j=1

(1 − θj)α
′
0−

1
N θ

α′
1−

1
N

j

⎞⎠N

dθ⃗ .

(53)

The probability density of θ⃗ at stationarity, summing over all
opulations, is therefore:

(θ⃗; f ,N) =

(
Eg∼θ⃗ [f (g)]

∏L
j=1(1 − θj)α

′
0−

1
N θ

α′
1−

1
N

j

)N

B(α0, α1)LZ(N)
, (54)

where the denominator does not depend on θ⃗ .
To find the limiting posterior distribution of θ⃗ as N → ∞, it

is convenient to define a function Ω:

Ω(θ⃗ , f ) := Eg∼θ⃗ [f (g)]
L∏

j=1

(1 − θj)α
′
0θ

α′
1

j . (55)

Considered as a function of θ⃗ , Ω is a continuous function defined
on the compact region [0, 1]L. Ω is zero on the boundary of
[0, 1]L, and it is strictly positive in the interior. It follows that Ω

has a strictly positive maximum at some value θ⃗ = θ⃗∗ in (0, 1)L.
We may rewrite Eq. (54) in terms of Ω

P(θ⃗; f ,N) =
Ω(θ⃗ , f )N

∏L
j=1 θ−1

j (1 − θj)−1

B(α0, α1)LZ(N)
(56)

or simplicity of exposition, let us only consider the case where
has a unique global maximum value so that θ⃗∗ is unique. First,
e show that

lim argmax P(θ⃗ | f ,N) = argmaxΩ(θ⃗ , f ) (57)

→∞

θ⃗ θ⃗

34
To show this, note that

argmax
θ⃗

P(θ⃗ | f ,N) = argmax
θ⃗

P(θ⃗ | f ,N)
1
N (58)

= argmax
θ⃗

Ω(θ⃗ , f )
∏L

j=1 (1 − θj)−
1
N θ

−
1
N

j

B(α0, α1)
L
N Z(N)

1
N

(59)

nd since limN→∞(1 − θ )−
1
N θ−

1
N = 1 for 0 < θ < 1 and the

denominator is independent of θ , we have

= argmax
θ⃗

Ω(θ⃗ , f ) (60)

as required.
From Eq. (53), it is evident that the limiting form of the poste-

rior of θ⃗ is a delta function at θ⃗∗; this is because the integrand is
non-negative, it integrates to 1, and we have assumed a unique
global maximum.

Using the fact that the limiting posterior of θ⃗ is a delta function
at θ⃗∗, we can see from Eq. (49) that the marginal distribution of
genomes in the population in the infinite N limit is :

P(g) =
1
Z∞

P(g | θ⃗∗)f (g) (61)

where

Z∞(f , α⃗) =

∑
g∈{0,1}L

P(g | θ⃗∗)f (g) (62)

In conclusion, we can calculate the distribution of genomes in the
infinite population using the following computational method.
First, given f , we implement a function

F (θ⃗ , α⃗) := Eg∼θ⃗ [f (g)] (63)

=

∑
g∈{0,1}L

f (g)
L∏

i=1

θ
g(i)
i (1 − θi)1−g(i). (64)

This is a canonical but usually inefficient method of computing
F (θ⃗ , α⃗) by summing over all 2L possible genomes. In specific cases
outlined in Section 5, there are more efficient ways of computing
F . F is then used in computing Ω .

Next, we use numerical optimization to find the θ⃗∗ that max-
imizes Ω . Noting that

Z∞(f , α⃗) = F (θ⃗∗, α⃗) (65)

we obtain the infinite-population stationary genome probabilities
as

Ps(g) =
1
Z∞

P(g | θ⃗∗)f (g) (66)

=
1

F (θ⃗∗, α⃗)
f (g)

L∏
i=1

θ
g(i)
i (1 − θi)1−g(i) (67)

As far as we know, this approach to computing the infinite
population stationary distribution does not appear in the litera-
ture. Next, we demonstrate this method on four different fitness
functions.

5. Four fitness functions and their stationary distributions

We consider four different fitness functions for multilocus
genomes. For each of them, we demonstrate how to calculate the
stationary distribution for both finite populations and the infinite
population limit.
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.1. Perfect fitness

‘Perfect fitness’ is defined as:

perfect(g) =

{
1, if g(1) = · · · = g(L) = 1
e−β , otherwise.

(68)

his fitness is referred to in the literature as the ‘‘needle-in-a-
aystack’’ problem (Goldberg et al., 1991) or the ‘‘sharp peak’’
andscape (Alves and Fontanari, 1996).

