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In-Sensor Passive Speech Classification with Phononic
Metamaterials

Tena Dubček,* Daniel Moreno-Garcia, Thomas Haag, Parisa Omidvar,
Henrik R. Thomsen, Theodor S. Becker, Lars Gebraad, Christoph Bärlocher,
Fredrik Andersson, Sebastian D. Huber, Dirk-Jan van Manen, Luis Guillermo Villanueva,
Johan O.A. Robertsson, and Marc Serra-Garcia*

Mitigating the energy requirements of artificial intelligence requires novel
physical substrates for computation. Phononic metamaterials have
vanishingly low power dissipation and hence are a prime candidate for green,
always-on computers. However, their use in machine learning applications
has not been explored due to the complexity of their design process. Current
phononic metamaterials are restricted to simple geometries (e.g., periodic
and tapered) and hence do not possess sufficient expressivity to encode
machine learning tasks. A non-periodic phononic metamaterial, directly from
data samples, that can distinguish between pairs of spoken words in the
presence of a simple readout nonlinearity is designed and fabricated, hence
demonstrating that phononic metamaterials are a viable avenue towards
zero-power smart devices.

1. Introduction

The success of deep learning models is based on encoding com-
plex tasks as a combination of large linear transformations and
nonlinear activation functions. A variety of technologies, from
photonics[1] to memristor crossbar arrays,[2] have been postu-
lated to minimize the energy costs associated with these large
linear transformations. Phononic resonators have energy losses
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that improve on linear passive electronic
systems by several orders of magnitude.
This is reflected in their quality factors,
which quantify the number of periods that
oscillations take to decay. Quality factors of
several thousands are common in phononic
resonators,[3] and can reach billions in
specifically optimized devices,[4,5] but are in
the tens for electronic circuits.[6] This near-
dissipationlessness, combined with the ca-
pability of directly processing mechanical
signals such as spoken commands without
first transducing them into an electronic
or photonic domain, makes phononic res-
onators a prime candidate for zero-power
in-sensor edge computing applications. Al-
though these striking advantages have been

recognized in the context of both classical[7,8] and quantum[9,10]

computing, and the environmental impact of artificial intelli-
gence is increasingly in the spotlight,[11] phononic implementa-
tions of machine learning models remain largely unexplored.

A promising application domain for ultra-low-power artifi-
cial intelligence is in-sensor computing. Recent advancements
in sensor technology allow us to measure a variety of signals,
ranging from pressure,[12] magnetic fields,[13] rotations,[14] or
even pathogens such as Sudden Acute Respiratory Syndrome
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Figure 1. Passive speech recognition. a) Speech classification by a temporal convolutional network that combines delayed copies of the signal according
to a set of weights and then applies a readout nonlinearity. b) We realize a passive instance of such a network by a lattice metamaterial, whose vibrating
plates (resonators) are connected by beams. Its geometry (beam locations and hole sizes) is optimized to achieve the desired selective response. c)
The structure is modeled as a mass-spring model. Each mass corresponds to a vibration localized at a particular plate. The blue mass corresponds to
the displacement represented by the coloring in panel (b). d) The optimized metamaterial can be interpreted as a network of coupled resonators that
discriminates between two spoken digits.

CoronaVirus-2[15] through their photonic signatures.[16] How-
ever, significant continuous signal processing is still necessary
to determine whether a particular event has taken place, even
if the event occurs only rarely—a problem known as sparse
event detection.[17] In traditional sensing paradigms, information
is transferred to a central location, where the measured quan-
tities are analyzed. This results in continuous bandwidth and
power consumption, and potential privacy concerns. In-sensor
computing[18] is an emergent trend aiming to address these band-
width, energy consumption, and privacy issues by processing
information locally at the sensor, following the emergent trend
of edge computing.[19] However, implementing in-sensor signal
processing on battery-operated, embedded devices is highly lim-
ited by power constraints. This creates a need for low-power or
ideally passive, forms of computing. For such tasks, phononic
computing is an excellent candidate. While phononic signal pro-
cessing is significantly slower than electric circuits, a large class
of highly relevant signals (e.g., speech commands,[20] bioacoustic

signals,[21] gas concentrations,[22] or intraocular pressure[23]) nat-
urally occur at lower frequencies, and for these in-sensor battery-
powered applications, high energetic efficiency is of utmost im-
portance.

