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We demonstrate that the time-integrated light intensity transmitted by a coherently driven resonator
obeys Lévy’s arcsine laws—a cornerstone of extreme value statistics. We show that convergence to the
arcsine distribution is algebraic, universal, and independent of nonequilibrium behavior due to
nonconservative forces or nonadiabatic driving. We furthermore verify, numerically, that the arcsine laws
hold in the presence of frequency noise and in Kerr-nonlinear resonators supporting non-Gaussian states.
The arcsine laws imply a weak ergodicity breaking which can be leveraged to enhance the precision of
resonant optical sensors with zero energy cost, as shown in our companion manuscript [V. G. Ramesh et al.,
companion paper, Phys. Rev. Res. (2024).]. Finally, we discuss perspectives for probing the possible
breakdown of the arcsine laws in systems with memory.
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Random processes have fascinated physicists for deca-
des. A seminal result due to Paul Lévy is the existence of
arcsine laws for random walks and Brownian motion [1].
There are three arcsine laws, one for each of these
observables: (i) the fraction of time spent above the mean,
Tþ; (ii) the fraction of time up to the last crossing of the
mean, T0; and (iii) the fraction of time taken to reach the
maximum, Tm. For all three times Tj¼þ;0;m, the probability
distribution P and cumulative distribution C are

PðTjÞ ¼
1

π

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tjð1 − TjÞ

p ð1aÞ

CðTjÞ ¼
Z

Tj

0

PðT 0
jÞdT 0
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2

π
arcsin

� ffiffiffiffiffi
Tj

p �
: ð1bÞ

Equation (1b) inspired the name “arcsine laws,” while
Eq. (1a) expresses the interesting fact that extreme devia-
tions from the mean are likely to occur.
Arcsine laws have been studied in various physics

contexts, including stochastic thermodynamics [2], poly-
mer melting [3], interface growth [4], heterogeneous
diffusion [5], and others [6–9]. Similarly, in competitive
sports [10], genomics [11], and finance [12–14], arcsine
laws arise. In addition, generalizations of the arcsine laws
for fractional Brownian motion have drawn interest [15].
The form of the distribution Eq. (1a) has also inspired
studies of wave transport through disordered media
[16–20], since it corresponds to the distribution of trans-
mission eigenvalues. In this correspondence, the so-called
open and closed channels (which dominate transport [21])
are the counterparts of the extreme deviations from the
mean observed in Tj¼þ;0;m.
Despite their pervasiveness, the arcsine laws have never

been explored in coherently driven resonators. Such

resonators offer a unique platform for investigating extreme
value statistics and arcsine laws in hitherto unexplored
regimes. In particular, we will show that the balance
between conservative and nonconservative forces acting
on cavity-confined light fields can be precisely controlled
across an enormous range. This control enables probing the
arcsine laws in systems arbitrarily driven out-of and into
equilibrium. In turn, understanding the statistics of optical
processes is relevant to numerous technologies where
noise plays a crucial role, like sensors [22–26], beyond-
von-Neumman computers [27–29], isolators [30–35], and
quantum devices [36–39].
In this Letter we demonstrate that the time-integrated

transmission of a coherently driven resonator obeys Lévy’s
arcsine laws. We first illustrate how nonconservative forces,
which make the steady state nonequilibrium, can be widely
and precisely controlled in a laser-driven cavity. Leveraging
this capability, we experimentally evidence the arcsine
laws in an adiabatic protocol with time-dependent non-
conservative force. Beyond demonstrating the arcsine laws
asymptotically, we analyze how the finite time cumulative
distributions of Tþ;0;m converge to CðTj¼þ;0;mÞ as the
integration time increases. This convergence follows a
power law with a universal exponent independent of the
extent of nonequilibrium behavior. Through simulations we
support our findings, and further show that the arcsine laws
hold: (i) for time-integrated fields as well as intensities,
(ii) in nonadiabatic protocols, (iii) in the absence of a
protocol, (iv) in the presence of frequency noise, and (v) in
highly nonlinear regimes involving non-Gaussian steady
states. Finally, we discuss why the arcsine laws imply weak
ergodicity breaking. Our companion paper demonstrates
the relevance of this effect to optical sensing [40]. While we
focus on a laser-driven cavity, all our results should hold for
any single-mode coherently driven resonator such as a
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superconducting circuit [37], a magnon cavity [41], or an
acoustic resonator [42].
Our experiment involves measuring the transmission of a