.1.1. Perfect fitness: infinite population
To implement the δ-function method of Section 4, we need to

mplement a function that computes
perfect(θ⃗ ) = Eg∼θ⃗ [f

perfect(g)]

The simplest and canonical way to do this is to sum over all 2L

enomes:

perfect(θ⃗ ) =

∑
g∈{0,1}L

f perfect(g)
L∏

i=1

θ
g(i)
i (1 − θi)1−g(i) (69)

However, since there is only one exceptional fit genome, a more
efficient computation for perfect fitness is:

Fperfect(θ⃗ ) =

L∏
i=1

θi + e−β (1 −

L∏
i=1

θi) (70)

= e−β
+ (1 − e−β )

L∏
i=1

θi (71)

To find θ⃗∗, we find

θ⃗∗
= argmax

θ⃗

Fperfect(θ⃗ )
L∏

j=1

(1 − θj)α
′
0θ

α′
1

j (72)

where Ω(θ⃗ , f perfect) = Fperfect(θ⃗ )
∏L

j=1(1− θj)α
′
0θ

α′
1

j . For this fitness
function, θ⃗∗

= (θ∗

1 , . . . , θ∗

L ) which maximizes Ω(θ⃗ , f perfect) has all
elements equal: that is θ∗

1 = · · · = θ∗

L .
To prove this, let us suppose the contrary, that there is some θ⃗

for which Ω(θ⃗ , f perfect) is a global maximum, and such that some
elements of θ⃗ are unequal: specifically that there are i, j such that
θi ̸= θj. We now establish a contradiction, by exhibiting θ⃗ ′ such
that Ω(θ⃗ ′, f perfect) > Ω(θ⃗ , f perfect). Let θ ′

k = θk for all k ̸= i, j (note
we do not assume all θk are the same, although they can be), and
let θ ′

i = θ ′

j =
√

θiθj.
Then, since Fperfect(θ⃗ ) depends only on θ1 × · · · × θL, it is clear

that Fperfect(θ⃗ ′) = Fperfect(θ⃗ ), so that

Ω(θ⃗ ′, f perfect, α⃗)

Ω(θ⃗ , f perfect, α⃗)
=

(
√

θiθj)2α
′
1 (1 −

√
θiθj)2α

′
0

(θi)α
′
1 (1 − θi)α

′
0 (θj)α

′
1 (1 − θj)α

′
0

(73)

=
(1 −

√
θiθj)2α

′
0

(1 − θi)α
′
0 (1 − θj)α

′
0

(74)

> 1 iff
(1 −

√
θiθj)2

(1 − θi)(1 − θj)
> 1 (75)

The final inequality follows from the property of concavity in
the following way. Note first that log(1 − θ ) is concave in θ for
0 < θ < 1. Let x = log(θ ); then log(1 − θ ) = log(1 − ex) is also
concave in x, since x is a monotonic function of θ . We now apply
Jensen’s inequality in log(1 − ex) vs. x. Putting xi = log(θ∗

i ) and
xj = log(θ∗

j ), by Jensen’s inequality,

log(1 − e
x1+x2

2 ) >
log(1 − ex1 ) + log(1 − ex2 )

(76)

2 o

35
Exponentiating and squaring gives

(1 − e
x1+x2

2 )2 > (1 − ex1 )(1 − ex2 ) (77)

and changing variables from x1, x2 to θi, θj gives

(1 −
√

θiθj)2 > (1 − θi)(1 − θj). (78)

e, therefore, establish that all elements of a globally optimal θ⃗∗

ust be equal. It follows that we can find θ⃗∗
= (θ∗, . . . , θ∗) by a

aximization in one variable only:

∗
= argmax

θ

(
θα′

1 (1 − θ )α
′
0

)L
(e−β

+ (1 − e−β )θ L) (79)

5.1.2. Perfect fitness: finite population
To calculate the stationary distribution of the number of per-

fect genomes in a finite population, we first calculate the station-
ary distribution assuming no selection. Then we will re-weight
each population’s probability according to the number of perfect
genomes it contains.

It will be convenient to define the function rk, which counts
the number of genomes in a population X that have a prefix of k
or more 1s:

rk(X) := #{i : prefix(gi) ≥ k} (80)

or 0 ≤ k ≤ L, where X ∈ {0, 1}N×L and prefix(gi) is the length of
he prefix. Note that N = r0(X) ≥ r1(X) ≥ · · · ≥ rL(X) ≥ 0. rL(X) is
he number of fully perfect genomes in X with all elements equal
o 1.

Let us define the following function, for which we will give a
ecursive definition. For a population X with N genomes and L
oci, without selection, and for given α, let the probability that k
enomes out of N are perfect be denoted:
perfect
b (N, L, k) :=

∑
X∈{0,1}N×L

Pb(X)[rL(X) = k] (81)

here we use the notation [expression] to equal 1 if expression is
rue, and 0 if expression is false.

First, note that for a population with only one locus, for given
⃗ , the distribution of the number of 1s is Beta-Binomial:
perfect
b (N, 1, k) = BeBi(k;N, α0, α1) (82)

=

(
N
k

)
(α0)N−k(α1)n1
(α0 + α1)N

(83)

he following recursion holds for N, L1, L2 > 0,N ≥ m ≥ 0,
nd in conjunction with the previous Eq. (82) it can be used to
ompute Pperfect

b for all argument values:

perfect
b (N, L1 + L2,m) =

N∑
k=m

Pperfect
b (N, L1, k)P

perfect
b (k, L2,m) (84)

he recursion follows by the following argument. Consider the
irst L1 columns of X; the probability that k of the genomes are
erfect for these L1 columns – that is, the probability that exactly
out of these N genomes have prefixes consisting of L1 or more
s – is Pperfect

b (N, L1, k). Now consider the first L1 + L2 columns of
. Any genome that is perfect for the first L1 + L2 columns must
ecessarily be perfect for the first L1 columns; therefore, we need
nly consider the continuations of the k genomes that are perfect
or the first L1 columns. By exchangeability of the rows of X, we
ay sample these k rows of columns L1 + 1 to L1 + L2 first, and

