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1
INTRODUCTION

Available evidence suggests that humans have been fascinated by animals and
their behaviour from long before recorded history. From prehistoric cave paint-
ings to the beasts of Greek mythology, animal behaviour has featured prominently
in our imaginations since ancient times. Today, we are no less enthusiastic about
our zoological kin, flocking to the zoo on a hot day, spending our holidays on
remote safaris, and keeping pets for amusement and companionship. The fasci-
nation has not been lost on scientists, who have amassed a large body of work on
animal behaviour over the past centuries, from two contrasting perspectives. The
first, which might be called the functional perspective on behaviour, pioneered
by Darwin [1], emphasises how behaviour impacts an organism’s fitness in an
evolutionary context, and has led to the modern field of ethology [2, 3]. The
second, which might be called the mechanistic perspective on behavior, arose
nearly a century earlier from physiological studies perhaps best exemplified by
the iconic bioelectricity experiments of Galvani [4] and Volta [5]. It emphasises
how behaviour is implemented by the underlying anatomy and physiology of an
organism, and has since developed into the modern field of neuroscience [6, 7].
These two academic traditions offer starkly different kinds of explanations to the
same question, "What shapes animal behavior?" Simply stated, the functional
perspective aims to answer why behaviour is as we see it, whereas the mechanistic
perspective strives to uncover how those behaviours are generated.

Traditionally, these two classes of explanations have involved contrasting
approaches to studying behaviour, each with associated challenges. A functional
explanation usually entails careful observation and classification of behaviour,
followed by interpretation of it as part of an evolutionary strategy. The latter often
requires a deep understanding of the complex ecological context, and hence much
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work in this direction is carried out in the field, outside of controlled laboratory
settings. A mechanistic explanation usually entails studying the control and
actuation of behaviour as the output of relevant anatomical and physiological
systems. The complexity of the latter is epitomised by the human brain, but even
in simpler organisms, understanding the collective dynamics of more than a
handful of neurons remains an unsolved problem and much of contemporary
neuroscience is dedicated to studying the dynamics of neural subcircuits of the
brain — identified by anatomical or functional connectivity — in genetic model
organisms amenable to laboratory experiments.

A common challenge faced by both approaches is the difficulty in avoiding
subjectivity. In the ethological approach, progress has relied on expert insight not
only in how to observe behavior, but, more fundamentally, also in defining the
behaviours to be observed. In the neuroscience approach, progress has relied on
expert-guided choices about which specific neurons, or brain regions, to focus
on. Recent technological advances make it possible to collect expansive data
sets on both behaviour [8–11] and the brain [12–16], giving rise to powerful data-
driven approaches that can drastically reduce the degree of subjectivity in both
functional [17] and mechanistic [18] studies of behavior. While these advances in
behavioral and neural data throughput are exciting in their own right, the advent
of data-driven approaches in both ethology and neuroscience have arguably
brought these historically separated approaches and their practitioners closer
together. With the parallel development of data-driven approaches in both arenas,
the gulf between the fields is narrowing. This thesis aspires to contribute to this
trend by developing data-driven approaches to both behaviour and the brain in
one of the simplest organisms amenable to such studies — the nematode worm
C. elegans. This is one of a handful of organisms in which whole-brain imaging
and high-throughput behavioural recordings are currently possible, and it is by
far the simplest of them.

We focus on motile behavior, which is readily quantified by imaging. A key
feature of our approach is to leverage behavioural variability. When studying
motile behaviour, no two repetitions of the same experiment yield the exact same
outcome. Even for genetically identical organisms under identically controlled
conditions, variability is a generic property of any living system, and can be
observed in various quantitative traits [19], including those associated with be-
haviour [20]. The potential causes of variability are diverse. At the molecular level,
all biological systems depend on interactions that are fundamentally stochastic,
due to processes carried out by finite numbers of molecules, inevitably resulting
in ’noise’ [21–23]. Variability may also manifest at larger scales such at the level
of the synapse [24], chaotic dynamics in the neuronal network [25], or even the
entire organism. An illustrative example of variability at the organism scale is the
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unique preferential locomotor handedness observed across individuals within an
isogenic (genetically identical) population of Drosophila [26, 27]. Another striking
example of (non-genetic) individuality is the armadillo Dasypus novemcinctus
where developmental stochasticity can explain a substantial portion of variation
[28]. At the level of behaviour, stochasticity can place limits on the organism’s
capacity to exert control — for example, the ability to reproducibly form a stim-
ulus dependent behavioural response. These limitations in turn constrain the
repertoire of behavioural strategies an organism can implement/deploy, and it
can be expected that behaviours could evolve to optimally mitigate detrimental
effects of variability.

From the experimenter’s point of view, behavioural variability necessitates
the observation of many individuals in studies of behavior. Typically, most infor-
mation about the variability is disregarded, reporting average responses under
various controlled conditions. In this thesis, we take a contrasting approach, in
which we seldom perturb or change the animal’s environment, but rather fo-
cus on leveraging the variability in behaviour observed across individuals under
identically controlled conditions. This approach has a number of advantages.
First, because each individual behaves uniquely, the ensemble of behavioural
recordings across individuals allows us to map a space of naturally relevant be-
havioural phenotypes without resorting to perturbations (which, unless very
carefully chosen and calibrated, may provoke unnatural or extreme responses).
Second, studying the statistics of behavioural phenotypes within the mapped
behavioural space has the potential to uncover interesting strategies deployed
by the organism that may otherwise be masked by averaging. One such example
is the bet-hedging strategy [29, 30], wherein stochastic behavioural variability is
beneficially added, preparing the population for unpredictable situations. Finally,
clues about the mechanistic origins of variability can be provided by studying the
partitioning of variability across time, individuals, or even genotypes (e.g. strains
or species). For example, if multiple phenotypic traits change in a correlated
way across species, it could suggest a common genetic or regulatory pathway.
As for temporal dynamics, sub-second fluctuations could be of neuronal origin,
fluctuations at the hour timescale could be of gene expression origin, and static
differences (i.e. individuality) in isogenic populations could be of developmental
origin.

A major challenge for developing a mechanistic understanding of behaviour
is the interdependence and sheer complexity of the relevant anatomy and physiol-
ogy, which comprise innumerable interactions that play out over many orders of
magnitude in time and length scales. Actuation of a movement involves molecular
interactions of proteins at the manometer scale, generation of action potentials of
a neuron at the micrometre scale, coordination of brain dynamics at the millime-
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tre to centimeter scale, to movement through muscle activation at the organism
scale. While many of these interactions occur on subsecond timescales, longer-
time processes could be relevant, such as the history of experience, potentially up
to the life time of the organism (e.g. via neuronal plasticity [31]), or even further,
spanning multiple generations through epigenetics [32]. To be able to respond
fast and adequately to many different inputs, the system’s architecture, especially
at the level of the brain, is highly interconnected with non-linear interactions.
Thus, the response of a neuron is dependent on many other neurons, and its
function may only be interpreted in the context of the other neurons. Therefore, it
is useful to study brain dynamics using whole-brain imaging. More so, combining
two approaches, recording brain dynamics simultaneously with motile behaviour,
could be a crucial step towards acquiring a better understanding of the brain
[12], because it provides behavioural context for brain dynamics. One of the two
approaches to understanding behaviour in this thesis takes a step in this direction
by developing a system where, by choosing the right model organism, and with
controlled input signals, both whole-brain dynamics and a simple form of motile
behavioural output can be observed simultaneously.

Our goal is to go beyond simply amassing volumes of data, or to report on the
myriad of correlations and other statistical features of these rich datasets. In this
thesis, we strive for fundamental understanding by developing a physics-inspired
approach to dissecting behaviour and brain dynamics in a principled way. Al-
though studying behavioural variability and whole-brain dynamics has many
potential benefits, it is also opening a can of worms. With modern cameras, ter-
abytes of observational data can be produced with ease, yielding an overwhelming
amount of information with almost as much variability. To navigate this wealth
of data, we take a top-down approach to both brain and behavior, focusing on
large-scale phenomena of the brain dynamics and generalizable aspects of be-
haviour. This requires compression of the data, using some form of dimensionality
reduction, while retaining biologically relevant information. We rely on the con-
struction and exploration of models to create a framework from which to interpret
the data and analyze its implications. Such models should be minimalistic for
interpretability while describing the relevant dynamics, including variability.

C. elegans, a unique model system for behavior and brain
The nematode Caenorhabditis elegans possesses a number of properties that

make it an excellent model organism for our purposes. Firstly, when well main-
tained in the lab, the most commonly used N2 strain of C. elegans is predominantly
a hermaphrodite (although there can be a small fraction of males with largely the
same genome, lacking an X chromosome). Therefore, populations are isogenic,
eliminating genotypically induced variability. In addition, their generation time
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of ≈ 3.5 days at room temperature allows for rapid propagation of laboratory
populations and a short experimental cycle. Secondly, an adult hermaphrodite
is only ≈ 1 mm long and possesses only 959 somatic cells, which include the
epidermis, muscles, digestive system, and nervous system. Their body layout is
highly stereotyped (i.e. different individuals have the same number of cells with
the same functions in similar positions), which allows for the study of internal
processes across individuals at the single-cell level. In addition, the worm is
transparent and therefore well suited for non-invasive optical methods to probe
internal processes in vivo. Collectively, these properties have made C. elegans
an extensively studied model organism — indeed, it was the first multicellular
organism to have its genome fully sequenced [33], and was for decades the only
animal in which the full wiring diagram of its nervous system, the connectome,
has been mapped to completion [34] (the only other organisms with a mapped
connectome are the larve Ciona intestinalis[35], Platynereis dumerilii[36], and
Drosophila[37]).

The motile behaviour of C. elegans.
In nature C. elegans can be encountered in rotting plant material [38], feasting

on the bacteria that grow there. Within the laboratory, its motile behaviour can
readily be studied on the agar plates, as they tend to incessantly crawl on their
surface. One of the main advantages of studying the worm is the simplicity
with which its behaviour at the most basic level can be quantified. C. elegans
has a bendable rod-like body shape and moves, laying on its side, by means of
undulatory propulsion (i.e. like a snake) driven by a coupled set of motor neurons
[39] that generate oscillatory bending waves that travel along the dorso-ventral
body direction. Numerous tracking systems have been developed to monitor
worm motility [40, 41], tracking the worm’s centroid position and may also resolve
the underlying postural dynamics in fine detail and/or allow tracking of multiple
worms simultaneously. Worm posture provides a compact yet rich basis for
describing worm movements. It can be described by a smooth and unbranched
curve tracing the body contour from head to tail, thereby compressing in every
image frame the state of the anatomy to a vector of angles. Studying changes
in this posture (using a PCA on the postural angle temporal dynamics along the
body axis) has revealed that the worm has stereotypic motile behavior, which
can be described in a low dimensional configuration space with 95% of variation
described as a superposition of four basic shapes called ’Eigenworms’ [8, 42],
further compressing the posture to just 4 mode weights. Changes in posture on
time scales similar to a body wave (∼ 1 s) describe the most elemental behaviours
of the worm: forward crawling, reverse crawling (a brief inversion of the body
wave phase velocity), pause [43], and turning, often in the form of a sharpΩ [44]
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or δ [45] turn. The δ-turn [45] is a recently discovered sharp turn type that could
be discovered using a large data set and machine learning tools. How this turn
type is strategically used by the worm in different environments has not yet been
studied, and is one of the topics of this thesis.

Despite only possessing a few motile behavioural elements, the worm is able
to perform a diverse set of navigational tasks, as the frequency and duration of
these basic behavioural elements are modulated by the environment. In the lab
setting, while on an agar plate shortly after being taken off food, a worm will
typically spend the majority of time crawling forward, with brief interruptions
for reversals or sharp turns. A strong aversive stimulus such as touch [46] (to
escape from traps [47]), or a strong repellent e.g. sodium dodecyl sulfate (SDS)
applied at the head [48], may trigger an escape response; a reversal following
a sharp turn, using the neuromodulator Tyramine [49, 50]. Although this is a
highly stereotypical behaviour, there is evidence that the reversal duration is
modulated by the strength and amplitude of the stimulus in response to heat
[51–53]. To navigate up or down a gradient (e.g. NaCl [54]), a stochastic strategy is
deployed, where the ’pirouette’ (bouts of reversals and sharp turns) probability is
down- or up regulated depending on whether the worm moves towards or away
from the preferred gradient, respectively [55] causing a biased random walk, a
strategy similar to the run-and-tumble mechanism of E. coli [56]. The worm can
navigate up and down a wide range of concentrations by computing the relative
concentration change [57]. In addition, a ’weathervaning’ strategy is deployed,
which more gradually veers the worm towards the preferred gradient during
forward locomotion [58]. To oxygen, the worm could also modulate its speed
[59]. In a situation where the worm is crawling on a food patch, worms switch
behavioural states where the extremes [60] are described as dwelling (exploitation)
behavioural state with many reversals and turns, a roaming (exploration) state
with long uninterrupted forward runs [61, 62], and quiescence [63] (no crawling).

The worm has the capacity to adapt its strategy by incorporating time scales
far exceeding the orientation decorrelation time. Upon removal from food, the
frequency of sharp turns, reversals, and pirouettes (bursts of reversals and turns) is
gradually decreased, resulting in a larger explored space [64–66], which may even
be superdiffusive [67]. An environmental condition can be associated with the
presence of food, changing the preferable concentration during NaCl chemotaxis
[68] (encoded in the ASER sensory neuron [69, 70]) or thermotaxis [71]. Long
time-scale changes in worm behaviour, such as the quiescent sleep state during
lethargus [72, 73], may be part of a stereotyped developmental program [74].
Some worms exhibited increased (non-heritable) dwelling or roaming throughout
development, indicating a personality [74].
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The nervous system
Among the 959 somatic cells of the hermaphrodite are 302 neurons, one of

the tiniest brains known in the animal kingdom. It is therefore, with current
technology, one of the few organisms where it is feasible to study and understand
neuronal processing down to the level of a single neuron. C. elegans was the
first organism with a fully mapped hermaphrodite connectome already in 1986
[34, 75], recently also updated for males [76], and across development [77]. The
nervous system can be divided into 118 neuron classes [34], often a left/right
symmetric pair. These classes form three groups (some neurons occupy mul-
tiple groups): sensory neurons collecting information about the internal state
and environment, interneurons processing the information, and motorneurons
controlling the muscles.

Information between neurons is transmitted through synapses or neuromod-
ulators. The connectome of the hermaphrodite consists of chemical synapses
releasing neurotransmitters with an excitatory or inhibitory effect on the activity
of the target neuron, gap junctions (or electrical synapses) creating a bidirectional
direct connection between the cytoplasm of two neurons, and neuromuscular
junctions controlling the contraction of muscle fibres for motor activity. The total
number of chemical synapses in C. elegans, around ∼ 8000 [77], is similar to that
of a single human neuron, but encodes the entire behavioural repertoire, which
requires complex functionality such as neuronal plasticity [78]. Although the
synaptic connections between neurons are mostly conserved (∼ 72%), it should
be noted that there is a substantial number of variable synapses (∼ 1100), account-
ing for half the connected neuron pairs [77]. It is therefore plausible that individual
behavioural variability is imposed by variability in the wiring diagram. Besides
synapses, which require neurons to be in extreme proximity and are therefore
easily identified, neurons can also communicate via neuromodulators: molecules
released by neurons that travel further and thereby influence (multiple) neurons
at a distance. These effects may last minutes and alter the way information is pro-
cessed to adapt to the environment [79]. For instance, PDF and serotonin encode
for exploration (roaming) and exploitation (dwelling) behaviors, respectively [61].
Of particular interest are biogenic amines that can be taken up by the worm and
may be applied exogenously during experiments. The worm uses four biogenic
amines: octopamine, tyramine, dopamine, and serononin, which may function
as neuromodulators or neurotransmitters to respond to the environment by in-
fluencing pharyngeal pumping, egg laying, learning, and locomotion [80]. The
effect of neuromodulators on motile behaviour has been extensively studied [79],
however its impact on the global brain dynamics underpinning this behaviour is
open. Such an understanding could bridge knowledge of local impact on target
neurons and the output behaviour.
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Although a fully mapped connectome is a valuable tool for neuronal research,
it does not predict behaviour because of unknown types of chemical connections,
and the number of connections does not predict the functional weight (which
may vary under certain conditions) of the connection [81]. Studying functional
relationships therefore requires intervention to change the connectome or direct
recordings of the neuronal activity. Traditionally, neuronal functions and the
underlying circuitry is probed by studying behaviour, such as chemotaxis [54, 58],
foraging [82], navigation [64], under ablation (killing of neurons using a laser)
of specific neurons [83] or by mutations. Removal of functionality of neurons
provides insight, but is highly disruptive and doesn’t allow for the study of brain
signalling dynamics. Initially, neuronal activity was recorded using electrophysi-
ological recordings [84], but this is invasive, labor-intensive, and performed on
single cells. Advances in genetics enabled to study brain dynamics non invasively
using sensitive genetically encoded Ca2+ indicators (GECIs) (often an optimized
version of GCaMP [85, 86]), fluorescent proteins where the fluorescent properties
depend on the presence of calcium, a proxy for the neuronal activity [87]. Lever-
aging the transparency of the worm, knowledge of worm genetics, and advances
in imaging techniques, these can be expressed and recorded in targeted neurons.
In rapid succession, these have been used in more complex settings: from single
neurons in semi constrained worms with [88] or without [89] using optogenetics,
to single neurons in freely moving worms with [90, 91] and without [92] the use
of optogenetics, to single neurons in multiple worms simultaneously [93]. There
has also been a trend toward increasing the number of recorded neurons [94].
Leveraging the worms small brain, recent measurements started to record activity
of most (or as many as possible) neurons simultaneously in the worm head, con-
taining the majority of sensory and interneurons [14, 73, 95–104]. This requires
rapid volumetric acquisition of fluorescent light, for which various microscopy
techniques have been used, such as spinning disc confocal microscopy [14, 73, 95–
97, 102, 103], light field microscopy [101], wide-field temporal focusing [99], wide
field microscopy with deconvolution [105], and light sheet microscopy [100, 104].
Whole-brain imaging has even been performed on moving animals [95, 96, 100],
enabling the possibility to relate brain signalling dynamics with behaviour [98].

Multiple neuron recordings have yielded new insights into internal processing.
Gordus. et. al. showed that feedback from the brain state is an important factor in
the response to a stimulus [106], contributing to a new paradigm where processing
occurs dynamically with feedback from motor neurons, sensory neurons, and
interneurons rather than a feed-forward system [107]. On immobilised worms,
brain dynamics are low-dimensional and globally distributed, with three PCA
components accounting for 65% of the variance [14]. Different regions of the PCA
phase space were marked by high activity of neurons associated with behaviours
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such as forward, reversal and turning of freely moving worms [14]. It should
be noted that brain dynamics in freely moving worms show considerately more
complexity [96, 102]. The sleep state is also encoded globally and associated
with a reduction of the majority of otherwise active neurons [73, 97]. Although
highly valuable, these studies only scratch the surface and much more can be
learned from whole-brain recordings, in particular the processing of stimuli and
the relation between brain dynamics and motility. What is missing in particular is
a system that can combine controlled delivery of stimuli, a motility readout, and
full brain recordings. Such a system would benefit from longer brain recordings
than 20 min, which is the maximum duration of most studies, to gather sufficient
statistics to uncover these relationships.

Thesis outlook
In this thesis, two approaches, divided over three chapters, are used to un-

derstand animal behaviour: studying behaviour through behavioural variability
and through studying brain dynamics. As aforementioned, studies of behaviour
require quantification and interpretation, which are aided by building models
of behaviour. Therefore, in chapter 2 [108], a predictive model is constructed
that describes the worm’s centroid position, quantifying fluctuations in speed,
reversals, and body orientation. This model is used to study variability of worm
behaviour between individuals, also across nematode species as well as different
strains of C. elegans in an off-food environment in the absence of (intentionally
applied) external stimuli. Because the model describes many different aspects
of motile behaviour, covarying relations can be extracted across individuals. We
found that behaviour across worms varies along a common mode reminiscent
with roaming and dwelling behaviour. Individuals’ behaviour projected onto this
mode revealed significant variation both across and within species.

Based on these results and the model, experiments have been conducted to
relate individual behavioural differences in crawling speed with gene expression
using RNA sequencing. Unfortunately, no direct relationship could be extracted,
therefore it is not presented as a separate chapter. However, from the data gener-
ated by these experiments clusters of covarying genes could be extracted using
a method developed predominantly by dr. Steffen Werner (which I co-author),
using the percolation properties of the noise background [109]. Some of these
clusters contained genes associated with long term feeding experience memory
[110], possibly across generations [111].

Turning is a particularly interesting aspect of motile behaviour, because the
worm has to ’manage’ its internal biases that pose limitations for the control mech-
anisms, such as a ventral sharp turning preference over dorsal and anΩ turn over
δ, arising from the breaking of body symmetries. Chapter 3 focuses specifically on
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turning behaviour within an isogenic population of N2 for longer time-periods (2
hours). The long time-scale measurements result in sufficient statistics about the
individual that can be leveraged to study worm-to-worm variability in the context
of performance. This required resolving worm postures during the thousands of
self-occluding sharp turns [45] and is therefore a unique data set in the field. Vari-
ation in turning statistics persistent over the length of the measurement could be
identified across individuals, most notably a rotational crawling bias that impairs
exploration and could possibly be a limit of control. By constructing a minimal
model of the persistence length, we showed that the sharp turn rate and diffusion
are, on average, optimally tuned to maximise exploration. In addition, we are
the first to describe how the worm leverages its diverse sharp turn repertoire to
overcome its sharp turn biases in the event of an escape from SDS to minimise
toxic exposure.

Finally, to gain insight into the control circuitry underpinning motile be-
haviour, whole-brain dynamics should be studied simultaneously with motile
behaviour. Interpretation of complex brain dynamics is aided by knowledge of
the input signals, preferably a repeated stimulus such that variable responses can
be studied. Therefore, in chapter 4 we developed a pipeline to study whole-brain
response dynamics to repeated chemical stimuli in semi-constrained worms for
time scales exceeding an hour. With this system, we investigate three existing
hypotheses: (1) the collective motor-command hypothesis, stating that collective
modes of neural activity serve as motor commands; (2) the apparent stochasticity
hypothesis, by studying the brain response to repeated salt and SDS stimuli; and
(3) the neuromodulated brain-states hypothesis, by studying sleep-like reversible
quiescence induced by exogenous serotonin. Our results yield positive evidence
in support of each of these hypotheses.
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2
MODELING THE

BALLISTIC-TO-DIFFUSIVE

TRANSITION IN NEMATODE

MOTILITY REVEALS VARIATION IN

EXPLORATORY BEHAVIOR ACROSS

SPECIES

2.1. INTRODUCTION
A ubiquitous feature of biological motility is the combination of stereotyped move-
ments in seemingly random sequences. Capturing the essential characteristics of
motion thus requires a statistical description, in close analogy to the random-walk
formulation of Brownian motion in physics. A canonical example is the “run-and-
tumble” behavior of E. coli bacteria, in which relatively straight paths (runs) are
interspersed by rapid and random reorientation events (tumbles) [1]. The random
walk of E. coli can thus be characterized by two random variables (run length
and tumble angle) and two constant parameters (swimming speed and rotational
diffusion coefficient), and detailed studies over decades have yielded mechanistic
models that link these key behavioral parameters to the underlying anatomy and
physiology [2–5]. Random-walk theory has been fruitfully applied also to studies
of eukaryotic cell migration in both two [6–8] and three [9] dimensions.

Can a similar top-down approach be fruitfully applied to more complex
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organisms–for example, an animal controlled by a neural network? Animal be-
havior is both astonishing in its diversity and daunting in its complexity, given
the inherently high-dimensional space of possible anatomical, physiological, and
environmental configurations. It is therefore essential to identify appropriate
models and parameterizations to succinctly represent the complex space of be-
haviors — a non-trivial task that has traditionally relied on the insights of expert
biologists. In this study, we ask if one can achieve a similar synthesis by an alter-
native, physically-motivated approach [10]. We seek a quantitative model with
predictive power over behavioral statistics, and yet a parameterization that is
simple enough to permit meaningful interpretations of phenotypes in a reduced
space of variables. As an example, we focus on the motile behavior of nematodes,
which explore space using a combination of random and directed motility driven
by undulatory propulsion.

The nematode C. elegans has long been a model organism for the genetics of
neural systems [11, 12], and recent advances in imaging have made it feasible to
record a large fraction of the worm’s nervous system activity at single-cell resolu-
tion [13–15]. These developments raise the compelling possibility of elucidating
the neural basis of behavioral control at the organism scale, but such endeavors
will require unambiguous definitions of neural circuit outputs and functional per-
formance. The worm’s behavioral repertoire [16, 17] is commonly characterized
in terms of forward motion occasionally interrupted by brief reversals [18–20],
during which the undulatory body wave that drives its movement [21] switches
direction. In addition, worms reorient with a combination of gradual curves in
the trajectory (“weathervaning”) [22, 23] and sharp changes in body orientation
(omega-turns [19] and delta-turns [24]). These elementary behaviors are com-
bined in exploring an environment [22, 25]. Environmental cues such as chemical,
mechanical, or thermal stimuli [26] lead to a biasing of these behaviors, guiding
the worm in favorable directions [22, 25, 27]. Finally, in practical terms, the worm’s
small size (∼1 mm in length), moderate propulsive speed (∼100µms−1) and short
generation time (∼3 days) allow a considerable fraction of its behavioral repertoire
to be efficiently sampled in the laboratory [18, 28]. An influential example of such
an analysis is the “pirouette” model proposed by Pierce-Shimomura and Lockery
[25] which describes the worm’s exploratory behavior as long runs interrupted
occasionally by bursts of reversals and omega turns that reorient the worm, in
close analogy to the run-and-tumble model of bacterial random walks [1]. Later
work by Iino et al. identified that worms also navigate by smoother modulations
of their direction during long runs (“weathervaning”) [22], and Calhoun et al.
have suggested that C. elegans may track the information content of environmen-
tal statistics in searching for food [29], a motile strategy that has been termed
’infotaxis’ [30]. A recent study by Roberts et al. [20] analyzed high (submicron)
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resolution kinematics of C. elegans locomotion and developed a stochastic model
of forward-reverse switching dynamics that include the short-lived (∼0.1 s) pause
states that were identified between forward and reverse runs.

Importantly, while these previous studies have illuminated different modes
of behavioral control, they were not designed to obtain a predictive model of the
trajectory statistics and thus a succinct parameterization of C. elegans motility
remains an important open problem. A quantitative parameterization capturing
the repertoire of C. elegans’ behavioral phenotypes would facilitate data-driven
investigations of behavioral strategies: for example, whether worms demonstrate
distinct modes of motility (characterized by correlated changes in parameters)
over time, or in response to changes in environmental conditions [28, 31–33].
Variation in the obtained parameters among individuals can inform on the dis-
tribution of behavioral phenotypes within a population, and reveal evolutionary
constraints and trade-offs between strategies represented by distinct parameter
sets [34].

C. elegans is a member of the Nematoda phylum, one of the largest and most
diverse phylogenetic groups of species [35, 36]. Despite the diversity of ecological
niches these animals inhabit [35], comparisons of nematode body plans have
revealed a remarkable degree of conservation, even down to the level of individual
neurons [37]. This combination of highly conserved anatomy and ecological
diversity makes nematode motility a compelling case for studies of behavioral
phenotypes. Anatomical conservation suggests it might be possible to describe the
behavior of diverse nematodes by a common model, and identifying the manner
in which existing natural variation is distributed across the parameter space of
the model could reveal distinct motility strategies resulting from optimization
under different environmental conditions.

In this study, we develop a simple random walk model describing the transla-
tional movements of a diverse collection of nematode species, freely-moving on a
two-dimensional agar surface. In addition to providing a quantitative and predic-
tive measure of trajectory dynamics, the parameters of our model define a space
of possible behaviors. Variation within such a space can occur due to changes
in individual behavior over time (reflecting temporal variation in the underlying
sensorimotor physiology, or “mood”), differences in behavior among individu-
als (reflecting stable differences in physiology, or “personality”) and differences
between strains and species (reflecting cumulative effects of natural selection).
By quantitative analyses of such patterns of variation, we seek to identify simple,
organizing principles underlying behavior.
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2.2. RESULTS

2.2.1. NEMATODES PERFORM RANDOM WALKS OFF-FOOD WITH A BROAD

RANGE OF DIFFUSIVITIES ACROSS STRAINS

In order to identify conserved and divergent aspects of motility strategies, we
sampled motile behavior over a broad evolutionary range. We selected a phylo-
genetically diverse collection of nematodes with an increased sampling density
closer to the laboratory strain C. elegans (Figure 2.1A and Supplementary Infor-
mation, SI). To sample individual variation, we recorded the motility of up to 20
well-fed individuals per strain and each individual for 30 minutes on a food-free
agar plate at 11.5 Hz with a resolution of 12.5µm/px (see SI).

We measured the centroid position (~x(t )) and calculated the centroid velocity
(~v(t)), using image analysis techniques (Figure S2.11 and SI). We chose the cen-
troid as the measure of the worm’s position because it effectively filters out most
of the dynamics of the propulsive body wave. There was considerable variation in
the spatial extent and degree of turning visible in the trajectories both within and
across strains (Figure 2.1A, S2.2).

As previously seen in C. elegans [38], the measured mean-squared displace-
ment,

〈[∆x(τ)]2〉 ≡ 〈|~x(t +τ)−~x(t )|2〉, (2.1)

revealed a transition from ballistic to diffusive motion within a 100 s timescale
(Figure 2.1B, S2.3). Over short times, the worm’s path was relatively straight, with
the mean-squared displacement scaling quadratically with the time lag τ and
speed s as 〈s2〉τ2 (i.e. a log-log slope of 2). Over longer times, the slope decreased
with τ reflecting the randomization of orientation characteristic of diffusion, and
an effective diffusivity Deff was extracted by fits to 〈[∆x(τ)]2〉 = 4Deffτ (see SI). On
the time scales at which the worms start encountering the walls of the observation
arena, the slope of the mean-squared displacement decreased yet further, which
has been shown to be a property of confined random walks [39]. Nonetheless,
we have confirmed that the decay of the velocity autocorrelation function is not
significantly affected by the confinement, and is consistent with a ballistic to
diffusive transition (Figure S2.1). This analysis revealed that the visible differences
in the spatial extent of these 30-minute trajectories stem from variation by nearly
an order of magnitude in speed and two orders of magnitude in diffusivity (Figure
2.1C, Tables S2.1 & S2.2).

2.2.2. THE RANDOM WALK OF NEMATODES CAN BE DECOMPOSED INTO

SPEED, TURNING AND REVERSAL DYNAMICS

The broad range of observed speeds and diffusivities suggest that these diverse
nematodes have evolved a variety of strategies for spatial exploration. To gain
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Figure 2.1: Nematodes perform random walks off-food with a mean speed and effective
diffusivity that varies across strains. (A) Phylogenetic tree with the strains used in this
study. The bold numbers are the major clades of Nematoda. The gray box indicates ge-
netically distinct wild isolates of C. elegans. A representative worm image and 30 minute
trajectory are shown to the right. (B) The average mean-squared displacement, MSD,
across N2 individuals is shown in black. For comparison, we show the MSD expected
from ballistic (blue) and diffusive (red) dynamics. The motility transitions from a ballistic
to diffusive regime within a time scale of tens of seconds. Shaded regions indicate a 95%
confidence interval. (C) Mean speed 〈s〉 and effective diffusivity Deff (mean and 95% con-
fidence intervals) for each strain, calculated from fits of the mean-squared displacement
as in B. Across strains, both 〈s〉 and Deff vary by orders of magnitude.
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further insights into the manner in which such contrasting behaviors are imple-
mented by each strain, we sought to extract a minimal model of the nematodes’
random walk by further decomposing the trajectory statistics of all nine measured
strains. In this and the following three sections, we illustrate our analysis and
model development with data from three contrasting strains: CB4856 and PS312,
which demonstrated two of the most extreme phenotypes, and the canonical
laboratory strain N2 (see SI for equivalent data for all strains).

The translational motion of the worm can be described by the time-varying
centroid velocity ~v(t) which can in turn be decomposed into speed s(t) and
direction of motion (hereafter referred to as its “bearing”) φ(t ):

~v(t ) = d~x(t )

d t
= s(t )

[
cosφ(t ),sinφ(t )

]
(2.2)

To account for head-tail asymmetry in the worm’s anatomy, we additionally
define the body orientation (ψ(t ); hereafter referred to simply as “orientation”) by
the angle of the vector connecting the worm’s centroid to the head (Figure 2.2A).
The centroid bearing is related to this orientation of the worm by

φ(t ) =ψ(t )+∆ψ(t ) (2.3)

where the difference ∆ψ(t) is a measure of the alignment of the direction of
movement with the worm’s body orientation (hereafter referred to simply as
“alignment”). We found for all strains that the distribution of ∆ψ(t ) was bimodal
with peaks at 0°and 180°(Figure 2.2C, S2.7A). These match the forward and reverse
states of motion described in C. elegans [18, 19].

Each of the three components of the worm’s motility (speed, orientation, and
alignment) varied considerably over time and in qualitatively different ways be-
tween strains (Figure 2.2B). For example, the three strains shown in Figure 2.2B
differed not only in their average speed, but also in the amplitude and timescale
of fluctuations about the average speed. Similarly, the statistics of orientation
fluctuations about the drifting mean also differed visibly between strains. Fi-
nally, transitions between forward and reverse runs were far more frequent in
PS312 as compared to N2 and CB4856. Given the apparently random manner in
which these motility components varied over time, we proceeded to analyze the
dynamics of each of these three components as a stochastic process.

2.2.3. SPEED DYNAMICS

Speed control has not been extensively studied in C. elegans, but it is known
that worms move with a characteristic speed that is influenced by stimuli [26].
When intervals corresponding to transitions between forward and reverse runs
were excluded from the time series, we found that the autocorrelation in speed
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fluctuations decayed exponentially over a few seconds (Figure 2.3A, S2.5A), a
timescale similar to the period of the propulsive body wave. These dynamics
are naturally captured by an Ornstein-Uhlenbeck process [40], which describes
random fluctuations arising from white noise (increments of a diffusive Wiener
process, dWt [40]) with magnitude

p
2Ds that relax with timescale τs back to an

average value, µs = 〈s〉:
d s(t ) = τ−1

s

[
µs − s(t )

]
d t +

√
2DsdWt (2.4)

Numerical integration of this equation closely reproduced the observed speed
distributions during runs (Figure S2.5B).

2.2.4. DIFFUSIVE TURNING WITH DRIFT

The orientation ψ(t ) captures turning dynamics that are independent of abrupt
changes in bearing φ(t) due to reversals. To change orientation, C. elegans exe-
cutes a combination of large, ventrally-biased [41] sharp turns [18, 24] and grad-
ual “weathervaning” [22], both of which contribute to randomization of orien-
tation over time. This random walk in orientation was not purely diffusive: the
orientation correlation Cψ(τ) = 〈cos

[
ψ(t +τ)−ψ(t )

]〉 does not decay exponen-
tially (Figures 2.3B Inset, S2.6B), and the mean-squared angular displacement,
MSAD(τ) = 〈[ψ(t + τ)−ψ(t)]2〉, increases nonlinearly with time (Figures 2.3B,
S2.6A).