However, realizing advanced machine learning functionalities
in a phononic device is challenging, as it requires a careful bal-
ance between complexity and simplicity. On one hand, the struc-
tural design must be expressive enough to encode a complex
task such as speech classification (Figure 1a); on the other hand,
optimizing a mechanical neural network requires simulating a
large number of training iterations over a large dataset—hence,
the design must be simple enough to be simulated and opti-
mized efficiently. In this work, we demonstrate that phononic
metamaterials offer an excellent balance between these two re-
quirements: mode isolation allows for efficient and accurate sim-
ulation (with only one degree of freedom per site in the case
considered in this work [Figure 1b,c]), while the high sensitiv-
ity of metamaterials to the unit cell geometry allows us to cover
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a large range of effective properties with a small number of ge-
ometric parameters. We illustrate these advantages by design-
ing mechanical metamaterials that perform speech classification
tasks, attaining binary-classification accuracies higher than 90%
in most tested cases. This capability is experimentally validated
by fabricating a metamaterial sample that attains a classification
accuracy of 89.6%, close to the simulated value of 91.1%. We
then numerically demonstrate that, for words that are not lin-
early separable, we can achieve good classification performance
by constructing deep networks that combine multiple metama-
terial elements and commonplace mechanical nonlinearities. Al-
though mechanical metamaterials as a computing platform have
gained significant popularity in recent years,[24] for example, in
platforms such as buckling elements[25–30] or origami,[31] and
wave computing is revolutionizing air acoustics;[8,32] the present
paper is, to the best of our knowledge, the first experimental
demonstration of a machine-learning task performed by a net-
work of passive phononic resonators—leveraging their unique
low-dissipation characteristics.

Speech classification is a widespread application of embed-
ded machine learning, and hence significant efforts have been
devoted to minimize its power consumption.[33,34] Therefore,
the possibility of passively performing some or all of the as-
sociated computations in the elastic domain is highly signifi-
cant. Electronic approaches to speech classification have tradi-
tionally been sum based on convolutional[35] or recurrent[36] ar-
chitectures (e.g., Long-Short-Term-Memory[37]). Although it is
conceivable that both architectures could be realized in mechani-
cal metamaterials—given that there is a known analogy between
recurrent networks and wave physics,[8] here we focus on the con-
volutional approach as it provides a direct interpretation in terms
of metamaterial response. In a convolutional neural network, the
output is computed by adding together time-shifted copies of the
input signal and applying a nonlinear activation function to the
resulting signal (Figure 1a). In this work, the phononic metama-
terial plays the role of the convolutional filter (encoded in its im-
pulse response) and the nonlinear activation function is given by
the measurement of the output energy—as the energy is non-
linearly related to the displacement. The design problem to be
solved consists in identifying the metamaterial geometry that en-
codes a suitable convolutional filter.

2. Metamaterial Design

We considered a 2D metamaterial consisting of a lattice of 7 × 7
unit cells. Although the design is based on a repeating unit cell
architecture, each site has different geometric parameters (hole
radiuses and beam locations). This variability can be understood
as a small amount of disorder over a periodic background. Speech
signals are applied at the boundary of the metamaterial—by pre-
scribing the vertical displacement of the boundary conditions—
and the transmitted energy is measured at the center (output)
site (dashed line in [Figure 1b,c]). The choice of output site is ar-
bitrary; once fixed, the optimization algorithm will identify the
geometry that maximizes the word classification accuracy for the
chosen site. The combination of a metamaterial lattice with an
energy measurement can be interpreted as a single-layer neural
network. The metamaterial performs the linear transformation,
while the energy measurement can be seen as the nonlinear ac-