he probability that exactly m of these k rows with L2 columns are
erfect is Pperfect

b (k, L2,m). Hence to compute Pperfect
b (N, L1+L2,m),

e must sum over the distinct cases where m,m+1, . . . ,N rows
f the first L columns are perfect, so the recursion follows.
1
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The probability Pperfect
s (N, L, k) that there are k out of N perfect

enomes in a selected population is then easily given in terms of
perfect
b . First, define the un-normalized probability times fitness
or k perfect out of N:
perfect(N, L, k) := exp(−β(N − k))Pperfect

b (N, L, k) (85)

nd the normalization factor for the whole fitness-weighted dis-
ribution is

perfect(N, L) :=

N∑
k=0

exp(−β(N − k))Pperfect
b (N, L, k)

=

N∑
k=0

Zperfect(N, L, k) (86)

so that the normalized stationary probability is

Pperfect
s (N, L, k) =

Zperfect(N, L, k)
Zperfect(N, L)

(87)

Evidently, we can readily compute Pperfect
s for any β if we can

compute Pperfect
b (N, L, k).

5.2. Prefix fitness

Given a binary sequence g, define prefix(g) to be the length of
the longest prefix of g that consists entirely of ones. For example,
prefix(1110101) = 3, and prefix(01111) = 0. When the prefix
length is used to determine fitness, this is called the leading ones
problem (Doerr, 2020, Section 3.3.6).

The ‘prefix fitness’ of a genome g of length L is defined as

f prefix(g) = exp(β prefix(g)) (88)

If prefix(g) = 0, f prefix(g) = 1; if prefix(g) = L, then f prefix(g) = eβL.

5.2.1. Prefix fitness: infinite population
Note that for 0 ≤ k < L,

P(prefix(g) = k | θ⃗ ) = (1 − θk+1)
k∏

j=1

θj (89)

and

P(prefix(g) = L | θ⃗ ) =

L∏
j=1

θj (90)

The expected fitness function needed is

Fprefix(θ⃗ ) =

L∑
k=0

P(prefix(g) = k | θ⃗ ) exp(βk) (91)

Recall that Ω(θ⃗ , f prefix) = Fprefix(θ⃗ )
∏L

j=1(1 − θj)α
′
0θ

α′
1

j . To find θ⃗∗,
we find

θ⃗∗
= argmax

θ⃗

Ω(θ⃗ , f prefix, α⃗). (92)

The stationary distribution is then obtained by
fitness-reweighting the product of binomial distributions with
parameters θ⃗∗, according to Eq. (67).

5.2.2. Prefix fitness: finite population
To compute the stationary distribution with leading-ones (pre-

fix) fitness for populations of size N × L, we may use the follow-
ing recursion on fitness-weighted probability. It is convenient to
define the following function:

Zprefix(n, l, k) :=

∑
Pb(X)f prefix(X)[rl(X) = k] (93)
X∈{0,1}n×l

36
where rl(X) is the number of elements of the N × L population
X that have prefixes of length l or more, and [rl(X) = k] equals
1 if the statement is true and zero if it is false. In other words,
Zprefix(n, l, k) is the unnormalized fitness-weighted breeding prob-
ability for populations with exactly k prefixes of length l or
more. The normalizing factor for the stationary distribution for
a population of N genomes of length L is then:

Zprefix(N, L) =

∑
X∈{0,1}N×L

Pb(X)f prefix(X) =

N∑
k=0

Zprefix(N, L, k) (94)

We give a recursion for computing Zprefix(N, L, k); the recursion
ranges over all N ≥ 1, l ≤ L, and k ≤ N .

Zprefix(N, 1, k) = BeBi(k;N, α0, α1) exp(βk) (95)

and for l1, l2 ≥ 1, l1 + l2 ≤ L,

prefix(N, l1 + l2,m) =

N∑
k=m

Zprefix(N, l1, k)Zprefix(k, l2,m) (96)

and the normalizing factor is

Zprefix(N, L) =

N∑
k=0

Zprefix(N, L, k) (97)

so that

Pprefix
s (N, L, k) =

Zprefix(N, L, k)
Zprefix(N, L)

(98)

The recursive (or dynamic programming) computation of
Zprefix(N, L) yields a table of values of Zprefix(n, l, k) for 1 ≤ n ≤ N ,
1 ≤ l ≤ L, and 0 ≤ k ≤ n. Many summary statistics of the
stationary distribution for prefix fitness can be calculated using
this table. In particular, the marginal distribution of the number
of unbroken prefixes (not necessarily completed) at the l’th locus
is given by:

Pprefix
s (k unbroken prefixes at locus l)

=
Zprefix(N, l, k)

∑k
m=0 Z

prefix(k, L − l,m)
Zprefix(N, L)

(99)

e define the number of unbroken prefixes at locus zero to be
, and the number of unbroken prefixes at locus 1 equals the
umber of 1s at locus 1.