We found that this nonlinear MSAD of ψ(t) could be well fit by a quadratic
function of the time delay τ: MSAD(τ) = k2

ψrmsτ
2 +2Dψτ, corresponding to a

diffusion-and-drift model with root-mean-square (rms) drift magnitude kψrms
and angular diffusion coefficient Dψ (see Supporting Information for derivation).
A non-zero drift magnitude kψrms 6= 0 indicates that in addition to purely random
(diffusive) changes in orientation, there is an underlying bias (i.e. directional
persistence) in the worms’ turning over 100 s windows, consistent with previous
studies in larger arenas [23].

These observations lead to a simple model for the orientation dynamics that
combines drift (approximated as a deterministic linear process over a 100 s win-
dow) with stochastic diffusion:

dψ(t ) = kψd t +
√

2DψdWt , (2.5)

where we set the drift magnitude kψ = kψrms and dWt represents increments of
a Wiener process [40].

We note that while this model described well the orientation dynamics within
100 s windows, over longer timescales additional dynamics may be relevant. The
magnitude of kψ in our data (∼1 °s−1) was similar to that of weathervaning excur-
sions reported for C. elegans navigating in salt gradients [22].
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2.2.5. FORWARD AND REVERSE RUNS

The observation that motion during runs switched abruptly between forward and
reverse states (with ∆ψ≈ {0°,180°}, respectively; Figures 2.2B,C,S2.7A) suggested
that reversals could be described as a discrete stochastic process. The manner in
which reversals contribute to randomization of bearing over a time lag τ is cap-
tured by the autocorrelation function of ∆ψ(t ), C∆ψ(τ) ≡ 〈cos(∆ψ(t +τ)−∆ψ(t ))〉.
We found that C∆ψ(τ) decayed nearly exponentially to a non-zero baseline (Figure
2.3C, Figure S2.7C). This is the predicted behavior for the autocorrelation function
of the simplest of two-state processes (a “random telegraph process”):

P (Tfwd > t ) = exp(−t/τfwd) (2.6)

P (Trev > t ) = exp(−t/τrev), (2.7)

in which the distribution of forward and reverse run intervals (Tfwd and Trev) are
completely determined by a single time constant (τfwd and τrev, respectively).
The random telegraph process yields an autocorrelation function that decays
exponentially as C∆ψ(τ) = C∆ψ(∞)+ (

1−C∆ψ(∞)
)

e−τ/τRT to a minimum value

C∆ψ(∞) ≡ ((τfwd −τrev)/(τrev +τfwd))2 with a timescale τRT ≡ (
τ−1

fwd +τ−1
rev

)−1
[42].

Results obtained from fitting the autocorrelation function are consistent with
those obtained from the distribution of time intervals between detected switching
events (Figure S2.7, SI). In principle, the forward and reverse states could be
characterized by differences in motility parameters of our model other than these
transition times, as forward and reverse motion are driven by distinct command
interneurons in C. elegans [43, 44]. However, we found that run speeds were nearly
identical between forward and reverse runs (Figure S2.8). While we expect that
this symmetry will be broken under some specific conditions, such as the escape
response [45], the strong speed correlation between the two states motivates the
assumption, adopted in our model, that reversals change only the bearing (by
180°) and the propensity to reverse direction, represented in our model by the
time constants τfwd and τrev.

2.2.6. A MODEL WITH INDEPENDENT SPEED, TURNING AND REVERSALS

CAPTURES THE BALLISTIC-TO-DIFFUSIVE TRANSITION IN NEMATODE

MOTILITY

Given that the dynamics of the worm’s speed, turning and reversals could be de-
scribed as simple stochastic processes, we asked whether combining them as in-
dependent components in a model of the worms’ random walk could sufficiently
describe the observed motility statistics (Figure 2.4A). We simulated trajectories of
worms by numerically integrating equations (2.4)-(2.7) for the speed, orientation,
and reversal dynamics, respectively, which yields the worm’s velocity dynamics
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through equations (2.2) and (2.3), with ∆ψ(t ) equal to 0° during forward runs and
180° during reverse runs. Simulations of this model using parameters fit to indi-
vidual worms produced trajectories that qualitatively resembled real trajectories
and varied considerably in their spatial extent (Figure 2.4B).

Next, we quantitatively assessed the performance of the model in reproduc-
ing the statistics of the observed trajectories over the time scale of 100 s, within
which all strains completed the transition from ballistic to diffusive motion (Fig-
ure 2.4C). We found that the model based on independent speed, turning and
reversal dynamics closely reproduced not only the diffusivity of each strain but
also the time evolution of the mean-squared displacement (〈[∆x(τ)]2〉) across the
ballistic-to-diffusive transition (Figure 2.4C, top). A closer inspection of the dy-
namics across this transition is possible by examining the velocity autocorrelation
function (C~v (τ)), the time integral of which determines the slope of the mean-
squared displacement through (d/d t )〈[∆x(τ)]2〉 = 2

∫ τ
0 dτ′C~v (τ′), a variant of the

Green-Kubo relation [46, 47]. The transition from ballistic to diffusive motion is
characterized by the manner in which the normalized velocity autocorrelation
C~v (τ)/C~v (0) decays over the time lag τ from unity (at τ = 0) to zero (as τ→∞).
We found that C~v (τ) varied considerably across strains, not only in the overall
ballistic-to-diffusive transition time, but also in the more detailed dynamics of the
autocorrelation decay over time (Figure 2.4C, middle). Salient features, such as
the transition time, of the measured velocity autocorrelation functions C~v ,obs were
reproduced closely by the simulated velocity autocorrelation functions C~v ,model,
but there were also subtle deviations in the detailed dynamics for a number of
strains.

Given our model’s simplifying assumption that dynamics for s(t), ψ(t), and
∆ψ(t) are independent stochastic processes, we asked whether the remaining
discrepancies between the simulated and measured velocity autocorrelation dy-
namics could be explained by violations of this assumption of independence.
As a model-free assessment of the degree of non-independence, we first calcu-
lated the predicted velocity autocorrelation for the case that the dynamics of all
three components are independent, C~v ,indep(τ) =Cs(τ)Cψ(τ)C∆ψ(τ), where Cs(τ),
Cψ(τ), and C∆ψ(τ) are the autocorrelation functions of the measured data for
each of the components (see Supporting Information for derivation). We then
compared the differences C~v ,obs−C~v ,indep (blue curve in Figure 2.4C, bottom) and
C~v ,obs −C~v ,model (red curve in Figure 2.4C, bottom). Indeed, there were subtle
differences both on shorter (∼1 s) and longer timescales (∼10 s). However, these
errors for the simulated model were very similar to, or less than, those for the
model-free prediction from the data under the assumption of independence (i.e.,
C~v ,obs −C~v ,model . C~v ,obs −C~v ,indep). These results demonstrate that modeling
s(t), ψ(t), and ∆ψ(t) as independent stochastic processes provides a very good
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Figure 2.4: A model consisting of independent speed (Ornstein-Uhlenbeck process), turn-
ing (drift and diffusion), and reversal dynamics (random telegraph process) quantitatively
captures nematode motility. (A) Summary of the model. (B) Simulated trajectories for
the three exemplar strains. (C) Statistical comparison of the data (black) and simulations
(red), ensemble averaged across individuals for each strain. (C, top) The mean-squared
displacement (MSD) was closely reproduced in all cases. (C, middle) The normalized
velocity autocorrelation, C~v (τ)/C~v (0), (VACF) was less well captured. (C, bottom) The
relatively small errors in the simulated VACF (red) can be traced to the assumption of
independence in the dynamics of the speed, orientation, and velocity alignment (blue).
Shaded regions indicate a 95% confidence interval.

approximation to trajectory statistics across the ballistic-to-diffusive transition.
The relatively subtle differences between the data and model arise primarily in
instances where this assumption of independence between the three motility
components breaks down. Consistent with these conclusions, inspection of cross-
correlation functions computed from the data revealed that correlations between
s(t), ψ(t), and ∆ψ(t) are largely absent, with only weak correlations between
speed (s) and reversals (∆ψ) in a subset of strains (Figure S2.9).

2.2.7. VARIATION OF EXPLORATORY BEHAVIOR ACROSS SPECIES

The results presented in the previous sections demonstrate that a random-walk
model with seven parameters describing independent speed, turning and reversal
dynamics, provides a good approximation of the worms’ motile behavior over
the ∼100 s timescale spanning the ballistic-to-diffusive transition. The model pa-
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rameters thus define a seven-dimensional space of motility phenotypes in which
behavioral variation across strains and species can be examined. If components
of behavior were physiologically regulated or evolutionarily selected for in a coor-
dinated manner, we would expect to find correlated patterns in the variation of
these traits.

We fit our model to the trajectory statistics of each individual worm and built
a phenotype matrix of 106 worms x 7 behavioral parameters (summarized in
Tables S2.2, 2.3, 2.4). The correlation matrix for these 7 parameters, Figure 2.5A,
demonstrates that the forward and reverse state lifetimes (τfwd, τrev) were the
strongest correlated, followed by those describing speed and forward state life
times (µs , τfwd). More broadly, there were extensive correlations among the model
parameters, not only within the parameters of each motility component (speed,
orientation, reversals) but also between those of different components.

We looked for dominant patterns in the correlations using principal compo-
nent analysis [48] (Figure 2.5B), uncovering a single dominant mode of correlated
variation (Figure 2.5B, left). Dominant modes are obtained by diagonalizing the
correlation matrix. The eigenvalues of the correlation matrix capture the amount
of variance of the variables that can be accounted by linear correlation, and there-
fore the magnitude of these eigenvalues organise the eigenvectors in terms of
explained variance. For more details on the principal component analysis, see
Supporting Information. This principal mode (mode 1), capturing nearly 40% of
the total variation, described significant correlations among all the parameters
except for Ds and Dψ (Figure 2.5B, right, Table S2.5). We did not attempt to inter-
pret higher modes since, individually, they either did not significantly exceeded
the captured variance under a randomization test (mode 3 and higher; see SI,
and Figure 2.5B, left) or were found upon closer inspection to be dominated by
parameter correlations arising from fitting uncertainties (mode 2).

We used numerical simulations to determine the effects on motile behavior of
varying parameters along the principal mode. The measured trajectory pheno-
types projected onto this mode fall in the range {−4,2}: the mode projections are
not evenly distributed around the average phenotype at the origin. We performed
simulations for parameter sets evenly sampled along this range, which largely re-
produced the observed variation in the measured diffusivities Deff as a function of
the projection along the first mode. The agreement was particularly good at higher
values (>−1) of the mode projection, but at lower values we noted a tendency for
the Deff from simulations to exceed that of the data. The latter discrepancy can be
explained by elements of behavior not captured by our model (see Discussion).
Nevertheless, as illustrated by simulated trajectories (Figure 2.5C, bottom), tra-
jectories became more expansive as the mode projection increased, as did Deff

by nearly two orders of magnitude over the tested range. This suggested that the
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Figure 2.5: Motility parameters co-vary along an axis controlling exploratory behavior.
(A) Correlation matrix of the behavioral parameters across the whole dataset. (B, left)
Fraction of variance captured by each mode and the amount expected for an uncorrelated
dataset (red line) (B, right) The components of the top eigenvector. (C) The effective
diffusivity (top) and a 30 minute trajectory (bottom, colors match points on graph) from
simulations in which the projection onto the top eigenvector was varied; the principal
mode can be used as an effective phenotype from a more dwelling to a more roaming
behavior. The projections and effective diffusivity of the measured trajectories are shown
as black points, and the average of each strain is shown as a square. Mode projections are
obtained by the dot product of the 7-dimensional vector of parameters obtained for each
trajectory, and the principal eigenmode.

principal mode indicates exploratory propensity (Figure 2.5C), and we confirmed
that it is indeed more strongly associated with changes in Deff than expected for
randomly generated parameter sets (Figure S2.10). Interestingly, this mode of
variation we found across individual phenotypes is reminiscent of “roaming” and
“dwelling” behavioral variability that has been shown within individuals across
time, in C. elegans [28, 32] as well as other organisms [49, 50].

2.2.8. SPECIALIZED AND DIVERSIFIED BEHAVIORAL STRATEGIES ACROSS

STRAINS

The principal behavioral mode discussed in the preceding section was identified
by analyzing variation across all individual worms measured in this study, coming
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from diverse strains and species that differ in their average behavior (see Tables
S2.2, 2.3, 2.4). How does the variability among individuals of a given strain com-
pare to differences between the average phenotypes of strains/species? On the
one hand, each strain might be highly “specialized”, with relatively small variation
within strains as compared to that across strains. On the other hand, strains
might implement “diversified” strategies in which genetically identical worms
vary strongly in their behavior. To address these two possibilities, we analyzed the
distribution of individual phenotypes within each strain, as well as that of the set
of averaged species phenotypes.

For each measured individual, we computed the projection of its motility
parameter set along the principal behavioral mode and estimated strain-specific
distributions of this reduced phenotype (Figure 2.6, Table S2.6). In principle, any
detail in the shape of these distributions could be relevant for evolutionary fitness,
but here we focused our analysis on the mean and standard deviation, given the
moderate sampling density (≤ 20 individuals per strain). Further, we computed
the principal-mode projection of the average phenotype of each species to define
an interspecies phenotype distribution (Figure 2.6).

Strains varied considerably in both the position and breadth of their pheno-
typic distributions along the principal behavioral mode. Remarkably, variation
across individuals within each strain was comparable in magnitude to that for
the set of average phenotypes across species (Figure 2.6). Some strains were
specialized towards roaming or dwelling behavior, such as CB4856 and PS312,
respectively, with a strong bias in their behavior and comparatively low individual
variability. Others, such as QX1211 and PS1159, appeared more diversified with an
intermediate average phenotype and higher individual variability. These consider-
able differences in phenotype distributions across strains reveal the evolutionary
flexibility of population-level heterogeneity in nematodes, and suggest a possible
bet-hedging mechanism for achieving optimal fitness in variable environments
[51, 52].

In assessing such variability of phenotypes, it is essential to ask how uncer-
tainty in the determined parameters (obtained from model fits) contribute to the
observed variability in phenotypes. We therefore computed the contribution of
uncertainties in the individual phenotype determination by bootstrap resampling
of the 100 s windows of each individual’s recorded trajectory (see SI). The uncer-
tainties thus computed reflect contributions from both parameter uncertainties
in curve fitting of data, as well as temporal variability in an individual’s parameters
over timescales longer than the window size (100 s). With the exception of two
strains (sjh2 and CB4856), this measure of uncertainty accounted for less than
half of the individual variation within each strain (Figure 2.6B). These findings
support the view that the phenotypic variation estimated in the current analysis
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largely represented stable differences in individual behavior.

2.3. DISCUSSION
We have presented a comparative quantitative analysis of motile behavior across
a broad range of strains and species of the nematode phylum, ranging from the
lab strain C. elegans N2 to Plectus sjh2 at the base of the chromadorean nematode
lineage. Despite the vast evolutionary distances spanned by strains in this collec-
tion [53], we found that a behavioral model described by only seven parameters
could account for much of the diversity of the worms’ translational movement
across the ∼100 s timescale spanning the ballistic-to-diffusive transition. This
simple model provides a basis for future studies aiming to capture more detailed
aspects of nematode behavior, or to connect sensory modulation of behavior to
the underlying physiology. More generally, our results demonstrate how quanti-
tative comparisons of behavioral dynamics across species can provide insights
regarding the design of behavioral strategies.

2.3.1. THE MINIMAL MODEL: WHAT DOES IT CAPTURE, AND WHAT DOES

IT MISS?
We focused on a high-level output of behavior — translational and orientational
trajectory dynamics — and sought to build the simplest possible quantitative
model that could capture the observed behavioral statistics. We found that a
model with only three independent components — (1) speed fluctuations that
relax to a set point on a timescale of a few seconds, (2) orientation fluctuations
with drift, and (3) stochastic switching between forward and reverse states of
motion — describes well, overall, the trajectory statistics of all tested nematode
species across the ballistic-to-diffusive transition (Figure 2.4).

Notably, we have not included explicit representations of some reorientation
mechanisms that have been studied in the past, such as the deep turns (omega-
and delta-turns) [18, 24], or the combination of such turns with reversals (pirou-
ettes) [25]. In our data, we find that the timing of the initiation and termination
of reversals, which would both count as runs in the pirouette description, follow
exponential distributions with similar time constants as previously reported for
the pirouette run distribution. While omega and delta turns must indeed be
mechanistically distinct from gradual turns, we have chosen here not to explicitly
model their occurrence since orientation changes in our trajectory data were
adequately described by a continuous diffusion-drift process (Figures 2.3B, S2.6A).
It is possible, however, that explicit representations of pirouettes and/or omega
turns would be important in other experimental scenarios, e.g. those that include
navigation in the presence of gradient stimuli.
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In our model, "roaming" and "dwelling" were not assigned discrete behavioral
states (as was done e.g. in [28, 31, 32]), but instead emerged as a continuous
pattern of variation among motility parameters describing the worm’s random
walk. However, robust extraction of motility parameters required pre-filtering of
trajectory data that likely biased them towards more "roaming" phenotypes (see
SI), which we believe account for the noted tendency of model simulations to
overestimate Deff that was more pronounced for trajectories at the "dwelling" end
of the spectrum (Figure 2.5C).

In its current form, our simple model does not account for possible correla-
tions between the dynamics of the three motility components (speed, orientation,
and reversals). Indeed, at least weak correlations do exist between the com-
ponents (Figure S2.9). Comparisons of simulated versus measured trajectories
demonstrated that the effects of such correlations on the motility statistics are
small but detectable (Figure 2.4C). The differences were most significant for the
velocity-autocorrelation dynamics on a ∼10 s timescale, and were similar to those
for model-free predictions obtained by combining component-wise correlation
functions under the assumption of independence. Discrepancies on this inter-
mediate timescale occurred most often in fast-moving strains that frequently
approached the repellent boundary. Therefore, we suspect that the discrepancy
arises from a stereotyped sequence, such as the escape response [45], that intro-
duces temporal correlations between speed changes, turning, and reversals.

While here we have focused on the transition to diffusive motion, some recent
experiments suggest that C. elegans might engage in superdiffusive behavior on
timescales longer than 100 s [23, 33]. Superdiffusive behavior could arise from
nonstationarities in motile behavior, such as the roaming/dwelling transitions
on timescales of several minutes [32]. Another mechanism for superdiffusion is
directed motility [23] in response to external stimuli such as chemical or thermal
gradients. In such environments, nematodes are known to use at least two distinct
mechanisms for navigation [22, 25] and the model here could be extended by
studying the dependence of motility parameters on environmental statistics.

Information about the body shape can be incorporated to build a more com-
plete behavioural model that also includes dynamics hidden by centroid be-
haviour [38, 54]. Indeed, work by Brown et al. showed that a rich repertoire of
dynamics can be identified as temporal “motifs” in the postural time series of C.
elegans and used to classify mutants with high discriminatory power [55]. We have
found that all of the species tested here can also be described with a common set
of postural modes (not shown), suggesting future directions on the evolutionary
space of postural dynamics.
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2.3.2. THE EXPLORATORY BEHAVIORAL MODE: VARIABILITY AND ITS PHYSI-
OLOGICAL BASIS

While we found that a single behavioral model could be used to characterize
nematode motility across the chromadorean lineage, the parameters of the model
varied extensively from strain to strain. Quantitatively, about 37% of the variation
corresponded to a correlated change in the parameters underlying the timing
of forward and reverse runs and the dynamics controlling speed and turning
(Figure 2.5B). We find that this principal mode of variation is associated with
strong changes in exploratory propensity, as characterized by Deff (Figure 2.5C).
This pattern of parameter variation drove a change from low speed short runs
to high speed long runs, resembling the canonical descriptions of roaming and
dwelling in C. elegans [32].

Roaming and dwelling are thought to represent fundamental foraging strate-
gies reflecting the trade-off between global exploration and local exploitation of
environmental resources [56]. Recent work has suggested that such archetypal
strategies can be recovered by quantitatively analyzing the geometry of pheno-
typic distributions in parameter space [31, 34]. The motility phenotypes we found
in the present study were biased along one principal dimension, with the extremes
corresponding to roaming and dwelling behaviors. This observation compels
us to suggest that an exploration-exploitation trade-off is the primary driver of
phenotypic diversification in the motility of chromadorean nematodes in the
absence of stimuli. Interestingly, a recent study on the motility of a very different
class of organisms (ciliates) yielded a similar conclusion [50]: across two species
and different environments, the diversity of motility phenotypes was found to be
distributed principally along an axis corresponding to roaming and dwelling phe-
notypes. The emergence of roaming/dwelling as the principal mode of variation
in such disparate species underscores the idea that the exploration-exploitation
trade-off is a fundamental constraint on biological motility strategies.

A surprising finding in our study was that, for a majority of strains, the extent
of behavioral variability across individuals within a strain was comparable to that
for variation of phenotypes across species (Figure 2.6). In slowly changing envi-
ronments, the most evolutionarily successful species are those that consistently
perform well in that environment. This can be achieved by evolving a specialized,
high fitness phenotype that varies little among individuals (such as with PS312
and sjh2). However, increased phenotypic variability among individuals can im-
prove fitness in more variable environments if some individuals perform much
better in each condition—a so-called “bet-hedging” strategy [51, 52]. The large
variability we observed among individual phenotypes within each strain might
reflect such a bet-hedging strategy in nematode exploratory behavior.

The observation that the variation among genetically identical individuals can
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be comparable to that between disparate species raises the intriguing possibility
that there exist conserved molecular and/or physiological pathways driving di-
versification of spatial exploration strategies. Analogous variation in exploratory
behavior was also detected in an analysis of nonstationarity in the behavior of
wild-type and mutant C. elegans under various nutritional conditions [31]. Physi-
ologically, protein kinase G (PKG) signaling and DAF-7 (TGF-β) signaling from
the ASI neuron are thought to be major mechanisms controlling roaming and
dwelling in C. elegans [28, 31]. PKG signaling is also involved in controlling for-
aging in Drosophila and other insects as well as many aspects of mammalian
behavior [57, 58]. Flavell et al. also elucidated a neuromodulatory pathway involv-
ing serotonin and the neuropeptide pigment dispersing factor (PDF) controlling
the initiation and duration of roaming and dwelling states [32].

Perturbations to the molecular parameters of such pathways underlying global
behavioral changes might provide a mechanism for the observed correlated vari-
ations at the individual, intra-, and inter-species levels. The identification of
such conserved pathways affecting many phenotypic parameters is of fundamen-
tal interest also from an evolutionary perspective, as they have been proposed
to bias the outcome of random mutations towards favorable evolutionary out-
comes [59, 60]. Our simple model provides a basis for future investigations to
uncover conserved mechanisms that generate behavioral variability, by defining
a succinct parameterization of behavior that can be combined with genetic and
physiological methods.
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2.4. SI MATERIALS

2.4.1. SI METHODS

SELECTION OF STRAINS

A phylogenetic tree with the strains used in this study is shown in Figure 1A. The ne-
matode phylum is classically divided into three major
branches—chromadorea, enoplea, and dorylaimia—that are broken into a total
of five major ‘B-clades’ [S2] and twelve minor ‘H-clades’ [S3]. The chromadorean
lineage is the largest, spanning B-clades III-V and H-clades 3-12 [S2,S3]. C. elegans
is located in clade V9 (the rhabditids), one of the most diverse clades [S4]. In addi-
tion to the lab strain N2, we selected three of the most genetically distinct wild
isolates of C. elegans (CB4856, JU775, and QX1211) to sample intraspecies varia-
tion [S5]. From H-clade 9 in order of increasing evolutionary distance, we selected
Caenorhabditis briggsae JU757, Rhabditis myriophila DF5020, and Pristionchus
pacificus PS312. The next closest major group, B-clade IV, contains H-clades 10-12.
H-clade 12 contains the plant parasitic tylenchs and was thus not included in this
study. H-clades 10 and 11 contain many bacterial feeders, of which we selected
Panagrolaimus sp. PS1159. Finally, from the basal chromadorea, we obtained
Plectus sp. sjh2, a member of H-clade 6.

C. elegans N2, CB4856 and JU775 were provided by the Caenorhabditis Genet-
ics Center, which is funded by NIH Office of Research Infrastructure Programs (P40
OD010440). C. elegans QX1211 was kindly provided by Erik Andersen (Northwest-
ern Univ.). Plectus sp. sjh2 was isolated from a soil sample using morphological
criteria by Casper Quist and Hans Helder (Wageningen Univ.). SJH then isolated a
single species by starting cultures with a single worm. The remaining strains were
used in previous studies by Avery [S6].

CULTIVATION OF WORMS

Worms were grown on NGM-SR plates (3 g NaCl, 24 g agar, 2.5 g peptone, 1 mL
5 mgmL−1 cholesterol in EtOH in 975 mL water, with 1 mL 1 M CaCl2, 1 mL 1 M

MgSO4, 25 mL 1 M K2PO4 pH 6, 1 mL 200 mgmL−1 streptomycin in water, and
0.23 g 5 mL 40 mgmL−1 nystatin in DMSO, added after autoclaving) seeded with
E. coli HB101, as previously described [S7]. E. coli HB101 was first cultured in M9
minimal media (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL 1 M MgSO4 in 1 L water)
supplemented with 10% Luria broth and 10 mgmL−1 streptomycin [S8]. Plates
were incubated with a light circle of HB101 culture for a day at 37 °C and then
stored at 4 °C. For Plectus sp. sjh2, low salt plates (2% agar supplemented with
5 mgL−1 of cholesterol from a 5 mgmL−1 EtOH solution) were used as previously
described [S9]. On NGM-SR plates, these worms became shriveled and died. As
the plates did not have nutrients for the bacteria to grow, HB101 was grown to
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high density in Luria broth overnight at 37 °C, washed 3X in water, resuspended at
10X concentration, and applied to the plates.

Nematodes were cultured by either transferring a few worms by worm pick or
a chunk of agar to a new plate after the worms reached adulthood. The plates were
then incubated at 20 °C. The growth rate varied considerably among strains, with
Plectus sp. sjh2 taking nearly two weeks to reach adulthood. We avoided starving
the worms at any point during their cultivation, especially in the period before
behavioral experiments were performed, as this can induce transgenerational
phenotypic changes [S10,S11], and we have observed transient effects on motility
lasting at least a couple of generations (data not shown).

IMAGING

The imaging experiments were done on 3.5 cm plates containing the same media
used for cultivation. A 2×2 10 mm repellant grid was made by etching the plate
with a tool dipped in 1% sodium dodecyl sufate, a detergent that C. elegans and
most other nematodes avoided. (Whereas many C. elegans studies have used
copper rings as a repellant boundary [S12], we found that it did not sufficiently
repel other nematodes; data not shown). Four young adult, well-fed nematodes
were transferred individually by worm pick to a 10µL drop of M9 (water for Plectus
sp. sjh2) to remove bacteria stuck to the worms. The worms were then transferred
by pipette in a minimal amount of buffer to the imaging plate, and excess buffer
was removed as much as possible. The plate was imaged 10-20 minutes after
picking the worms, minimizing most transient behaviors. The plate was placed on
a custom imaging rig in an inverted, uncovered configuration with illumination
by a Schott MEBL-CR50 red LED plate. The behavior was recorded for 30 minutes
using a Point Grey Grasshopper Express GX-FW-60S6M-C camera equipped with
an Edmund Optics NT54-691 lens (set to a magnification of 0.5X) at a resolution
of 2736x2192 (12.5µm/px) at 11.5 frames/s using a custom National Instruments
LabView acquisition program. The video was subsequently compressed using
the open-source XVid MPEG-4 compression algorithm using maximal quality
settings.

TRACKING AND IMAGE ANALYSIS

The behavioral videos were analyzed using a custom automated analysis program
in MathWorks Matlab. The average background was calculated from 50 frames
evenly sampled across the entire video. The background was then subtracted
from each frame and a global threshold was applied. The thresholded image was
cleaned by applying a series of morphological operations: Incomplete threshold-
ing of the worm was smoothed by applying morphological closing with a disk
with a similar radius as the worm. Any remaining holes were filled in using a
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hole-filling algorithm. Small holes or ones with a low perimeter to area ratio were
excluded as they sometimes fill in worms undergoing an omega turn, as described
in [S13]. Finally, regions in which the worm was just barely touching itself were
split by sequentially applying open, diagonal fill, and majority morphological
operations. The worm was then identified as the largest connected component
with an area within 2-fold of the expected value. The centroid was tracked across
frames to obtain ~x(t). In addition, the image skeleton was calculated. Sample
images from each of the processing steps are shown in Figure 2.11.

The head of the worm was automatically identified using two statistical prop-
erties of the worm’s behavior, namely (i) on average, the head of the worm moves
more than the tail, and (ii) on average, worms spend more time moving forward
(in the direction of their head) than they do moving in reverse. The procedure is
based on skeletonization and centroid detection of the worm image, which can fail
in situations where image contrast is low (e.g. due to non-uniform background),
so trajectories were first divided into segments that contain no more than 3 frames
missing the skeleton and centroid information, and the head orientation was as-
signed within each segment based on local behavioral statistics. Finding statistical
criteria that allow unambiguous assignment of head orientation across all strains
studied here was challenging because of the diversity in their behavior, but the
following procedure was found to work well empirically. The identity of the two
ends of the skeleton across image frames were accounted for by a simple tracking
algorithm based on minimizing the total distance between skeleton points. For
segments longer than 150 frames (with no more than ten consecutive missing
skeletons), we found that we could apply property (i) by computing the variance
in body angles within 10% of the body length from the ends, and assigning the
head to the end with the greater summed variance. However, manual inspection
revealed that this sporadicly resulted in misassignment of the head, identifiable
as long reversals interrupted by short forward runs. Therefore, in addition, for
segments longer than 200 frames (with no more than five consecutive missing
centroids), we used property (ii), defining the head as the end of the skeleton that
spent the majority of the trajectory at the leading edge of movement. Segments
shorter than 150 frames were discarded from further analysis.

The velocity ~v(t) was calculated from the centroid position ~x(t) using the
derivative of a cubic polynomial fit to a sliding 1 s window. The direct estimation
of the velocity using a symmetrized derivative had a large δ-correlated compo-
nent that interfered with later analysis. The use of the cubic polynomial did
not noticeably distort the correlation functions (Figure 2.12). When the worm’s
speed s(t) = |~v(t)| is very low, its projections on the lab-frame x- and y-axes
vx = ~v(t) · x̂ and vy = ~v(t) · ŷ become dominated by discretization (pixelation)
noise, and the bearing φ(t) = tan−1(vy /vx ) is poorly defined. This in turn leads
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to large fluctuations in ∆ψ(t) = φ(t)−ψ(t), which can introduce a large num-
ber of false reversal events, noticeable as a steep decrease in the autocorrelation
C∆ψ(τ) = 〈cos(∆ψ(t +τ)−∆ψ(t))〉 at small values of the delay τ. We therefore
exclude segments of the trajectories corresponding to run intervals shorter than
six frames (less than half a second). When these artifacts are filtered out in this
manner, the ∆ψ autocorrelation functions were well described by single exponen-
tials (Figure 2.7C). We note that the exclusion of short runs effectively excludes
segments of data in which the worm remains stopped (or at a very low speed) —
a feature that is more pronounced in some strains than others — and this leads
to a systematic bias for simulated model trajectories to have a higher effective
diffusivity Deff than the data for the corresponding strain (as can be seen in Figure
5C).

CALCULATION OF BEHAVIORAL STATISTICS

The worm’s behavior fluctuated or sometimes drifted over long times (Figure
2.4), but the average statistics over 100 s windows were approximately stationary.
In order to focus on dynamics within the 100 s timescale, the mean-squared
displacement and all auto- and cross-correlation functions were calculated for
100 s windows and then averaged. This reduced the influence of longer timescale
fluctuations in the speed and reversal rate. For all calculations, observations
near the boundaries and pairs of points between which the worm approached
the boundary were excluded. The uncertainty of each individual’s phenotype
projection on the principal behavioral mode was computed by projecting the
motility parameters after bootstrapping over the 100s windows of each individual’s
trajectory. The standard deviation of the bootstrapped projections is used as
uncertainty.

CALCULATION OF EFFECTIVE DIFFUSIVITY, DEFF

To estimate the effective diffusivity Deff, we fit the mean-squared displacement
〈[∆x(τ)]2〉 over the diffusive regime. For this purpose, we defined the diffusive
regime as the time-lag interval after which the normalized velocity autocorrelation
C~v (τ)/C~v (0) decayed to below 0.1. We note that in some cases (especially for fast-
moving strains such as CB4856, JU775 and sjh2) the fit to 〈[∆x(τ)]2〉 = 4Deffτ in
this regime was poor due to boundary effects arising from the finite size of the
behavioral arena. For these strains, Deff should be regarded as a lower bound for
the true diffusivity.

REVERSAL ANALYSIS

The reversal state was assigned as described in the main text by analysis of ∆ψ(t ).
Assuming a random telegraph process that generates states ∆ψ = 0 (forward) and
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∆ψ = π (reverse) with probabilities 1− fr ev and fr ev , respectively, the autocorre-
lation at long time lags is C∆ψ(τ→∞) = (1−2 fr ev )2. For the proposed telegraph
process, each state has an exponentially distributed lifetime (τfwd,τrev) and there-

fore fr ev = τrev

τrev +τfwd
. The expected correlation timescale for the mixture of the

two states is τRT (τrev,τfwd) = (
τ−1

fwd +τ−1
rev

)−1
. The ∆ψ autocorrelation function

was therefore fit to

C∆ψ(τ) = [1−C∆Ψ∞(τrev,τfwd)]exp

[
− τ

τRT (τrev,τfwd)

]
+C∆Ψ∞(τrev,τfwd) (2.8)

where C∆Ψ∞(τrev,τfwd) = (
τfwd −τrev

τfwd +τrev
)2. The fraction of time spent reversing is:

frev = 0.5−√
C∆Ψ∞(τrev,τfwd)/4, where frev ∈ [0,0.5]. The transition time con-

stants are then τrev = τRT (τrev,τfwd)

1− frev
and τfwd = τRT (τrev,τfwd)

frev
.

To validate our approach, we compared the parameters obtained with our
fitting procedure with those obtained from the distribution of time intervals
between detected switching events (Figure S7). For both forward and reverse
states, the distribution of time intervals between detected switching events (Figure
S7B) were well-fit by a biexponential distribution P (Trun > t ) =C∆Ψ∞
exp(−t/τshort)+ (1−C∆Ψ∞)exp(−t/τlong) with the time constants τshort and τlong

typically separated by > 10-fold, and the fraction of short intervals C∆Ψ∞ varying
broadly over its full range, 0 ≤C∆Ψ∞ ≤ 1.0 (Figure S7D,E). Values for τshort were
typically below 1 s (Figure S7D). While some fraction of these short intervals might
represent true runs, they could also arise from spurious detection of switches in
velocity bearing due to noise in estimating the centroid (see legend of Figure S7D)
and in any event, contribute little to the overall dynamics of bearing decorrelation.