continuous wave laser through a plano-concave Fabry-
Pérot cavity [see Fig. 1(a) inset], while periodically
modulating the cavity length. We use piezoelectric actua-
tors to align the cavity mirrors and then to modulate their
distance. The planar mirror is a 50 nm thick silver layer on
glass. The concave mirror (5.2 μm diameter, 6 μm radius of
curvature) was made by focused ion beam milling a glass
substrate [43], and subsequently depositing a distributed
Bragg reflector with 99.9% reflectance at the laser wave-
length 532 nm. The small radius of curvature and high
mirror reflectivity strongly confine the optical modes,
allowing us to probe a single mode in scans of up to

∼50 resonance linewidths; we implement shorter scans of
4.5 linewidths. In this single mode limit, the light field α in
our cavity satisfies

iα̇ ¼
�
−ΔðtÞ − i

Γ
2

�
αþ i

ffiffiffiffiffi
κL

p
AþDζðtÞ: ð2Þ

Equation (2) is written in a frame rotating at the laser
frequency ω. ΔðtÞ ¼ ω − ω0ðtÞ is the detuning between ω
and the resonance frequency ω0ðtÞ, which we modulate
using the actuators. Modulating ω0 is equivalent to modu-
lating ω because their differenceΔ is the relevant parameter
and the cavity does not contain frequency-dependent
absorption. Γ ¼ γa þ κL þ κR is the total loss rate, with
γa the absorption rate and κL;R input-output rates through the
left or right mirror. A is the laser amplitude, assumed to be
real.DζðtÞ is a complex-valued Gaussian process represent-
ing white noise, with standard deviation D, in the laser
amplitude and phase. Defining ζðtÞ ¼ ζRðtÞ þ iζIðtÞ, the
noise quadratures have mean hζRðtÞi ¼ hζIðtÞi ¼ 0 and
correlation hζjðt0ÞζkðtÞi ¼ δj;kδðt0 − tÞ. For our linear
coherently driven system, classical and quantum descrip-
tions are statistically equivalent [44]. Hence, Eq. (2) still
holds at arbitrarily low laser intensities.
Figure 1(b) illustrates our setup, enabling fine control

over every parameter in Eq. (2). We use microscope
objectives with 20× magnification and 0.4 numerical
aperture for light injection and transmission collection.
The laser power entering the excitation objective is
1.25 mW. This power is sufficiently high to minimize
the effects of detector noise, yet sufficiently low to avoid
nonlinearities. The laser power is otherwise irrelevant in a
linear cavity whose spectral response is power independent.
The excitation path contains an amplitude and a phase
modulator, each driven by a distinct waveform generator
(not shown) imprinting noise on the laser. As shown in the
Supplemental Material, the power spectrum of the noise is
flat across several decades [45]. We implemented a 0.45 ms
modulation period for Δ [see upper axis of Fig. 1(a)] to
operate within this flat range, but slightly closer to the low-
frequency end. Consequently, our measurements are influ-
enced by approximately white noise. Since our protocol is
much slower than the system’s relaxation time Γ−1 ∼ 1 ps,
it is adiabatic. However, this has no effect on our results.
By modulating Δ we imprint a nonconservative force on

α. To show this, we write α ¼ αR þ iαI and decompose
Eq. (2) into real and imaginary parts:
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Equation (3) describes two-dimensional overdamped
Langevin dynamics [46]. The underbraced term is the

-1 0 10

0.2

0.4

Δ

PD
 S

ig
na

l (
V

)

-2

(a)

EOM-P EOM-A MO
20x

MO
20x

PDλ/2(b)

2

0 0.2 0.4
time (ms)

-2 0 2 4
-6
-4
-2
0
2

2
6
10
14

-2
0
2
4
6

-2 0 2 4

α I

αR αR αR

(c) (d) (e)