.3. Sum fitness

In Sum fitness (close to a multiplicative fitness model (Lewon-
in, 1964) or the ONEMAX landscape (Hesser and Männer, 1990)),
he key to the analysis is that the stationary distribution at each
ocus is independent of the distributions at other loci, and we
stablish this first. Sum fitness of a single genome of length L is
efined as

sum(g) := exp

⎛⎝β

L∑
j=1

g(j)

⎞⎠ , (100)

nd for a population X ∈ {0, 1}N×L

sum(X) =

N∏
i=1

f sum(gi) (101)

= exp

⎛⎝β
∑

1≤i≤N,1≤j≤L

Xij

⎞⎠ (102)
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and expressing it as a product of functions of columns (loci) of
X we get

=

∏
1≤j≤L

exp

(
β
∑

1≤i≤N

cj(i)

)
(103)

Note: f sum(X) is not to be taken as the mean fitness of the
population, which is Z sum(N, 1) to follow.

It follows that the stationary distribution is the product of
independent column-distributions:

Psum
s (X) =

1
Z sum(N, L)

Pb(X)f sum(X) (104)

=

L∏
j=1

1
Z sum(N, 1)

Pb(cj) exp

(
β
∑

i

cj(i)

)
(105)

where as usual Z sum(N, L) = Z sum(N, 1)L – the population mean
fitness – is the normalizing factor for a population of size N with
L loci, and specifically

Z sum(N, 1) =

N∑
k=1

(
N
k

)
(α0)N−k(α1)k
(α0 + α1)N

eβk (106)

This column-independence holds for finite populations and,
therefore, in the infinite population limit. Note that although
columns (loci) are independent, rows (genomes) within a pop-
ulation are not independent.

5.3.1. Sum fitness: infinite population
Since loci are independent, we need consider only the case

L = 1, and we need to optimize for only a single parameter θ .
The expected fitness function is:

F sum(θ ) =

L∑
k=0

(
L
k

)
(1 − θ )kθ L−ke−βk (107)

Recall that Ω(θ⃗ , f sum) = F sum(θ⃗ )
∏L

j=1(1−θj)α
′
0θ

α′
1

j . To find θ⃗∗, we
find

θ⃗∗
= argmax

θ⃗

Ω(θ⃗ , f sum, α⃗). (108)

An explicit expression for θ∗ is given in Lember and Watkins
(2020).

5.3.2. Sum fitness: finite population
For a finite population with L = 1 – that is, only one locus –

the stationary distribution of the number of 1s follows from

Psum
s (k 1s at locus l) =

BeBi(k;N, α0, α1)eβk

Z sum(N, 1)
(109)

For populations with L > 1, the stationary distribution is the L-
old direct product of the stationary distribution given above for
single locus.

.4. One error fitness

One Error fitness is defined as

OneError(g) =

{
1, if

∑L
j=1 g(j) ≥ L − 1

e−β otherwise.
(110)

hat is, a genome is fit if it contains at most one zero, and it is
nfit if it contains more than one zero.
37
5.4.1. OneError fitness: infinite population
We once again use the method outlined in Section 4.

FOneError(θ⃗ ) := e−β
+ (1 − e−β )

⎛⎝ L∏
j=1

θj

⎞⎠(1 +

L∑
i=1

1 − θi

θi

)
(111)

Recall that Ω(θ⃗ , f oneerror) = Foneerror(θ⃗ )
∏L

j=1(1 − θj)α
′
0θ

α′
1

j . To find
θ⃗∗, we find

θ⃗∗
= argmax

θ⃗

Ω(θ⃗ , f oneerror, α⃗). (112)

5.4.2. OneError fitness: finite population
To calculate the stationary distribution of the number of per-

fect or single error genomes in a finite population, we first cal-
culate the stationary distribution assuming no selection. Then we
will re-weight the probability of each population according to the
number of perfect or single error genomes it contains.

Recall the function rk which counts the number of genomes in
a population X that have a prefix of k or more 1s:

rk(X) := #{i : prefix(gi) ≥ k}. (113)

Here, we are interested in the number of genomes with a prefix
of length k which contain one or fewer 0’s:

sk(X) := #{i :

k∑
i=1

gi ≥ k − 1}. (114)

Let us define the following function, for which we will give
a recursive definition. For a population X with N genomes and L
loci, without selection, and for given α, let the probability that m0
genomes out of N are perfect and m1 genomes out of N have a
single error be denoted:

Poneerror
b (N, L,m0,m1)

:=

∑
X∈{0,1}N×L

Pb(X)[sL(X) = m0 + m1 ∧ rL(X) = m0] (115)

here we use the notation [expression] to equal 1 if expression is
rue, and 0 if expression is false.

We now derive a recursive expression for
oneerror
b (N, L,m0,m1). In the base case, L = 1; each genome is
ither 0 or 1, so
oneerror
b (N, 1,m0,m1) = BeBi(m0;N) (116)

ext, suppose that we have computed the values
oneerror
b (N, L, k0, k1) for all k0 + k1 ≤ N . We wish to derive
xpressions for Poneerror

b (N, l + 1,m0,m1) in terms of values of
oneerror
b (N, l, k0, k1).
Consider the situation depicted in Fig. 1, where rl(X) = k0 and

l(X) = k1 + k0. Note that any perfect l + 1-prefix must have
perfect l-prefix, followed by a 1 at locus l + 1. Any one-error
+ 1-prefix must consist of either a perfect l-prefix followed by
zero at l + 1 or a one-error l-prefix, followed by a 1 at l + 1.
et the number of perfect l + 1-prefixes be m0, and the number
f one-error l+ 1-prefixes be m1. There must be exactly m0 ≤ k0
nes matching the k0 perfect l-prefixes. The number of one-error
+1-prefixes is k0−m0 cases where a 0 at l+1 matches a perfect
-prefix, and m0 +m1 − k0 cases where a 1 at locus l+ 1 matches
one-error l-prefix. Referring to Fig. 1, it follows that there must
e 2m0 + m1 − k0 ones in the k0 + k1 relevant elements of locus
+ 1 The total number of configurations of 2m0 + m1 − k0 ones
istributed among k0 + k1 rows is

k0 + k1
)