Values for τfwd and τrev obtained by fitting equation S1 to the measured auto-
correlation functions correlated well with τlong (Figure S7E), thus confirming that
τlong contributes to bearing randomization. We conclude that the forward/reverse
switching dynamics are well described by equations (6) and (7), with parameters
τfwd, and τrev.

SPEED ANALYSIS

Transitions between forward and reverse runs tended to be excluded from the
analysis because the speed crosses zero, rendering φ a noisy variable generating
many short runs below our exclusion threshold of 6 frames (see above). The
speed set point µs was fit by taking the mean. The remaining parameters of the
speed dynamics (3) were fit by its analytical autocorrelation function: Cs(τ) =
Dsτs exp(−τ/τs).
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ORIENTATION ANALYSIS

Changes in orientation during runs (i.e. intervals between reversal events) were
analyzed with respect to their mean-squared angular displacements (MSAD) over
time, corresponding to a model for angular diffusion with drift

For an object lying on a two-dimensional plane, rotational diffusion about
an axis normal to the plane leads to fluctuations in the orientation (an angle
measured in the lab frame) ψ(t ) over time according to:

dψ(t ) =
√

2DψdWt , (2.9)

where Dψ is the rotational diffusion coefficient, and dWt represents increments
of a Wiener process. Bias in these fluctuations over time can be captured, to first
order, by adding a linear drift term so that

dψ(t ) = kψd t +
√

2DψdWt , (2.10)

with kψ the drift coefficient.
If kψ and Dψ are constant in time, the mean-squared angular displacement

MSAD(τ) = 〈[ψ(t +τ)−ψ(t )]2〉, is a quadratic function of the time delay τ:

〈[ψ(t +τ)−ψ(t )]2〉 = 〈[kψτ+
√

2Dψ(Wt+τ−Wt )]2〉 = k2
ψτ

2 +2Dψτ, (2.11)

where 〈·〉 denotes averaging over all time pairs separated by τ and the last equality
follows from the Wiener process properties 〈Wt+τ−Wt 〉 = 0 and 〈[Wt+τ−Wt ]2〉 = τ.

More generally, if kψ(t) and Dψ(t) are time-varying quantities, we can still
approximate within a finite time window (centered about time tw ) the “local” val-
ues kψ,w ≈ kψ(tw ) and Dψ,w ≈ Dψ(tw ). In this study, we extract estimates of these
(possibly time varying) parameters from fits to the averaged MSAD computed
over time windows:

W −1
w=W∑
w=1

〈[ψ(t +τ)−ψ(t )]2〉 = 〈k2
ψ〉wτ

2 +2〈Dψ〉wτ, (2.12)

where W is the number of windows and 〈x〉w =W −1 ∑w=W
w=1 xw represents averages

over windows. By fitting this averaged MSAD by a quadratic function aτ+bτ2, we
thus obtain the estimates a/2 = 〈Dψ〉w and

p
b = 〈k2

ψ〉1/2
w . Note that a/2 obtained

by this procedure yields an estimate of the mean value for Dψ, but
p

b corresponds
to an estimate not of the mean value, but the root-mean-square (rms) value for kψ.
Throughout the text, we therefore explicitly refer to the latter estimate as kψrms
(and refer to the former simply as Dψ).
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SIMULATIONS

Reversals, orientation, and speed dynamics were all simulated independently
using the model described. Forward and reverse run durations were chosen
according to equations (5) and (6) by drawing exponential random numbers with
mean value τfwd or τrev. During reverse runs, ∆ψ was set to π. The orientation
(4) and speed (3) dynamics were simulated using the Euler-Maruyama method
[S14] with a time step that matched the frame rate. To prevent negative speeds,
a reflective boundary condition was imposed by taking the absolute value of
the speed at each simulation step. The velocity was then calculated from the
decomposition in (1) and trapezoidally integrated to give the centroid position
~x(t ).

BEHAVIORAL MODE ANALYSIS

The model parameters were fit to each trajectory to give a phenotypic matrix T.
The phenotypic matrix was centered by subtracting the mean phenotype, T̂ = T−
〈T〉indiv.. The correlation matrix was then calculated, CT = corr T̂, and decomposed
into eigenvalues λ and eigenvectors (behavioral modes) b, CTb =λb. To reduce
any bias coming from a single trajectory, this calculation was bootstrapped 1000
times. The significance of the k-th top mode is assessed by a comparison with the
expected variance explained of the k-th top mode of randomly chosen directions
in the behavioral space. We use the explained variance of the k-th mode of a newly
created set of modes where the first k −1 modes are equal to the top behavioral
modes and the remaining modes are pointing in randomly chosen orthogonal
directions. This process is repeated 1000 times.

The projections of each trajectory on these behavioral modes were calculated
by P = T̂b. The uncertainty in the locus of each individual phenotype along
the behavioral mode was computed by projecting the motility parameters after
bootstrapping over the 100 second windows and taking the standard deviation.

STATISTICS

Unless otherwise indicated, errorbars and confidence intervals represent the 2.5%
and 97.5% percentiles (spanning the 95% confidence interval) estimated from
1000 bootstrap samples. All probability distributions were empirically estimated
using kernel density methods in Python’s Seaborn package with a bandwidth
automatically selected using Scott’s rule of thumb [S15]. Tabulated mean values
of the effective diffusivity model and the motility model (Table 2.1-2.4) represent
geometric rather than arithmetic means was used as the parameters varied log-
normally.



2.4. SI MATERIALS

2

53

DERIVATION OF THE VELOCITY AUTOCORRELATION FUNCTION UNDER THE

ASSUMPTION OF INDEPENDENCE

The velocity autocorrelation function can be written in terms of the motility
components,

C~v (τ) = 〈~v(0) ·~v(τ)〉
= 〈s(0)

[
cos

[
ψ(0)+∆ψ(0)

]
, sin

[
ψ(0)+∆ψ(0)

]]×
×s(τ)

[
cos

[
ψ(τ)+∆ψ(τ)

]
, sin

[
ψ(τ)+∆ψ(τ)

]]〉 (2.13)

The expected value of the product of independent random variables is the
product of the expected value of each variable, i.e. 〈x y〉 = 〈x〉〈y〉. Therefore we
can factor out Cs = 〈s(0)s(τ)〉, leaving the vector product with ψ and ∆ψ. The
expanded vector product is:

C~v (τ) =Cs(τ)×〈cos
[
ψ(0)+∆ψ(0)

]
cos

[
ψ(τ)+∆ψ(τ)

]
+sin

[
ψ(0)+∆ψ(0)

]
sin

[
ψ(τ)+∆ψ(τ)

]〉 (2.14)

The trigonometric functions on ψ(t)+∆ψ(t) can be rewritten as products of
trigonometric functions of the terms:

cos
[
ψ(t )+∆ψ(t )

] = cosψ(t )cos∆ψ(t )− sinψ(t )sin∆ψ(t )

sin
[
ψ(t )+∆ψ(t )

] = sinψ(t )cos∆ψ(t )+cosψ(t )sin∆ψ(t )

However, since ∆ψ(t ) = {0,π}, sin∆ψ(t ) = 0:

cos
[
ψ(t )+∆ψ(t )

] = cosψ(t )cos∆ψ(t )

sin
[
ψ(t )+∆ψ(t )

] = sinψ(t )cos∆ψ(t )

Substituting into (2.14),

C~v (τ) =Cs(τ)×〈cosψ(0)cosψ(τ)cos∆ψ(0)cos∆ψ(τ)+
sinψ(0)sinψ(τ)cos∆ψ(0)cos∆ψ(τ)〉 (2.15)

We can now factor out Cψ(τ) = 〈cos
[
ψ(τ)−ψ(0)

]〉 = 〈cosψ(0)cosψ(τ)+sinψ(0)sinψ(τ)〉
to get:

C~v (τ) =Cs(τ)Cψ(τ)〈cos∆ψ(0)cos∆ψ(τ)〉
Finally, we substitute (again dropping sin∆ψ(t ) terms):

C∆ψ(τ) = 〈cos
[
∆ψ(0)−∆ψ(τ)

]〉 = 〈cos∆ψ(0)cos∆ψ(τ)〉
to get:

C~v ,indep(τ) =Cs(τ)Cψ(τ)C∆ψ(τ)

2.4.2. SI FIGURES
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Figure S 2.1: Confinement by the boundary affects the mean-squared displacement (MSD)
at long times, but does not impair resolution of the ballistic to diffusive transition. We
compare the statistical behavior of C. elegans N2 in the experiments presented here within
small (1-cm) arenas (black) and a previously reported dataset that used larger (5-cm)
arenas [S1] (red). The MSD (A), defined as 〈[∆x(τ)]2〉 ≡ 〈|~x(t +τ)−~x(t)|2〉, of our small-
arena dataset is similar to that of the large-arena dataset at short times, but does show
mild effects of confinement at long times (& 100s). The ballistic to diffusive transition
can be more closely studied by examining decay of the velocity autocorrelation function
(VACF), defined as Cv (τ) ≡ 〈~v(t) ·~v(t +τ)〉 (B), which is related to MSD (i.e. [∆x(τ)]2) by
(d/dτ)〈[∆x(τ)]2〉 = 2

∫ τ
0 dτ′C~v (τ′) [S16]. The decay of the VACF to zero, which indicates

orientation randomization and hence the transition from the ballistic to diffusive regime,
is not significantly affected by the presence of the confining boundary.
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Figure S 2.2: An overview of the dataset. Trajectories of all worm included in the study.
Each box represents a 10 mm by 10 mm chamber. In blue, we highlight points excluded
from the analysis because they were influenced by the boundary.
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Figure S 2.3: The ballistic to diffusive transition for all strains. We show the average
mean-squared displacment (MSD), calculated across individual trajectories, for each
strain (black). The expected ballistic (blue) and diffusive MSD curves (red), as in Figure
1B.
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Figure S 2.4: The worms’ behavior was approximately stationary. For each strain, we show
the average speed (top) and fraction of time spent reversing (bottom) calculated over
100 s sliding windows and averaged across individuals.
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Figure S 2.5: Characterization of speed statistics across strains. (A) The speed autocorrela-
tion (black) of each strain decays exponentially (red). (B) The speed distribution (black)
of each strain is closely reproduced by model simulations (red).
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angular displacement of body orientation (black) was fit to a quadratic function (red) in
all strains. (B) The orientation correlation (black) decays non-exponentially for many
strains.
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Figure S 2.7: Characterization of reversal statistics across strains. (A) Distribution of ∆ψ
for each strain shows two prominent peaks at 0° and 180°. (B) Cumulative distributions
of the forward and reverse run durations (Tfwd,Trev) for an individual worm from each
strain (black), fit to a biexponential function (red). (C) The autocorrelation function of
∆ψ for each strain (black) along with exponential fit (red). (D, left) The fraction of short
runs measured by the biexponential fits of the transition time distributions (as in B) was
inversely correlated with the average speed of the worm. At low speed, the bearing (and
therefore also ∆ψ, which is used to identify runs) is expected to be dominated by noise
(e.g. pixelation artifacts). (D, right) The fitted time constants for short forward and reverse
intervals were uncorrelated (unlike those for long runs, see E and also Figure 5A), and
typically below the timescale of smoothing filter for velocity data (1 s), further motivating
the exclusion of short intervals in modeling reversal dynamics. (E) τlong, extracted from
fits to the transition time distributions, were correlated with τfwd and τrev, estimated from
C∆ψ (panel C).
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Figure S 2.8: Worm run speeds are similar during forward and reverse runs for individual
trajectories (dots, colored by strain). We define run speed as the top speed during runs
(rather than the mean speed, to avoid biases due to run-length differences). The top speed
is computed as the 95th percentile of the speed distribution (rather than the maximum,
to avoid outlier effects).



2.4. SI MATERIALS

2

59
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Figure S 2.9: Cross-correlation analysis of motility dynamics. The cross-correlation
between (top) speed and bearing changes, (middle) speed and velocity alignment, and
(bottom) bearing changes and velocity alignment are shown for each strain. There is
very little cross-correlation among the motility variables in any of the strains. All cross-
correlations were normalized to unit variance by dividing by the product of the standard
deviation (σ) of the two components.
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Figure S 2.10: The top behavioral mode effectively captures changes in diffusivity com-
pared to random projections. (A) The effect of variation on the top behavioral mode (black,
as in Figure 5C) compared with a sampling of 100 random modes (red) on the diffusivity of
simulated trajectories. For random modes, the sign of the mode was chosen such that the
diffusivity increased with the projection along the mode. (B) For each random mode we
compute the relative change in diffusivity between mode values ∆Deff = Deff(2)/Deff(−2)
and compare to the same relative diffusivity computed from the top behavioral mode.
The kernel density distribution of the observed change is shown for the 100 samples
(ticks). The black line indicates a ratio of 1 (no difference) and most random projections
exhibit less range in ∆Deff.

Figure S 2.11: An Overview of the image processing steps. The video frames were pro-
cessed by (1) subtracting the average of 50 frames evenly sampled from the entire movie
and (2) cropping to each of the SDS-enclosed regions. (3) The largest worm-sized object
was identified following several image morphology operations, and (4) the centroid and
image skeleton were measured.
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Figure S 2.12: Comparison of velocity calculation methods. Velocity autocorrelation
functions for the three example strains with and without filtering of the data and without
averaging over 100 s windows. The unfiltered velocity (black), estimated using a sym-
metrized derivative, contained a δ-correlated short-timescale component in all strains
that was particularly prominent in slow-moving strains such as PS312. The velocity
calculated using a 1 s cubic polynomial filter (red) does not contain this δ-correlated
component.
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Table S 2.1: The geometric mean of the effective diffusivity for each strain. For each trajectory,
an effective diffusivity (Deff) was extracted by analysis of mean-squared displacements and the
velocity autocorrelation function.

Deff ×102

(µm2/s)
Strain Mean 2.5% 97.5%
N2 140 105 185
CB4856 429 307 620
JU775 448 360 558
QX1211 36 12 98
JU757 210 123 327
DF5020 128 55 255
PS312 8 5 13
PS1159 81 32 183
sjh2 425 314 553

Table S 2.2: The model parameters related to the speed dynamics are listed for each strain. For each
worm in a strain, time-averaged parameters were calculated.

µs τs Ds ×102(
µm/s

)
(s) ((µm/s)2/s)

Strains Mean 2.5% 97.5% Mean 2.5% 97.5% Mean 2.5% 97.5%
N2 77 68 85 1.9 1.5 2.4 5.8 4.3 7.9
CB4856 108 91 128 1.8 1.5 2.3 4.0 3.1 5.2
JU775 112 98 127 2.1 1.6 2.7 4.3 3.3 5.5
QX1211 40 26 66 0.7 0.4 1.1 7.5 4.6 11.6
JU757 97 72 120 4.2 3.3 5.2 3.8 2.8 5.0
DF5020 65 50 83 1.1 0.8 1.3 11.7 9.1 14.4
PS312 27 23 32 0.7 0.6 0.8 5.3 3.7 7.4
PS1159 38 26 53 3.1 1.4 6.2 0.6 0.3 1.1
sjh2 159 138 184 3.3 2.5 4.7 8.8 5.8 13.2



2.4. SI MATERIALS

2

63

Table S 2.3: The model parameters related to the orientation dynamics are listed for each strain. For
each worm in a strain, time-averaged parameters were calculated.

kψrms Dψ
(r ad/s)

(
r ad 2/s

)
Strains Mean 2.5% 97.5% Mean 2.5% 97.5%
N2 0.036 0.026 0.048 0.034 0.017 0.054
CB4856 0.029 0.018 0.041 0.024 0.018 0.033
JU775 0.038 0.026 0.053 0.021 0.016 0.030
QX1211 0.040 0.028 0.056 0.017 0.009 0.036
JU757 0.039 0.030 0.052 0.036 0.021 0.054
DF5020 0.037 0.032 0.042 0.033 0.026 0.041
PS312 0.017 0.011 0.029 0.021 0.014 0.028
PS1159 0.023 0.015 0.031 0.009 0.005 0.017
sjh2 0.066 0.057 0.077 0.090 0.065 0.127

Table S 2.4: The model parameters related to the reversal state dynamics are listed for each strain.
For each worm in a strain, time-averaged parameters were calculated.

τfwd τrev
(s) (s)

Strains Mean 2.5% 97.5% Mean 2.5% 97.5%
N2 23.8 13.9 41.1 4.1 3.0 5.7
CB4856 78.6 56.5 109.5 4.3 2.8 6.3
JU775 85.3 51.5 144.0 8.0 4.2 16.3
QX1211 26.5 12.5 63.0 3.7 2.7 5.2
JU757 32.3 20.5 50.5 6.4 4.1 10.3
DF5020 32.7 15.2 63.2 4.8 3.2 7.2
PS312 5.6 4.2 7.4 3.3 2.9 3.9
PS1159 80.8 38.0 174.6 8.8 5.2 16.2
sjh2 155.5 75.2 419.9 4.9 2.3 10.8



2

64 BIBLIOGRAPHY

Table S 2.5: The loadings of each parameter on the top behavioral mode are listed.

Loading
Parameter Mean 2.5% 97.5%
log10µs 0.50 0.25 0.58
log10τs 0.51 0.40 0.54
log10 Ds -0.19 -0.43 0.08
log10 kψ 0.24 -0.04 0.43
log10 Dψ 0.15 -0.22 0.40
log10τ f wd 0.50 0.36 0.55
log10τr ev 0.35 0.15 0.48

Table S 2.6: The phenotypic projection along the first behavioral mode is listed for each strain. For
each worm in a strain, a time-averaged projection was calculated.

Projection
Strain Mean 2.5% 97.5%
N2 -0.24 -0.47 0.51
CB4856 0.41 -0.37 0.83
JU775 0.83 -0.03 1.07
QX1211 -1.45 -1.70 0.40
JU757 0.79 -0.09 1.22
DF5020 -0.64 -0.73 1.10
PS312 -2.39 -2.71 -0.23
PS1159 0.37 -2.68 0.82
sjh2 1.66 0.85 2.35
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3
VARIABILITY REVEALS OPTIMALITY

AND CONTROL IN C. elegans
TURNING BEHAVIOUR

ABSTRACT

The statistics of reorientation behaviours determine exploration and navigation
performance in the locomotion of many animals. Yet optimization of turning
statistics is often subject to constraints arising in the actuating anatomy, control
physiology, or both. Here, we use the nematode C. elegans as a minimal model
system to ask whether and to what extent turning behaviours are optimised
under such constraints by evolutionary selection and physiological control. We
focus on turning behaviours under two contrasting environmental contexts: (i)
random exploration in the absence of strong stimuli and (ii) acute avoidance
(escape) navigation upon encountering a strong aversive stimulus. We dissect
trajectory and postural statistics to characterise the full repertoire of reorientation
behaviours, including gradual reorientations and various posturally distinct sharp
turns. In both contexts (i) and (ii), we show how bias in turning behaviour (an
effective handedness) diminishes performance, but the class of turns in which
bias imposes performance constraints differs between the two contexts.

During exploration, the bias of gradual turns fluctuates over long times, even
changing sign within an individual, suggesting it may originate in the limited
precision of orientation-control physiology. On faster timescales, orientation
fluctuations are well-described by a (symmetric) angular diffusion process, and
we develop a minimal theoretical model for worm trajectories that incorporates
both the gradual-turn bias and angular diffusion, in addition to sharp turns. We
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demonstrate that under the constraint of a finite bias in gradual turns, there exists
an optimal angular diffusivity that maximises exploration propensity, and our
measurements indicate that the angular diffusivity of C. elegans is, on average,
set at this optimum. During the escape context, the well-known dorso-ventral
(D-V) bias in sharp-turn directions proves detrimental. By analyzing the statistics
of incoming and outgoing angles of escape turn events relative to the gradient of
an escape-triggering chemical stimulus, we find evidence for strong modulation
of not only the amplitude (∼ 2-fold) but also the D-V bias (∼ 8-fold) of sharp
turns to probablistically steer the exit angle toward the optimal direction. Thus,
although sharp-turn bias in C. elegans is clearly tied to anatomical asymmetry, it
is evidently a soft constraint that can to some extent be overridden by context-
dependent control physiology. Our results demonstrate how biasing constraints
on turning impact both exploration and navigation, and that optimization and
control of turns can be leveraged to increase performance under anatomical and
physiological constraints.



3.1. INTRODUCTION

3

69

3.1. INTRODUCTION
Changing course effectively is fundamental to exploration and navigation by
motile organisms. Although the mechanisms that underlie motility are diverse,
the motile strategy of many organisms can be described as a biased random walk,
in which the statistics of reorientation (turns) determine how the organism ex-
plores space, and are modulated to achieve navigation [1, 2]. A ubiquitous yet
underappreciated aspect of turning, as implemented in these strategies, is the
need to overcome inherent asymmetries in the actuating anatomy and control
physiology to optimise performance. The biased random walk is effective as a
motile strategy precisely because the bias is imposed in response to the environ-
ment. Biases arising from internal factors uncorrelated with the environment
can thus generically be expected to diminish performance and in turn act as
constraints in optimizing behavior.

One simple strategy for overcoming such biasing constraints is to randomise
the direction of the bias relative to the environment. This is implemented, for ex-
ample, in the swimming kinematics of E. coli bacteria, which effectively eliminate
the effects of anatomical asymmetry (due e.g. to the random positioning of flag-
ella on the cell surface) by incessantly rolling their cell body about the direction of
motion as they explore their environment by swimming (runs), thereby eliminat-
ing correlations between any turning bias and the environment [3]. As a result,
the bacterium can optimise its exploration and navigation performance by tuning
only two variables — the temporal frequency at which erratic turns (tumbles) are
generated, and the average (unsigned) angle of tumble-induced turns [4]. By
contrast, within the animal kingdom, the kinematics of locomotion tend to more
faithfully reflect the asymmetries of animal anatomy. The vast majority (> 99%)
of animal species have a bilateral body plan, meaning radial symmetry about
the anterior-posterior (A-P) axis is broken to yield two more orthogonal axes of
polarity: the dorso-ventral (D-V) and left-right (L-R) axes [5]. This three-axis
anatomical frame has tangible advantages for directed locomotion as it enables
distinct motor patterns in the vertical (i.e. gravitational) and lateral directions,
across which resource distributions tend to be very different [6]. But these ad-
vantages also come with a cost: breaking rotational symmetry eliminates the
possibility of removing detrimental directional bias by rotation about the loco-
motion direction. Indeed, the statistics of turning behaviour demonstrate some
degree of lateral bias (handedness) across the immense diversity of bilaterian
animals, from invertebrates [7–11] to humans [12, 13].

The causal factors that underlie turning biases are not well understood, but are
likely to be diverse in origin, given the broad spectrum of reported phenomenolo-
gies. Some instances of reported turning bias were in the gradual reorientation
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(path curvature) during intervals of relatively smooth forward or backward motion
[8, 11, 12], which might arise from imperfect lateral symmetry in the kinematic
cycle of the animal’s gate. In other examples, turning bias was observed in the
more discrete sharp-turn behaviours that occur either spontaneously during un-
bounded locomotion [7] or upon forced decisions in a Y-maze [9, 10]. Some of
these turning biases persisted throughout the lifetime of an individual [7, 9, 10],
whereas in at least one example they were found to vary, and even change sign,
over relatively short times [12]. The mechanistic origins are therefore likely differ-
ent from case to case, and relatively few studies have been able to directly address
causal factors experimentally. Nevertheless, the available data point towards neu-
ral control physiology [7, 9, 13], rather than hard constraints at the anatomical
level, as causative factors for turning bias during locomotion.

In this study, we investigate bias in the turning behaviour of the nematode C.
elegans, arguably the simplest and best characterised animal model for locomo-
tion [14]. The adult hermaphrodite body plan comprises just 959 somatic cells
[15], of which 302 are neurons with a fully mapped connectome [16, 17]. Despite
this compact anatomy, these worms perform a variety of locomotion tasks, such
as exploration for food, chemotaxis, and escape. The relative simplicity of its
anatomy, control physiology, and postural kinematic repertoire positions C. ele-
gans as a compelling minimal model system to address fundamental questions
about behavioural strategies of animal locomotion and the underlying neural
control mechanisms. Previous work has identified significant orientational biases
in C. elegans turning behavior [7, 8, 11], but how such biases affect performance
in specific locomotion tasks remains an open question.

Turning during C. elegans locomotion occurs both abruptly and gradually
as the worm crawls on surfaces. Crawling is driven by undulatory propulsion,
in which body bends in the D-V direction (C. elegans crawls while lying ’on its
side’, with its L-R body axis normal to the surface) are initiated near the head
and propagated along the length of its anatomy towards the tail, resulting in
postures and trajectories of motion that are approximately sinusoidal in shape.
Occasionally, these forward runs are interrupted by sharp reorientation events
calledΩ-turns in which the body bends deeply (rendering the worm’s shape rem-
iniscent of the greek letter Ω) to generate a large change in orientation[18], as
well as brief reversal events in which propagation direction of the body wave
(and hence also the worm’s movement direction) is inverted but do not otherwise
change the direction of motion. When navigating environmental gradients by
chemotaxis, reversals and sharp turn events are often clustered in time, generating
short intervals of frequent turning (pirouettes) that interrupt otherwise smooth
crawling trajectories, and modulating the temporal frequency of pirouettes in
response to the environment provides C. elegans with one mechanism for biasing
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its random walk to achieve chemotaxis [19]. Between these abrupt reorientation
events, more gradual changes in orientation also occur, resulting in trajectories
that are curved and meandering over lengthscales greater than those of the afore-
mentioned body wave [8, 11], and it has been shown that worms can also bias
this curvature in response to environmental gradients to enhance chemotactic
performance [20, 21].

Directional biases are known to exist for both sharp and gradual turns of C.
elegans[8, 22], even in the absence of environmental gradients, yet their impact on
locomotion performance has yet to be studied systematically. The sharpΩ-turns
are known to be strongly biased in the ventral direction [7, 18]. The biological
reason for this D-V bias is not well understood, but it evidently reflects neural
control, as ablating a single neuron (RIV) results in a much larger fraction of
Ω-turns in the dorsal direction, largely eliminating this bias [7]. Bias in gradual
turns is less well characterized, perhaps because it is an inherently long time- and
length-scale phenomenon, and thus accurately quantifying it requires extensive
statistics from long trajectory recordings. However, recent studies have provided
evidence that orientational statistics of crawling C. elegans trajectories collected
over 30-80 min are not isotropic [8], and that biases in gradual turns (of ∼2 degrees
per second) can be detected even within 30 min trajectories [11].

Here, we present an extensive study of C. elegans turning statistics in two
contrasting behavioural contexts: exploration in the absence of environmental
gradients, and escape upon encountering a strong aversive stimulus. To suffi-
ciently sample both sharp- and gradual-turn statistics within each individual,
we recorded long (120 min) trajectories within an arena enclosed by a repellent
boundary. The worms spend most of their time exploring the arena by freely
crawling in the absence of environmental gradients, allowing us to sample the
statistics of "spontaneous" turns, which the worms execute without a triggering
environmental stimulus. In addition, upon encountering the boundary impreg-
nated with a chemical repellent, an escape response [23–25] is triggered, causing
the worm to turn around. We quantify the strength of orientational biases in
both sharp and gradual turns, and quantify their effects on performance in both
behavioural contexts.

3.2. RESULTS

3.2.1. WORMS IN REPELLENT-BOUNDARY ARENAS DEMONSTRATE BOTH EX-
PLORATION AND ESCAPE BEHAVIORS

Globally, the worm’s motile behaviour can be described as intervals of relatively
straight forward motion (runs) interrupted by brief intervals of backward motion
(reversals) and abrupt reorientation events (sharp turns). Some reorientation
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also occurs during runs, which are comparatively subtle, but could cumulatively
impact the navigational strategy over long times [11, 26]. Reversals have a negli-
gible net effect on orientation once the worm reverts to forward motion. Sharp
reorientation events are defined as any event where the worm performs a deep
body bend and folds onto itself.

To extensively sample the reorientation behaviour of worms, we imaged the
motility of C. elegans strain N2 individuals crawling on agar plates for a dura-
tion of approximately 2 hours (Methods). Worms were confined by a repellent
boundary to within a 38mm×38mm arena, the entirety of which can be imaged
at a resolution sufficient to resolve not only the worm’s position but also its pos-
tural dynamics (effective pixel size 18.7 µm). The motility of up to eight worms
was measured simultaneously within these arenas. Throughout the duration of
the measurement, the identity of each worm was tracked, enabling us to study
variability in behaviour between individuals. The arena contained no food, and
worms were kept off food for 15 minutes prior to the experiment, to reduce non-
stationarities in behaviour that are known to affect worm motility (including
sharp turn rates) for several minutes after transitioning from an on-food to an
off-food environment [7, 22, 27]. Reorientation statistics of 100 individual worms
were obtained by analysing the video recordings (Methods), yielding a total of
12,475 sharp reorientation events within 197 hours of trajectories. In 85% of these
identified sharp turns, postural dynamics could be unambiguously resolved, thus
allowing analysis of postural kinematics for 98% of the total trajectory duration.

The repellent boundary not only served to confine worms to within the cam-
era’s field of view, but also allowed us to study reorientation statistics in two con-
trasting behavioural contexts within a single measurement: (1) exploration in the
absence of environmental stimuli and (2) the escape response upon encountering
the strongly aversive repellent boundary. For most of the trajectory duration,
worms engaged in exploratory behaviour across the arena, characterised by long
runs interrupted by spontaneous sharp turns [22, 28]. Upon encountering the
repellent boundary, an escape response was reliably triggered, where the worm
executed a sharp turn following a brief reversal (Figure 3.1). The spatial distri-
bution of these escape turns (i.e. sharp turns that immediately follow a reversal)
was highly concentrated near the repellent boundary, in stark contrast to that of
spontaneous turns during forward runs that occurred randomly across the arena
(Figure 3.1). Therefore, turning behaviour during exploration and escape can be
studied, respectively, through the reorientation statistics of trajectory segments far
from (> 7mm) and close to (< 7mm) the repellent boundary. Some escape turns
were observed far away from the repellent boundary, but these were infrequent
(14% of all turns > 7mm from the boundary) and we therefore did not consider
them explicitly in subsequent analyses of exploratory behavior.
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Finally, we note that worm behaviour was not significantly perturbed by colli-
sions with other worms within the arena. Collisions did occur at a finite rate, but
these were infrequent (on average, once every 7.8 min), could be unambiguously
resolved (see Methods) and no effect on crawling speed or sharp turn frequency
was detectable beyond the duration of the collision event (Figure S3.1).

Thus, simultaneous tracking of multiple worms in repellent-boundary arenas
enabled efficient acquisition of individual turning statistics across two contrasting
behavioral contexts.
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Figure 3.1: (left) The spatial distribution of both spontaneous sharp turns and escape
turns inside the arena. (Middle) Spontaneous turns, defined as sharp turns that occur
during forward crawling, occur at an equal rate. (right) The escape turn rate, defined as
sharp turns following a reversal, is sharply increased near the repellent boundary of the
arena. Pixels at the edge that have been occupied by a worm with fewer than 5k data
points (≈ 7 min) are not included.

3.2.2. VARIABILITY IN SPONTANEOUS SHARP TURN BEHAVIORS REVEAL THEIR

IMPACT ON SPATIAL EXPLORATION

The most prominent reorientation behaviours during the worm’s exploration of
free space are spontaneous sharp turns, which are executed at random times
even in the absence of environmental stimuli [19, 28]. These turns involve a deep
body bend, which can occur in either the dorsal or ventral direction, but with a
strong statistical bias towards the ventral side [7, 18]. Sharp turns can be further
classified intoΩ- and δ-turns, on the basis of postural statistics [22]. Compared
to Ω-turns, δ-turns exhibit even higher body-bend amplitudes, such that the
strongly curved body not only touches but also crosses itself, resulting in larger
reorientation angles.

To correctly assign sharp turns into these categories, we analysed the postural
dynamics throughout each turn. Because δ-turns have been shown to occur only
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in the ventral direction [22], we assigned the ventral orientation of each worm
to the direction that demonstrated a greater extent in the body-bend amplitude
distribution (see Methods). After this D-V orientation assignment, the distribution
of body-bend amplitudes for the dorsal direction demonstrated a single peak
corresponding to dorsal omega turns, whereas that for the ventral direction was
better described as a sum of two overlapping peaks, with one corresponding to
ventralΩ-turns and the other to ventral δ-turns (Figure 3.2A). Sorting all ventral
turns into bins corresponding to each of these peaks further confirmed that δ-
turns do indeed, on average, generate larger angle changes ∆θ in the worm’s
trajectory (Figure 3.2B).

Thus, in addition to the angle change ∆θ, three random variables suffice to
characterize the statistics of sharp turns (Figure 3.3A): (1) the rate ζ (min−1) at
which sharp turns are executed, (2) the probability P (D) that an executed sharp
turn is in the dorsal direction, and (3) the probability P (δ) that an executed ventral
sharp turn is a δ-turn. The statistics aggregated over all 100 worms confirmed that
during exploration, there is a strong preference for ventral turns over dorsal turns,
and within ventral turnsΩ- over δ-turns (Figure 3.3, 3.2) [7, 29, 30]. However at the
level of individual trajectories, all three random variables demonstrated substan-
tial variation about the population (Figure 3.3B-D, blue). Across individuals, the
sharp turn frequency was found to vary by at least an order of magnitude. Some
worms did not execute any dorsal turns or δ-turns over the course of the 2 h mea-
surement, whereas at the opposite extreme, such turns accounted for more than
half of all sharp turn events. The variability across individuals was not trivially
explained by the finite number of samples within the 2 h measurement, as the
distribution of all three random variables from the measured data were broader
than that for Monte Carlo simulations (see Methods) that assumed all worms were
realizations of identical random variables with parameters corresponding to the
population mean (Figure 3.3B-D, orange, S3.3).