tivation function—as the energy is proportional to the displace-
ment squared. Intuitively, the task of the metamaterial will be
to transmit energy when excited with one word but not another
(Figure 1d). Realizing machine-learning models on phononic
metamaterials is challenging because machine-learning models
tend to be much more complex than traditional periodic lattices:
State of the art phononic metamaterials, such as those realiz-
ing topological insulators, are described by tight-binding mod-
els characterized by a few effective parameters.[3,38–41] In contrast,
machine learning models require hundreds to billions of param-
eters to encode a task.

To bridge this expressibility gap, we devised a multi-step algo-
rithm to efficiently design the sample (Figure 2a), which resulted
in high classification accuracy (Figure 2b). From the device geom-
etry, we extracted an effective mass-spring model with one degree
of freedom per site, following the perturbative metamaterials[42]

approach. Perturbative metamaterials implement a Schrieffer–
Wolff transformation[43]—a reduction of the lattice dynamics into
a low-dimensional, block-diagonal subspace; by projecting the
eigenmodes of the metamaterial into a basis of vibrations local-
ized at each site. We then simulated the effective mass-spring
model, exciting the sample with utterances of spoken digits from
the Google Speech Commands Dataset[44]—composed of record-
ings from a large and diverse group of speakers under real life
conditions. We computed the gradient of the loss function L us-
ing backpropagation in time, thus obtaining the gradient of the
loss function with respect to the mass-spring values. To obtain
the gradient of the classification loss function L with respect to
the geometric parameters, we used the chain rule,

𝜕L
𝜕(d∕h∕v)ij

=
∑

kij−kl

𝜕L
𝜕kij−kl

⋅
𝜕kij−kl

𝜕(d∕h∕v)ij

(1)

where L is the loss function, kij − kl are the spring constants of
the effective mass-spring model connecting site ij with site kl,
and dij, hij, and vij are the geometric parameters. The gradient of
the mass-spring values with respect to the geometric parameters

𝜕kij−kl

𝜕(d∕h∕v)ij
was obtained through a surrogate model,[45] a machine

learning model that predicts the effective mass and spring con-
stants from the geometry; trained on 5000 full-lattice simulations
(see Supporting Information for implementation details). We pa-
rameterized the geometry using three geometric parameters per
site (Figure 2c): The diameter of holes in the unit cell, dij, and
the horizontal and vertical arm locations hij and vij. This choice
resulted in a high variability of the effective spring constants, en-
coded by the fewest possible geometric parameters—achieving
the required high expressibility with low model complexity. The
effect of each geometric parameter on the mass-spring model
can be understood from the unit cell mode shape (Figure 1b).
The holes dij are placed at a modal maximum, and their effect is
to increase the effective frequency of the site (Figure 2d) by de-
creasing the moving mass. The role of the beams is to allow for
energy to flow between sites. since in the edge midpoints the lo-
cal mode has a zero, energy transmission is highly suppressed
when the beam is placed in a near-center position (hij = 0 or vij =
0); while the same transmission is enhanced when the beam is
placed closer to the maximum. Hence, the position of the beams
provides a powerful knob to tune the coupling springs in the
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Figure 2. Sample design. a) Training algorithm to determine the metamaterial geometry. b) Speech classification accuracy for all pairs of spoken digits
between one and four. For all but one of the pairs considered, a single layer provides a high classification accuracy. The two–three accuracy can be
increased from 59% to 81% with a two-layer network (see generalization section). c) Each unit cell (i, j) contains four holes of equal diameter, dij. The
location of the coupling beams is parameterized by hij and vij. d) Local stiffness and e) coupling strength as a function of the hole diameters dij and
beam locations hij, respectively. The approximation obtained by the machine-learning surrogate model is shown with dashed lines. The coupling is
strongly suppressed if the beam is attached where the plate eigenmode has a zero (Figure 1b), making a small beam displacement cause a large shift
in the coupling constant. The dark and pale gray arrows denote the corresponding pale and gray configurations in (a). f) Binary classification error
rate evolution during training for the three–four pair on the training (lines) and test (dots) sets for the selected initial configuration. Training errors for
other initial configurations are shown in gray. g) Simulated binary classification performance of a structure before optimization {dij, hij, vij} and after
optimization for the h) training set (91.8% accuracy) and j) test set (91.1% accuracy).