,

2m0 + m1 − k0
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Fig. 1. Here, we visualize the recursion required to calculate the number of
genomes with a single error based on the urn probabilities. The probability of an
urn of size n containing n0 white balls and n1 black balls is BeBi(n1; n0+n1). We
how here an urn representing each genome’s jth locus. There are k0 genomes
hat contain only white loci up until (and including) locus j, and k1 which have
nly accumulated a single error at any point on the genome up until locus j. We
ant to calculate how many genomes will be perfect or have a single error up
ntil locus j+1. Of the k0 perfect genomes, m0 will remain perfect up until the
ext site, the k0 −m0 remaining will become one error genomes. If we assume
hat the total number of genomes with a single error at locus j + 1 is m1 , then
f the k1 genomes with a single error, m1 − (k0 −m0) must fail to gain a further
rror, leaving a set of k1 + k0 − m1 − m0 genomes which have gained a second
rror. Thus out of the total of k0 + k1 genomes of interest, 2m0 +m1 − k0 must
ain a white ball at urn j+1 and k1+2k0−m1−2m0 must gain a black ball. This
ccurs with probability BeBi(2m0 + m1 − k0; k0 + k1). There are then additional
ombinatorial factors for distributing the genomes into the groups above.

ut only

k0
m0

)(
k1

m0 + m1 − k0

)
f these configurations will yield m0 perfect l + 1-prefixes and
1 one-error l + 1-prefixes. Hence the probability of m0 perfect
refixes and m1 one-error prefixes at l + 1, given k0 perfect and
1 one-error prefixes at l, may be written:

oneerror
b (m0,m1|k0, k1) :=

BeBi(2m0 + m1 − k0; k0 + k1)

( k0
m0

)( k1
m1+m0−k0

)( k1+k0
2m0+m1−k0

) , (117)

The complete recursion is obtained by summing over all possi-
ble values of k0 and k1, and multiplying by the factors
oneerror
b (N, l, k0, k1):

oneerror
b (N, l + 1,m0,m1) =

m0+m1∑ n−k0∑
Poneerror
b (N, l, k0, k1)Poneerror

b (m0,m1 | k0, k1). (118)

k0=m0 k1=m0+m1−k0

o

38
The probability Poneerror
s (N, L, k0, k1) that there are k0 out of N

erfect genomes and k1 out of N genomes with a single 0 in a
elected population is then easily given in terms of Poneerror

b . First,
efine the un-normalized probability times fitness for k0 perfect
nd k1 one error out of N:

oneerror(N, L, k0, k1) := exp(−β(N − k0 − k1))Poneerror
b (N, L, k0, k1)

(119)

nd the normalization factor for the whole fitness-weighted dis-
ribution is

oneerror(N, L) :=

N∑
k=0

N−k0∑
k1=0

Zoneerror(N, L, k0, k1) (120)

o that the normalized stationary probability is

oneerror
s (N, L, k0, k1) =

Zoneerror(N, L, k0, k1)
Zoneerror(N, L)

(121)

. Calculations

We will now demonstrate exact calculations of the stationary
istribution for finite and infinite populations and show surpris-
ng differences in the responses to selection between fitness func-
ions. We then consider a deeper question: could error-correcting
odes provide a better evolutionary response than naive en-
odings? To answer this question, we compare the theoretical
erformance of naive encodings with Hamming codes, demon-
trating that Hamming codes yield substantially higher mean
itness under certain conditions. As far as we know, this is the
irst demonstration that error-correcting codes could improve the
recision of adaptation. Although our example is artificial, the
act that error correction can, in principle, improve the preci-
ion of adaptation raises many further questions about genetic
rchitecture, which are beyond the scope of this paper.

.1. Convergence of finite population distribution to infinite popula-
ion limit

We have shown two methods to calculate the stationary dis-
ributions for finite populations and the infinite population limit.
ig. 2 shows plots of the theoretical fraction of perfect genomes
ersus β for the four fitness functions, with separate curves for
ifferent population sizes, including the infinite population limit.
ll four graphs show the finite population statistics converging
apidly to the infinite population statistics: the curves for N =

00 are already close to the curve for N → ∞.
We vary the values of α0, α1 for each population size N so that

he mutation rates are the same for all population sizes, at u0 =

1 = 0.05. In addition, for each fitness function, the selection
ntensity parameter β in the formulae in Section 5 has been
ormalized to make all four fitness functions comparable. For all
our fitness functions, the maximal fitness is 1, and the minimal
itness is e−β . This rescaling makes the four fitness functions
irectly comparable.