To evaluate how each of these sharp-turn parameters are related to explo-
ration performance, we computed for each trajectory its persistence length P ,
which can be extracted from the relationship between the mean-squared displace-
ment (MSD) and contour length (Figure S3.5, see Methods) and quantifies the
effective area covered by trajectories as function of the contour length. It is closely
related to the diffusion coefficient Ddiff and the velocity v by P = Ddiff/v , therefore
time-independent and more sensitive to the properties of trajectory rather than
the pace at which it is generated, which is the trivial solution towards changing
the exploration rate. Comparing the persistence length against the turning param-
eters for each trajectory revealed that the D-V sharp turn bias was not significantly
correlated (−0.13±0.25, 95% CI) to the persistence length, and theΩ-δ preference
was only weakly correlated (−0.20±0.14, 95% CI) (Figure 3.3FG). Thus, neither of
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these sharp-turn biases substantially affect exploration propensity. By contrast,
the temporal frequency of sharp turns demonstrated a strong negative correla-
tion with the persistence length (−0.59±0.12, 95% CI); worms that turn at higher
frequency explore smaller areas (Figure 3.3E). In short, we found that each of the
random variables (ζ, P (D), and P (δ)) vary significantly among individuals, but
while sharp turn frequency is strongly negatively correlated with the persistence
length, the D-V andΩ-δ biases have little impact on this measure of exploratory
propensity.
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Figure 3.2: Ω and δ turns are separated by thresholding the loading of the third
Eigenworm[22, 31]. (A) The distribution of (top) ventral and (bottom) dorsal maximum
Eigenmode loadings across both spontaneous sharp turns and escape turns. The ventral
distribution can be approximated as the sum of 2 Gaussians (green). The orange Gaussian
is an approximation of theΩ turn distribution, and the blue Gaussian is an approximation
of the δ distribution. The A3 value where the lines cross, 18.0 (black dashed line), is
henceforth used as the threshold to separateΩ and δ turns. The dorsal distribution only
includesΩ turns. (B) The distribution of (top) ventral and (bottom) dorsal reorientation
angles towards the direction of the body bend. The distribution of Ω and δ turns after
thresholding the maximum A3 amplitude in orange and blue respectively.
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Figure 3.3: Variability in turn frequency, but not D-V bias or Ω-δ bias, substantially
affects exploratory propensity. (A) Schematic illustration and population-average statis-
tics of the three random variables that govern spontaneous sharp turns: (left) the turn
frequency, ζ; (center) the dorsal turn probability P (D), a measure of D-V bias in sharp turn
orientation; (right) the δ-turn probability P (δ), a measure ofΩ-δ bias for ventral turns.
The most common turn type is an Ω-turn in the ventral direction. (B-D) Distribution
across the population of the three random variables ζ (B), P (D) (C), and P (δ) (D) indicate
substantial variability across individuals. Blue bars represent statistics for individual
measured trajectories, and orange bars are from Monte Carlo simulations assuming all in-
dividuals are sampled from a population with identical parameters for the corresponding
random variable (see Methods). (E-G) Relationship between the trajectory persistence
length Peff, a measure of exploratory propensity, and the three random variables ζ (F),
P (D) (G), and P (δ) (H). Peff demonstrates a substantial negative correlation with the sharp
turn rate ζ (−0.59±0.12, 95% CI; p ≤ 7.7 ·10−11), but its correlation with D-V bias andΩ-δ
bias was, respectively, insignificant (−0.13±0.25, 95% CI; p ≤ 2.1 ·10−1) and marginally
significant (−0.20±0.14, 95% CI, p ≤ 4.2 ·10−2). Indicated p-values were computed using
a t-test assuming a two-tailed probability.
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3.2.3. BIAS AND FLUCTUATIONS IN GRADUAL TURNS NEGATIVELY IMPACT

EXPLORATION

During exploration, gradual adjustments in the direction of movement occur
between spontaneous sharp turn events [8, 27], causing meandering trajectories
on length scales longer than the body wave and in some instances even forming
loops (Figure 3.4A). Such effects on trajectories shape reduce the directional
persistence of the worm’s motion between sharp turn events, and hence could
be expected to negatively impact the exploration propensity Peff. We therefore
proceeded to quantify the effects of these more subtle reorientations.

Gradual reorientation dynamics were extracted from the worm’s body ori-
entation (see Methods), which provides an accurate proxy for the direction of
movement (i.e. the velocity bearing) during runs, even when moving at low speeds.
Over the course of the experiment, the unwrapped body orientation (i.e. cumula-
tive angle change) of most worms demonstrated many full rotations, indicating a
significant bias in the gradual-turn dynamics (Figure 3.4B). Interestingly, whereas
some worms accumulated rotations persistently in the dorsal (14/100 worms) or
ventral (24/100) direction (Figure 3.4B, green and blue curves, respectively), most
worms (62/100) demonstrated rotations in both the dorsal and ventral directions
(Figure 3.4B, red curves).

The gradual-turn dynamics also feature faster orientation fluctuations, caus-
ing the unwrapped body-orientation trajectories to be jagged, rather than smooth
curves (Figure 3.4B). To examine the statistics of gradual turns across timescales,
we computed the mean-squared angular displacement (MSAD) of the unwrapped
body orientation as a function of time (Figure 3.4C, blue curve), which showed
similar dynamics compared to a previously published data set[32] (Figure 3.4C,
green curve). For timescales longer than the body wave oscillations (∼ 2 s) but
less than ∼ 10 s, the local power-law scaling exponent (i.e. the log-log slope)
of MSAD(t) was close to unity (Figure 3.4C, Inset), indicating that fluctuations
around this timescale are well-approximated as pure (i.e. Brownian) angular
diffusion. Consistently, angular deviations observable at short times/lengths
decorrelated nearly completely within a single body wave (Figure S3.6). Therefore,
these random orientation changes on short time- and length-scales (compara-
ble to the body wave) can be modeled as an angular diffusion process [11] (see
Methods), characterized by a angular diffusion coefficient Dψ which varied from

worm to worm but most commonly was around 0.2 rad2mm
−1

(Figure 3.4D).
For longer timescales, the angular dynamics were increasingly super-diffusive,
with the local scaling exponent plateauing around 1000 s at a maximum value
of ∼ 1.86 (Figure 3.4C, Inset), consistent with a persistent gradual-turn bias (per-
fectly circular trajectories would yield an exponent of 2.0). Thus, the worms’
reorientation dynamics can be described as a combination of two processes: (1)
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angular diffusion resulting in meandering trajectories and (2) a gradual-turn bias
(rotational drift) causing the trajectories to form loops [11].

To quantify the gradual-turn bias, we computed the trajectory curvature κ, av-
eraged over windows of 15 min, the time scale around which the slope of MSAD(t )
was maximal (Figure 3.4C, Inset) and hence orientation dynamics were most per-
sistent. The distribution of κ pooled from all 100 trajectories was distributed ap-
proximately symmetrically in the dorsal and ventral directions (Figure 3.4E) with
a mean that is not significantly different from zero (0.00±0.02, 95% CI), indicating
no net D-V bias across the ensemble of trajectories. However, as noted above, the
gradual-turn bias of individual trajectories tends to fluctuate slowly over time. To
characterize the timescale of such slow fluctuations in the gradual-turn bias, we
computed the autocorrelation function of κ (ACFκ(t ) ≡ 〈κ(0)κ(t )〉) (Figure 3.4F).
Within the timescale of the measurement, the ensemble average 〈ACFκ(t)〉 de-
cayed to 0.2, with a profile consistent with a single-exponential 〈ACFκ(t )〉 ∼ e−t/τ

with decay time constant τ= 82±17 min (see methods). Thus, although the 2 h
timescale of our experiment precludes confirming the full decorrelation of these
slow fluctuations, the data are compatible with a model in which gradual-turn
bias fluctuates slowly in a manner that when averaged over very long times (À τ)
has little or no net bias (per the near-zero κ-distribution mean), but has at any
instant of time a finite magnitude (in the range of the κ-distribution width).

As noted above, both the short-timescale angular diffusion and the longer-
timescale bias of gradual turns can be expected to negatively impact exploration.
Consistent with this idea, worm-to-worm variation in both the angular diffusivity
Dψ and the root-mean-square (RMS) magnitude of the gradual-turn bias (κRMS)
demonstrated clear negative correlations with the exploration propensity Peff of
trajectories (Figure 3.4G,H).

In summary, although the gradual-turn bias is relatively weak (〈κRMS〉 ≈
0.2 radmm−1) and fluctuates slowly over time with an approximate zero mean, its
cumulative effect on the exploration propensity Peff over long time- and length-
scales are comparable to, or greater than, that of the short time- and length-scale
angular diffusion.
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Figure 3.4: Caption is on the next page.
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Figure 3.4: Gradual turning behaviour during exploration demonstrates both short-
time fluctuations and long-time biases. (A) Representative trajectory segments (10,000
frames = 14.5 min) for 3 individual worms, demonstrating strong (blue), intermediate
(green) and weak (red) gradual-turn bias and correspondingly different trajectory curva-
ture. In addition to the ’loopiness’ caused by the long-timescale bias, diffusive orientation
fluctuations induce wiggles in the shape of trajectories. Scale bar 10 mm. (B) Gradual-turn
bias can cause trajectories to accumulate many net rotations during the course of the
experiment, resulting in a slope κ. A positive value means that the worm has rotated more
in the ventral direction than in the dorsal direction. Inset: angular changes on short time
scales from undulatory fluctuations, result in an effective angular diffusion Dψ. (C) The
average mean-square angular displacement (MSAD) and (inset) the local exponent (i.e.
log-log slope) of the unwrapped average body angle across worms of our data set (blue)
and a previously published data set from ref. [32] (green; see Methods) show near ballistic
behaviour on long time-scales. A slope of 1 indicates diffusive angular dynamics, and a
slope of 2 corresponds to ballistic angular dynamics. The dip in the slope of the blue curve
of the MSAD at ≈ 2 s can be attributed to angular oscillations due to the body wave (and is
not observed in the green curve, due to differences in the sampling rate and the manner in
which angular dynamics were extracted; see Methods). (D) Probability density histogram
of the angular diffusion coefficient Dψ, extracted from each of 100 individual trajectories.
(E) Probability density histogram of the local gradual-turn bias κ, defined as the average
trajectory curvature within 15 min windows, extracted from all such non-overlapping
windows in all 100 trajectories. The sign of κ was set to be positive in the ventral (V)
direction and negative in the dorsal (D) direction. The average rotational drift for each
worm shows no dorso-ventral population mean. (F) Slow fluctuations gradual-turn bias
decorrelate on a timescale comparable to the duration of the measurement, and can be
fit by a single-exponential decay with a time constant of 82±17 min. Because the time
scale of the fluctuations is similar to the length of the measurement, the mean cannot
be established of individual measurements, and the global mean value of 0 is used. (G)
The angular diffusivity Dψ is negatively correlated with the persistence length Peff, with a
correlation coefficient −0.57±0.13 (95% CI) (p < 2.9 ·10−10). (H) The root-mean-square
gradual-turn bias κRMS is strongly negatively correlated with the persistence length Peff,
with a correlation of −0.72± 0.11, (95% CI) (p < 1.3 · 10−17). Indicated p-values were
computed using a two-tailed t-test.
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3.2.4. A FINITE GRADUAL-TURN BIAS LEADS TO AN OPTIMAL CHOICE FOR

ANGULAR DIFFUSIVITY

The data presented above demonstrate that each of three turning-behavior pa-
rameters — the sharp turn rate ζ, gradual-turn diffusivity Dψ and bias magnitude
κrms are negatively correlated with the exploratory propensity Peff (i.e. the per-
sistence length) of trajectories. Yet the manner in which these different turning
components affect exploration might not be independent. To gain insight into
the relative contributions of, and interactions between, these parameters in deter-
mining the overall exploratory propensity Peff, we constructed a minimal model
of the worm’s turning behaviour.
Changes in the lab-frame orientationψ along the trajectory contour x is described
as a sum of two terms: a constant angular drift accounting for the gradual-turn
bias, and angular diffusion:

dψ(x) = κd x +
√

2DψdWx . (3.1)

where κ [radmm−1] is the angular drift, Dψ [rad2/mm] is the angular diffusion
coefficient, and Wx [mm1/2] is a Gaussian white noise process with zero mean
and unit variance. Sharp reorientation events occur with a uniform probability
per unit length along the trajectory contour, determined by the turn frequency
ζ [s−1] and speed s [mms−1] of the worm:

pturn = ζ/sd x. (3.2)

The experimental observation that sharp turns do not completely randomize
the orientation but are instead biased, on average, slightly towards the reverse
direction (i.e. 〈cos∆θ〉 < 0; Figure 3.2B) can be accounted for by scaling the sharp
turn frequency by a factorα= 1−〈cos∆θ〉 [33, 34], for which we use the population
averaged value α= 1.33.

These dynamics can be solved analytically for the expected persistence length
P , yielding a simple closed form expression (see SI text):

P = 1

2

ε

κ2 +ε2 . (3.3)

Here ε=αζ/s +Dψ is the effective rate of random reorientation, combining the
effects of sharp turns and angular diffusion. The persistence length computed
using this analytical solution is in excellent agreement with numerical simulations
of the model (Figure S3.11), and further accurately predicts the persistence length
of the measured worm trajectories (Figure 3.5C; Pearson correlation ≈ 0.8).
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The simple analytical form of Eq. (3.3) also provides some insight into the
dependence of this measure of exploratory propensity on the underlying param-
eters. It is clear that a non-zero curvature (|κ| > 0) monotonically impairs the
persistence length (i.e. ∂P/∂ |κ| < 0; Figure 3.5A,B). Interestingly, it also reveals
that, given any nonzero value of κ, there exists a a finite value of ε that maximizes
P (i.e. ∂2P/∂ ε2 < 0 at ∂P/∂ ε= 0). When εÀ|κ|, effects of the gradual-turn bias
are negligible and the exploratory propensity becomes inversely proportional to ε.
When ε¿|κ|, the trajectory becomes circular, leading to oversampling of space
within a region of length scale κ−1, the circling radius. In this latter regime, P
increases with ε because random reorientations are required to free the worm
from the circular orbit. Thus, P increases with ε at small ε but decreases with ε

at large ε, and an optimum in P occurs when the random reorientation rate is
balanced with the curvature (i.e. when ε= κ).

Interestingly, although both ε and κ were found to vary substantially across
individuals, when averaged over the entire measured population (Figure 3.5D,
white points), these values were nearly identical to one another (Figure 3.5D, red
point). This can be largely attributed to the contribution of the rotational diffusiv-
ity Dψ, which for exploring worms in the absence of food, evidently dominates
over the sharp turn rate ζ and is by itself comparable in magnitude to ε (Figure
3.5D, compare orange and points). Our model therefore indicates that, on average,
the rotational diffusivity Dψ of worms is set very close to the optimal value that
balances their finite gradual turn bias κ to maximise the exploratory propensity
P .
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Figure 3.5: A simple turning model explains the data and reveals an optimality princi-
ple for exploration under biasing constraints (A) Exploratory propensity, characterized
by the trajectory persistence length P , decreases monotonically with increasing turn-
ing bias κRMS, regardless of the rate of random reorientations ε. (B) By contrast, P can
either increase or decrease with ε, depending on the value of κRMS. (C) The measured
exploratory propensity Pdata agrees well with predictions of the model Pmodel based on
the turning parameters κRMS and ε measured in each worm. (D) The magnitude of the
gradual-turn bias κRMS and the effective random-reorientation rate ε is of the same order.
Each trajectory is displayed as a white point. The red point is the population average,
computed from all trajectories. The orange point indicates the population average for the
case that sharp turns are ignored (equivalent to the limit α→ 0 in our model), so that ε is
defined by rotational diffusion alone (i.e. ε→ Dψ). Error bars represent 95% confidence
intervals.
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3.2.5. BOTH D-V AND Ω-δ BIASES ARE MODULATED DURING ESCAPE TURNS

Although we found that neither D-V bias (as quantified by P (D); Figure 3C,F)
norΩ-δ bias (as quantified by P (δ); Figure 3D,G) significantly correlates with the
exploratory propensity, we envisaged that these statistical biases that modulate
the direction and amplitude of sharp turns might have a greater impact during
escape responses, which present an acute challenge for trajectory reorientation.
The goal of an escape response is to rapidly change the direction of motion so
as to crawl away from the perceived source of an aversive stimulus (within our
experiment, the arena boundaries impregnated with a chemorepellent) (Figure
S3.7). In the optimal case, the outgoing worm orientation after the escape turn
θout points in the direction exactly orthogonal to and away from the repellent
boundary (θout = 180°; we define 0° to be the direction of the shortest path to
the boundary). Since the angle of incidence θin (the angle in the reference frame
of the worm with respect to the repellent boundary just before the turn, but
after the reversal, Figure 3.6A) varies per turn, so does the optimal reorientation
∆θ ≡ θout −θin. We resolved a total of 3,531 escape responses within our dataset,
mostly triggered near the repellent boundary (Figure 3.1). Overall, compared to
spontaneous turns during exploration, the average dorsal-turn probability P (D)
is decreased from 0.24±0.01 to 0.17±0.01 and the average delta-turn probability
P (δ) is increased during escape turns from 0.18±0.01 to 0.38±0.02 (95% CI, using
bootstrapping). Interestingly, individual average dorsal and δ-turn statistics of
the escape turn are not correlated with the aforementioned individual preference
during exploration (Figure S3.8).

Closer inspection of the data revealed that these probabilities during escape
turns are strongly modulated in response to the direction of the repellent bound-
ary (as captured by θin). When the repellent boundary is on the dorsal side
(θin < 0), the dorsal turn probability is strongly suppressed (Figure 3.6B) below
that for spontaneous turns during exploration (Figure 3.6B, dashed line), down to
nearly zero as θin approaches −90°. This modulation of D-V bias is likely beneficial
because performing a dorsal turn when the repellent is on the dorsal side would
tend to orient the worm in the undesirable direction up the repellent gradient. In-
terestingly, however, the modulation of P (D) is more modest when the repellent is
encountered on the ventral side (θin > 0), with worms making ventral turns more
than half of the time even when θin approaches +90° (Figure 3.6B).

The less extensive modulation of the D-V bias for θin > 0 implies that worms
relatively frequently execute ventral turns even when the repellent stimulus is on
the ventral side. We wondered whether worms might compensate for this by mod-
ulating in addition the turn amplitude ∆θ, which could in turn be controlled by
theΩ-δ bias, the amplitude ofΩ-turns, the amplitude of δ-turns, or any combina-
tion thereof. We found thatΩ-δ bias of ventral turns is indeed strongly modulated



3.2. RESULTS

3

85

by θin, with P (δ) increasing more than 2-fold across the full range of possible
incident angles (−90° < θin < 90°) (Figure 3.6C). By contrast, the amplitude ofΩ-
and δ-turns remained relatively constant as a function of θin, but demonstrated
a mildly increasing trend (Figure 3.6D, green and orange curves, respectively).
Combined, these effects cause the reorientation angle 〈∆θ〉 of ventral turns to be
strongly dependent on θi n (Figure 3.6D, blue curve). This modulation of 〈∆θ〉 is
instrumental to escape, because when a ventral turn is triggered with the repellent
boundary on the ventral side, larger reorientation angles increase the chances of
the worm turning through and away from the boundary. No evidence of angular
modulation is observed for turns in the dorsal direction, which were exclusively
Ω-turns (〈∆θ〉 = 105°±8° for θin < 0 and 〈∆θ〉 = 103°±4° for θin > 0, 95% CI using
bootstrapping). Thus, modulation of both the D-V bias and the angular amplitude
of turns contributes to control over the final exit angle of escape, θout, but the
control mechanisms that contribute to modulation differ in the dorsal and ventral
directions. On the dorsal side, the modulation of D-V bias evidently serves as the
primary mechanism of control over ∆θ, with weak if any modulation of the ampli-
tude of turns. On the ventral side, modulation of D-V bias is less extensive, and
control over∆θ is predominantly achieved through modulation of turn amplitude,
with a strong contribution fromΩ-δ bias modulations, and weaker contributions
from modulation of the amplitude ofΩ− and δ−turns.

The combined effects of all of these modes of control can be observed in
the distribution of the final exit angle θout (= θin +∆θ) (Figure 3.6E), which
demonstrates substantially increased weight near the most favorable exit angle
(θout = 180°) and decreased weight near the least favorable exit angle (θout = 0°)
compared to the distribution expected if neither D-V bias nor amplitude were
modulated by θin (Figure 3.6E, red curve). To further quantify the effects of each
mode of control, we defined as a measure of escape efficiency Eeff ≡−〈cosθout〉,
which quantifies how well aligned θout is, on average, with the optimal exit angle
of 180° (Figure 3.6F). This quantity takes values within the range −1 < Eeff < 1,
where the high and low extremes correspond to the exit angle being perfectly
parallel (θout = 180°) and antiparallel (θout = 0°) to the optimal orientation, re-
spectively. We computed Eeff as a function of θin for a number of hypothetical
control scenarios, in which effects of removing control over one or more of the
controlled variables (D-V bias,Ω-δ bias, ∆θ forΩ− and δ-turns) were excluded by
randomly resampling the experimental data for each variable without preserving
the correlations with θin due to control. In the first scenario, we considered a dras-
tically simplified escape-turn repertoire in which every escape turn is a ventral
Ω-turn with no θin-dependent turn-amplitude modulation (Figure 3.6F, green
curve). In this case, the performance as a function of θin is highly skewed, with
Eeff surpassing that of the measurements (Figure 3.6F, blue curve) when the re-
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pellent is encountered on the dorsal side (θin < 0, peaking at θin ≈−60°), but with
drastically degraded Eeff when encountered on the ventral side (θin > 0). Notably,
for a substantial range of incoming angles (θin & 45°) Eeff reaches negative values,
meaning the average exit angle points towards the repellent boundary. As a result,
the overall performance (Eeff averaged over all incoming angles) is reduced to
nearly half of that in the measured data (Figure 3.6F, inset). The second scenario
adds both dorsal turns and δ-turns, but without any θin-dependent modulations.
This more diversified repertoire decreases the D-V asymmetry in θin-dependent
performance, bringing the peak in Eeff closer to θin = 0° (Figure 3.6F, red curve),
without compromising the overall performance relative to the first scenario (Fig-
ure 3.6F, inset). The third scenario adds θin-dependent control of D-V bias, and
we find that this indeed increases performance at all incoming angles (Figure 3.6F,
yellow curve) and hence also overall performance (Figure 3.6F, inset) relative to
the second scenario. Finally, the difference between the third scenario and the
experimentally observed performance (Figure 3.6F, yellow and blue, respectively)
reveals the effect of turn-amplitude control.

In summary, our results provide strong evidence that worms modulate both
the D-V bias as well as the amplitude of sharp turns to optimise the efficiency of es-
cape upon encountering an aversive stimulus gradient. The ability to make dorsal,
as well as ventral, sharp turns is essential in ensuring good escape performance
across all possible angles of incidence, and modulation of the angular amplitude
of turns, which further increases performance, can be explained primarily by
modulation of theΩ-δ bias of ventral turns.
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Figure 3.6: Caption is on the next page.
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Figure 3.6: Control of turn direction and amplitude increases escape efficiency. (A) We
characterise worm orientation during escape turns by the angle θ of the body orientation
vector (pointing from tail to head) relative to the repellent gradient (approximated as the
vector pointing from the worm centroid to the nearest point on the repellent boundary),
where θ = 0° means the worm points directly up the gradient and 0 < θ < 180° and
−180 < θ < 0° correspond to the nearest repellent boundary being on the ventral and
dorsal sides, respectively. (B) The D-V bias of escape turns is modulated such that the
dorsal turn probability P (D) is suppressed when the repellent is encountered on the
dorsal side (−90° < θin < 0°). Dashed line: average P (D) for spontaneous turns during
exploration. (C) TheΩ-δ bias of ventral escape turns is also modulated, with the δ-turn
probability P (δ) being augmented when the repellent is encountered on the ventral side
(0° < θin < 90°). Dashed line: average P (δ) for spontaneous turns during exploration.
(D) For ventral escape turns, the average reorientation angle 〈∆θ〉 demonstrate only a
weakly increasing dependence on θin for forΩ- (green) and δ-turns (orange) separately,
but increases much more strongly when both are combined (blue) with a profile strongly
resembling that of P (δ) (C). Thus,Ω-δbias dominates the control of the angular amplitude
of ventral escape turns. (E) Histogram of exit angles θout after reorientation (blue bars),
and after random resampling of the experimental data without regard to the dependence
of P (D) and P (δ) on θin (red curve). (F) Escape efficiency Eeff ≡−〈cosθout〉 as a function of
the incident angle θin (main panel) and averaged over all incident angles (inset) computed
for the experimental data (blue) and random resamplings of the same data corresponding
to three hypothetical control scenarios: a reduced turn repertoire of ventralΩ-turns only,
with no θin-dependent control (green); the full turn repertoire including also δ and dorsal
turns, but with no θin-dependent control (red); the full turn repertoire with θin-dependent
control of D-V bias (yellow). In all panels, shaded regions and/or error bars correspond to
95% confidence intervals.
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3.3. DISCUSSION
By developing a novel behavioural assay that enables tracking multiple C. elegans
individuals over long times (2 h), we quantified the statistics of turning behaviour
in both exploration and escape navigation contexts. The data revealed significant
biases in both gradual- and sharp-turn behaviors, which impose constraints on
exploration and escape performance, respectively. In the context of exploration,
quantifying the diversity of motility phenotypes within an isogenic population
allowed us to identify the subset of reorientation behaviours that correlate most
strongly with exploration performance, from which we derived a minimal model
of motile trajectories. Analysis of this model identified a novel optimality principle
for maximising exploratory propensity under the constraint of finite gradual-turn
bias. In the context of escape navigation, studying the statistics of escape angles
as a function of the encounter angle with the repellent gradient revealed how
worms exert control over directional bias, in addition to the amplitude, of sharp
turns to enhance escape efficiency.

3.3.1. OPTIMIZING EXPLORATORY PROPENSITY UNDER GRADUAL-TURN BIAS

REQUIRES NONZERO ANGULAR DIFFUSIVITY

Optimality is useful as a guiding concept for studying biological design, given
that natural selection tends to drive some performance measures of the system
towards a maximum. In the context of behavior, identifying the relevant perfor-
mance measure being optimised provides a framework to study the design of the
underlying control strategies and their physiological implementation. However,
identifying these objective functions on which selection acts is often not trivial, as
in nature, one can expect selection to be acting simultaneously on multiple such
performance criteria that may be in conflict and, as a result, impose constraints
on one another. Within our study, we identified as a performance measure for
exploration the trajectory persistence length, and found that maximizing this
performance under the constraint of finite gradual-turn bias (i.e. trajectory curva-
ture) requires a nonzero rotational diffusivity. A gradual-turn bias resulting from
a lack of control of orientation is not unique to the worm, but has been observed
across a wide variety of organisms, for navigational tasks in environments that
lack sufficient sensory cues for direction. The causal factors leading to such biases
are difficult to resolve, and could be manifold. For example, loopy trajectories
created by blindfolded humans have been hypothesised to arise from anatomical
asymmetries[35], an imperfect ’sense of straight ahead’ [13] and accumulating
noise in the sensimotor system [12]. Recent research on Drosophila revealed a
persistent crawling preference which is not linked to body asymmetries[10], but
suggests a neuronal origin[9]. C. elegans can be used as a useful model organism
to fundamentally study the (neuronal) origin of such a rotational drift. Our mini-
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mal model of exploratory trajectories (Eq. 3) does not address the causal factors
leading to such gradual-turn biases, but rather predicts their consequences. In
particular, for any given trajectory curvature κ, the model reveals that the maximal
exploratory propensity P will be achieved when the rate of random orientation ε
(which in C. elegans is dominated by orientational diffusion) exactly balances the
magnitude of κ, and our data indicate that C. elegans trajectories indeed demon-
strate, on average, this optimal balance. Thus, although the trajectory curvature
induced by the worms’ gradual-turn bias does impair exploratory performance,
the latter achieves the greatest value possible under that constraint of finite bias
to enhance the spatial extent of exploration.

Interestingly, however, we found considerable variability at the level of in-
dividual worms in both gradual-turn bias κ and random reorientation ε, with
only a weak correlation between these parameters across individuals (Figure 5D).
Thus, although this optimal balance between κ and ε is evidently achieved at
the level of the population average, this balance is not tightly controlled at the
level of individuals. From a mechanistic point of view, it is in fact interesting that
these variations in gradual-turn bias and angular diffusion appear to be nearly
independent of one another, given that they are both represent errors and/or fluc-
tuations in the body-wave dynamics driving the worms’ undulatory propulsion.
Naively, one might expect a stronger correlation between these, if they were both
the product of finite control over the locomotor wave. One compelling hypothesis
is that the angular diffusivity due to finite errors in locomotor wave control is in
fact considerably lower and that the observed diffusivity is actually dominated
by yet another type of reorientation behavior. It has been documented by Kim et
al. [26] that C. elegans trajectories can feature a high frequency of "shallow turns"
during runs with reorientation angles much < 90°. In our analysis, reorientations
due to such shallow turns would not be detected as sharp turns, but instead con-
tribute to the magnitude of the angular diffusivity. Interestingly, inspection of
reorientation statistics between consecutive body waves in our data revealed a
broad distribution that could be fitted by the sum of two Gaussians (Figure S3.9).
Thus, it is conceivable that the broader of these two Gaussians, which contributes
the majority of the variance (σ= 28.3±0.4, as compared to σ= 13.5±0.1 for the
narrower Gaussian), reflects shallow turns. Finally, regardless of the underlying
mechanisms, the nearly uncorrelated variation in gradual-turn bias and orienta-
tional diffusion leads to large variation in exploratory performance, which may
be interpreted as a bet-hedging strategy[36, 37]. Exploring new regions of space
and exploiting local resources is a well-known trade-off in foraging strategies, and
hence expressing a diversity of phenotypes along this exploration-exploitation
axis could provide isogenic worm populations with an effective adaptive strat-
egy in rapidly changing and/or information-scarce environments where sensory
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modulation of behaviour is less effective [38].
Our minimal model of trajectory statistics combines the effects of sharp turns,

orientational diffusion, and gradual-turn bias, and accurately predicts the exper-
imentally observed trajectory persistence lengths. The simplicity of the model
offers key insights into how variations in these parameters interdependently af-
fect this measure of exploration performance, and provides a basis for future
studies that examine the effect of perturbations such as genetic mutations or
neural ablations. Furthermore, its construction is sufficiently general that it can
be readily applied to any organism (or motile particle/agent) whose motion can
be described by trajectory curvature, effective diffusivity, and intermittent sharp
turns, for instance the run-and-tumble motion of swimming bacteria near sur-
faces that induce curved runs [39], or other nematodes such as larvae Ancylostoma
tubaeforme[40]. Our model reveals that any nonzero trajectory curvature sets an
upper limit to the persistence length, which during exploration in the absence
of external guiding cues significantly reduces the performance. Whether and to
what extent C. elegans’ gradual-turn bias also impacts the performance in other
environments (e.g. during chemotaxis) remains an open question and will provide
fertile ground for future studies. During taxis strategies, gradual-turn bias might
be expected to reduce, but not abolish, taxis efficiency. The head-bend mutant
unc-23 creates spiral-shaped tracks with a stronger curvature compared to worms
in this study, but can still perform navigational tasks like chemotaxis [41–43]. Of
particular interest would be to investigate the relationship between the gradual-
turn bias we have observed here in the absence of environmental gradients and
the ’weathervaning’ (klinotaxis) strategy of chemotaxis that has been shown to
steer trajectory curvature in response to strong environmental gradients [20]. For
example, testing whether the weathervaning response completely overrides the
gradual-turn bias, or acts additively could shed light on whether the bias and
weathervaning response are controlled by the same neural circuitry. In Appendix
A, we present preliminary experiments that address the effect of gradual-turn bias
on chemotaxis. Perhaps because the chemoeffector gradient was too weak, we
did not observe evidence of a weathervane response, but interestingly, we found
that the gradual turn bias negatively impacts chemotactic efficiency, and that its
magnitude may be attenuated during chemotaxis relative to that during explo-
ration in the absence of chemoeffector gradients. Although more experimental
effort will be required to confirm these findings, these preliminary results indicate
that examining gradual-turn bias during chemotaxis could be a fruitful avenue
for future investigations.
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3.3.2. CONTEXT-DEPENDENT CONTROL OVER SHARP-TURN BIAS ENHANCES

ESCAPE FROM ACUTE AVERSIVE STIMULI

A striking degree of directional control was observed in the worms’ sharp-turn
response to an acute aversive stimulus: the chemorepellent (SDS) boundary of the
arena, which triggers an escape response. The D-V bias, characterized by P (D),
theΩ-δ bias, characterized by P (δ), were strongly modulated by the incoming
angle θin, in a manner that enhances escape efficiency Eeff. Modulation of these
biases was highly asymmetric with respect to their baseline values in spontaneous
sharp turns: P (D) is strongly modulated downwards but only weakly upwards,
and P (δ) was modulated exclusively upwards during escape turns. Although, the
angular amplitude of turns ∆θ was also weakly modulated by θin for bothΩ- and
δ-turns, the overall modulation of ∆θ was dominated by modulation of P (D), i.e.
theΩ-δ bias.

3.3.3. NEURAL CONTROL OF REORIENTATION STATISTICS: POSSIBLE TAR-
GETS FOR FUTURE STUDIES

The control of reorientation statistics (or lack thereof) described in this study,
raises the question which neuronal circuitry could be underlying. The neuronal
signalling network underlying weathervaning-type control of C. elegans trajec-
tory curvature [20] has yet to be uncovered, but it possibly involves sampling
the environment by oscillatory-like head-swings required for propulsion[44, 45],
possibly through the SMB neuron associated with head oscillations and gradual
turning via interneurons like AIY and AIZ[46]. Killing of the SMB neurons results
in large head-swings during forward crawling with high-curvature trajectories[7],
suggesting a possible mode of control for the crawling bias. However, it has to
be seen to what extent the set of neurons involved in control during escape and
weathervaning responses overlap, given that weathervaning is described at the
level of more gradual rather than sharp reorientations[20] and the SDS sensing
ASH neuron directly synapses to the reversal triggering AVA neuron, bypassing
much of the chemotaxis circuitry (although ASH is connected to AIA[47]).
Some of the involved neurons reported to affect the sharp turn that might be
involved in sharp turn control during the escape are RIM, RIV, RIB, and SMD. RIV
(and RIB) activity rises at the onset of the turn[48] and RIV ablated worms lack
a ventral bias[7], suggesting their involvement in modulation of P (D). RIM is a
tyraminergic neuron that aides in the hyperpolarization of ventral muscles to
execute the ventralΩ-turn[49, 50], and therefore might be related to the δ-turn
modulation. Similarly, ablation of the SMD neuron results in sharp turns with
smaller reorientation angles[7] which suggests its involvement in the sharp turn
amplitude. The SMDD, and also DVA neurons have been reported to provide
proprioceptive feedback (i.e. sensing of the body bending angle)[51, 52], and
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therefore might be involved in the regulation of (sharp) turn direction, enabling
angular-dependent control. In addition, asymmetric feedback from such proprio-
ceptive neurons or mechanosensory neurons (worms lacking mechanosensory
neurons, PVD and FLP produce circular trajectories [53]) might be the cause of a
rotational bias. It would be exciting in further studies to examine the effects of
perturbing these neurons (via e.g. ablation, genetic mutations, or optogenetic
stimulation) on the control of reorientation behaviours we studied here.

