Two approaches are introduced that provide information about the isomeric composition of hyperbranched polyesteramides. The first approach is based on a novel tandem mass spectrometric (MSn) approach that allows the study of different types of isomeric structures by a separation based on their difference in appearance energy. The method is called DoDIP: dissociation of depleted ion populations. A first MS/MS step is used to fragment isomers with relatively low appearance energy. The isomers with higher appearance energy are fragmented in a second MS/MS step of higher energy. The second approach is based on gas-phase H/D exchange experiments that result in a bimodal isotopic distribution for oligomers XnDn+1 of which one distribution corresponds to a type of isomeric structure that exhibits H/D exchange behaviour and the other to an isomeric structure that does not exhibit H/D exchange behaviour. X is a difunctional anhydride of phthalic acid (P), 1,2-cyclohexanedicarboxylic acid (C), succinic acid (S) or glutaric acid (G). D in XnDn+1 is a trifunctional diisopropanolamine and n the degree of polymerization. The type of isomeric structure that does not exhibit H/D exchange behaviour has a non-alternating monomer sequence that contains an amine bond with a relatively high proton affinity. The other isomeric structure that does exhibit H/D exchange behaviour has an alternating monomer sequence containing only amide and ester bonds with relatively low proton affinity. Oligomer structures were confirmed with additional MS2 experiments after H/D exchange. H/D exchange experiments on the fragments obtained after MS2 of the parent ion show that next to previously postulated mechanisms for the cleavage of the ester and amide bond another reaction pathway must be operational. A new mechanism is introduced to explain the H/D exchange behaviour of the fragments that requires a cleavage of the amide bonds only. Two types of fragments are formed by this mechanism. One type is protonated due to the cleavage of the amide bond whereas the other type has an oxazolonium ion structure due to the loss of an additional H2O.

J. Mass Spectrom.

Koster, S., Duursma, M. C., Guo, X., Benthem, R. A. T. M. V., de Koster, C. G., Boon, J. J., & Heeren, R. (2002). Isomer seperation of hyperbranched polyesteramides with gas-phase H/D exchange and a novel MSn approach: DoDIP. J. Mass Spectrom., 37, 792–802.