effective model (Figure 1c), which can be changed by a factor of
3 (Figure 2e). A significant advantage of perturbative metama-
terials is that the dependence between effective mass-spring pa-
rameters and geometric features is highly local. This allows the
surrogate model to precisely predict the local and coupling spring
values with a limited number of training samples (Figure 2d,e).

Once the sample design has been parameterized, the design
process subsequently consists of identifying the geometry (rep-
resented by the values of the parameters dij, vij, and hij) that max-
imizes the classification accuracy. To train the sample, we defined
a sigmoidal loss function of the form

L =
∑

q∉word

[
1 + e−𝛾(Eq−ET)

]−1 −
∑

q∈word

[
1 + e−𝛾(Eq−ET)

]−1
(2)

where Eq is the energy reaching the central (output) mass
(Figure 1c) of the effective mass-spring model when the sample
is excited with utterance q, ET is the threshold energy at which a
match is considered to have occurred, and 𝛾 is a smoothing pa-
rameter to facilitate training. This function captures the training
objective to produce a sample that accurately distinguishes be-
tween two chosen words. The first trained design consisted of a
one-layer model (a metamaterial lattice combined with a square
readout function), where the energy Eq is measured at the cen-
ter site (highlighted with a dotted square in [Figure 1b,c]). Mea-
suring the output energy is equivalent to applying a square ac-
tivation function as the energy is proportional to the square of
the displacement; therefore, this model can be interpreted as a
single-layer neural network. Remarkably, such a model attained
classification accuracy above 90% for the majority of tested word
pairs (Figure 2d).

The design process started with a random configuration of the
metamaterial lattice. We then minimized the loss function using

the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm[46]

on batches containing the full training dataset—using the gradi-
ent computed by the multi-step algorithm described in Figure 2a.
The optimization process consisted of 300 iterations and was re-
peated for 15 different random initial designs. This process is
shown in Figure 2f for the three–four word pair. Although full-
batch BFGS has been associated with overfitting,[47] we observed
excellent generalization performance—the degradation was less
than 1% between training and test datasets (Figure 2g,h,j). The
optimized design that performed best on the training dataset for
the three–four word pair was selected for fabrication.

3. Experimental Realization

We fabricated the sample (Figure 3a) on a 380 μm silicon wafer
using standard photolithography and etching techniques (Sup-
porting Information). The equivalence between the full metama-
terial and the mass-spring model, provided by the Schrieffer–
Wolff transformation, depends on having an isolated phonon
band. For materials without local potentials, such as those com-
patible with our fabrication platform,[3] this requires using a
high-order mode (Figure 3c), as the low-frequency spectrum is
populated by the three degenerate bands arising from rigid trans-
lation modes. To map the broadband speech signal to a high-
order band, we modulated the speech on a 10.5 KHz carrier and
then increased the playback speed by a factor of 6.8. Such sig-
nal transformation would not be necessary for materials with a
local support fabricated on multi-layer substrates (see Section 4
and Supporting Information), as the local support can be used
to lift the degeneracy between rigid body modes and allows the
metamaterial to directly operate on a speech signal.