CONCLUSIONS

Our results revealed how C. elegans reorientation statistics demonstrate significant
biases. In the context of random spatial exploration, the reorientation parameters
appear to be tuned to maximise exploratory propensity, under the constraint of
finite bias. In the context of escape, worms demonstrated the ability to strongly
modulate these biases to optimise escape efficiency. Our minimal model provides
a basis for further investigation of the relationship between these reorientation
behaviors, their mechanistic origins, and their functional consequences.
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3.4. METHODS
Behavioural experiments
Worms are cultivated on NGM plates (3 g NaCl, 17 g agar, 2.5 g peptone, 1 mL
5 mgmL−1 cholesterol in EtOH in 975 mL water, with 1 mL 1 M CaCl2, 1 mL 1 M

MgSO4, 25 mL 1 M KPO4 pH 6, 1 mL 200 mgmL−1 streptomycin in water) seeded
with E. coli HB101. A copping ring (a 38 mm×38 mm square with rounded corners
and a total surface area of 13.8 mm2) soaked in 1% SDS is put on a food-free NGM
plate. 8 well fed young adult worms are washed for 15 min in a 1 µL M9 minimal
media (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, 1 mL 1 M MgSO4 in 1 L water) solution
and pipetted onto the arena. The motility of the plate is recorded for 2 h at 11.5 Hz
using a PointGrey GX-FW-60S6M-C. During the experiment, the average speed of
the worms remained mostly constant (Figure S3.10).
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Tracking of worms
Worms are tracked using custom tracking software written in Python. Collisions
are semi-automatically resolved, using a combination of the worm lengths, colli-
sion duration, and direction of motion before and after the collision of each worm.
Ambiguous collisions, or collisions involving more than 2 worms are resolved by
hand. Automatically resolved collisions are all manually inspected.

Sharp turn extraction
Sharp turns are differentiated from gradual turns by the body posture’s topology.
During a sharp turn, the worm folds onto itself, creating a doughnut topology. The
starting and end time points of a turn are marked by the last and first local extrema
of body amplitude (the third Eigenworm[31]) before and after the worm’s posture
folds onto itself. These postures cannot trivially be extracted from the spline
of the binarized worm image. Therefore, a customised version of a previously
published algorithm by Broekmans et. al. is used to solve sharp turn body postures
[22], using the OIST’s Sango cluster parallel computation cluster. Turns with an
error with at least 3 consecutive frames > 12 are flagged as unsuccessful and not
included in the analysis. 10625 out of 12475 sharp turns could be resolved using
this method. A manual annotation of a random selection of turns that could not
be resolved did not reveal obvious biases towards a certain turn type. Therefore
the assumption is made that sharp turns that could and could not be resolved
follow similar statistics.

Monte-Carlo simulations of variability
To test if the observed variability is not trivially explained by stochasticity, mea-
sured worm-to-worm variability in turning behaviour is compared with simula-
tions from a stochastic model. In the model, all worms are assumed to follow
the same stochastic process determined by population average statistics, and
each turn is independent. The sharp turn rate stochastic process is described
by the population average interval distribution (Figure S3.2). Drawing from this
distribution, using Monte Carlo sampling, a simulated number of sharp turns can
be obtained for the duration of each worm in the measurement, resulting in a
different distribution of turn frequencies (Figure 3.3B). Since the simulations are
subject to stochasticity as well, the process is repeated 1000 times. The measured
distribution was found to consistently exhibit larger variation compared to the
simulated distributions (Figure S3.3A). In the case of worm-to-worm variability in
P (D) and P (δ), the corresponding stochastic process is a coin flip (i.e. Bernoulli
process), with the population average probability. A number of dorsal or δ turns
is randomly drawn from a binomial distribution using the population average
probability, and a number of coin flips is specified for each worm by the number
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of sharp turns in the case of the P (D) and the number of ventral sharp turns in the
case of P (δ) (Figure 3.3BC). Likewise, the resulting distributions were found to be
more variable compared to the simulated distribution for a significant fraction of
the simulations (Figure S3.3B,C). Variations in sharp turning frequency can be par-
tially attributed to batch effects of worms measured simultaneously on the same
plate. However, a larger fraction of the observed variability in both frequency,
P (D) and P (δ) is of unknown origin and might stem likewise from experiences of
the environment as well as from intrinsic stochasticity (Figure S3.4).

Extraction of model parameters
To compute the curvature and rotational diffusion, first the unwrapped (accumu-
lative) average worm body orientation in a window of 5 s around sharp turn events
and worm collisions is excluded. We found that the average body orientation
is an accurate proxy of the worm’s body velocity bearing during runs. However,
it is well-defined throughout the trajectory, even at low speeds, and thus the
accumulative angle does not suffer from artifacts.

The orientation is computed as a function of trajectory length, by evaluating
it at equally spaced intervals of 100 µm. The curvature is estimated in windows of
15 min as the average spatial rotation rate. The rotational diffusion Dψ is extracted
by fitting the function y = 2Dψx +bx2 to the MSD (evaluated up to 1 mm) of the
spatial orientation.

Computing the persistence length
The persistence length is extracted using the MSD of the worm’s centroid po-
sition (evaluated at the 100 µm intervals along the trajectory contour). For a
diffusive process with diffusion coefficient D in n dimensions, the mean-squared
displacement as a function of time t follows the equation MSD = 2nDt . Assuming
a constant speed of diffusive process s = X /t , 2 dimensions, and a definition
P ≡ D/v , we obtain that P = MSD/4X . Theoretically, in the diffusive regime a
constant can be fitted to MSD/X . Due to confinement, this curve decreases
when the MSD approaches the size of the arena. Furthermore, MSD/X fluctuates
slightly, because trajectories are described by a random process. Therefore, the
persistence length is evaluated as the average value where the MSD is linear; in
the range where the slope of logMSD vs log X is in between 0.9 and 1.1.

Computing the gradual turn bias decorrelation time τ.
The ACF cannot be accurately estimated on a single-worm basis, because the
fluctuation time scales ofκ are of the same order as the length of the measurement.
It can be computed on a population level, assuming that each worm follows
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the same stochastic process. With this assumption, we compute the ACF using
the population variance and mean (0) of κ for each worm and subsequently
average across worms. The resulting curve is fitted to the function 〈ACFκ(t)〉 =
e−t/τ using the ’curve_fit’ function of the scipy Python package. To obtain a
confidence interval, the process of computing the ACF and fitting τ is repeated
1000× after bootstrapping for worms. The reported error is the standard deviation
of bootstrapped values of τ.

Ventral annotation
The resolution of the camera did not allow one to visually separate dorsal from
ventral. However, we find that for each worm δ turns almost exclusively turns in a
consistent direction. We infer this to be the ventral direction.

Derivation of the model
We consider a simple random walk as a minimal model for C. elegans locomo-
tion. We take three observations about the worm movement into account: (i)
worms move along a curved trajectory with a constant curvature κ [mm−1], (ii)
This run is interrupted by occasional random reorientation of rate ζ/v [mm−1].
(iii) The worm trajectory is subject to rotational diffusion with diffusion coefficient
Dψ [mm−1].

First, we neglect rotational diffusion and only consider random orientation
events and a curved trajectory. The probability density of turning again after
walking a length s since the last turn is

P (s) = (ζ/v)e−sζ/v . (3.4)

As the worm moves along the perimeter of the circle, the Euclidean distance
between turns is

x = (2/κ) sin(sκ/2) . (3.5)

We can map this random walk to a wait-and-jump process, where the worm waits
for a time t at a position and jumps a distance x. As a consequence, the effective
diffusion coefficient in d = 2 dimensions is

D = 〈x2〉/(2d〈t〉) = 〈x2〉/(4〈t〉) . (3.6)

In the following, we will consider the persistence length P = D/v :

P = 〈x2〉/(4〈s〉) , (3.7)

where s = v t with a constant velocity v . We can derive the average run length:

〈s〉 =
∫ ∞

0
s e sζ/v (ζ/v)d s = 1/(ζ/v) . (3.8)
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The average distance from the origin is

〈x2〉 =
∫ ∞

0

(
(2/κ) sin(sκ/2)

)2
e−sζ/v (ζ/v)d s = 2/(κ2 + (ζ/v)2) (3.9)

P = (ζ/v)/(2κ2 +2(ζ/v)2) . (3.10)

The same result has been derived by Martens et al. in analogy to electrons in a
magnetic field [54].

We can consider two limiting cases. If the worm turns very often such that
κÀ ζ/v and the path is straight between reorientation events, the persistence
length decreases with higher turn frequency according to P ∝ 1/ζ. In contrast, for
circular trajectory with κ¿ ζ/v , reorientation events are beneficial to explore a
larger area and thus P ∝ ζ.

Next, we include rotational diffusion. If the runs have no gradual turning bias
(κ= 0), the effective diffusion coefficient on large scales is [55]

P = 1/(2ε) , (3.11)

with an effective reorientation frequency in d = 2 dimensions

ε= (d −1)Dψ+ζ/v = Dψ+ζ/v . (3.12)

The rotational diffusion has an analogous effect as abrupt reorientation events on
sufficiently large scales. In this spirit, we replace ζ/v by ε in Eq. 3.10 and obtain

P = ε/(2κ2 +2ε2) . (3.13)

This analytic solution very closely agrees with simulations over a wide range of
parameters (Figure S3.11). In the case that the sharp turn does not fully randomize
the reorientation, but is biased along the direction of motion withα= 1−〈cos∆θ〉,
ζ has to be replaced by ζ̄= ζα[33, 34].
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3.5. SUPPLEMENTARY FIGURES
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Figure S 3.1: Worm collisions minimally impact the trajectory dynamics. (A) The sharp
turn frequency with respect to the time of a collision (the time in the middle between
first and last contact with another worm) fluctuates only slightly. The dip at t = 0 is from
the duration of the collision. (B) A collision event has no long-term effects on the speed.
Shaded regions show the 95% confidence interval, bootstrapped for collisions.
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Figure S 3.2: The interval distribution of spontaneous turns for (blue) all worms and
(black) individuals.
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Figure S 3.3: The observed variability across worms is significantly larger compared to
random resampling using population averaged statistics. (A) The standard deviation of
(red) the population average turn frequency and (blue) the standard deviation of resam-
pled statistics using the interval distribution (Figure S3.2). (B) The standard deviation
of the measured dorsal turn probability, weighted by the total number of spontaneous
turns, is significantly larger compared to that obtained from random sampling using a
coin-flip model using the population average statistics. (C) The standard deviation of
the measured delta turn probability, weighted by the total number of ventral turns, is
significantly larger compared to that obtained from random sampling using a coin-flip
model using the population average statistics.
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Figure S 3.4: The portion of the variance in the measurements that can be attributed to
(blue) individual experience and (orange) batch effects. The remaining part is attributed
to the stochastic nature of the process. Individual experience is estimated by sampling
either the interval distribution in the case of turn frequency or sampling from a binomial
distribution in the case of dorsal-δ-turns, where the probabilities are sampled from
pooled data from the same batch. This way, batch effects and stochastic effects are
included, while individual effects are removed. The relative change in variance is referred
to as the individual contribution. The sampling process is repeated to estimate the
uncertainty. To estimate the effect of batches, first the mean of each batch is subtracted,
and subsequently the total variance is estimated (reducing the degrees of freedom by
the number of batches). This is compared against the total variance without subtracting
batches. 95% confidence intervals are obtained by bootstrapping for batches. The fraction
of variance not accounted for can be attributed to variability as a result of stochastic
processes.
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Figure S 3.5: The mean-squared displacement of the individual worms (black) and their
population average (blue), as function of the trajectory length. The mean squared dis-
placement is ballistic for short length-scales, then becomes diffusive proportional to the
persistence length, and finally stops increasing due to the confinement of the arena.
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Figure S 3.6: Reorientations are nearly decorrelated after a single body wave. To eliminate
the effect of the body wave oscillations, the orientation ψ was evaluated every body wave
at the same body posture, computed from the phase of the first 2 Eigenworms[31]. ∆ψ is
the difference of ψ after exactly 1 body wave. The distribution flattens at a value slightly
greater than 1, due to the rotational bias. Interval distributions show the 95% confidence
interval of the mean across all worms.
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Figure S 3.7: Escape turns are triggered when the worm approaches the boundary and
reorients itself away from the boundary. The average distance from the boundary, across
escape turns.
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Figure S 3.8: Worm variability in (A) dorsal and (B) δ preference during the escape re-
sponse and spontaneous turns is not significantly correlated.
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Figure S 3.9: The reorientation distribution is well fitted by 2 Gaussians, which may
indicate the existence of small reorientations. The orientation has been evaluated after
subsequent body waves during runs at similar body postures (evaluated from the first
2 Eigenworms [31]), ignoring the effect of the oscillatory motion. (A) The reorientation
angle∆ψ is well fitted as the sum of 2 Gaussians (orange curve), with a standard deviation
of 13.5±0.1° and 28.3±0.4° with mean values of 4.3±0.9 and −2.8±0.3, respectively
(yellow curves). Fits are performed with the lmfit package in Python using the Levenberg-
Marquardt method. (B) Four exemplary (left) time series and (right) centroid trajectories
of potential shallow turns with a reorientation angle > 45°. To compute the curvature rate,
the average body angle of the worm is evaluated at equally spaced distances of 20 µm and
the derivative is computed using a Savitzky–Golay filter (3rd order with a window size
300 µm).
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Figure S 3.10: The average speed across all worms has a small increase during the first
20 minute, but remains constant for the remaining duration of the measurement.

10 1 100 101

Ptheory [mm]

10 1

100

101

P s
im

ul
at

io
n 

[m
m

]

Figure S 3.11: The analytic solution of the model closely follows simulations. Simulations
are performed with constant speed (s = 0.15 mms−1) and 2 ·106 data points at 2 Hz, using
the orientational dynamics described in equations (3.1) and (3.2). A large space of motility
parameters has been simulated, including those of the measurements. κ and ζ/v have
been varied from 0 mm−1 to 1 mm−1 in steps of 0.2 mm−1. Dψ has been varied from
0.1 mm−1 to 0.9 mm−1 in steps of 0.2 mm−1. Sharp turn are modelled as a complete
randomization of the reorientation. The persistence length extracted from the simulated
trajectories is practically identical (correlation of 99.8%) to that computed from the model
(equation (3.3)).
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3.6. APPENDIX A
VARIABILITY IN CURVATURE AND TURN RATE INFLUENCES THE CHEMOTACTIC INDEX

In the main text of this chapter, we showed how both sharp turns and a rotational
drift influence the persistence length of motile trajectories of worms navigating in
a nearly uniform off-food environment. On the other hand, worms performing
chemotaxis in the presence of spatial chemoeffector gradients have been shown to
modulate the curvature of their trajectory in response to the gradient to bias their
orientation in the preferred direction[20]. It is therefore not a priori clear whether
and to what extent the gradual-turn bias observed in the exploratory context
persists during chemotaxis. Although a full resolution of this question is beyond
the scope of this thesis, we present here the results of preliminary experiments
that we hope will stimulate future investigations.

We measured the motile trajectories of worms performing chemotaxis up a lin-
ear NaCl gradient (Figure S3.12, see Methods). In accordance with the ’pirouette
model’ of chemotaxis[19], we found that sharp turns were triggered, on average,
when worms were moving down the gradient (Figure S3.13), thus facilitating
migration up the gradient. Perhaps because the gradient was relatively shal-
low (59 µMmm−1), we found no evidence of chemotaxis via the ’weathervaning’
strategy[20] in these experiments.
The measured trajectories did demonstrate a significant gradual-turn bias during
chemotaxis. However, trajectories of worms performing chemotaxis on average
have reduced gradual-turn bias compared to worms engaging in exploratory be-
havior off food (p ≤ 1.7 ·10−3) (Figure S3.14A). Especially the fraction of strongly
curving worms is reduced in comparison to worms off food. This suggests that
worms may be able to ’straighten’ trajectories in response to the sensed envi-
ronment. However, it should be noted that the worm treatment prior to the
measurement is different from the exploration experiments presented in this
chapter (see methods) which could also contribute to this difference. To test
if trajectory curvature is also associated with chemotactic performance, the
chemotaxis index is computed, defined as the displacement projected in the
gradient direction relative to the total displacement[21]. Despite the smaller
amplitude, the rotational drift has a significant effect on the chemotaxis index:
worms with stronger curvature bias perform weaker (negative correlation of
−0.35, p ≤ 2.7 ·10−8) (Figure S3.14B). Turn rates are drastically increased com-
pared to freely moving worms in an off food environment. Likewise, a significant
negative correlation of −0.29, p ≤ 6.9 ·10−6 between the chemotactic index and
the turn rate is observed (Figure S3.14B); higher turning worms are on average
less efficient.
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Methods for chemotactic experiments
Worms are well-fed and cultivated on NGM plates seeded with OP50. A linear
NaCl gradient from 0 mM to 50 mM is created on CELLSTAR FourWell Plates with
dimensions 85 mm×30 mm, using the methods described in [21]. A full plate of
worms is washed in 3 steps of 5 min. At T = 0 s worms are placed at about 25%
up the gradient, in a tiny droplet. For analysis, we have only included trajectories
with a length of at least 10 mm. Due to the shorter trajectory length and low turn
count of some worms, the dorsal-ventral axis cannot always be reliably inferred.
P values are computed using a t-test assuming a two-tailed probability.
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Figure S 3.13: Turns are triggered when the experienced concentration gradient decreases.
The sensed gradient is computed from the centroid position of the worm, assuming a
linear gradient.
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Figure S 3.14: The rotational drift during chemotaxis up a salt gradient is reduced, but
significantly influences the chemotactic index. (A, left) Worms performing chemotaxis
have reduced rotational drift compared to freely moving worms. (A, right) The standard
deviation of the mirrored absolute rotational drift distribution weighted by trajectory
length, bootstrapped for batches. The rotational drift in freely moving worms is estimated
in 10 min windows. (B) Trajectories with a higher rotational drift or turn rate have a lower
chemotactic index. Trajectories with a negative chemotaxis index or shorter than 10 mm
are omitted. Error bars indicate 95% bootstrapped confidence intervals.
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4
LONG TIMESCALE WHOLE-BRAIN

IMAGING OF SEMI-IMMOBILIZED C.
elegans REVEALS RESPONSE,

OUTPUT AND MODULATION OF

COLLECTIVE NEURONAL MODES

ABSTRACT

Recent experimental advances have enabled recordings of brain-wide dynamics
at single-neuron resolution in the nematode C. elegans. A major goal of such
efforts is to link the collective dynamics of neural processing to sensory input and
behavioural output, but whole-brain imaging measurements performed so far
have been of short duration (typically < 10−20 minutes), limiting the statistical
power of stimulus-response measurements within individuals, and/or performed
on paralysed worms, rendering the connection to behavior output indirect. To
overcome these limitations, we developed a pipeline combining widefield decon-
volution microscopy with microfluidics, that allows measurement of brain-wide
neuronal dynamics of confined, but not paralyzed, worms as they experience
temporally modulated chemical stimuli over durations exceeding one hour. This
semi-immobilized configuration precludes locomotion by confinement within a
PDMS channel, but permits deformations of the worm anatomy parallel to the
axial direction of the confining channel, which we analyse as a one-dimensional
behavioural output of brain activity. We demonstrate the utility of this approach
by testing three hypotheses inspired by recent work on C. elegans brain dynamics
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and behavior: (i) the collective motor-command hypothesis, which postulates
that collective patterns of neural dynamics recently discovered by whole-brain
imaging in paralysed worms represent motor commands encoded by the cor-
related dynamics of many neurons, (ii) the apparent stochasticity hypothesis,
which postulates that the influence of ensemble neural dynamics can render
the response of individual neurons to sensory stimuli appear stochastic, and (iii)
the brain-state neuromodulation hypothesis, which postulates that the action of
extrasynaptic neuromodulators can trigger switches between functionally distinct
global brain states — persistent epochs of brain-wide neural activity with distinct
dynamical patterns. Our experiments yielded positive evidence in support of all
three hypotheses. Taken together, these results provide direct evidence that col-
lective modes of neural dynamics link both sensory stimuli and neuromodulation
changes to behavioural output, and demonstrate the power of our approach for
whole-brain stimulus-response measurements.
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4.1. INTRODUCTION
Understanding how the brain internalises and processes information to actuate
organism-scale behaviour is one of the main goals in neuroscience. At first sight,
the sheer complexity of the problem is nothing short of daunting — how can
we hope to understand the collective activity of billions of neurons, actuating
a myriad of anatomical and physiological processes to control behavior? One
promising approach is to start with the simplest model systems, in which neural
dynamics and its output behaviors can be followed with relative ease and at a
higher degree of completeness. The nematode C. elegans presents unique advan-
tages for such studies of brain-wide information processing due to its transparent
and compact anatomy that allows non-invasive optical imaging of brain-wide
neural activity. The hermaphrodite body layout is conserved across individuals,
with a nervous system consisting of just 302 neurons, with a fully mapped con-
nectome [1]. Around 200 of these neurons are concentrated in the head region,
making it feasible to characterise the dynamics of most, if not all, neurons of
this compact brain simultaneously. In addition, the behavioural repertoire of
the worm is readily quantifiable by imaging, and sophisticated analysis methods
are now available to parameterize its postural and motile trajectory dynamics
[2–5], making it a particularly compelling system in which to study how the brain
controls organism-scale behavior.

In the last two decades, genetically encoded calcium indicator (GECI) pro-
teins, which enable optical measurements of neuronal activity in vivo [6], have
emerged as a powerful tool for characterising neural circuits — subgraphs of the
connectome involved in specific tasks underlying sensing and behavior. The
ability to genetically target the expression of these optical reporters to specific
neurons has proved especially powerful in C. elegans, given its unique status as
a genetic model organism with a fully mapped connectome, leading to the defi-
nition and functional characterization of numerous circuits in the worm’s brain
[7–12]. While these circuit-level interrogations have been powerful in connecting
specific sets of neurons to various sensory and behavioural functions, the brain is
a highly connected network and it can be expected that the activity of its many
subcircuits is not independent from one another [13]. Indeed, despite the many
insights delivered by circuit-level studies, it remains uncertain whether and to
what extent brain function can be understood as the sum of many individual
circuits.

A complementary approach, made possible by continued advances in GECI
technology, as well as fast volumetric microscopy methods, is optical imaging
of neural dynamics at the level of the entire brain. In a number of model or-
ganisms with compact brains, including Drosophila [14], zebrafish [15], and C.
elegans [16–24], it is now possible to optically record the activity of the majority of
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brain neurons simultaneously, at single-neuron resolution. In C. elegans, these
approaches are now able to resolve the activity of the majority of the neurons in
the head region, aided by nuclear localization of the GECI proteins to facilitate
3D segmentation of individual neuron signals [16]. In C. elegans so far, such
brain-wide neuronal recordings have been predominantly performed on para-
lyzed worms, with a few exceptions on freely moving worms [19, 20, 25, 26]. Most
of these ’whole-brain’ imaging experiments in C. elegans have been performed
using spinning disc confocal microscopy, which limits the maximum recording
duration due to strong bleaching (with a notable exception [26]), although some
studies have used wide-field deconvolution imaging [21] or light-sheet imaging
[24, 27]. Finally, repeated stimulus-response measurements to study the brain-
wide neural responses have only been performed on a limited number of stimulus
types, namely heat stimuli delivered by infrared lasers [20, 21], and oxygen stimuli,
delivered in the gas phase [16, 18].

In this study, we have implemented a contrasting approach to whole-brain
imaging, on worms that are semi-immobilized (rather than paralysed or freely
moving) and that enables long timescale recordings exceeding 1 h by using wide-
field deconvolution microscopy, fast modulation of arbitrary chemical stimuli in
the liquid phase, and simultaneous measurement of confined worm motion as a
behavioural output. To confine the worm and apply chemical stimuli, we use a
microfluidic device, first described by Chronis et al. [28], in which the worm is
sufficiently constrained to preclude locomotion, but still allows for anatomical
deformations within the confining channel. This stretch-shrink motion serves as
a one-dimensional behavioural output to which brain dynamics can be related in
our analysis.

Although a number of studies to date have used whole-brain imaging to re-
late collective neural activity to motile behavior, the exact relationship between
anatomical movement and brain dynamics remains an open question. In paral-
ysed worms in the absence of applied stimuli, neuronal dynamics were found to
be low dimensional: the top three modes from a principal component analysis
(PCA) accounted for 65% of the variance [18]. By analysing how specific neu-
rons associated with different locomotor behaviours (forward, backward, and
turning) were represented in each of these modes, it has been hypothesised that
the collective neural activity represented in the observed PCA modes encodes
motor commands [18]. In contrast, whole-brain imaging studies in freely moving
worms have reported neural dynamics that appear more complex [19, 20, 25],
with the top PCA modes capturing a smaller fraction of the total variance and
predicting the simultaneously acquired behavioural dynamics (speed and curva-
ture) relatively poorly. A sparse linear model trained on the joint set of neural and
behavioural data performed much better in predicting the same dynamics [25].
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Thus, the validity of the ’motor-command hypothesis’, in which collective modes
of brain-wide neural activity (such as those resolvable by PCA analysis) drive
the worm’s anatomical motion remains unresolved. Our approach of studying a
semi-immobilized (i.e. confined, but not paralyzed) worm provides a compro-
mise between paralysed and freely moving, and thus may help to bridge these
contrasting observations of previous studies.

Our combination of long-timescale whole-brain recordings with microfluidic
control of chemical stimuli inputs greatly facilitates the study of sensory pro-
cessing at the level of brain-wide neural dynamics. C. elegans responds to a rich
set of chemical stimuli, sensed by its chemosensory neurons [29] with distinct
behavioural responses. For instance, the sensory neuron ASH senses aversive
stimuli (such as copper, pH, and SDS), which triggers an escape response [30, 31].
The escape response is a highly stereotyped behaviour involving a well-defined
sequence of behavioural motifs [32] that is crucial for survival upon encountering
noxious environments [33]. By contrast, the chemotactic strategy of biassing the
worm’s random walk motility in response to gradients of stimuli (such as NaCl)
involves stochastically modulating the frequency of ’pirouettes’ (bouts of reversals
and sharp turns) [34] paired with gradual orientation corrections during forward
crawling [35]. NaCl is sensed by the ASE neuron pair [36], which has an asymmet-
ric functional relationship where ASEL and ASER activity increases after a sudden
increase or decrease in salt concentration, respectively [37]. In addition, the ASER
neuron encodes information of the preferred concentration [38] (associated with
food), making the neuronal response when provided with a salt gradient experi-
ence dependent [10, 39]. How the response of repetitions of these distinct stimuli
is encoded by the brain has not been studied using whole-brain imaging.

Given that behavioural responses to many stimuli demonstrate apparent
stochasticity (i.e. variable responses from trial to trial) [34, 35], it can be expected
that brain-wide neural activity responses could also be highly variable, requiring
many repeats of identical stimuli to characterise responses in statistical terms.
Indeed, the only study to date that characterised the response of brain-wide ac-
tivity patterns to repeated stimuli (by oxygen partial pressure changes) revealed
highly variable responses at the level of neural activity trajectories in PCA space
[18]. Furthermore, even in the absence of (externally) applied stimuli, brain-wide
neural activity exhibits significant temporal dynamics [18–20, 25], and distinguish-
ing responses to stimuli from these ‘resting-state dynamics’ would again require
many repeated stimulations. Interestingly, at the circuit level, it was recently
established that the variable response of individual interneurons in an olfactory
circuit depends on the state of other neurons within the circuit [12]. Combined
with the resting state dynamics observed at the whole-brain level [18–20, 25],
this raises the question of whether such ’network states’ that generate apparent
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stochasticity are confined to local circuits, or rather are attributable to the larger
collective dynamics observed across the whole brain. With sufficient statistics for
brain-wide neural activity patterns both in the resting state dynamics and during
response, it may be possible to address this ’apparent stochasticity hypothesis’ at
the whole-brain level.

Neural dynamics in the brain can be affected not only by external stimuli, but
also by neuromodulator molecules, such as biogenic amines [40] and neuropep-
tides [41], that are secreted by the neurons themselves, often into extrasynaptic
space to produce effects over longer length and time scales compared to synaptic
neurotransmission. Because of these long-range effects, it is of interest to study
neuromodulation beyond the circuit level, using whole-brain imaging. Among
these chemicals are four biogenic amines used by C. elegans, that can be ex-
ogenously applied and function as neuromodulators to modulate behaviour in
response to the environment: serotonin, dopamine, tyramine, and octopamine
[42–46]. We study the whole-brain response of the exogenously applied sero-
tonin to test the hypothesis that long-range action of neuromodulators can trigger
switches between global brain states — persistent epochs of brain-wide neural
activity that affect organism-scale behavior [47, 48].

In what follows, we first describe our experimental setup and the general
features of the measured brain dynamics. Subsequently, we demonstrate the
power of our approach by experiments that address each of the three hypotheses
introduced above, namely: (i) the collective motor-command hypothesis, which
postulates that collective patterns of neural dynamics recently discovered by
whole-brain imaging in paralyzed worms represent motor commands encoded by
the correlated dynamics of many neurons; (ii) the apparent stochasticity hypothe-
sis, which postulates that the influence of ensemble neural dynamics can render
the response of individual neurons to sensory stimuli appear stochastic; and (iii)
the brain-state neuromodulation hypothesis, which postulates that the action of
extrasynaptic neuromodulators can trigger switches between functionally distinct
global brain states.
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4.2.1. MEASURING BRAIN DYNAMICS OF A SEMI-IMMOBILIZED WORM IN A

MICROFLUIDIC CHIP.
To understand how the brain processes information, it is useful to relate the
brain activity dynamics to the sensory inputs and behavioural output. The in-
terpretation of complex brain dynamics is facilitated when these inputs and
outputs are simple. Additionally, the non linearity of the brain dynamics requires
thorough sampling. Therefore, our approach to studying whole-brain dynamics
uniquely combines two elements. Firstly, we record whole-brain dynamics in
semi-confined worms in a microfluidic device described by Chronis et al. [28],
instead of fully paralysed or freely moving worms used hithero (Figure 4.1A). This
allows the direct delivery of a wide range of stimuli, which are carefully timed
by switching between two flow channels, typically a buffer medium and a stim-
ulus. In addition, a confined worm can deform along the axis of the channel,
contracting and extending, providing a low-dimensional behavioural output. This
motion is captured by a single parameter henceforth referred to as ’stretch’ (quan-
tified by the average displacement D of tracked neurons along the direction of
the confining microfluidic channel, measured in units of µm; see Methods), with
a positive and negative sign corresponding to extension (positive stretch) and
contraction (negative stretch) of the worm’s head region (Figure 4.1B). This pro-
vides a means to investigate the global brain dynamics directly in the context of
behaviour. Secondly, by using widefield-fluorescent imaging with deconvolution
(a method also used by Kotera. et al. [21]) we were able to record calcium signals
of head neurons for a timescale exceeding an hour with a frequency of 2.0-2.5 Hz
(see methods). This allows us to not only study neurons directly responding to
chemical stimuli, as was recently done by Yemini. et al. [49], but also to study
dynamics of potentially stochastically responding neurons, such as the global
modes described by Kato. et al. [18].

We reasoned that increasing the measurement duration to 1 h could be a
viable strategy to more intensively sample brain dynamics with relatively modest
influence of stress factors. Gonzales. et al. have demonstrated that microfluidic-
induced sleep-like behavioural quiescence (which might be stress-induced [51])
in large arenas is still modest at this time scale for large microfluidic devices [52].
Semi-immobilized worms in a comparably small microfluidic device used in that
study, however, demonstrated elevated sleep behaviour, possibly related to touch,
but not paired with an elevated daf-16 related stress response [52]. Thus, while
confinement can induce a sleep-like state, such episodes are generally brief, and
about half of the worms studied in Gonzales et al. [52] demonstrated no sleep
episodes for measurement durations up to 1 h.

To study brain dynamics over long time scales, we constructed a wide-field
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Figure 4.1: Whole-brain imaging approach for long timescale measurements with a
behavioural output. (A) Contrasting experimental paradigms for whole-brain imaging in
C. elegans. Left: Past whole-brain recordings in C. elegans were performed on either (top)
paralyzed (indicated by the green shading) worms [18, 22, 23] or (middle) freely moving
(indicated by black arrows) worms [19, 20, 23], whereas in this study, we (bottom) confined
worms, both with and without paralysis, with a stimulus fluid flow (grey arrows). Right:
The use of wide-field imaging allows measurements exceeding an hour, far exceeding
the typical recorded times on previous studies on paralysed [18] or freely moving [50]
worms. (B) The average stretch D of each neuron in µm, along the body axis. A positive
and negative stretch correspond to extension or compression of the body, respectively.

fluorescent imaging system that simultaneously captures the intensity of two
fluorophores pan-neuronally expressed and localised to the nucleus: a red fluo-
rophore (tagRFP/tagRFP-T) used to localise and track neurons through time, and a
calcium-sensitive green fluorophore (GCaMP6s) to record neuronal dynamics (see
methods). Computing the green/red ratio largely corrects for spurious changes
in the segmented green fluorescence due to movement and/or deformation of the
neuronal nuclei (motion artefacts) and is used for analysis of brain dynamics [19].
We modified the tracking algorithm of Nguyen et al. [53] to improve robust perfor-
mance under the large deformations of the worm’s brain inside the microfluidic
channel (see methods).

Deformations of the brain might, despite using the ratiometric signal, affect
the obtained neuronal time series as a result of chromatic aberrations of the op-
tical setup or wavelength-dependent properties of absorption refraction of the
sample itself. Therefore, to test if the neuronal time series represent true changes
in calcium levels, a comparison of the time series dynamics was made between
recordings of the AML70 strain expressing the calcium-sensitive GCaMP6s and
the AML175 control strain expressing the calcium-independent GFP [50]. The
ratiometric signal of the AML70 strain clearly reveals a wide dynamic range both
between neurons and within neurons over time, with distinct groups of neurons
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with correlated dynamics (Figure 4.2A). Correlated dynamics can also be observed
across neurons in the control strain AML175 (Figure 4.2B). However, the modu-
lation amplitude is much lower compared to the base line fluorescence, and the
remaining dynamics are mostly dominated by noise.

It is possible to test whether the obtained intensity time series reflect true
changes in GCaMP ([Ca2+] activity or are the result of motion artifacts. Firstly,
as a result of deformation artefacts, the red and green channels are expected to
respond with similar relative magnitude to the stretch resulting from the worm’s
motion (see methods), which can be quantified by the coefficient of variance
(henceforth CV). Whilst the variability in the red channel of the AML70 strain
is comparable to the control strain, the green channel shows a much broader
distribution across neurons of the CV with on average higher magnitudes (Fig-
ure 4.2C). In contrast, the red and green channels of the control strain reveal
dynamics of similar magnitude (Figure 4.2D). This indicates that the amplitude of
green-channel dynamics is much larger than expected from motion artefacts. Sec-
ondly, intensity dynamics as a result of motion artefacts are expected to occur
simultaneously with the motion. To examine the relative timing of worm move-
ments and changes in the fluorescence signals, we performed peak detection
on the cross correlation of the stretch with the fluorescent signals (Figure S4.1,
see methods). As expected for the control strain, both the red and ratiometric
channels have, on average, a lag of at most a few seconds with largely overlap-
ping distributions (Figure 4.2F). However, the ratiometric signal of the AML70
strain shows that a large fraction of the neurons are time-delayed, with 55% of the
neuronal activities (green/red ratio) exhibiting a larger delay time than the 90th
percentile of the delay of the red channel (Figure 4.2E). We therefore conclude
that the obtained neuronal time series from unparalyzed worms constrained
in our microfluidic channel predominantly reflect changes in neuronal calcium
concentrations, rather than artefacts that arise from motion and/or deformations
of the segmented neuronal nuclei.