.2. Perfect fitness: metastability and a bound on escape time

An advantage of exact calculations of stationary distributions
s to gain insight into multi-modal distributions, which are hard
o characterize by simulations. This difficulty is because different
odes of the stationary distribution correspond to metastable

egimes of the simulation. Transitions between the metastable
odes may be rare, so infeasibly long simulations are needed to
bserve these transitions.



J.M. Poulton, L. Altenberg and C. Watkins Theoretical Population Biology 151 (2023) 28–43

m
s
t
a
p
i
t
T
s

e
‘
h
t
c
i

i
h
w
t
w
T
o
l
p
a
i
p
f
o

t
t
s
t

p
a
b
t

N
d
p
T
t

Fig. 2. These graphs show convergence of finite-population statistics (calculated
recursively) to the infinite population limit (calculated using the δ-function
ethod). The expected fraction of perfect (all-1s) genomes is plotted against
election intensity β , under selection using perfect, prefix, and sum fitness. Mu-
ation rate u = 0.01, and genome length L = 10 for all curves. Population sizes
re 10, 30, 100, and the infinite limit. For each fitness function, the maximum
ossible fitness is 1, and the minimum possible is e−β . β is shown on the x-axis
n each graph. The top graph for perfect fitness shows a discontinuous jump in
he fraction of perfect genomes as β increases in the infinite population limit.
he lower graphs of selection with prefix and sum fitness show substantially
maller fractions of perfect genomes.

Using our recursions, it is straightforward to calculate the
xpected histogram of the number of perfect genomes (with no
bad’ alleles) in the population at stationarity. Fig. 3(c) shows this
istogram for four values of β . Note that the relative heights of
he modes depend strongly on β . Fig. 3(a) shows that for suffi-
iently weak selection (low β), the fraction of perfect genomes
s close to zero, but it rises to 1 for high β . However, we see
39
n Figs. 3(b) and (c), that for all values of β , the steady-state
istograms have sharp peaks at both Nperf = 0 and Nperf = 1;
ith one biased at high β and one biased at low. At one mode,
he fraction of perfect genomes is close to zero, and the rate at
hich new perfect genomes appear in the process is also low.
his slow rate leads to the fraction of perfect genomes increasing
nly slowly, even if perfect genomes are fit and have relatively
ong lifetimes. At the other mode, most of the genomes in the
opulation are perfect; the marginal frequency of 1 is high at
ll loci, and new perfect genomes are bred with high probabil-
ty; occasional imperfect genomes are quickly removed from the
opulation. Both of these modes may be metastable. Transitions
rom the high-fitness mode to low-fitness and the reverse occur
nly through large fluctuations from a relatively stable mode.
We explore this metastability by asking how many itera-

ions of the birth/death process are necessary for the system
o move from one peak to the other, thus exploring the entire
equence space. While our system is too complex to compute
hese quantities, we can make the following crude approximation.

To pass between the two peaks in probability, the systemmust
ass through a probability minimum Nperf = Nmin

perf . Therefore, the
mount of times the system passes between the two peaks must
e constrained by the number of times the system passes through
his probability minimum.

For a given number of birth–death cycles Ttot, Tmin
tot = Ps(Nperf =

min
perf )Ttot are spent in the probability minima Nperf = Nmin

perf . We
efine the average amount of cycles (or lifetime) spent in the
robability minima each time the system passes through it as
min. Therefore the amount of times the system passes through
he probability minima is Tmin

tot
Tmin .

Tesc bound = Ttot T
min

Tmin
tot

=
Tmin

Ps(Nperf=Nmin
perf )

is then the average number
of birth–death cycles between each instance of moving through
the probability minima. It is a lower bound on the time it takes
for the system to move from one peak to the other, what we term
the ‘‘escape time’’ Tesc > Tesc bound =

Tmin

Ps(Nperf=Nmin
perf )

.

Given the difficulty of estimating Tmin, we make the following
simplification. We count every birth/death cycle after which the
system is in the probability minima separately, even if they are
consecutive, setting Tmin

= 1. This simplification overestimates
the number of times the system passes through the probability
minima and therefore underestimates the average escape time
bound Tesc bound. However, since Tesc bound is a lower bound, this
makes the bound weaker but does not negate it. Our bound is
now therefore Tesc > 1

Ps(Nperf=Nmin
perf )

.
In Fig. 3(a) we plot this bound in red. We see that as β

increases and the average probability of a genome being per-
fect increases, the escape time from the metastable state and,
therefore, the time to reach the stationary state diverges.

The blue curve in Fig. 3(a) shows the expected fraction of
perfect genomes as a function of β . At the value of β where the
expected fraction of perfects is approx 1

2 , the population spends
approximately equal expected time in both modal regimes, with
rare switches between them. The variance of φ for this population
is maximized: φ(X) is either close to 0 or close to N . This section
of the blue curve also has the highest gradient, according to the
fluctuation theorem of Section 3, Eq. (44).