To impose fixed boundary conditions, the wafer was clamped
between two rigid frames and excited uniformly using 28
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Figure 3. Experimental realization. a) Metamaterial lattice fabricated on a silicon wafer. b) Measured plate vibrations under harmonic excitation at differ-
ent frequencies. The black dot represents the point where the neural network output is taken. c) Experimental setup (photography by Astrid Robertsson).
d) Measurements of the plate vibration at the output point (band-limited to 62.5–74.5 kHz), superimposing the results for the excitation with each of
the spoken three and e) four sound files in the training dataset. The signals corresponding to three present a lower vibration amplitude. f) Classification
accuracy as a function of modulation frequency. g) Transmitted energy distribution for the test set, calculated from the individual curves in (d,e).

synchronized, thickness-mode piezoelectric actua-
tors (Figure 3b). The large number of actuators allows us to
ensure that every boundary site receives a uniform excitation,
as these are the conditions that were assumed during opti-
mization. Although samples can be designed to operate under
diverse excitation conditions (e.g., with waves applied only at a
particular site or boundary), to preserve classification accuracy,
experiments must be performed under the same conditions that
were assumed during design. We measured the vibration of the
output plate using a scanning laser Doppler vibrometer (LDV),
band-limited over the range of 62.5–74.5 kHz to minimize
the influence of higher-order lattice modes (Figure 3c). The
measurements (Figure 3d,e) showed a significantly larger center
plate vibration when the lattice was excited by a four—even
though all excitation signals were normalized to the same mean
energy. The optimal classification accuracy was obtained when
the modulation frequency was shifted by 2.8 kHz (Figure 3f)
with respect to the design value. This deviation can be accounted
by the manufacturing tolerance in the thickness of the wafer,
which is nominally ±10μm, and can be corrected by combining
the theoretical model with physical measurements[48] to trim
the sample after fabrication.[49] With the optimal modulation
frequency as determined on the training set (Figure 3f), we
measured a test-set classification accuracy of 89.6% (Figure 3g),
close to the simulated value of 91.1%.

4. Interpretation and Generalization

The full phononic metamaterial is interpreted as a single linear
transformation that, when coupled with a nonlinear activation
function, implements a layer of a neural network. The action
of the metamaterial on the input signal can be understood as
a convolution between the speech signal and a kernel encoded
in the impulse response of the lattice. Although the lattice con-
tains only nearest-neighbor interactions, the linear transforma-
tion effected by the lattice is dense in time, with the weights

for long-range temporal interactions determined by integrating
all possible paths that sound waves can take through the lat-
tice with a given signal delay. The effect of the training process
is to optimize the weights associated with each delay. Convo-
lution by an impulse response kernel is equivalent to applying
a frequency filter with the transfer function, the Fourier trans-
form of the impulse response. This provides a direct interpre-
tation to the classification capabilities of the single lattice. Dur-
ing the design process, the lattice learns to maximize its energy
transfer at the frequencies where the difference between words
is maximal (Figure 4a). The quadratic nonlinearity then rectifies
this selectively-transferred signal and computes the mean energy.
This mechanism allows the passive metamaterial to distinguish
between linearly separable word pairs.

Passive mechanical speech classification can be generalized
to word pairs with similar mean spectral contents by assem-
bling deep networks interconnected by nonlinear elements
(Figure 4c–e). These nonlinear elements allow the lattice to dis-
tinguish the temporal ordering of different frequency compo-
nents. We optimize a deep network consisting of two 7 × 7
mass-spring lattices interconnected with the nonlinear mechan-
ical element from ref. [50]. This nonlinear element consists of
two strings connected to a cantilever. Due to geometric nonlin-
earity, the vibration of strings results in a dynamic increase of
their tension. This is because vibrating strings have, on aver-
age, a longer length than stationary strings. The force exerted by
the string on the cantilever has the form Fsc = 𝛾x2