4.2.2. COLLECTIVE NEURONAL DYNAMICS OF SEMI-IMMOBILIZED WORMS

ARE HIGHLY NON-STATIONARY OVER LONG TIMESCALES

A previous whole-brain imaging study on paralysed worms found that global
brain dynamics are low dimensional, with 65% of the total neural activity variance
captured by the top three principal modes in a PCA analysis [18]. We performed
a similar analysis to describe and create a framework in which to analyze the
global brain dynamics in semi-immobilized worms for longer time scales and to
compare global brain dynamics of paralyzed worms described in literature. To
identify global patterns in the dynamics, in an analysis similar to Kato. et al. [18]
we conducted a principle component analysis (see methods).
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Figure 4.2: Caption is on the next page.

Similarly to Kato. et al., a large portion of dynamics can be described by a few
dimensions (Figure 4.3A-D), with the top three modes accounting for 27%±7.4%,
11±2% & 8±2% (SEM, N=9) of the variance. Both in our measurements and the
paralysed worms from Kato. et al., the principal mode captures a much greater
fraction of total variance compared to the second mode (in our measurements
by a factor of 2.60±0.25 (SEM), N = 9 ), and describes the dynamics of two large
anti-correlated oscillatory clusters of neurons. This suggests that the measure-
ments describe similar dynamics and that the principal mode is robust under
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Figure 4.2: Neuronal Ca2+ dynamics dominate over motion artefacts in the observed
GCaMP intensity changes. (A) An exemplary measurement of the neuronal ratiometric
signal measured of 116 neurons from the AML70 strain expressing GCaMP6s and TagRFP
reveals correlated dynamics across neurons. Neurons are sorted by the dendogram order
constructed from hierarchical single linkage clustering on the euclidean distance. (B) The
ratiometric signal of an exemplary control (AML175) measurement shows comparatively
small variation across and within the 136 tracked neurons over time. The plotted activities
are smoothened using a Savinzky-Golay filter with a second-order polynomial on a 5-
second window. Neurons are sorted using the same method as described in panel A. (C)
The coefficient of variance (CV) of the neuronal GCaMP6s signals (green) reveals a wider
distribution with a (on average) larger mean as compared to the TagRFP (red) (N = 2). (D)
The variability of the GFP (green) and TagRFP (red) channels is similar for the control
strain (N = 3). (E) The delay time of the maximum cross correlation (see methods) of the
deformation and the fluorescent signals is larger for strongly correlated neurons. The red
channel shows almost no delay, whereas the ratiometric signal shows a large number of
neurons that have a delayed response. (F) Both the TagRFP and the GFP/TagRFP signal
show much smaller time offsets. Time derivatives are computed using a Savinzky-Golay
filter with a 4th order polynomial on a 10 s window). For panels E and F, only delays of
neurons with a correlation of at least 0.27 are included (Figure S4.1).

paralysis. The next two lower modes also show oscillatory dynamics. To study
the relationship between the top two modes, in an analysis analogous to Kato et
al., phase space trajectories were plotted for the time series of the top two modes
(Figure 4.3E). These trajectories reveal patterns that are complex yet also possess
visually discernible regularity (Figure 4.3E). In particular, the trajectories draw out
paths that are relatively smooth and loop-like, despite considerable variability in
the size, location, and orientation of loops. The overall cyclical nature of these
trajectories was often more clearly demonstrated in phase-space flux diagrams,
where vortex-like flux patterns could be observed in the field of flux vectors in
Mode1-Mode2 space (Figure 4.3F).

It should be noted that the second and lower modes do not unambiguously
contrast from subsequent modes in terms of explained variance, and hence
could be subject to rank-swapping across individual measurements. Indeed, we
noticed variability in the Mode1-Mode2 phase relationship across measurements.
Therefore, caution is required in the comparison and interpretation of phase-
space patterns in the Mode1-Mode2 plane depicted in Figures 4.3E,F).

The long duration of our measurements enabled the investigation of changes
in these dynamics over extended times, revealing strong non-stationarities. Peri-
ods of neuronal quiescence, in which activity of the top three modes are essentially
silent, were observed after ∼ 20 min. These quiescent intervals contribute to an
increased inter-peak interval, defined as the time duration between subsequent
peaks of the principal mode time series, with a duration ' 1 min of the princi-
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pal mode dynamics (Figure 4.3G, S4.2). These periods of brain quiescence are
strongly reminiscent of a recently reported confinement-induced sleep-like state
in C. elegans [52]. Gonzales et. al. reported periods of motile inactivity, paired
with a reduction of brain activity of most neurons, but could only track 10 neurons
simultaneously. Our measurements show that the brain quiescent state is paired
with stretch inactivity, which remains constant at large positive values (Figure
4.3C, black). An extension of the body suggests a relaxation of the body wall
muscles, which is associated with sleep [54]. We can therefore confirm that the
brain quiescent state is the microfluidic-induced sleep state, and show that this
sleep state is paired with a quiescent state at the level of mode dynamics.

Non-stationarities can also be observed in the phase relationship of the first
two modes, with decreasing regularity in the phase-shape trajectories over time
and a change in the amplitude of the oscillations (Figure 4.3E III-VIII). These
changes in the phase-space relationship over the course of the measurement are
paired with noticeable changes in activity of some of the strongly loaded neurons
onto the modes: for instance at the onset of the measurement, the principal
mode consists of two large anti-correlated clusters of neurons, where towards
the end one of the clusters exhibits virtually no activity, while in the other cluster
some neurons have decreased considerably in activity. This suggests that phase
relationships among these collective modes and the neurons contributing to them
are not fixed, but may change depending on conditions.
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Figure 4.3: Caption is on the next page.
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Figure 4.3: Activity dynamics of the neuronal population demonstrate irregular low-
dimensional oscillations and strong nonstationaries. (A) A representative 55 min
recording of the brain activity of an unparalyzed worm in a microfluidic channel. (B) The
mode loadings of each neuron of the first 3 Eigenmodes. Blue, orange, and green are the
first, second, and third mode respectively. (C) Time series corresponding to the first 3
modes and the stretch, D (black). (D) The loadings of the first 10 modes (blue) and the
respective cumulative explained variance (black), shows the principal mode is dominant.
(E) The phase space trajectories of mode 1 and 2 reveals cycles and non-stationarity of
the dynamics. (F) A clear phase relationship between the first two principal modes can be
observed from a flux plot, computed over the entire recording. (G) A longer interpeak dis-
tance of the first mode is observed after longer times (N = 9). Top: Peaks are selected from
the local maxima, larger than the standard deviation of the mode, and with a minimum
distance of 50 data points (about 20 s). Bottom: Cumulative interval distribution of the
inter peak time of the first mode loading, corresponding to a rise in the cluster dynamics
for times t < 15 min (yellow) and t > 15 min (green). The dashed lines correspond to the
median value of the respective condition.

4.2.3. THE PRINCIPAL MODE OF BRAIN DYNAMICS CLOSELY REFLECTS CON-
FINED WORM MOTION

Our observation that global brain dynamics of confined, yet not completely im-
mobilized worms closely resemble those previously reported for paralyzed worms
provided an opportunity to directly test whether and how the observed collective
modes relate to motion of the worm. The study of Kato et al. established the
compelling hypothesis that the stereotypic phase space trajectories of the top
three modes of collective neuronal dynamics map to different aspects of behav-
ior, based on separate experiments in freely moving worms that observed the
activity of a small subset of mode-associated neurons in freely moving worms.
Yet a subsequent whole-brain imaging study by Scholz et al. failed to resolve
similar stereotypical trajectories, and thus the relationship between collective
modes of neuronal dynamics observed under paralysed conditions and worm
motion under non-paralyzed conditions remains an unresolved issue. Our ex-
perimental configuration enables a direct comparison of the collective neuronal
dynamics with the simultaneously observed stretch behavior, D of worm’s head
region, respectively (Figure 4.1B).

To assess the relationship between the stretch behaviour and neuronal dy-
namics, a cross-correlation analysis was performed between the dynamics of
head stretching and those of individual neuronal and collective mode dynamics,
respectively (Figure 4.4A; see Methods). For individual neurons, the maximum
absolute cross-correlation value (see methods), C , is on average 0.31±0.01 (95%
CI, bootstrapped), but broadly distributed (Figure 4.4B, gray bars) (dominated
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by spurious correlations) with a long tail up to 0.74. A similar analysis on mode
dynamics reveals that the principal mode strongly correlates with the head stretch
— on average 0.58±0.07 (95% CI). In contrast, mode 2 and 3 have a correlation of
0.34±0.06 and 0.34±0.09 (95% CI) respectively. In 7 out of 8 measurements, the
principal mode ranked as the top correlated mode with stretch.

The strong cross-correlation between the principal neuronal mode and stretch
behaviour is not imposed by the quiescence behaviour, which is paired with ex-
pansion, as we found similar correlations for worms not exhibiting quiescent
behaviour (exempt of a non-quiescence time period shown in Figure 4.4B, in-
set). These results show that the principal mode is strongly related to stretching
behaviour.

The strong relation between mode and stretch dynamics raises the question
of whether and how the principal mode might respond to immobilisation of the
worm. We therefore performed experiments in which the worm was initially not
paralysed and free to move its head along the dimension along the confining
channel, and 10 mM of the paralytic tetramisole was added halfway through the
measurement (Figure 4.4B, S4.3). Upon adding the paralytic, the position of the
head moved towards the body as a result of the body wall muscle hypercontraction,
and the movement of the head was drastically reduced in amplitude, while the
oscillatory dynamics of the principal mode persisted. This observation shows
that, although strongly correlated with motion, motion is not required for the
dynamics of the principle mode.
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Figure 4.4: The principal mode of whole-brain dynamics is strongly related to stretch-
shrink behavior of the worm’s head. (A) The derivative of the stretch is strongly corre-
lated with the mode time series. On the x-axis is the maximum absolute cross correlation
Cmax = max|C (Ḋ ,Mode)| (see methods) between the stretch derivative and the first 3
modes time series, or time derivative of individual neuron activity. The correlation is
much larger than that of most lower order modes or individual neurons. This plot con-
tains data from 8 different measurements of semi-confined, unparalyzed worms. (B)
Upon addition of the paralytic (10 mM Tetramisole) at t = 15 min (shaded region), fluc-
tuations in the average position of the neurons (blue) are reduced, while the principal
mode dynamics continue (computed from the entire time series) (orange). The orange
line represents the integrated dynamics of the principal mode. Inset: During periods of
high activity, stretch dynamics and principal mode dynamics are correlated.

4.2.4. GLOBAL BRAIN DYNAMICS UPON PULSE STIMULATION WITH A NOX-
IOUS CHEMICAL

We seek to study the whole-brain response towards different chemical stimuli.
This includes studying the individual, but also the collective dynamics at the
level of the modes, as Kato et al. reported stochastic modulation of the mode
dynamics towards repeated exposure to O2 [18]. In order to obtain data of stochas-
tically responding neurons, long timescale measurements are required. On semi-
contrained worms, microfluidic-induced sleep may occur within an hour in a
confined arena, causing a decreased sensitivity to externally applied stimuli [52].
However, these sleep states had considerably decreased upon paralysis [52]. We
therefore measured brain activity on paralysed worms (see methods) without
stimulus for a duration of 60 min (Figure S4.4). No mode quiescent states could
be observed. Therefore, stimulus response measurements are performed on
paralysed worms.

Noxious stimuli trigger in C. elegans an acute behavioural response that en-
ables rapid avoidance of the sensed noxious condition. We used our whole-brain
imaging setup to simultaneously follow both individual and collective neuronal
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responses to SDS, a noxious detergent. SDS is sensed in the head region by the
amphid ASH neurons, and in the tail region by the phasmid PHBA/B neurons,
which trigger an escape response (rapid reversal followed by a sharp turn) and ac-
celeration response, respectively [30]. In our experiments, the worm experiences
applied chemical stimuli primarily at its head, given the geometry of the device,
in which only the nose of the worm protrudes into the stimulus flow channel (Fig.
4.10). The SDS stimulus was delivered in brief (5 s) pulses to mitigate potential
toxicity, but was applied repeatedly to enable statistical analyses of neuronal re-
sponses. Each stimulus pulse delivered SDS at a concentration of 0.1%, which
has been reported to cause in the ASH neuron a fast rise of [Ca2+] upon addition
taking ≈ 5 s to decrease in concentration upon removal [55]. In each stimulus
repetition cycle, the 5 s stimulus pulse was followed by a 60 s recovery period in
which buffer flowed through the stimulus channel.

To quantitatively determine which neurons are significantly responding to the
addition or removal of the stimulus, the neuronal activity was cross-correlated
with the stimulus. We then extracted the cross-correlation value C for each neu-
ron (see Methods) and computed its cumulative distribution (Figure 4.5A, blue
curves). This quantity is insensitive to the sign of the neuronal response or delays
of response with respect to the stimulus. To distinguish between spurious corre-
lations and significantly correlated neurons, the distribution of C from stimulated
worms was compared against that of a control group, obtained by applying the
same cross-correlation analysis between the stimulus time series of these exper-
iments and neuronal time series from other experiments in which no stimulus
was applied (Figure 4.5A, Black). A substantial fraction, 16.4%±1.9% (obtained
by bootstrapping for stimulated worms and using CI/4 where CI is the 95% confi-
dence interval), of the identified neurons had a value of C equal to or greater than
the 99th percentile of the control group.

These significantly correlated neurons demonstrated diverse response wave-
forms, differing in the sign (positive or negative) and timing (defined by the delay
at which the cross-correlation reaches it speak value, C ). Single-neuron time
series from a representative experiment are shown in Figure 4.5B and S4.5). Some
neurons respond immediately at the onset of the stimulus, and also immediately
relax upon removal (Figure 4.5B, I). In other neurons, the onset of response follows
an initial lag, with the change in activity typically starting a few seconds after the
stimulus (Figure 4.5B, right). Although most neurons responded with an increase
in GCaMP signal (and hence increase in Ca2+ concentration), there were also
neurons that responded with a decrease (Figure 4.5B, III). We also identified a
neuron demonstrating strong habituation, with a strong response upon the first
of the SDS stimulus pulse, but weaker responses upon subsequent repetitions
(Figure 4.5B, IV, S4.5A).
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These strongly responding neurons only represent a minor fraction of the
total loading of the top modes. For example, in the experiment of Figure 4.5B, the
17 significantly responding neurons represented 19, 4 and 3% respectively, of the
total variance of the top 3 modes. This does not necessarily mean that the mode
itself is unresponsive; it remains possible that a collection of neurons that are
modulated only weakly at the individual level could collectively generate a more
significant response. Indeed, Kato et al. [18] reported a rather subtle entrainment-
like response of collective neuronal activity in response to cyclic oxygen-level
shifts. To test whether a mode is responding significantly to a stimulus is not
trivial, as it ideally requires knowledge of the dynamics of the same mode in
the absence of the stimulus under the exact same conditions. Since no such
information is available, no analysis is perfect, and assumptions have to be made
about the mode dynamics in the absence of a stimulus. We therefore used two
approaches: (1) comparing the mode correlations of a mode with those of other
modes of unstimulated worms, and (2) comparing the mode to generated time
series with similar dynamics.

To test for responses at the collective level, we applied to the top PCA modes
the same cross-correlation analysis as that for single neurons, described above.
5.2±0.7% of the modes across measurements correlate more strongly with the SDS
stimulus than the 99th percentile of a control group of modes from unstimulated
worms (Figure 4.5C). Thus, the fraction of PCA modes responding to the SDS
stimulus is considerably (∼ 3-fold) lower than the fraction of individual neurons
that respond to the same stimulus. In the representative experiment of Figure
4.5B, these significantly correlated modes included the principal mode, as well
as several lower modes (Figure 4.5D). The lower modes (4 and 9) consist mainly
of the previously identified responding neurons. In an alternative analysis, we
modelled each mode’s response waveform as a stochastic process and asked
whether its amplitude of modulation is greater than that expected for a simulated
mode that is blind to the stimulus but otherwise obeys similar statistics as the
measured mode. This analysis is solely based on the observed dynamics of the
mode itself, albeit with simplifying assumptions about the waveform. Specifically,
the observed time series are reduced to a 2-state telegraph process (assuming
that it assumes either an ON or an OFF state at every moment in time) by training
a Hidden Markov Model (HMM) on the measured data (Figure 4.5E, blue curve,
see methods). To simulate stimulus-blind realizations, these binary time series
were randomised by separately shuffling the ON- and OFF-state intervals, thus
scrambling the temporal relationship with stimulus input. To test whether the
resulting probability curve is significantly modulated, the variance of the averaged
on-probability pON of the measured data is compared to that of the randomized
time series (Figure 4.5E, shaded regions). The results confirmed that the principal
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Figure 4.5: Caption on the next page.

mode is significantly modulated (in 3 out of 4 worms), and also identify the
lower mode number 4 as significant (p < 0.05), and modes 5 and 9 as strongly
significant (p < 0.001). In addition it includes the second top mode as significantly
modulated. Taken together, these results show that the neuronal response to a
brief pulse of SDS involves many individual neurons that respond stereotypically,
and which contribute mainly to lower (rank> 3) PCA modes. In addition, they
revealed stochastic modulation of some of the top PCA modes, possibly related to
reversal and the sharp turn, describing the collective dynamics of many neurons
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Figure 4.5: Response of individual neurons and collective modes to a repeated 0.1%
SDS pulse stimulation. (A) An interval distribution of the maximum absolute cross cor-
relation, C , of the derivative of the input signal with the derivative of individual neurons
and (C) PCA modes reveals that a significant fraction of the neurons or modes of SDS-
stimulated worms (blue, N = 4) is stronger correlated compared to unstimulated worms
(black, N = 8). Transparent curves represent individual measurements. The black dashed
line indicates the 99% value for nonstimulated worms. Cross correlations are computed
for lag times up to 1 min. The time derivative of the stimulus is computed using the same
filter (see methods) as the neuronal signals. (B) (left) Time series of exemplary signifi-
cantly responding neurons with distinct signatures from a single measurement: a (I) fast
(II) delayed, (III) negatively, (IV) habituation responding neuron. Thin blue lines represent
times series of individual stimulus repeats. Thick blue lines with a shaded region show the
average response with 95% CI, by bootstrapping for repeats. The grey region indicates the
timing of the SDS stimulus. (right) The time lag corresponding with the maximum value of
C for each of the significantly correlated neurons, including the exemplary neurons (pink
bars). Time series of the other neurons can be observed in figure S4.5. (D) Significantly
responding modes of an exemplary measurement include the principal mode describing
global brain dynamics and other top-loaded modes. Exemplary mode activity of the top 9
modes and the bottom mode of a representative worm (same as in panel B). The number
on the bottom right indicates the accumulated squared weight of the eigenvector (which
adds up to 1 for all neurons for each mode) of the 17 significantly responding neurons
identified in panel B. In the top-right corner, some modes show ∗∗∗ to indicate that such
a correlation is not observed in any of the 760 reference modes. (E) Two-state time series
of the on-probability p across repetitions for the top 9 modes and bottom mode reveals
significant modulation. Mode time series are modelled using a 2-state Hidden Markov
Model (HMM) (see methods). To test for significant modulation of the time signal, the
standard deviation of the probability of a high state (blue shaded region is < p >±σp ) is
compared with bootstrapped time series, where the duration of the on and off states are
separately shuffled (repeated 10k times). Red shaded region indicates the mean value of
p ± the 95% CI of the standard deviation of the bootstrapped time series. Significantly
responding modes are indicated by ∗ (p ≤ 0.05) or ∗∗∗ (p < 0.001)

even though these dynamics are largely composed of neurons that were not
identified individually as significantly correlated.

4.2.5. GLOBAL BRAIN DYNAMICS UPON STEP STIMULATION WITH A CHEMO-
TACTIC STIMULUS

By contrast to strong noxious stimuli such as SDS, which trigger a stereotyped
escape response in freely moving worms, chemotactic stimuli produce a more
subtle probabilistic modulation of the ’pirouette’ frequency (bouts of sharp turns
and reversals) to favourably bias their random walk [34], as well as modulation of
crawling path curvature to steer towards favourable gradient directions [35]. To
test how both individual neurons and collective modes of neuronal dynamics are
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modulated during such chemotactic stimuli, we monitored global brain dynamics
under repeated stimulation of the worm with NaCl. NaCl is known to be sensed
primarily by the ASE neuron pair [36], where the right neuron (ASER) increases
Ca2+ concentration upon a downward NaCl concentration change and the left
neuron (ASEL) does so upon an upward NaCl concentration change [37]. As the
behavioural response could integrate longer timescales as compared to a noxious
stimulus such as SDS, we applied a waveform that repeats successive up- and
down-steps of varying duration (30, 60 and 120 seconds) between the preferred
concentration (50 mM, in which worms were grown) and a higher concentration
(75 mM) of NaCl. The steps of different durations are used to study the time-
dependent neuronal response on the recent stimulus history.

As with the SDS-response experiments (above), we first identified significantly
responding individual neurons by the same cross-correlation approach, compar-
ing the maximum input-output cross-correlation C for the test data (in which
the stimulus was applied) against that against control data (from experiments
in which no stimulus was applied). We found that 8.3±0.9% of the correlation
values C of the stimulus measurements fall outside the 99th percentile of that of
unstimulated measurements, a smaller fraction compared to the SDS stimulated
worms (Figure 4.6A). The responding neurons thus identified revealed various
waveforms indicative of analogue computations to process the input signal. Ex-
ample waveforms of a representative measurement are shown in figure 4.6B and
S4.6. Two of these neurons (Figure 4.6BI,III) responded with waveforms indica-
tive of time differentiation of the stimulus. Neuron I responds to an increase in
salt by rapidly increasing activity and slowly relaxing toward the pre-stimulus
steady-state baseline level. This response waveform is reminiscent of that for
ASEL [10, 37], but could also be one of several other sensory neurons (ADF, ASI,
ASK, AWB) or interneurons (AUA, AVH, AVJ, URB) recently shown to respond with
a similar waveform to NaCl as ASEL [49]. Neuron III responds to a decrease in
salt, similar to the ASER neuron [10, 37]. We also notice that the waveform of the
responses for these neurons is dependent on the duration of the stimulus steps:
the peaks in the responses of neuron I (and to some extent neuron III) have a
higher amplitude when the neuron spent more time at its baseline value before
the stimulus. Two other neurons, II and IV, responded with waveforms indicative
of time integration, with their activity gradually increasing in response to high and
low salt concentrations, respectively, until eventually reaching a plateau when the
stimulus step is sustained for long enough (Figure 4.6B, II,IV). These integrator-
like waveforms are in stark contrast to the differentiator-like waveforms typical of
sensory neurons, and thus may represent downstream interneurons involved in
the salt response. However, given their highly stereotyped response waveforms,
they are unlikely to be AIB or AIY, the two interneurons that synapse directly with
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the ASE neuron pair, as these have been shown to encode quite faithfully the
stochastic reversal behaviour and we would hence expect AIB and AIY responses
to be less stereotyped [10]. Other significantly correlated loaded neurons (e.g.
Figure S4.6A10,14) respond to the stimulus, but also process other signals as there
is no stereotypic response.

To study whether and how the NaCl stimulus affected collective neuronal
dynamics, we first identified significantly responding modes, again using the
same cross-correlation analysis as was done for the SDS experiment (above). The
fraction of significantly responding modes according to this analysis (7.1±1.1) is
comparable to the fraction of significantly responding individual neurons (Figure
4.6C).

Overall, at the level of collective modes, the salt response was found to be
more subtle compared to the SDS response. Firstly, within the same measure-
ment, there is no consistent salt response of collective PCA modes after each of the
concentration changes up or down. For instance, in the experiment of Figure 4.6B,
the modes, although significantly correlated according to the analysis in figure
4.6C, most notably responded at the onset of the 2 min [NaCl] increase, but not
at the onset of the 0.5 min (Figure 4.6D). The lack of a consistent response is also
confirmed by the result of the same randomization test described for SDS, using
the 2-state HMM to binarize the time series and shuffle the intervals (Figure 4.6E).
Secondly, the salt response of the top PCA modes is not reproducible across worms.
According to the randomization test, in only 3 of the 11 worms tested, the prin-
cipal mode responded significantly to salt. Moreover, among the 3 significantly
responding worms, the principal mode response dynamics are not stereotypical,
exhibiting different wave forms of the principal mode in response to salt. The
small relative number of salt worms with responding principal modes contrasts
the SDS measurements, where 3 out of 4 principal modes responded significantly
(Figure 4.7). Similar differences were also observed for other highly ranked modes
(specifically, modes 2 and 4). For lower modes (mode 5 and downwards), the NaCl
and SDS experiments had a similar fraction of significantly responding modes.

Concluding, we find a rich set of neurons responding stereotypically to a step
increase or decrease of salt, performing analog computations, some of which
might have been reported before: differentiating or integrating the stimulus. At
the level of collective dynamics, the response is less pronounced compared to
SDS, which might reflect the difference in behavioural context.



4.2. RESULTS

4

135

ED

A

C

0

0

-4

4

0

-4

4

0

-4

4

1 2 3 5 7

0.0 0.5 1.0

NaCl

Time [min]
Mode 1

Mode 2 Mode 2

Bottom Mode Bottom Mode

Mode 1

0 1 2 3 5 7
Time [min]

0 1 2 3 5 7
Time [min]

0 1 2 3 5 7
Time [min]

 M
od

e 
Ac

tiv
ity

Ac
tiv

ity

0

1
0

1

0

1

P on

100

10-1

10-2

10-3

C

1-
P

0.0 0.5 1.0

100

10-1

10-2

10-3

C

1-
P

B

*

*

75 mMI

III

II

IV

50 mM

0.16

0.05

0.25

**

*

Figure 4.6: Response of individual neurons and collective modes to repeated NaCl step
stimulation. (A) In analogy to figure 4.5A, a significant portion of the neurons and (C)
PCA modes of worms receiving a salt stimulus (N = 11) have an absolute cross correlation
value, C , larger than that of unstimulated worms (black, N = 8). Transparent curves
represent individual measurements. The black dashed line indicates the 99% value for
nonstimulated worms. Cross correlations are computed for lag times up to min. The
time derivative of the stimulus is computed using the same filter (see methods) as the
neuronal signals. (B) Exemplary strongly correlated neurons with the stimulus from a
single measurement with distinct stereotypic responses. Other significantly responding
neurons from the same measurement can be found in figure S4.6. (D) Dynamics of
the two top modes and the bottom mode. The number on the bottom left indicates the
accumulated squared weight of the eigenvector (which adds up to 1 for all neurons for
each mode) of the 22 significantly responding neurons identified in panel B and figure
S4.6. (E) Probability of the on state (corresponding with a high mode value) for the two
top modes and the bottom mode (blue lines). The average probability ± the standard
deviation of the measurement (blue shaded region) is significantly larger than the 95%
confidence interval from simulated measurements (red shaded region).
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Figure 4.7: Collective modes respond more strongly to 0.1% SDS than to changes in
NaCl concentration. For each of the top 10 PCA modes, an analysis has been performed,
similarly as described for SDS (binarizing the mode using a 2-state HMM), where the
probability has been computed that a randomly generated mode with similar dynamics
exceeds the modulation of the true mode. The fraction of measurements significantly
(p < 0.05) responding is shown for (blue) 4 SDS response measurements and (orange) 11
salt response measurements.

4.2.6. EXOGENOUS SEROTONIN INDUCES A REVERSIBLE BRAIN-WIDE QUIES-
CENT STATE

Whereas chemicals such as SDS and salt are external signals that require detec-
tion by the sensory neurons and further processing by downstream neurons to
evoke a behavioural response, neuromodulators are signalling molecules used
internally that can more directly affect many behaviours. We therefore won-
dered whether neuromodulators might elicit a more direct effect on collective
neuronal dynamics, compared to sensory stimuli such as SDS and NaCl. To
test this idea, we monitored brain-wide neuronal dynamics in paralyzed worms
subjected to exogenously applied serotonin, a biogenic amine neuromodulator,
suggested to be an indicator for feeding state / satiety [44] and associated with a
wide range of behaviours [40]. It has been shown using mutants defective in sero-
tonin synthesis (tph-1) or reception (mod-1) that serotonin promotes dwelling
(local exploitation of food) over roaming (long-range exploration) in motile be-
haviour [56], and further work on behavioural individuality in roaming-dwelling
behaviours also implicated serotonin signalling [57]. In addition, serotonin affects
the response towards external stimuli: the sensitivity of the sensory neuron ASH
towards octanol or touch stimuli is increased in the presence of serotonin [55, 58].
Physiological regulation of serotonin is complex, with its synthesis distributed
across several neuron types broadly distributed across the worm’s anatomy [40].
Yet, the relatively simple experimental strategy of exogenous application has
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yielded numerous insights regarding its neuromodulatory effects at the behaviour
level, including promotion of egg laying and pharyngeal pumping [44], and slow-
ing/inhibition of locomotion [59] in a dose-dependent manner [60].

To study the effects of exogenously applied serotonin on brain-wide neural ac-
tivity, worms were subjected to a protocol in which brain dynamics were recorded
first in the absence of exogenous serotonin for 15 min, followed by 30 min with
exogenous serotonin, and finally without exogenous serotonin again for 15 min.
Measurements were performed in unbuffered water, as Gurel. et al. found that
in water, the serotonin concentration required to inhibit locomotion is reduced,
compared to in buffer, by a factor of ∼ 30 (and hence to below the solubility limit,
where concentrations are better controlled) [60]. We confirmed that switching the
medium from buffered (as in all other experiments in this study) to unbuffered
water did not substantially affect brain dynamics, by conducting control experi-
ments in which worms were subjected to switches between the two media (Figure
S4.10).

We first applied exogenous serotonin at a concentration of 5 mM, which has
been reported to immobilise nearly all worms in a population within 20 min
[60]. At the molecular level, immobilisation of worms by exogenous serotonin
has been shown to be mediated primarily by two serotonin receptors, SER-4
and MOD-1 [60], but the neural dynamics that lead to immobilisation remain
unknown. Whereas MOD-1 is expressed in muscles and motor neurons directly
controlling locomotion, SER-4 is expressed in interneurons that affect locomotion
in a more indirect way [60]. Thus, serotonin-induced immobilisation could occur
due to functional perturbations at the level of downstream motor actuations,
upstream interneuron dynamics, or both. In the first 15 min of the recording prior
to exogenous serotonin exposure, global brain dynamics were qualitatively similar
to those of unstimulated worms in buffer, with a single mode dominating the
neuronal dynamics (Figure 4.8A, S4.4). Strikingly, the addition of 5 mM serotonin
drastically attenuated the dynamics of all collective modes within one minute,
switching brain-wide activity into a quiescent state. Thus, high concentrations of
exogenous serotonin can largely shut down brain activity, raising the possibility
that the immobilisation observed in behavior-level experiments [60] could be
due, at least at high concentrations, to such a brain-wide quiescence of neuronal
activity, rather than paralysis at the level of motor function alone.

The brain-wide quiescence in neuronal activity observed here is reminiscent
of those recently observed in worms during episodes of behavioural quiescence
occurring at developmental lethargus [22] and under long periods of starvation
[23]. In addition to satisfying a number of defining criteria for sleep, such as
homeostasis, increased threshold for arousal, and rapid reversibility, a character-
istic feature of these quiescent states at the neuronal level is that a small number
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of neurons (most notably RIS, which has been implicated as a sleep-inducting
neuron [61], but also RMED/V and others) demonstrate persistent activity while
in nearly all others the activity rapidly drops to and remains near zero [22, 23].
In the serotonin-induced brain-wide quiescence observed in our experiments,
we did not find high levels of persistent activity in any neuron, but a handful of
neurons exhibited episodes of activity (Figure S4.8).

One of the defining features of sleep is rapid reversibility [62] — by contrast to
recovery from coma or anesthesia, animals return rapidly to wakefulness from
sleep [63]. The dynamics of entry into and recovery from brain-wide quiescence
can be compactly represented by the principal PCA mode (Mode 1; Figure 4.8A,
blue curve), which captures the most variance in brain-wide activity. A compar-
ison of Mode 1 dynamics across replicate experiments on different individuals
(N = 7) revealed that 5 mM serotonin reproducibly induces brain-wide quies-
cence, albeit with brief bursts of dynamic activity during serotonin exposure in
a subset (3/7) of experiments (Figure 4.8B). Upon removal of serotonin, Mode 1
activity recovered within minutes in nearly all (6/7) experiments. Thus, serotonin-
induced brain-wide quiescence is clearly reversible on a short timescale.

To quantify the degree to which serotonin-induced quiescence is reversible at
the level of neuronal activity, we binarized the Mode1 time series by thresholding
the absolute mode time series |M1| and computed the average Mode 1 activity, as
the fraction of time the mode time series was in the high (i.e. above-threshold)
state. The choice of the threshold h was motivated by the observation that the
|M1| was well-fit by a bi-exponential function P = ce−b1x + (1− c)e−b2x (Figure
4.8C), and h was set to the value for the argument x at which the two exponential
terms have equal probability h = (log(1− c)− logc)/(b2 −b1). The average Mode 1
activity after removal of 5 mM serotonin was equivalent to that before the stimulus
(Figure 4.8D). Thus, recovery of neuronal activity upon serotonin removal was not
only fast, but also complete with respect to the amplitude of dynamics

At the level of Gurel et al. found that serotonin-induced immobilisation of
worms is dose-dependent, with concentrations lower than 5 mM of exogenous
serotonin leading to immobilisation of only a fraction of the population [60]. To
test the effect of lower serotonin concentrations on collective brain dynamics, we
measured whole-brain dynamics before, during, and after exposure to 0.5 mM
and 1.5 mM serotonin (Figure S4.9). For both of these lower concentrations, we
did not observe the rapid and drastic shift to quiescence observed upon addition
of 5 mM serotonin. In a subset of experiments, sharp changes in activity patterns
did occur near the times of serotonin addition or removal, but considering the
substantial temporal and trial-to-trial variability in the unstimulated dynamics
(Fig. S4.4), a considerably larger number of measurements would be required to
determine whether and to what extent global brain dynamics are perturbed by
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exogenous serotonin at these lower concentrations.
In summary, these experiments demonstrated that a high concentration

(5 mM) of exogenously applied serotonin can reversibly induce a global quiescent
state in the C. elegans brain. The similarity of this quiescent state to those observed
during sleep-like states during lethargus [22] and under prolonged starvation [23]
2018) raises the intriguing possibility that the well-documented inhibition of
locomotion by exogenous serotonin [59, 60] could be due, at least at very high
concentrations, be mediated by a sleep-like quiescent state of the brain.
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Figure 4.8: Exogenous addition of 5 mM induces a sleep-like brain state characterized
by strong and reversible global quiescence. (A) The individual neuronal dynamics (top)
and activity of the top 3 PCA modes (bottom) of an exemplary measurement. The shaded
region indicates the duration of the 5 mM serotonin stimulus. The number on the bottom
right indicates the effective number of contributing neurons to the respective mode (see
methods). (B) The activity of the first PCA mode for different worms. The activity of the
principal mode extracted from the measurement represented in panel A is shown in pink.
(C) The cumulative probability function of the absolute mode 1 time series (|M1|) across
measurements (blue, solid) can be approximated by a bi-exponential (green, dashed).
The gray dashed line represents the crossover value h where both distributions have equal
probability. The fit is performed using the least-squares method. (D) A Significant change
in activity is observed upon addition of serotonin, which largely recovers after removal.
The fraction of time before, during, and after the stimulus that the mode activity exceeds
the threshold h (individual measurements in gray). Statistical tests are performed by
bootstrapping for measurements.
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4.3. DISCUSSION
Whole-brain imaging is a powerful method to study neural dynamics beyond
the circuit level, and its relation to sensory stimuli and behavioural outputs.
We recorded brain dynamics on semi-immobilized worms, which allowed us
to directly relate global brain dynamics to a behavioural output in the form of a
stretch mode of anatomical deformations. Our use of wide-field deconvolution
microscopy enabled light-efficient volumetric imaging, which was necessary to
achieve measurement times exceeding one hour. The long duration of record-
ings in turn enabled the statistical characterization of responses to stimuli on a
single-worm basis, by sampling the highly variable collective neural dynamics
across many repeated stimulations. This statistical power at the single-worm
level is particularly important, given the substantial worm-to-worm variation in
both resting-state and response dynamics of neural activity [9, 12, 18]. We demon-
strated the power of our approach by conducting experiments that addressed
three compelling hypotheses regarding the role of collective neural activity. While
these exploratory experiments do not amount to conclusive tests of each hypoth-
esis, our results yielded positive evidence in support of each, and indicate a path
towards more comprehensive tests in future whole-brain imaging studies. We
discuss below our results in the context of each of these hypotheses, together with
possible avenues for further improving our experimental approach.