6.3. Perfect, prefix, and sum fitness: mean φ

The Perfect, Prefix, and Sum fitness functions then have the
property that for all genomes g, f perfect(g) ≤ f prefix(g) ≤ f sum(g).
One might rashly surmise that the mean fitnesses of genomes in
the stationary distributions for the three fitness functions would
be in the same order. In fact, the behavior of mean fitness (or,
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Fig. 3. Graph (a) shows the fraction of perfect genomes in the stationary distribution versus β , for N = 100, L = 10, and u = 0.001. For sufficiently weak selection
(low β), the fraction of perfect genomes is close to zero, rising to 1 for high β . Graph (b) shows histograms, and (c) log-histograms, of the fraction of perfect genomes
in populations sampled from the stationary distribution for 4 selected values of β . For all values of β , the distribution is bimodal, with maxima at 0 and 1. With
perfect fitness, the population is either nearly perfect or else almost wholly ‘imperfect’, and both regimes are metastable. The rate of transition between modes is
bounded from below by the reciprocal of the smallest probability in the histogram: this lower bound on the log escape time is shown by the red line in (a).
Fig. 4. Mean φ plotted against β for three fitness functions in the infinite
population limit. Mutation rate u = 0.01. Lower values of φ correspond to
igher fitness. For low β , Perfect fitness selection gives the highest expected φ,
ut for high β , perfect fitness selection induces the lowest mean φ; indeed, the

ordering of the three fitness functions reverses with the more intense selection
at high β . An intuitive explanation is that in Sum and Prefix fitness, there are
many configurations with near-optimal fitness, so the prior total Pb of these
configurations increases mean φ.

as we plot, mean φ, the negative log fitness weight) is more
complicated.

Fig. 4 shows the mean φ at stationarity in the infinite pop-
ulation limit, plotted against β , the selection intensity. Mean φ

is plotted for evolution with Perfect, Prefix, and Sum fitness. For
low values of β , perfect fitness selection is not powerful enough
to maintain any significant fraction of perfect genomes in the
population. However, at a critical value of β , mean φ changes
discontinuously. For larger values of β , perfect fitness selection
maintains the lowest mean φ (highest mean fitness), followed
by prefix selection, with sum selection giving the lowest mean
fitness of the three. The inset graph shows no simple relationship
between expected mean fitness, fitness function, and β .

An intuitive explanation of this effect is that Sum fitness
allows many configurations of the population in which most
genomes have slightly sub-optimal fitness. Here, even at high
β , much of the prior probability mass of Pb is on these sub-
optimal configurations, reducing the mean fitness weight of the
population. In contrast, with f perfect, imperfect genomes are unfit,
and if β is sufficiently high, nearly all genomes are perfect at
40
stationarity. Examples of infinite-population optimizations for
perfect and sum fitness are plotted in Fig. 5.

The effect of the structure of the fitness function on the mean
fitness is of biological interest. Our models can perform exact
calculations of these biologically relevant quantities for arbitrary
fitness functions with relative ease. Further work would be to
examine additional fitness functions.

6.4. Error correcting codes can improve population fitness

It has been appreciated for fifty years that many mutations are
neutral in their effects on fitness. The consequences of neutrality
were first addressed theoretically in Kimura’s neutral theory of
evolution (Kimura, 1968). The question of whether evolution can
come to shape the probability that mutations are neutral has been
the subject of more recent theory on the evolution of mutational
robustness (Nimwegen et al., 1999; Bornberg-Bauer and Chan,
1999). The collection of genotypes with equal fitness that are
mutationally connected form a neutral network. The topological
structure of the neutral network determines where the popula-
tion will evolve, and typically the population evolves to where a
greater proportion of mutations are neutral.

Here we generate neutral networks and examine the con-
sequences for evolution by proposing that the organism has a
means of ‘‘error correction’’ in how the genotype maps to the phe-
notype, such that single mutations away from a focal genotype
are compensated to give the same fitness. We employ classical
Hamming codes to generate this neutral network.

Hamming codes, developed in 1950 by Hamming (1950), are
error-correcting codes that detect and correct a single corrupted
bit in a binary string. A Hamming codeword — a binary sequence
of length 2r

−1, for some integer r , contains r ‘check bits’ used in
decoding, and 2r

−r−1 ‘message bits’, which contain the message
to be sent. The simplest Hamming code consists of codewords
with three bits, each containing one message bit and two check-
bits. There are two codewords: 000 and 111. If a single bit of
either of these codewords is corrupted, for example, 000 might be
corrupted to 001, we can easily detect and correct this corruption.
This correction is possible because the corrupted bit differs from
two uncorrupted bits: the system takes a ‘majority vote’ of the
bits to correct the error. We refer to this as a 1/3 Hamming Code
— a code with one message bit and codewords of length 3.

One bit of information in a genome can be encoded in two
ways. Firstly, as a single allele, that may take the values 1 or 0.
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Fig. 5. Shows Ω(θ, f perfect) and Ω(θ, f sum) plotted against θ for different values of β . In the δ-function method of determining the stationary distribution in the
infinite population limit, the optimal θ∗ is the maximizer of Ω . The left-hand graph shows that Ω(θ, f perfect) has two maxima. These change relative value as β

increases: at a critical value of β , the global maximizer jumps from one maximum to the other so that there is a discontinuous change in θ∗ . The right-hand graph
shows that there is only one maximum of Ω(θ, f sum) for all values of β so that θ∗ is a continuous function of β .
Alternatively, as three different alleles, each taking the values 1 or
0, where the encoded bit is the majority-vote value of the three
alleles. For example, consider a pair of organisms. Organism A
encodes one bit naively using a single allele, and organism B uses
the majority vote of 3 alleles. The fitness functions for organism
B depend only on the decoded bit: organism B is fit if the 3
alleles decode to 1 and unfit if they decode to 0. Does organism
B have any advantage over organism A in expected fitness under
identical selective conditions?