5 10 15
-4
-2
0
2
4

FIG. 1. (a) Inset: We use a laser-driven single-mode cavity to
test the arcsine laws and study their implications for optical
processes. The cavity length and hence the laser-cavity detuning
Δ are periodically modulated. Main panel: Single-shot and
averaged intensity transmitted through the cavity shown as a
black curve and a red curve, respectively, both as a function of Δ
referenced to the loss rate Γ. (b) Experimental setup for
measuring the cavity transmission while adding noise to the
laser amplitude and phase using electro-optic modulators EOM-
A and EOM-P, respectively. MO means microscope objective and
PDmeans photodetector. (c)–(e) Color and white arrows illustrate
the force magnitude jF⃗=Γj and direction, respectively, exerted on
the light field α ¼ αR þ iαI . A=

ffiffiffi
Γ

p ¼ 7 for all calculations, and
(c) Δ=Γ ¼ −2, (d) Δ=Γ ¼ 0, and (e) Δ=Γ ¼ 2. The dynamics of
α in (c) and (e) resemble Brownian motion in a stirred fluid.
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deterministic force F⃗, divided by Γ to recover the normal
form of the overdamped Langevin equation. For Δ ¼ 0, αR
and αI decouple and F⃗ is conservative. In this case, F⃗ is
irrotational, it can be derived from a purely scalar potential,
the steady-state distribution of αR;I is the equilibrium
Boltzmann distribution with effective temperature given
by the noise variance [47], and detailed balanced holds for
αR;I at the steady state [46]. In contrast, for Δ ≠ 0 F⃗

contains a nonconservative part. In that case, F⃗ is rota-
tional, it cannot be derived from a purely scalar potential,
the steady-state distribution is nonequilibrium, and detailed
balance is broken [46]. Thus, our protocol with time-
dependent Δ modulates the balance between conservative
and nonconservative forces exerted on α.
Figures 1(c)–1(e) illustrate F⃗=Γ for three values of Δ=Γ.

The magnitude and direction of F⃗=Γ are encoded in color
and white arrows, respectively. Figures 1(c) and 1(e)
correspond to values of Δ=Γ near the ends of our
experimental protocol, where the laser frequency is far
detuned from the cavity resonance. The spiraling field,
clockwise in Fig. 1(c) and anticlockwise in Fig. 1(e), is the
hallmark of a nonconservative force. At those detunings,
the dynamics are analogous to Brownian motion in a stirred
fluid. In contrast, Fig. 1(d) illustrates how the noncon-
servative force vanishes at Δ ¼ 0. All force vectors are
perpendicular to the contours of constant jF⃗=Γj and point
directly to the fixed point; this indicates gradient flow and
equilibrium behavior.
Langevin dynamics under nonconservative forces have

drawn interest in stochastic thermodynamics [46,48,49].
However, arcsine laws in those conditions have not been
reported, likely because of the difficulty in controlling
nonconservative forces in material systems. Our experi-
ment therefore tests the arcsine laws in a hitherto unex-
plored regime where the steady state transitions between
equilibrium and nonequilibrium as Δ varies.
Figure 1(a) shows measurements of the transmitted

intensity when scanning the cavity length. The scan starts
and ends where the nonconservative force dominates, as
Figs. 1(c) and 1(e) show. The black curve is the single-shot
intensity. The red curve is the intensity averaged over 200
cycles, evidencing the Lorentzian line shape characterizing
a linear resonator. The single-shot intensity fluctuates
because of the modulator-imprinted laser noise, which
has a standard deviation that is ∼80 times larger than
the intrinsic laser noise.
We are interested in the transmitted intensity integrated

over n modulation cycles, Inτ ¼
R
nτ
0 κRjαðtÞj2dt with τ the

period. While Inτ is expressed as an integral over time, it is
equivalent to an integral over frequency given that Δ
depends linearly on time during our protocol. We hypoth-
esized that arcsine laws emerge in distributions of Inτ
as n → ∞. Our hypothesis was inspired by the work of
Barato et al., where thermodynamic currents (e.g., the

time-integrated work) were shown to obey the arcsine laws
[2]. However, unlike the experiment reported in Ref. [2]
where a Brownian particle experiences a purely conser-
vative force, the light field in our cavity undergoes both
conservative and nonconservative dynamics within one
cycle.
Inτ is obtained by consecutively integrating transmitted

intensity measurements like those in Fig. 1(a). Conse-
quently, Inτ is a temporally inhomogeneous process with
expectation value E½Inτ� ¼

R
InτPðIÞdI growing in time;

PðIÞ is the steady-state probability distribution of I . The
growing E½Inτ� can be regarded as a deterministic drift in
the stochastic process Inτ. By subtracting that drift, we
arrive at a trajectory like the one in Fig. 2. Figure 2 also
illustrates the values of Tþ;0;m for this trajectory, which are
unaffected by the subtraction of E½Inτ�.
We analyzed 1000 trajectories of Inτ, each comprising