4.3.1. THE COLLECTIVE MOTOR-COMMAND HYPOTHESIS: HOW BRAIN DY-
NAMICS DRIVE BEHAVIOUR

The semi-immobilized configuration of our whole-brain imaging setup provided
an opportunity to directly test the hypothesis, advanced by Kato. et al. [18],
that collective modes of neural activity (such as those identifiable by PCA analy-
sis) serve as motor commands driving specific components of motile behavior.
Whereas that hypothesis was developed by analysis of whole-brain imaging data
acquired in paralysed worms, a subsequent study that applied whole-brain imag-
ing to freely moving worms [50] found that PCA modes performed poorly in pre-
dicting behavioural dynamics that were recorded simultaneously. However, the
control experiments in freely-moving worms expressing GFP instead of GCaMP
indicated a non-negligible contribution of motion/segmentation artefacts to the
whole-brain activity recordings [25]. Thus, whether and to what extent the dynam-
ics of PCA modes first identified in paralysed worms can be interpreted as motor
commands remains an open question. Within our microfluidic device, worms
are confined within a narrow channel but are still able to make stretch-shrink
deformations of their anatomy along the direction of the channel, which is readily
quantifiable as a one-dimensional behavioural output, with negligible contri-
butions from motion artefacts. Thus, our approach provides a middle ground
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between whole-brain imaging in paralysed (or fully immobilized) animals and
freely moving animals.

We found that a large fraction of the variance in neural activity was captured
by the top three PCA modes, and these modes demonstrated very similar dynam-
ics to the top three PCA modes of paralysed or immobilised worms in previous
studies [18, 25]. Kato. et al. had concluded from their analysis of paralyzed-worm
data that forward-reverse locomotor behaviour is encoded predominantly by the
principal mode of neural activity, and turning behaviour by the second and third
PCA modes [18]. By simultaneously measuring the stretch-shrink motion of the
head region and whole-brain neuronal dynamics, we have provided direct evi-
dence for a strong relationship between the principal PCA mode and anatomical
movement. It is plausible that the stretching behaviour is related to attempted for-
ward/reverse locomotion, which is precluded by the worm’s confinement within
the channel. The strong relationship between the PCA modes and behaviour
on semi-immobilized worms is in contrast with measurements on freely moving
worms by Hallinen et al., who found that the top modes encode relatively little
information about the velocity and curvature of locomotion [25]. Hallinen et al.
reported that the top PCA mode predicted the velocity only about as well as the
best single neuron, and is outperformed by the result of a sparse-linear-model
[25]. This is not inconsistent with our measurements, as we noted that, although
the top mode in our measurements is the most strongly correlated mode, it doesn’t
fully predict the stretch; especially rapid fluctuations in stretch, in the order of
seconds, are not necessarily encoded by the principal mode. Also in our measure-
ments, the top mode is correlated with the stretch with similar magnitude as the
top correlated single neuron. The resulting discrepancy in absolute predictive
value could be partially the result of differences in the processing of data (we
low-pass filter data using SG-filtering), or as a result of confinement.

This raises the question to what extent the observed neuronal dynamics are
affected due to confinement or other persistent environmental factors or stressors,
including the expression of fluorophores. Indeed, the timescales of fluctuations
in the principal PCA mode of our measurements are considerably faster than
the forward/reverse switching timescales during roaming behaviour of a freely
moving worm, which is characterised by long periods of forward motion, occa-
sionally interrupted by a short reversal and/or a sharp turn [4, 64]. Interruption
of the forward state could in principle be caused by unintended sensory inputs in
our experiments, such as the blue light [65, 66] used for fluorescence excitation,
or touch sensations [67] triggered by the microfluidic confinement. Blue light,
however, is probably not the main driver of the rapid oscillatory dynamics of the
principal mode, as this was also observed in the light-insensitive lite-1 mutant
AML70. Confinement and immobilisation have been shown to strongly affect
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brain dynamics. Scholz. et al. reported a slowdown in dynamics upon immobilisa-
tion [50]. Kaplan. et al. have shown that slowing of neural dynamics occurs upon
immobilisation and especially affects neurons responding with fast timescales:
for instance, the SMD neuron fluctuations are reduced an order of magnitude [68].
This might be related to the body’s inability to propagate dorso-ventral waves,
as in the study of Kaplan et al., peaks in SMDD/V dynamics are strongly related
to the phase of the head [68]. The slowing down of brain dynamics is thus a
potential drawback of our measurement design, as it means fewer statistics of
the dynamics can be collected within a measurement of a given duration. This
however is compensated by performing long-timescale measurements.

Confining C. elegans worms in a microfluidic device has been shown to induce
sleep-like quiescence at the level of both anatomical movement and neural activ-
ity [52]. Indeed, within our semi-immobilized measurement configuration, we
observe recurrent epochs of brain quiescence paired with reduction of anatomi-
cal movement. These sleep states are clearly a nuisance for stimulus-response
experiments, for which a consistent ’unstimulated baseline’ of brain activity is
desired. We therefore opted to conduct our stimulus-response measurements on
paralyzed worms, which exhibit little or no microfluidic induced sleep [52].

4.3.2. THE APPARENT STOCHASTICITY HYPOTHESIS: HOW BRAIN DYNAMICS

RESPOND TO SENSORY STIMULI

Based on experiments that monitored the activity of a small number of neurons
within an olfactory circuit, it has been suggested [12] that variable responses
in neural activity, and hence also behavior, can be generated by the interplay
between sensory inputs and ’network states’, i.e. the activity pattern of other
neurons of the same circuit. On the other hand, the discovery that brain-wide
neural activity is highly correlated and dynamic even in the unstimulated state
[18, 25] raises the question of whether these correlated modes of neural dynamics
could represent network states that interact with sensory inputs to generate vari-
ability in the behavioural output of the brain. Indeed, if such collective modes
of brain-wide activity themselves have a tendency to respond stochastically to
sensory stimuli, it is plausible that the individual neurons that contribute to the
modes also respond with apparent stochasticity, as was observed in the circuit-
level experiments of Gordus et al. [12]. Our results from experiments with both
SDS and salt stimuli support this view, as the top two PCA modes of neural activity
responded significantly, but with a high degree of apparent stochasticity.

Although worms were paralysed in our stimulus response experiments, it is
possible to interpret the responses we observed of brain-wide activity to SDS
within a fictive behaviour paradigm along the lines of Kato. et. al. [18], who
assigned various ’lobes’ of the neural activity trajectories in the space of the top
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three PCA modes to various behaviours such as forward runs, reversals, and turns.
More specifically, we may conjecture that the SDS stimulus triggers within the
brain a sequence of motor commands to perform the escape response, which is
triggered by the same stimulus in freely moving worms. The dynamics of the PCA
modes during the SDS experiments were similar to those in unstimulated experi-
ments both by us (Figure 4.3) and Kato. et. al. [18], with the top two PCA modes
demonstrating oscillatory dynamics whose waveforms and phase relationships
are readily visualized as phase-space trajectories with a characteristic topology
(Figure S4.7). In response to SDS, we found that mode 1 rose immediately upon
stimulation, which was subsequently followed by an increase of mode 2 paired
with a decrease of mode 1. Thus, if we apply the interpretation of Kato. et. al. [18]
that mode 1 is associated with Fwd/Rev motion and mode 2 is associated with
ventral turns, we can interpret the observed pattern in the mode 1-mode 2 cycle
of brain activity, as motor commands for a reversal followed by a ventral turn
and a return to forward crawling: the characteristic behavioural sequence of the
escape response [3]. Although, as discussed just above, the temporal sequence of
SDS responses in the top PCA modes can be consistent with an attempted escape
response, the high degree of stochasticity in the timing and amplitude of these
responses is in contrast to the highly stereotyped escape behavioural sequences
exhibited by freely moving worms upon encountering SDS [30]. It is plausible
that the stronger apparent stochasticity of the brain SDS response we observed
could in our experiments result from unintended sensory inputs resulting from
our experimental configuration, e.g. confinement within the microchannel, that
are being integrated with the applied SDS signal within the worm brain [69].

The behavioural response of freely moving worms on salt gradients is de-
scribed to be stochastic modulation of reversals and turns [34, 35]. A modulation
of the top modes observed is to be expected. However, the modulation that we
observed at the level of the collective modes is much weaker compared to SDS,
with only a small fraction of worms significantly responding, and not stereo-
typically. One possibility could be that the salt stimulus is relatively weak and
therefore almost completely overwritten by other inputs. Further experiments
could characterize the collective neuronal response to various concentrations to
investigate if this can result in a stronger modulation of the brain-wide dynamics.
Another possibility is that salt and SDS are processed by different circuits with
different relations to the global modes. Such a possibility is partially supported
by recent studies investigating the C. elegans connectome, which have shown
that the circuitry involved in avoidance (SDS) and taxis (salt) appear in different
clusters that are spatially separated [70, 71].

In both the SDS- and salt-response experiments, whereas some individual
neurons responded nearly deterministically, the collective dynamics of neurons
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(most notably the principal PCA mode) responded with a higher degree of ap-
parent stochasticity. The individual neurons responding stereotypically were
diverse in their response timing and waveform, suggesting that these may per-
form different computations on the sensory input signals. In the salt experiments,
neurons were identified with response waveforms indicative of a differentiator,
reminiscent to the sensory ASE neuron pair [10], or that of an integrator. Further
investigation of the sensory circuitry would benefit from identifying the specific
cell type of these neurons exhibiting response waveforms indicative of various
analogue computations. In the SDS experiments, deterministically responding
neurons were somewhat less diverse in their waveforms, but they exhibited a
distinct hierarchy in response timing, which might be interpreted as a sequence
of signaling events within a circuit. However, it should be noted that the temporal
hierarchy obtained from our calcium activity measurements might not exactly
reflect the order in which neurons respond, because our GCaMP reporter expres-
sion is localised to the nucleus. It has been shown that for some neurons, this can
result in a slower rise of calcium signals by up to 10 seconds [12], as signals can
be compartmentalised outside the nucleus [72, 73]. This could partially explain
the temporal hierarchy obtained from SDS measurements. However, Gordus et
al. reported that compartmentalization of neuronal signalling in the 3 exemplary
neurons measured in that study did not shift the onset of change in activity [12],
which is also visibly different in our measurements. We therefore believe that
some of the dynamics reflect true temporal differences in signaling.

4.3.3. THE NEUROMODULATED BRAIN-STATES HYPOTHESIS: SLEEP-LIKE

REVERSIBLE QUIESCENCE INDUCED BY EXOGENOUS SEROTONIN

Neuromodulation is an important but understudied aspect of behavioural reg-
ulation [74]. Although most studies of neuromodulation to date have focused
on effects at the circuit level [75, 76], it has recently been hypothesised that neu-
romodulators might trigger switches between global brain states — persistent
epochs of brain-wide neural activity that affect organism-scale behaviour [47, 48].
Our experiments with exogenously applied serotonin provided a test for this hy-
pothesis with respect to a recently identified brain state in C. elegans - a sleep-like
quiescent state that was discovered by whole-brain imaging during developmental
lethargus upon oxygen stimulation [22]. Specifically, we asked whether the appli-
cation of exogenous serotonin, which is known to trigger sleep-like quiescence at
the level of motile behaviour [60], might trigger brain activity patterns similar to
those found during sleep-like quiescence during developmental lethargus [22].

Serotonin signalling is reported to be mediated primarily by the receptor
MOD-1, expressed in muscles and motor neurons directly controlling locomo-
tion, and SER-4 is expressed in interneurons that affect locomotion in a more
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indirect way [60]. Previous studies showed that the addition of 5 mM exogenous
serotonin to freely moving worms results in a large fraction of the population
exhibiting behavioural quiescence, which was described as ’paralysis’ [60]. Our
experiments demonstrated that the same stimulus causes a dramatic decrease
of brain activity, largely shutting down the dynamics of collective modes with
just brief bursts of activity. This dramatic change in brain activity upon serotonin
stimulation suggests that the previously reported immobilisation of freely mov-
ing worms may not merely reflect effects of MOD-1 signalling, but might also
involve SER-4. The dramatic decrease in brain activity is strongly reminiscent of
the oxygen-induced sleep states reported during lethargus or starvation [22, 23],
and confinement-induced sleep in microfluidic channels of unparalyzed worms
[52]. Further research should be conducted to confirm whether this is indeed
a sleep state, which should meet the conditions of a stereotypic posture, eleva-
tion of the arousal threshold, rebound effects upon deprivation, and reversibility
[62]. Indeed, we found that brain dynamics recovered within minutes after the
removal of serotonin, demonstrating reversibility. Future experiments could test
changes in arousal thresholds by measuring responses to other chemical stimuli
in the presence and absence of serotonin. To investigate the similarity of the
serotonin-induced quiescence brain state we discovered with previously reported
sleep-like brain states in C. elegans, future experiments should investigate activity
levels of individual neurons that exhibited high levels of activity during the sleep
states reported in other studies, such as RIS and RME in response to oxygen [23]
or RIV, ALA associated with stress [52]. Of particular interest is the activity of the
sleep promoting RIS neuron [61]. RIS is reported to express the serotonin receptor
SER-4 [77] at an expression level higher than any other neuron [78]. It is therefore
plausible that exogenous serotonin via SER-4, which triggers an excitatory calcium
response in HEK293 cells [79], could increase RIS activity to trigger a sleep-like
brain state. To our knowledge, serotonin has not previously been implicated in C.
elegans sleep, but interestingly, a recent study found that serotonic raphe neurons
are involved in the initiation and maintenance of sleep in both zebrafish and mice
[80]. Thus, though highly speculative at this stage, our observation that exoge-
nous serotonin can trigger a sleep-like brain state in C. elegans might indicate an
evolutionarily conserved role for serotonin in the neuromodulatory control of
sleep-like brain states.

These results demonstrate the strength of combining whole-brain imaging
with microfluidic control of the chemical environment, which is not limited to
sensory stimuli or neuromodulators as there are many other chemicals to which
brain functionality can be studied when exogenously applied. For instance, there
is potential to screen for and study the effects of drugs that affect the nervous
system of C. elegans [81] (e.g. providing the anaesthetic isoflurane, which dis-
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rupts the neuronal coordination, abolishing the stereotypical global brain modes
[27]), or the downstream effect on brain dynamics can be studied by silencing
expression using RNAi [82]. Such tests could be performed efficiently without any
additional genetic manipulation of the worm, although performing such tests
with both wild-type and mutant animals could prove particularly powerful.

4.3.4. IMPROVING THE EXPERIMENTAL DESIGN

The results presented in this study are permitted by the choice of experimen-
tal design combining microfluidics to apply stimuli and confine the worm and
widefield fluorescent microscopy with deconvolution. Modification of the setup,
especially the microfluidic design, could facilitate follow-up experiments. Firstly,
the microfluidic design could be altered to force the worm into a fixed orientation,
for instance by using a curved loading channel [83]. This would decrease the
variability across measurements in the subset of neurons that can be tracked.
More importantly, a stereotypic orientation would facilitate the annotation of in-
dividual neurons. Annotation of individual neurons is complex, because neuronal
positions can vary across worms [84], not all neurons are tracked, and the neurons
in the head are densely packed. Recently, a strain has been constructed where
each neuron has a different (but reproducible across worms) expression profile
of 4 fluorophores, aiding the annotation [49]. Stimulus response recordings in
this study have been performed using this strain (OH15500), but could not yet be
annotated due to a misalignment with the reference maps. Annotation of neurons
could tremendously benefit the interpretation of neuronal recordings, as many
individual neurons have been extensively studied. In addition, annotation would
allow to compare dynamics of global modes, recently applied by Linderman. et
al. [85], or individual neurons across worms. Multiple measurements can also be
combined to study weakly responding modules (such as the main mode to salt) to
stimuli.

Secondly, more neurons could be tracked, and a higher signal-to-noise ratio
could be achieved by minimising refraction at the interfaces of the worm, medium,
and PDMS device. This would provide a more complete picture of the processing
circuits. Neuronal signals nearby the PDMS interface show visible distortion
and decreasing contrast for deeper laying tissues (i.e. tissues imaged through a
longer optical pathway). These distortions also increase the difficulty of neuronal
annotations, as the colour balance is dependent on the position. Refraction
interface differences can be minimised by either changing the refractive index
of the medium [86], but especially, by changing the material of the microfluidic
device [87].

Thirdly, a larger microfluidic device permitting dorso-ventral body waves
would allow to study the global modes in the context of more complex behaviours.
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Moreover, this could decrease the rate microfluidic induced sleep [52] stress on the
worm and increase the frequency of dynamics. However, it would require a more
complex imaging system to track the head with a higher volumetric acquisition
rate. Finally, a microfluidic design allowing multiple fluid inputs could be used to
study the whole-brain response to multiple combinations of stimuli in a single
experiment. For instance, sensory stimulation in combination with serotonin
could be performed to investigate whether the brain’s quiescent state is a sleep
state. Multiple inputs can also be used to study the strength of the global response
to different salt or SDS concentrations.

A more complete description of the sensory processing could be obtained by
constructing strains with a more homogenous expression of fluorophores across
neurons. Variability in expression levels results in the fact that some neurons
cannot be tracked, especially when in close proximity to bright neurons. We
noticed that this included some sensory neurons, including some that responded
stereotypically to the stimulus. Alternatively, contrast could be enhanced by
changing the optical setup, although this would increase its complexity. Light
sheet microscopy doesn’t require imaging the entire volume to obtain a single
brain slice [88, 89] and has recently been proven to work with neuronal imaging
C. elegans [24, 27]. In a different approach, the use of two-photon volumetric
imaging could provide higher contrast and allow capturing neurons with larger
optical path lengths [90]. Finally, the extraction of neuronal signals could be
performed with improved algorithms. Recently, a method has been developed to
extract up to 189 neuronal signals from semi-immobilized animals and normalise
neuronal data to compare time series across worms [91].

ACKNOWLEDGEMENTS
This research could not be conducted without Marko Kamp who has helped
assembling and maintaining the optical setup. We want to thank Bas van der
Hoeven for his help with experiments. Furthermore we would like to thank Greg
Stephens and Antonio Carlos Costa for their discussions. This work was carried
out on the Dutch national e-infrastructure with the support of SURF Cooperative.



4

150
4. LONG TIMESCALE WHOLE-BRAIN IMAGING OF SEMI-IMMOBILIZED C. elegans REVEALS RESPONSE,

OUTPUT AND MODULATION OF COLLECTIVE NEURONAL MODES

4.4. METHODS
An experimental setup and data analysis pipeline have been developed to measure
global brain dynamics within semi-immobilized worms with fast microfluidic
control of the chemical environment. This section explains the details of the mea-
surements and processing. Section 4.4.1 describes the widefield imaging setup,
which enables long-timescale measurements within the finite photon budget.
Section 4.4.2 describes the microfluidic setup that achieves semi-immobilization
of the worm with fast switching between buffer and stimulus media. To gener-
ate neuronal activity time series from the imaging data of a deforming brain, a
succession of steps need to be performed, including image deconvolution, seg-
mentation, tracking, and post-processing, which are discussed in section 4.4.3.
Finally, further details of the experimental protocols and C. elegans strains used
for measurements are given in sections 4.4.4 and 4.4.5 respectively.

4.4.1. ACQUISITION OF 3D FLUORESCENCE MOVIES BY WIDE-FIELD DECON-
VOLUTION IMAGING

Our objective of carrying out stimulus-response measurements on the global
brain dynamics of semi-immobilized worms placed a number of demands on the
measurement system: (1) Fast volumetric fluorescence imaging — the entire head
region of the worm, spanning 111x222x43 microns and comprising approximately
200 neurons, is needed at subsecond time resolution to fully capture the GCaMP
([Ca2+]) dynamics. (2) Efficient use of the limited photon budget — to enable
long time-scale measurements across many repetitions of chemical stimuli (3)
Simultaneous two-color imaging — with one fluorophore used for tracking and
segmentation of neurons and another to read out neuronal [Ca2+] activity.

Different imaging techniques can and have been used to image the fluores-
cence of a brain volume to in order extract brain dynamics of C. elegans. Most fast
volumetric imaging techniques rely on rapid acquisition of single planes through
the sample. The exception is light field microscopy, where the 3D volume can be
reconstructed by imaging a matrix of small lenses [92] to record brain dynamics
[17] or organism behaviour [21].

The most used imaging method in recent literature using global brain imaging
in C. elegans is fast multi-point confocal imaging using a spinning disc [18–21].
By quickly sweeping a lattice of pinholes, this technique has the advantage of
confocal microscopy, where rejecting out-of-focus light results in high-contrast
images without sacrificing acquisition speed. The main drawback however is
that the sample is illuminated every slice, and since a brain volume requires ≈ 30
slices, 1−1/30 ≈ 97% of the emitted light is rejected for the image acquisition,
resulting in bleaching. Similarly, fast structured illumination microscopes setups
can be built using microlens arrays [93]. (In fact, we tested such a system for our
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experiments but ultimately opted against its use for worm-brain imaging as it
suffered from, in addition to the photon-budget inefficiency noted above, striping
artefacts due to inhomogeneous illumination of the sample.) Other imaging
methods rely on exciting fluorophores exclusively within the sample focal plane
and therefore efficiently use the fluorophore photon budget. Two-photon imaging
techniques exploit the inherent nonlinearity of multiphoton excitation to only
obtain light from the focal plane and have been used to visualise the worm’s
brain dynamics [16]. However, two-photon excitation requires relatively costly
pulsed lasers, and achieving imaging speeds sufficient for whole-brain imaging
requires rather involved setups such as spinning disk [94] or temporal focusing
[16]. Light sheet microscopy is another option that has been applied to study
brain dynamics in zebrafish [88], and recently also in C. elegans [24, 27]. Here, the
illumination pathway is separated and enters the sample under a different plane
using spherical lenses. Systems have been developed relying on only a single
objective for both illumination and imaging [89], that can be used on C. elegans
[24].

Arguably the simplest method to image the brain of the worm in terms of
the complexity of the optical setup is widefield fluorescence microscopy, where
most of the fluorescent light is captured by the camera, including out-of-focus
light. Although the out-of-focus light contributes significant background to each
acquired planar image, in theory a true image of the sample can be reconstructed
from a series of such images acquired at multiple image planes (z-stacks) if the
point-spread function (PSF) of the system is known (see section 4.4.3). This
method has been successfully applied in C. elegans whole-brain imaging to study
the asymmetric AWC neurons [21] and allows long time-scale measurements of
brain dynamics, because the out-of-focus light, which constitutes the majority of
captured photons, is used for the reconstruction of the true image. Because of its
simplicity and cost effectiveness, wide-field imaging was chosen for this study.

Our optical setup for wide-field microscopy is comparatively straightforward
(Figure 4.9). Lasers with a wavelength of 405, 488, 561 and 640 nm are coupled to
an acousto-optic tunable filter (AOTFnC-400.650-TN, AA OPTO-ELECTORNIC,
Orsay, France) to rapidly switch between laser lines. The laser light is subsequently
expanded before it enters the Nikon TI-Eclipse inverted microscope equipped
with a 60x 1.2NA water immersion objective (Nikon CFI Plan Apochromat VC 60XC
WI) and a multiband excitation filter (ZT405/488/561/640x, Chroma Technology
Corporation, Bellows Falls, USA). A piezoelectric Z-stage (Nano-Z200, Mad City
Labs Inc., Kloten, Switzerland) is used to move the sample to image different
planes in the worm. The captured fluorescent light is reflected by a multiband
dichroic mirror (ZT405/488/561/640rpc, Chroma Technology Corporation, Bel-
lows Falls, USA), filtered by a multiband emission filter (ZT405/488/561/640m,
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Chroma Technology Corporation, Bellows Falls, USA) and exits the microscope.
An image splitter (Optosplit II LS image splitter, Cairn-Research Inc., Faversham,
UK) splits the emission light using a second dichroic mirror at a wavelength of
565 nm (t565lpxr, Chroma Technology Corporation, Bellows Falls, USA). This
allows to measure two fluorophores simultaneously; a constitutive expressed
red fluorophore to track neurons and a calcium sensitive fluorophore that is a
proxy for the neuronal activity. Light is captured by the camera (OrcaFlash 4.0
V2/V3, Hamamatsu, Hamamatsu City, Japan) using 4×4 binning, such that the
length of a pixel represents 433 nm of the sample. Binning (4x4, such that one
pixel corresponds to 433 nm on the sample) is used to increase the S/N ratio and
reduce the amount of data. The readout time of the camera and the stabilization
time of the z-stage are both 10 ms, thus the maximum recording frequency is
1/(10 ms+exposure time) < 100 Hz. An illumination time of 5 ms is chosen,
hence the acquisition frequency is ≈ 67 Hz.

Volumetric images are acquired by creating ≈ 27-33 slices spaced at ≈ 1.3 µm,
bringing the volumetric rate at ≈ 2.0-2.5 Hz. The z-position of the stage follows a
triangular waveform in time during volumetric image acquisition, meaning that
successive volume image stacks are obtained in reverse vertical order to ensure a
continuous flow of images at high vertical precision. A custom written software
package is used to control the optical setup, designed to automatically execute
protocols required for measurements (e.g. making a single stack with each laser
for NeuroPAL strains). This software package produces two files: (1) a text file
containing metadata and the acquisition time of each frame and (2) a binary file
with the raw image data.

4.4.2. MICROFLUIDIC CONTROL OF STIMULUS TIME SERIES

Stimulus-response measurements have been performed on worms using a device
following the design by Chronis et al. [28] (Figure 4.10A). This microfluidic design
provides two key features necessary for our experiments: (1) semi-immobilisation
of the worm, meaning that worms are sufficiently confined to ensure head-region
neurons remain within the microscope field of view without the need of paralytic
drugs or stage movements to track a crawling worm, and (2) precisely controlled
delivery of chemical stimuli with subsecond accuracy. The device possesses four
inlets (I-IV) for fluid flow at the top, one inlet for the worm (V) in the middle, and
an outlet at the bottom(VI). The geometry of the confining chamber (between
inlet V and one of the two main flow channels) is such that when loaded into
the chamber, the worm’s nose protrudes slightly outward into the flow channel.
Channels I-II are connected to a reservoir containing a medium with stimulus,
and channels III-IV to a reservoir containing a buffer medium. To stimulate the
worm, the pressure of channel IV relative to that of I-III is decreased (Figure 4.10B,
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Figure 4.9: Optical configuration of for widefield volumetric fluorescence imaging. A
schematic view of the widefield optical setup used to record brain dynamics. Laser light is
expanded, filtered and focused onto the worm. Fluorescent light is reflected and filtered
by dichroic I and the emission filter. The fluorescent light enters the image splitter, which
splits the red and green fluorescent light using dichroic II and subsequently focuses two
images, one for the red channel and one for the green channel, onto two different halves
of the camera (Orcaflash V4) sensor.

right). To return to the unstimulated state, channel I requires a lower pressure
than channels II-IV (Figure 4.10B, left). We found that setting the low pressure to
25 mbar and the high pressure to 50 mbar results in robust switching between the
two fluids. This is a slightly different method to control the fluid flow compared
to Chronis et al., where a negative pressure is applied at the bottom and fluid flow
to either channel I or IV is blocked.

Reservoir pressures are controlled as described by Gómez-Sjöberg [95]. The
pressures are modulated using Feste solenoid valves, controlled by a programmable
controller (model 787-712, WAGO inc., Minden, Germany) connected to the same
system controlling the imaging setup. Software written in Matlab is used to exe-
cute stimulation protocols and save the valve states as well as the timings of the
pressure changes in a text file.

To characterise the response of the device, the fluorescence was recorded
in the microfluidic device at a frequency of 20 Hz, while repeatedly changing
between a stimulus and a fluorescent dye every second (Figure 4.10C). To char-
acterise the fluorescent response, we correlated the derivative of the stimulus (a
pulse train with alternative positive and negative pulses) with the derivative of
the intensity (Figure 4.10D). This reveals that the response peak responds with a
time delay less than a single frame (50 ms). More importantly, the FWHM of the
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response is just 109 ms (computed using linear interpolation), or approximately
1/4 of the volumetric acquisition interval. We therefore conclude that, for the
purposes of this experiment, the medium change is essentially instantaneous
with the change in pressures.

A few minor modifications are made to the design of Chronis et al. Four variant
designs have been created with different widths of the confinement channel, with
sizes of 61, 65, 68 & 72 µm, to ensure that worms of different sizes fit the devices.
A variant is created with a height of 28 and 43 µm. The larger device results in a
smaller deformation of the worm’s head, but requires more z-slices to acquire a
volumetric image and performs worse at segmenting neurons as the optical path
length is increased.

A B C

D Time [s]

Delay [ms]

0 3 6

I [
a.

u.
]

C s,I

0

1

0.6

0.3

0.0
0 200-200

I
II III

IV

VI

V

Figure 4.10: A microfluidic chip is used to apply controlled stimuli. (A) Schematic view
of the microfluidic device used to apply stimuli [28], where channels I-IV are the chemical
inlets, V is the worm inlet, and VI the waste outlet. Flows from inlets I-IV diverge at
the central junction into two flow channels (left and right) that converge just before the
outlet VI at the bottom. The confinement chamber of the worm connects inlet V and
the right flow channel, and is narrow enough to preclude lateral movement of the worm.
(B) Representative images from a control measurement in which the flow was switched
between buffer (left) and buffer with fluorescent dye (right). Note the visible protrusion
of the confined worm’s nose into the flow channel. (C) The fluorescence intensity of the
medium (blue curve) at the position of the head while switching between buffer (white
background) and buffer with fluorescent dye (shaded background). (D) Cross correlation
of the derivative of the applied stimulus with the derivative of the fluorescence intensity
at the nose detected no lag within the time resolution of the measurement.

4.4.3. IMAGE PROCESSING

A series of computational steps are required to obtain neuronal activity time
series from raw image data. First, the wide-field images are deconvolved using
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the point-spread function of the imaging system, which attenuates out-of-focus
contributions to improve contrast and minimise mixing of fluorescence signals
between neighbouring neurons (section 4.4.3). Subsequently, neurons are seg-
mented based on the (constitutive) red fluorescence signal that is used for neuron
tracking (section 4.4.3). Tracking neurons across frames is required because the
worm’s body deforms over time. The implemented tracking algorithm is closely
based on Nguyen et al. [53], but with a few adaptations optimised towards tracking
of neurons in semi-immobilized worms within the confinement chamber of our
microfluidic device (section 4.4.3). Additional post-processing steps performed
on the time series obtained from segmented neurons are described in section
4.4.3.

This sequence of computations is implemented in a suite of programs and
scripts that requires relatively little user input but many computational hours (in
the order of ≈ 3500 core hours for a 1 hour measurement, but variable depending
on movement of the worm and sensitivity threshold for segmentation) to extract
from each experiment the ensemble of neuronal time series. A more detailed
description of the implemented analysis pipeline is given below.

PSF ESTIMATION AND DECONVOLUTION

Widefield imaging does not reject out-of-focus light from fluorophores above and
below the sample plane. Consequently, image contrast is low, and the signals of
nearby neurons can be mixed. This mixing depends on the point spread function
(PSF) of the imaging system [96]. For any optical measurement, the measured 3D
image I (x) at position x is a convolution of the true fluorescence image A(x) with
the PSF P (x), with noise N (x) (e.g. shot noise, thermal noise),

I (x) = A(x)~P (x)+N (x). (4.1)

Thus, an improved estimate of the true image A(x) can be obtained given I (x), an
estimate of P (x), and a deconvolution scheme that appropriately regulates the
noise.

The PSF of the system can be either measured using subdiffraction-size flu-
orescent beads, theoretically calculated, or reconstructed from a measurement
using blind deconvolution. Fluorescent light is not only distorted by the optical
system, but also by the sample itself, which means that the PSF is also dependent
on the sample. Computing the theoretical PSF does not take into account aberra-
tions from the imaging system or sample refraction and absorption. Measuring
the PSF using small beads does take system aberrations into account, however it is
not trivial because the signal-to-noise ratio of a measured bead is small and sam-
ple distortions are still not taken into account. We thus chose to estimate the PSF
via the blind deconvolution approach, using a commercially available algorithm
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(AutoQuant X3, Media Cybernetics inc., Rockville, USA). In this code, the original
image and PSF can be estimated in a single iterative scheme, given a z-stack of
images sampled at sufficiently high z-resolution. We run this code on data from
a control measurement on an exemplary worm expressing the same fluorescent
proteins in a microfluidic device, sampled with a z-resolution of 250−350 nm.
For light captured from each fluorophore, this process is repeated 10 times, and
the average PSF obtained is computed. The estimated PSF is downsampled to
match the z-resolution of our 3D volumetric experiments to deconvolve z-stacks
for all neuronal recordings of worms expressing the same fluorophores.