s2, where xs2 is
the second string displacement at the center and 𝛾 is the non-
linear constant. This force causes a deflection of the cantilever
(Figure 4c), that is proportional to the squared mean amplitude
of the string. In turn, the deflection of the cantilever dynami-
cally alters the tension of the first string, shifting its stiffness
by a factor Δks1 = 2𝛾xc where ks1 is the elastic constant of the
first string, and xc is the displacement of the cantilever. This
change in string stiffness Δks1 causes a corresponding shift in
the first string resonance frequency (Figure 4d), which induces a
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Figure 4. Generalization to other word pairs. a) Mean frequency content of the words one, two, three, and four (pink, purple, blue, and magenta, respec-
tively), and transfer function of the linear lattice designed to distinguish between three and four (black). Word pairs with more distinct mean frequency
contents can be classified more accurately by a single-layer device. b) Example spectrograms for the words one, two, three, and four. Word pairs with simi-
lar frequency contents can be distinguished from the temporal ordering of the frequency components. This distinction can be mechanically implemented
through multi-layer (deep) networks. c) Two layer network implemented by combining two linear transformations interacting through a mechanical non-
linear activation function, consisting of two strings (s1, s2) and a cantilever (c), thus realizing an asymmetric quadratic nonlinearity. d) When s2 vibrates
with high amplitude, it is on average more curved and hence deflects the cantilever c due to its finite stretching compliance (force denoted by a thick
black arrow). e) The time-dependent position of the cantilever c then influences the tension of the string s1, shifting its resonance curve and altering
the final output xs1. f) The string-cantilever-based nonlinearity significantly improves the classification accuracies for all tested word pairs with similar
spectral content. g) Finite element method simulation of a silicon drum (left) fabricated on a 220 nm silicon-on-insulator wafer (bottom), capable of
operating at audio frequencies with no modulation. A concept for an on-chip lattice is shown on the top right.

gating mechanism for elastic waves. When the string resonance
frequency is comparable to the lattice it is connected to, energy
can flow through the string and reach the output; in contrast,
when the string and lattice frequencies are different, energy flow
is stopped. This nonlinear mechanism can be interpreted analo-
gously to a gating mechanism in conventional recurrent speech
models.[51] A two-layer model more than halved the classification
error, from 41% to 19%, for the word pairs two–three (see Sup-
porting Information, for training details). Significant improve-
ments were obtained in all tested word pairs with similar spectral
content (Figure 4f).

The theorem by Boyd and Chua,[52] guarantees that mechan-
ical systems can theoretically reach accuracies comparable to
those of electronic systems, as any fading-memory function can
be realized as a combination of linear transfer functions and
static nonlinearities. Speech recognition is by definition fad-
ing memory—the result cannot depend on signals that took
place before the duration of the detected word; arbitrary linear
transfer functions can be engineered by branched delay lines;
and arbitrary static nonlinearities can be realized by cascading
quadratic elements.

In this work, we have shown that it is possible to en-
code complex information-processing tasks in phononic meta-
materials, by taking advantage of their unique balance be-
tween wave control flexibility and design simplicity. Although,
due to fabrication limitations, our current prototype operates
at higher-than-realtime frequencies; thus requiring additional
power to convert and modulate the input signal, it is pos-

sible to build micromechanical resonators operating directly
at audio frequencies.[53,54] Figure 4g shows an FEM simula-
tion of a silicon drum whose frequency can be tuned over
the entire relevant frequency range of 0.5–20 kHz by chang-
ing the geometry of the supporting arms. By demonstrating
that machine learning tasks can be encoded in the response of
phononic metamaterials, together with prior experimental re-
sults on passive amplitude activated switches,[55] we illuminate a
novel path toward zero-power smart devices that can intelligently
respond to events. This capability is out of reach of conventional
electronics. State-of-the-art transistors require more than 10−18 J
to switch.[56] In contrast, phononic resonators can easily go below
10−21 J per period of oscillation.[57] This potential for orders-of-
magnitude improvement in energy efficiency had already been
recognized in the context of conventional digital computing[7]

and can now be applied to machine learning problems.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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