There are Hamming codes with 4 message bits and 7 bit code-
words, as well as 11/15 and 26/31. Given that a Hamming code
can correct exactly one error, in our calculations and simulations,
we use the ‘‘One Error’’ fitness function for our encoded genomes
(length 2r

− 1) and the ‘‘Perfect’’ fitness function for our shorter
compact genomes (length 2r

− r − 1).
In Fig. 6a-c, we plot the properties of the compact L = 1

and encoded L = 3 case. We directly compare two systems, one
with the ‘‘perfect’’ fitness function at the compact length and one
with the ‘‘one error’’ fitness function at the encoded length. An
encoded genome with one or fewer errors will decode onto a
perfect genome. We plot the results of simulations for the two
systems with N = 100 in (a), the analytical finite population
result for the two systems with N = 100 in (b), and the analytical
solution for the two systems with N → ∞ in (c). We do this
for compact L = 4 encoded L = 7 (d-f), compact L = 11
encoded L = 15 (g-i) and compact L = 26 encoded L = 31 (j-
k). We omit the simulations for the last case because the system
takes too long to settle to the stationary state. Using the method
outlined in Section 6.2, we can calculate the minimum number of
birth–death cycles required for the system with compact L = 26
encoded l = 31 to move between the various stable states of
the system once, which is essential to finding the true stationary
state. For the compact message, at the transition at u = 0.01
β = 0.55, the system would take > 1.61 × 109 birth/death
iterations to move between the various stationary states. For the
encoded message at the transition at β = 0.62, the system would
take > 4.14×1010 to move between the various stationary states.
Note that the escape time at the transition will be among the
shortest; increasing or decreasing β would make the escape time
longer.

In Fig. 6a-c or e-f, we plot the results for systems with short
messages of length one or four. Here there are a comparable num-
ber of error-correcting bits to message bits; two error-correcting
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bits for a message of length one and three error-correcting bits for
a message of length four. Tripling or almost doubling the message
length to correct a single error bit does not help transmit the
message more accurately because the longer genomes are subject
to more mutations. In fact, for the shortest messages L = 1, it is
better to send the message compactly than to encode it, and for
messages of length L = 4, the encoded and compact cases lie
nearly on top of each other.

However, for longer messages of length 11 or 26 (Fig. 6 g-i or
j-k), there are much fewer error correcting bits relative to length,
around 35% and 20% of the original message length, respectively.
Thus correcting an error for a much smaller relative message
length is a significant improvement. We observe the encoded
population performing visibly better in regions of moderate up
to high β in both the finite and infinite number of genomes
cases. There is a significant difference between the compact and
encoded cases at the transition point.

Previous work (Watkins, 2008; Hledík et al., 2022) has sug-
gested that in the context of sexual reproduction, it is beneficial
for genetic information to be spread over a long genome. This
analysis of Hamming codes shows that, in principle, an organism
endowed with the ability to decode its binary genome with
a Hamming code could have higher expected mean fitness at
stationarity.

We do not suggest that any organism actually uses a Ham-
ming code to produce mutational robustness. The Hamming code
investigated here generates a particular neutral network, which
we show reduces the genetic load caused by mutation. These
results suggest that evolutionary dynamics may produce neutral
networks that utilize cooperative interactions between multiple
alleles in ways reminiscent of error-correcting codes.

7. Discussion

We have introduced a simple continuous-time evolutionary
model in which the fitness of a genome corresponds to its ex-
pected lifetime in the population.

This model abstracts some aspects of biology and simplifies
others. For example, to model sexual reproduction, we have ab-
stracted the principle that each new genome consists of copies
of genetic material fairly sampled from the current population
— but for mathematical simplicity, copying is from the entire
population instead of from two parents only. Does this matter?
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Fig. 6. This shows the relative performance of Hamming decoding vs. compact representation for genomes of different lengths. The first column shows the results of
simulations; the second column shows theoretical values for a finite population N = 100, and the third column shows theoretical values for an infinite population.
n all graphs, we fix u = 0.01 and plot the fraction of perfect genomes against β . The first row compares a compact genome with one bit against the smallest
possible Hamming code that decodes 3 bits to 1: compact representations are better for this code length under all conditions we tried. Row 2 compares a compact
coding of 4 bits against a Hamming code of 7 bits that decodes to 4 bits: the performance of the two encodings is similar. Rows 3 and 4 show code lengths of 11
bits vs. the 15 bit Hamming code and a code length of 26 bits vs. a 31 bit Hamming code. The Hamming code shows an increasing advantage for these longer code
lengths, giving a higher fraction of perfect decoded words for values of β above a threshold.
For population-genetic questions, this simplification goes too far.
However, we can use the mathematical simplicity we gain with
42
the clean factorization of the stationary distribution to answer
other questions that are hard or impossible to address otherwise.
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Our model leaves out more biological details than others do,
but the mathematical simplicity allows us to address new ques-
tions. As with any modeling abstraction, the question to ask is
whether the mechanisms that we have left out, such as breeding
from only two parents, give evolution essential computational
power, or whether these omitted mechanisms are accidents of
biology of little computational significance. We leave this for
further work.
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