We choose to use the iterative Richardson-Lucy deconvolution scheme [97]
to reconstruct the true fluorescence image without excessively amplifying noise.
This iterative scheme to update the approximated true fluorescent image A each
subsequent iteration k+1 can be derived using maximum likelihood optimization,
when the measured image I is assumed to have Poisson noise, and is given by

Ak+1 = Ak ×F−1
[
F

[
I

ok ~P

]
×OTF∗

]
, (4.2)

where F is the Fourier transform operator, OTF∗ (=F [P ]∗) is the complex conju-
gate optical transfer function, and ~ the convolution operator. We implemented
this scheme in Python and integrated it into the processing pipeline. A key param-
eter is the number of iterations, where too few iterations will result in a poorly
reconstructed image, and too many iterations will increase noise and waste com-
puting power. By manual inspection, we have set the number of iterations at
75.

NEURONAL SEGMENTATION

The red channel images the constitutively expressed fluorophore localised in the
nucleus of each neuron, and is used for segmentation. This process can be sub-
divided into two steps: (1) separation of the foreground and background pixels,
and (2) segmentation of the individual neurons. To separate foreground from
background, the deconvolved image is first blurred to remove high frequency
components and low pass filtered to remove background light, using a fourth
order Butterworth filter with a cutoff distance at 2.5 µm and 20×20×5 µm (the
last dimension being the along the direction of the optical axis), respectively. Sub-
sequently, the foreground of the image is separated from the noise background by
a user-guided thresholding scheme, where the threshold is given as a fraction of a
value obtained from Otsu-tresholding [98] of the maximum intensity projection.
This threshold negotiates a tradeoff between segmentation accuracy (i.e. avoiding
false-positive detection of noise, imaging artefacts, and cell/tissue autofluores-
cence) and sensitivity (i.e. avoiding false-negative misdetection of neurons of low
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Figure 4.11: Representative images for the maximum intensity projection of the volu-
metric image frame (z-stack) of the head region of a worm expressing TagRFP (red) and
GCaMP6s (green) (A) before and (B) after deconvolution using the PSF estimated in a
separate control measurement (see text).

brightness). Two values of the Otsu-threshold fraction are provided by the user,
a lower bound below which no pixel can be selected, and a higher bound above
which all pixels are selected (usually about a factor of 1.5 apart). The ambigu-
ous intensity values in between these thresholds are automatically determined
using a random walker segmentation [99]. The random walker segmentation
annotates pixels by solving a diffusion equation where the local diffusion coef-
ficient is dependent on the local gradient. This reduces segmentation of small
objects resulting from noise around the threshold value, but allows segmentation
of neurons just above the noise threshold.

The foreground image requires a further segmentation step, as nearby neurons
can be erroneously merged by the random-walker segmentation. Such under-
segmentation can occur for nearby neurons in regions with high neuronal density
(which includes most neurons in the head) when segmentation is performed
based on local maxima in the intensity image [100]. Therefore, instead of using
local maxima in the intensity, according to a method described by Toyoshima. et
al. areas of concavity (points where the curvature of iso-intensity contour lines is
in the direction of low intensity) are removed from the foreground image [100] and
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individual neurons are subsequently segmented based on the shape of the remain-
ing volumes using a watershed segmentation. Individual neurons are segmented
from this image using random walker segmentation on the distance transform
(the minimum distance from each pixel to the boundary of the segmented area),
where each local maximum is seeded as an individual neuron.

Due to the low signal-to-noise ratio and relatively large pixel size compared to
the size of the nucleus, this typically results in over-segmentation of the image.
Segmented neurons with centroids closer than 2.0 µm, or with a contact surface
area of more than 40% are merged. Additionally objects with a volume < 2 µm3

are removed. After segmentation, the intensity values of the deconvolved red and
green channels are extracted within a radius of 1.5 µm from the centroid of each
segmented volume (including only pixels belonging to the segmented volume).

NEURONAL TRACKING

To generate the GCaMP intensity time series for each neuron, tracking of neurons
across frames is required. This is a non-trivial task for a number of reasons. The
number of segmented objects within each volumetric image frame is variable.
Additionally, there is no true positive image to which each of the segmented frames
can be compared. Comparing consecutive frames for tracking accumulates errors,
which will likely happen with many thousands of volumes, each with a different
subset of segmented objects. Manual inspection of each volume is unfeasible,
since there are thousands of segmented volumes. Further, the worm can, even
when confined, deform its body. Consequentially, the position of each neuron,
also relative to its neighbours, can vary throughout the measurement.

We have adopted a method developed by Nguyen et al. [53], developed for
neuronal tracking in freely moving worms. This algorithm is preferred over that of
Tokunaga et al., who have developed a tracking method using KDE’s [101], but it
performs weakly if the subset of segmented neurons is variable across frames. For
clarity, a brief description of the Nguyen et al. method is given here. We have
adopted the core ideas of this method and written a python code, as the original
code was provided in MATLAB, to integrate the tracking with the other steps of
the image processing pipe line.

The key idea is that rather than comparing consecutive frames, it compares
every frame to every other frame. To make this comparison computationally
feasible, it selects a random subset of n frames as reference frames. It then maps
all segmented points Xi from each frame i to those of each of the n reference
frames by a point-set registration (PSR) algorithm. This mapping results in an
n-dimensional registration vector for each point in Xi .

Registration vectors corresponding to the same neuron in different frames
are expected to be similar. Thus, clustering the registration vectors of all neurons
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across all frames provides a means of tracking neuron identity across frames.
Our implementation adds some modifications to make it suitable for our

experimental configuration (see below).

Point-Set Registration
Comparing and linking the points of two manifolds is called point-set regis-

tration (PSR). In this case, the coordinates of a set of segmented points X from a
single frame is represented by a Gaussian Mixture given by (4.3) [53, 102]

g (η, X ) =∑
i

Ai exp(−|η−xi |2
2λ2 ), (4.3)

where Ai is the amplitude of each neuron, η the coordinate, xi in X the position
of a neuron, and λ a scaling parameter of the mixture. To compare a set S with
a reference set R we need to find the transformation u[S] that minimizes the
function

E(u) =
∫ [

g (η,u[S])− g (η,R)
]

dη+Ede f (u). (4.4)

The minimization is now a trade-off where the deformation is rewarded when
the point sets overlap, but penalised for the deformations themselves. The de-
formation penalty is for non-affine transformations. In Nguyen et al., point-set
registration is performed after an initial worm straightening step before segmenta-
tion using a low-magnification dark field image, which roughly aligns the neurons
and hence requires only relatively small deformations of the PSR manifold. In our
experimental setup, we do not record the postural information of the worm, so no
straightening step is applied and stronger deformations of the manifold are re-
quired, making the minimization problem in PSR more challenging (Figure 4.12A).
However, additional information can be used to navigate the minimization prob-
lem. The worm can move but is constrained in the channel, and hence the brain
mainly deforms along the head-tail axis of the worm. Therefore, deformations
along this ’soft’ direction are penalised less compared to the other two directions
in which the neurons move less, i.e. the energy-penalty is anisotropic. An estimate
of the relative contribution and direction of the anisotropic penalty is obtained
from a principal component analysis of the variance of the spatial point distribu-
tion across time. This results in the direction of the most deformation as well as
its relative contribution.

To illustrate how this modification aids in PSR, frames with different postures
are compared (selected from the pool of the 20th percentiles of the most and
least compressed point sets). As a ’true positive’ the tracking matrix is used after
both clustering and error correction (see sections below). This results in both
a significant reduction of falsely assigned neuron pairs as well as an increase in
correctly assigned neurons (Figure 4.12BC).
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Figure 4.12: PSR is aided by allowing an anisotropic deformation penalty. (A) A 2D
representation of the position of the segmented points for 2 different frames with different
postures show significant deformation of the brain manifold. During PSR, the yellow
point cloud has to be mapped to the blue point cloud. (B) Using anisotropic deformations,
the PSR wrongly maps many neurons from the blue to the yellow point cloud. When
anisotropic deformation is used, this error is reduced. As part of positive control, the
neuronal identities are obtained after error correction and clustering. (C) The average
fraction of wrongly assigned points (top, red) and correctly assigned points (bottom,
green) for 1000 frame pairs with different postures. Error bars represent the bootstrapped
95% confidence interval of the mean.

Construction of the registration vector
Each of the volumes is compared to a reference set of 200 evenly spaced vol-

umes across time. After the anisotropic deformation, in theory, the two volumes
have the same shape and neurons of the two volumes can be paired. Pairing is
performed based on the distance between neurons using the Hungarian method
[103]. The cost function is set to increase proportionately with the squared dis-
tance between neurons and stays flat for distances larger than 4 µm. Pairs at
distances larger than 4 µm are removed, as this would increase the risk of wrongly
assigning neighbouring neurons in dense regions. A registration vector of length
200 containing the identity of the matching neurons in the reference set is con-
structed for each neuron in every volume of the measurement.

Neuron identification using clustering
The key assumption of the method is that the registration vectors of the same

neuron across frames will be similar, or at least more similar to each other than
the registration vectors of other neurons. Therefore, these can be identified using
clustering methods. As described in Nguyen et al. [53], first a small subset of the
frames is used to define clusters, that correspond to individual neurons. Then,
each data point is assigned to the nearest cluster when it is sufficiently close by.
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A subset of 100 randomly chosen frames is used to cluster the registration
vectors so as not to overload the memory of the system. Registration vectors
with fewer than 50 (25%) linked neurons are disregarded. A distance between
registration vectors is computed based on the number of matching identities (a
correlation between the two vectors, where matching identities count as 1 and
non-matching identities as 0), excluding frames where no neuron is linked. A
hierarchical cluster tree is constructed using complete linkage clustering. Each
cluster should consist of registration vectors for the same neuron across different
time points. In the optimal case, the number of clusters should therefore be
identical to the number of neurons. A distance threshold value of 0.9 is used on
the linkage matrix to define the clusters. Clusters consisting of ≤ 40 registration
vectors are disregarded. We find that with these parameters, practically no two reg-
istration vectors from the same time point are assigned to the same cluster. With
the clusters defined based on a small subset of the time points, each registration
vector across time points can be compared to the cluster and assigned accordingly.
Therefore, the distance of each registration vector is computed to the centroid
of each cluster, and the neuron is assigned to the nearest cluster. Registration
vectors at a distance greater than 0.4 to the nearest cluster are not assigned. This
value is determined by comparing the distributions of the distances to the nearest
and the second-nearest clusters. For values < 0.4, the probability of assigning a
neuron to the wrong cluster is very low.

Error correction
Now that neurons are tracked across frames, and thereby the deformation

of the manifold is known, it is possible to deform one manifold into the other
[53]. A comparison of the positions of the neurons can be used to correct tracking
errors and add unassigned objects. Each frame is deformed towards a set of
200 equally spaced reference frames. Nguyen. et al. [53] use the predictions
to correct the centroid position of wrongly tracked neurons if the object lies far
outside the prediction and add missing untracked positions of neurons using
the prediction, even when there is no segmented object. We only use the set of
previously segmented objects in a frame for error correction.

Occasionally, a single neuron is split into two clusters during the clustering
step. Two neurons are merged when 2 criteria are met. Firstly, the time points
will be distributed across two clusters, therefore there is a strong anti-correlation
in their masks (a boolean vector containing information whether an object is
assigned or not at each time point). Therefore, the masks should have a correlation
< 0.5. Secondly, it is checked whether the predicted positions of the neurons are
strongly overlapping. The distribution of the pairwise distances of the predicted
positions from each of the reference frames for the same neuron is compared
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with that between the two neurons. When these largely overlap; when the Jensen-
Shannon divergence (JSD) < 0.7 (bound between 0 and 1), the two neurons are
merged.

A similar method of comparing distributions is used to remove incorrectly
assigned objects and add unassigned objects at each time point. First, we predict
the position of a neuron a at time x from each of the remaining 199 reference
frames and compute the distances of the object associated with neuron a at time x
with all 199 predictions. This is compared with the pairwise distance distribution
between all combinations of the 199 predicted positions. If the position of the
object a lies far outside the cloud of points predicted by other time points (a JSD
> 0.8 is used), that time point becomes unassigned. This process is repeated
for all objects across frames. Objects unassigned to a neuron are assigned by
testing if they are positioned within the cloud of predicted positions of each of the
neurons. The distance distribution of the unassigned object at time x towards
each of the predicted positions the neuron a without an assigned object at x is
computed. This is compared to the pairwise distance distribution of the predicted
positions of the neuron a. Unassigned objects are added to the neuron with the
lowest JSD in ascending order of JSD (for as long as the JSD < 0.8).

POST PROCESSING OF THE TIME SERIES

Computation of neuronal activity
We found that a bleaching correction was not required for both the AML strains

[20, 50] and the NeuroPAL strain OH15500 [49]. To account for motion artefacts
and variability in segmentation, the ratio of the green channel with respect to the
red channel, A =G/R , is defined as the activity of a neuron for subsequent analysis.
The activity is subsequently smoothed using a Savitzky–Golay (SG) filter with a
5 s window and a second order polynomial [104]. Each neuron is normalized
by F = (A − A0)/A0, where A0 is the mean value of the respective time series, to
ensure similar weights for each neuron irrespective of the dynamics. To compute
the derivative of the time series, a Savitzky-Golay filter was used with a window of
30 s and a 4th order polynomial. We found that this obtained similar results to
using a regularised total variation derivative scheme [105] with α= 10, albeit with
much faster computation times.

PCA analysis, mode time series and mode activity
Chen. et al. have shown on freely moving worms that the mutual information

distribution of the derivatives is more distinct from control measurements [106].
We therefore performed the principal component analysis on the time derivatives
(using a 30 s window, see above) of the neuronal signals. The principle component
analysis is computed on the covariance matrix of the time derivatives (as described
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above) of the neuronal activity.
Mode time series are constructed using a weighted average of the neuronal

time derivatives, weighted by the eigenvector of the respective mode. The activity
displayed of PC time series in the figures represents intensities, not derivatives.
The activity in Figure 4.3C, 4.4B, 4.8A/B, S4.3, S4.4C, S4.7A, 4.9AB and S4.10C
shows the integrated mode time series. The activity displayed and used in the
analysis in figures 4.5, 4.7, S4.5 and S4.6 is computed by directly weighting (after
5 s SG filtering) the neuronal time series, instead of mode time series, by the
eigenvector of the respective mode, to include high-frequency dynamics lost by
the computation of the 30 s derivative used prior to performing the PCA.

Worm stretch
The stretch of the worm’s body provides valuable information of the worms

behaviour. For each well tracked neuron (at least 90% assigned data points),
the average displacement with respect to its mean position along the axis of the
channel is computed. The stretching is quantified by taking the average of all
neurons. To make sure that a positive stretch corresponds with an expansion of
the worm’s body, the sign is fixed by ensuring a positive correlation between the
time derivative of the obtained value and the standard deviation. The standard
deviation is not directly used as a measure of the stretching behaviour, as it is
noisy due to unassigned data points. However, we found the standard deviation
and average displacement to be highly correlated (0.77±0.05). The displacement
is filtered using a SG filter with a window of 5 s and a second order polynomial.

Cross correlations analysis
Cross-correlation analysis is performed on the time derivatives of both quanti-

ties. In the analysis of figure 4.2, the cross correlation is computed for a delay time
up to ±20 s and the absolute maximum correlation value is used. To compute
the relationship between modes and neurons dynamics with stretch (Figure 4.4),
the cross correlation is computed with a delay of ±60 s. For SDS measurements,
the cross correlations were computed up to a 1 min delay time with the stimulus
leading the response and the absolute value is used to compute C . To compute
the cross correlations used in the salt analysis, a delay of ±60 s is used.

PROCESSING PIPELINE

To create an efficient processing pipeline, each of the computational steps re-
quired to obtain time series, as described above, is written in Python. Python is an
open source programming language widely used for scientific research. Therefore,
many of the computational methods required to create time series did not have
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to be built from scratch; existing libraries could be used (e.g. core components of
the PSR [102], or the random-walker segmentation algorithm [99]).

This section gives a very brief overview of the processing workflow. The code
and documentation describing the different components of the code, along with a
more detailed manual of the workflow, are available to anyone upon request. The
processing pipeline requires very little user input to process the data. Parameters
that have to be set for each experiment are the lower and upper thresholds used
for segmentation (see section 4.4.3), the region of interest (excluding regions
outside the microfluidic channel reduces computational costs), and the start and
end frames of the analysis.

Each measurement consists of thousands of Z-stacks (adding up to∼ 120 GBh−1

of measurement), which means that deconvolution, segmentation, and tracking
are computationally demanding tasks, and parallel processing is required to re-
duce the processing time. Therefore, this work was carried out on the Dutch
national e-infrastructure (LISA cluster and CARTESIUS supercomputer) with the
support of SURF Cooperative.

Processing is split into three parts. (1) PSF deconvolution and segmentation
of each frame, computed in parallel on 15 nodes with 360 cores. The output is
stored in a pickle file containing information of the position and intensity of the
red and green channels (including that of each pixel belonging to the object). (2)
PSR of the volumes, also also computed in parallel (on 30 nodes, 720 cores), as it is
computationally the most expensive task. The positions of the deformed volumes
are stored in a dictionary. (3) Construction of the registration vector, clustering of
registration vectors, error correction, and constructing time series are performed
on a single node. The result after each step is stored in dictionaries. Parameter
settings used for segmentation, deformation, and clustering are stored in text files
along with the data.

4.4.4. PROTOCOLS

Microfluidic devices are constructed from PDMS. Worms are cultivated on NGM
plates (3 g NaCl, 17 g agar, 2.5 g peptone, 1 mL 5 mgmL−1 cholesterol in EtOH
in 975 mL water, with 1 mL 1 M CaCl2, 1 mL 1 M MgSO4, 25 mL 1 M KPO4 pH 6,
1 mL 200 mgmL−1 streptomycin in water) seeded with OP50 and regularly trans-
ferred. Experiments are performed in S-basal (6 g KH2PO4, 1 g K2HPO4, 2.9 g
NaCl, 1 mL cholesterol (5 mgmL−1 in ethanol), 1 l H2O, autoclaved) with 50 mM
NaCl (matching the salt concentration during development) as buffered medium,
unless otherwise specified. For stimulus experiments, the paralytic tetramisole is
used (see section 4.4.5). Salt experiments are performed on S-basal with 50 mM
NaCl with 25 mM sorbitol to balance the osmolarity [10] as buffered medium, and
75 mM NaCl as stimulus medium. SDS response measurements are performed
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in the buffer M13 instead, with 0.1% SDS in the stimulus medium. Experiments
on serotonin are performed in unbuffered water, and serotonin is added on the
day of the experiment and protected from light to avoid oxidation. To perform
a measurement, healthy looking young adult/adult worm has been chosen by
eye with bright fluorescence. An experiment is performed following the protocol
described below.

Brain imaging experiments

• Prepare buffered medium and stimulus medium.

• Wash the liquid storage columns, tubing and microfluidic device with dem-
ineralized water (3×).

• Pick a worm into a droplet, and use a syringe containing buffer medium to
load the worm into the microfluidic device.

• Apply pressure to the buffer reservoirs and connect the tubing to the mi-
crofluidic device (see section 4.4.2). Note: Make sure the pressure of the
stimulus channel is lower prior to starting the measurement to avoid expo-
sure during sample preparation. Connect the outlet to a tube for transport-
ing the liquid to a waste container.

• Wait for air bubbles to leave the device (usually not necessary if the mi-
crofluidic device was flooded with buffered medium prior to loading the
worm).

• Load the sample onto the Z-stage holder of the microscope. Acquire a
bright-field image at 10× and 60× magnification for later inspection.

• Set a lower and upper limit for image acquisition by hand by slightly il-
luminating the worm with fluorescent light. Set the number of slices to
approximately acquire an image with a spacing of approximately 1.3 µm.

• Start the imaging protocol. (see below)

• Immediately start the microfluidic protocol.

OH15500 imaging protocol

• Repeat 3×: Acquire a single volumetric image for each laser illuminating us-
ing a 640, 405, 488, 561 nm laser for 15 ms at 100, 20, 20, 40 mW respectively.
This step is pre-programmed and takes ≈ 15 s.
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• Acquire W-stacks (consecutive images at equally spaced steps and consecu-
tive z-stacks are acquired in reversed vertical order) for the duration of the
measurement using a 488 and 561 nm laser at 3 and 14 mW respectively
simultaneously with an illumination time of 5 ms. The red fluorophore
requires a strong light source but is highly photostabilized. To reduce the
laser power, segmentation is performed by combining red fluorescent light
of 5 consecutive frames, which is possible for paralysed worms.

AMLxxx imaging protocol
Acquire W-stacks for the duration of the measurement using a 488 and 561 nm

laser at 1 mW simultaneously with an illumination time of 5 ms.

4.4.5. STRAINS AND MEASUREMENT CONDITIONS.
The AML10 and AML14 strains were used during the development of the experi-
mental setup and processing pipe line. AML175 is used for experiments leading
up to figure 4.2. AML70 has been used for brain imaging of unparalyzed worms
(figure 4.2 & 4.4) in a microfluidic channel of height 28 µm. Stimulus response
experiments (figure 4.5-4.8) were performed with the OH15500 strain, in which
nearby neurons express distinct fluorescent expression profiles [49], requiring
paralysis of the worm in a microfluidic channel with a height 43 µm. To paralyse
worms, 1 mM of tetramisole was used for salt, SDS and serotonin response mea-
surements, and 10 mM of tetramisole was used in the experiment of figure 4.4 &
S4.4/4.6.

Table 4.1: C. elegans strains used in this study.

Strain list

name genotype source Figures µF dev. height
AML10 otIs355 [rab-3::NLS::tagRFP]. [19]

otIs45 [unc-119::GFP] V
AML14 wtfEx4 [rab-3p::NLS::GCaMP6s + [19] S4.2 28 µm

rab-3p::NLS::tagRFP]
AML70 lite-1(ce314) X; wtfIs5 [rab-3p::NLS::GCaMP6s + [50] 4.2, 4.3, 4.4 28 µm

rab-3p::NLS::tagRFP] S4.1,4.2,4.3
AML175 lite-1(ce314) X; wtfIs3 [rab-3p::NLS::GFP + [50] 4.2 28 µm

rab-3p::NLS::tagRFP]
OH15500 otIs672 [rab-3::NLS::GCaMP6s + arrd-4:NLS:::GCaMP6s]; [49] 4.5, 4.6, 4.8 43 µm

otIs669[TagRFP-T, mTagBFP2, CyOFP1, mNeptune2.5, S4.4,4.5,4.6
CyOFP1 under various promotors] V S4.9, 4.10

Strains were provided by the CGC, which is funded by NIH Office of Research
Infrastructure Programs (P40 OD010440).
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4.4.6. SUPPLEMENTARY FIGURES
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Figure S 4.1: Contrasting time delays of the stretch with calcium sensitive fluorophore and
the stretch with calcium insensitive fluorophore indicate that the measured dynamics
are not exclusively the result of motion artefacts. The maximum correlation between the
neuronal time series and the stretch with its corresponding delay (evaluated in a 20 s
window) of measurements performed on worms of the (A) AML70 strain expressing the
red fluorophore tagRFP and green calcium indicator GCaMP6s and (B) AML175 strain
expressing the two calcium insensitive fluorophores tagRFP and GFP (see methods). Red,
green, and yellow indicate the red, green, and ratiometric signals, respectively.
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Figure S 4.2: The average peak-to-peak time of the second half of a measurement, for
various conditions, is lower than the first half. Each dot is a measurement. P stands for
paralyzed, F for freely moving (unparalyzed), and for FP the worm is paralysed in the
second half of the measurement.
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Figure S 4.3: Mode 1 activity (orange) is correlated with the average stretch of the worm’s
head (blue). Upon addition of 10 mM tetramisole, the movement relaxes, but mode 1
dynamics continue. The bottom right panel is the example shown in figure 4.4C.
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Figure S 4.4: Brain dynamics of various paralysed worms (OH15500) in buffer reveals a
dominant principal mode with a phase relationship with the lower mode. (A) The activity
for each neuron. Note: Oversegmentation may result in a larger number of objects than
the actual number of neurons. (B) The loading of each neuron onto the first (blue), second
(yellow), and third (green) top modes. Modes are computed on the time derivatives of the
activity. (C) Representative time series of the top 3 modes (same colour coding as in B).
Variance explained by the first 10 modes (blue bars). The cumulative variance explained
of the first 10 modes (black lines). (E) The phase-space relationship between the time
series of the top 2 modes, colour-coded by the direction of the trajectories.
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Figure S 4.5: Time series of correlated neurons of an exemplary measurement (the same
as figure 4.5B). (A) The most strongly correlated neurons (p < 0.01) of an example worm
with the time derivative of the stimulus. Time series are sorted by the delay time. The
order of the neurons is sorted by the delay time (B) that corresponds to the maximum
value of the absolute cross correlation, C , with the stimulus. (C) The positions of the
strongly correlated neurons.
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Figure S 4.7: Neuronal dynamics of an exemplary SDS response measurement (same as
in figure 4.5 & S4.6). (A) The activity for each of the tracked neurons. (B) The loading of
each neuron onto the first (blue), second (yellow), and third (green) top modes. Modes
are computed on the time derivatives of the activity. (C)Variance explained by the first
10 modes (blue bars). The cumulative variance explained of the first 10 modes (black
lines). (D) Representative time series of the top 3 modes (same colour coding as in B). The
grey bars indicate the SDS stimulus. (E) The phase-space relationship between the top
2 modes, colour-coded by the direction of the trajectories. (F) Phase-space relationship
of the top two modes in panel E map to those of a study presented by Kato. et al. on
paralyzed worms [18]. This panel is adapted from Kato et al. figure 3B and rotated to
match figure E. The blue, cyan, red, pink, green, yellow, and orange colours represent
inferred corresponding forward, forward slowing, reversal I, reversal II, sustained reversal,
ventral turn, and dorsal turn behaviours, respectively, as described by Kato. et al. [18].
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Figure S 4.8: Neuronal dynamics for worms (N = 7) stimulated with 5 mM serotonin
during 15 min < t < 30 min. Neurons are sorted by the loading onto the first 3 PCA modes.
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Figure S 4.9: The integrated activity of the first PCA mode for worms in unbuffered
water stimulated with 1.5 mM serotonin or (B) 0.5 mM serotonin. In contrast to 5.0 mM
stimulated worms, no dramatic decrease in activity is observed. The fraction of time
that the absolute activity levels exceed a value h set by the crossover value from a bi-
exponential fit to the absolute activity for (C) 1.5 mM serotonin and (D) 0.5 mM. Upon
removal, the activity levels increase.
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Figure S 4.10: Brain dynamics in response to water. (A) The activity for each neuron. (B)
The loading of each neuron onto the first (blue), second (yellow), and third (green) top
modes. Modes are computed on the time derivatives of the activity. (C) Representative
time series of the top 3 modes (same colour coding as in B). (D) Variance explained by the
first 10 modes (blue bars). The cumulative variance explained of the first 10 modes (black
lines). (E) The phase-space relationship between the top 2 modes.
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SUMMARY

How and why animals exhibit certain behaviours is one of the most interesting,
but also among the most complex biological questions to answer. Traditionally,
this question was approached from either ethology – focusing on strategy (the
why) from an evolutionary perspective, or neuroscience – focusing on mechanism
(the how) from a physiological perspective, but the gap between these approaches
is now narrowing with technological advances allowing the collection of vast data
sets to capture motile behaviour and brain dynamics, including its diversity and
variability. In this thesis, we have taken a physical approach towards understand-
ing motile behaviour, striving to uncover simple ideas from large, holistic data
sets in a principled way, by applying dimensionality reduction and minimalistic
modelling to the nematode Caenorhabditis elegans, a 1 mm-long nematode with
just 302 neurons.

After a brief introduction in Chapter 1, in chapter 2 we develop a quantitative
and predictive description of motile behaviour and use it to study behaviour of a
wide range of nematode species. For thism we construct a minimal 7-parameter
model that captures the essential behaviours: speed, rotational, and reversal
dynamics, including their fluctuations. We find that this model captures variation
across individuals and a broad range of species within the Nematoda phylum.
Interestingly, behaviour varies most prominently across a common mode, and
moving along this mode strongly changes the exploratory propensity towards
more roaming or more dwelling. In addition, variation across individuals is
comparable to variation across species, which suggests a common underlying
pathway. This simple model provides a basis for future investigations to uncover
conserved mechanisms that generate behavioral variability.

Chapter 3 focuses on the turning aspect of behaviour and asks what are the
modes of control, and how the system is optimised to mitigate limits of control
and intrinsic biases. We realise this by extracting and analysing postures from a
large number of worms performing exploratory and escape tasks during two-hour
recordings, leveraging naturally occurring variability in turning statistics across
time and individuals under similar conditions. The results show that during explo-
ration, worms exhibit a slowly fluctuating but persistent gradual rotational bias,
curtailing their exploratory propensity. However, with a simple model, we show
that the effective rate of random reorientation, on average, minimises the nega-
tive impact of the rotational bias, which could reflect a constrained optimization.
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Finally, we show how during escape responses, the worm exerts control over its
sharp turn statistics, with respect to both direction and amplitude, to overcome
its intrinsic biases that would be detrimental to escape.

In Chapter 4 we investigate the neuronal signalling that underlies behaviour
and its relationship to motility and sensory inputs. We develop a measurement-
analysis pipeline that enables long timescale whole-brain recordings of brain
dynamics with a simple one-dimensional behavioural output and the ability to
provide temporally controlled chemical stimuli. With this system we investigate 3
hypotheses about C. elegans brain dynamics: (1) the collective motor-command
hypothesis, which states that correlated activity of many neurons serve as motor
commands, (2) the apparent stochasticity hypothesis, which states that individual
neuron activity can appear stochastic due to influences of brain-wide dynamics,
and (3) the neuromodulated brain-states hypothesis, which states that brain-wide
activity states, such as sleep, can be triggered by neuromodulatory chemicals. Our
results yield positive evidence in support of each of these hypothesis.

The results presented in this thesis contribute to closing the aforementioned
gap between understanding the how and why of behaviour. On the one hand,
tools have been developed to quantify, model, and analyse motile behaviour in
the absence and presence of stimuli and in the context of behavioural strategies.
On the other hand, we have made inroads to studying how the brain encodes
and processes information, under the influence of the same stimuli. This thesis
has largely been an exploratory effort, where along the way many new interesting
angles have been opened up for future studies.



SAMENVATTING

Hoe en waarom bepaald bewegelijk gedrag tot stand komt is een fascinerende,
maar ingewikkelde vraag om te beantwoorden. Van oudsher zijn er verschillende
invalshoeken: ecologisch (de waarom-vraag) wat gedrag als onderdeel van een
evolutionair voordelige strategie beschouwd, of mechanistisch (de hoe-vraag)
waarin gedrag wordt gezien als de uitkomst van een ingewikkeld interactienet-
werk, met een hoofdrol voor het brein. Door de opkomende technologie waarin
gigantische datasets geproduceerd kunnen worden om gedrag en hersensignalen,
inclusief variatie, te meten, komen deze invalshoeken steeds dichter bij elkaar.
In dit proefschrift is een fysische benadering gebruikt om bewegingsgedrag te
bestuderen, wat focust op simplificatie en het bestuderen van algemene principes
gebruikmakend van deze grote datasets, door middel van dimensie-reductie, mo-
dellen om systemen te begrijpen, en het bestuderen van een minimaal biologisch
modelorganisme Caenorhabditis elegans: een 1 mm lange nematode (rondworm)
met slechts 302 zenuwcellen.

Hiervoor hebben we in hoofdstuk 2 een voorspellend en interpretabel model
gecreëerd met 7 parameters, wat de essentiële bewegingsdynamica, inclusief va-
riatie op korte tijdschaal vastgelegd: snelheid, rotatie, en bewegingsommekeer.
Dit model legt succesvol variatie vast in bewegingsgedrag tussen verschillende
wormen van een brede set aan verschillende soorten van de Nematoda stam.
Een interessante bevinding is dat de richting in de parameterruimte van het mo-
del die het beste gedragsverschillen beschrijft overeenkomt met een as waarop,
als je er overheen loopt, sterk de verkeningsgraad veranderd. Verder vinden we
dat variatie van individuen binnen hetzelfde soort vergelijkbaar is met variatie
tussen verschillende soorten, wat kan duidelijk op een gemeenschappelijk onder-
liggend regulatienetwerk. Dit model vormt een basis voor vervolgstudies die de
mechanismen willen onderzoeken die ten grondslag liggen aan variatie in gedrag.

Hoofdstuk 3 focust op het draai-aspect van gedrag waarin we ons af vragen
wat de controlemechanismen zijn en hoe deze zijn geoptimaliseerd om de invloed
van inherente limitaties in controle te beperken. Hiervoor meten en analyseren
we het postuur van een groot aantal wormen gedurende meerdere uren in een
omgeving waar ze verkenningsgedrag en vluchtgedrag vertonen, gebruikmakend
van de van nature aanwezige variatie in gedrag over tijd en tussen individuen
onder vergelijkbare omstandigheden. We vinden dat er tijdens de verkenning een
relatief zwak, maar continu aanwezig en zeer langzaam fluctuerend voorkeurs-
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draairichting aanwezig is, wat een limitiatie zet aan de ’rechtheid’ van het geno-
men pad. We kunnen met een model laten zien dat het willekeurig draaigedrag
een dusdanig sterkte heeft dat die, met de aanname dat de voorkeursrichting een
intrinsieke beperking is die niet verkleind kan worden, gemiddeld genomen voor
alle wormen dit negatieve effect minimaliseert. Tot slot beschrijven we hoe de
worm gebruikt maakt van controle in amplitude en richting van de ommedraai,
vertoond tijdens het vluchtgedrag, om zo efficiënt mogelijk weg te draaien.

Het doel van Hoofdstuk 4 is om de hersensignalen te onderzoeken die ten
grondslag liggen aan gedrag, in relatie met de beweging en zintuigelijke stimuli.
Hiervoor is een opstelling gecreëerd die voor langer dan 1 uur van een stubstansti-
eel deel van het brein hersensignalen kan vastleggen, tezamen met een simpel
1-dimensionaal bewegingsparameter, terwijl er gecontroleerd vloeibare stimuli
kunnen worden toegepast. We gebruiken deze opstelling om 3 bestaande hypothe-
sen te testen: (1) de globale activiteitspatronen in het brein bevatten informatie
van de bewegingstoestand, (2) de stochasticiteitshypothese, door middel van
het herhaaldelijk toevoegen van een zout of SDS oplossing en (3) modulatie van
de hersentoestand, in de vorm van een omkeerbare rusttoestand als gevolg van
externe toevoeging van serotonine. De resultaten die we vinden zijn in lijn met
deze hypothesen.

De resultaten die gepresenteerd worden in dit proefschrift dragen bij aan het
verder verkleinen van het hierboven gat tussen verschillende invalshoeken in
het bestuderen van gedrag. Enerzijds hebben zijn er middelen ontwikkeld om
gedrag te kunnen kwantificeren en modelleren, om het vervolgens, met en zonder
stimuli, te analyseren als onderdeel van een strategie. Anderzijds is er bestudeerd
hoe het brein signalen verwerkt, soms zelfs dezelfde stimuli. De resultaten die
gepresenteerd zijn in dit proefschrift zijn grotendeels exploratief en geven nieuwe
invalshoeken voor veel vervolgestudies die hierop kunnen voortduren.
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