200 cycles. The resultant probability distributions and
cumulative distributions for Tj¼þ;0;m are shown in
Figs. 3(a) and 3(b), respectively. PðTjÞ and CðTjÞ, given
by Eqs. (1a) and (1b), respectively, are plotted under the
experimental data points. The good agreement between
theory and experiment demonstrates that Inτ obeys the
arcsine laws.
To corroborate our findings and test the arcsine laws

more broadly, we performed numerical simulations of
Eq. (2) using the xSDPE MATLAB toolbox [50]. We
considered several driving conditions, including adiabatic
and nonadiabatic protocols inΔ or A, as well as fixed (Δ, A)
driving conditions. As shown in the Supplemental Material
[45], in every case we found distributions like those in
Fig. 3. These results demonstrate that neither adiabaticity
nor temporal inhomogeneity, as in our experimental pro-
tocol, are necessary conditions for the arcsine laws. In the
Supplemental Material we furthermore show that the
arcsine laws hold in the presence of noise in Δ, which

FIG. 2. Sample trajectory of the time-integrated transmitted
intensity Inτ, with the growing expectation value E½Inτ� sub-
tracted. The shaded area, dashed blue line, and solid red line,
indicate the fractional times Tþ, T0, and Tm, respectively, to
which the arcsine laws apply. The green horizontal line indicates
the time average of this trajectory.
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is multiplicative noise because it is multiplied with α. Since
noise in Δ is equivalent to noise in ω, our findings
demonstrate that the arcsine laws persist when the coher-
ence of the driving laser is degraded. We furthermore
analyzed the statistics of Tþ;0;m when these are obtained
from the time-integrated field quadratures

R
nτ
0 αRðtÞdt andR

nτ
0 αIðtÞdt instead of Inτ [45]. In those cases too, we found
the arcsine laws hold [45].
We further tested the arcsine laws in simulations of a

Kerr-nonlinear cavity. To that end, we added the term
Ujαj2, with U an effective photon-photon interaction
strength, inside the parentheses of Eq. (2). This nonlinear
term imprints a nonconservative force which, for U > 0,
counteracts the detuning Δ in an intensity-dependent way
[47]. However, unlike Δ, the Kerr nonlinearity can render
the steady state non-Gaussian and squeezed, as observed in
various experiments [51–54]. In the Supplemental Material
we show that, even when probing such non-Gaussian and
squeezed steady states nonadiabatically, the arcsine laws
hold [45]. This result is relevant to fundamental studies and
technologies where time-integrated signals from Kerr-non-
linear resonators are analyzed. For example, Kerr-nonlinear

resonators play a central role in recent studies of dissipative
phase transitions [55–65], symmetry breaking [66], polar-
iton blockade [67,68], stochastic resonance [69,70], non-
reciprocity [30,34,35,71], and sensing [25,72,73].
To study the arcsine laws beyond their asymptotic limit,

we analyzed the convergence rate of the finite time
cumulative distribution CnτðTjÞ to the arcsine distribution
as the number of integrated modulation cycles increases.
We quantified the convergence via the mean square
residuals (MSRs), given by ð1=nÞP ½CðTjÞ − CnτðTjÞ�2.
Figure 4 shows the MSRs for Tþ, for various driving
conditions. Similar results obtained for T0 and Tm are
omitted for brevity. The purple stars are experimental data
points. The black circles are the corresponding numerical
results, for constant laser amplitude A and periodically
modulated Δ. Numerical results for three distinct driving
conditions are shown alongside. For each simulation A is
modulated identically, but Δ is fixed to a different value
indicated in the legend. By analyzing the MSRs for
these various driving conditions, we tested whether the
balance between conservative and nonconservative forces
influences the convergence rate to the arcsine distribution.
Remarkably, the convergence rate is always the same. The
MSRs always decay by following a power law with
exponent −1. Slight deviations from this behavior in
experiments are likely due to frequency-dependent vibra-
tions of our cavity mirrors; they effectively imprint colored
noise in Δ that is absent in our model.

FIG. 3. (a) Probability distribution and (b) cumulative distri-
bution for Tj¼þ;0;m extracted from trajectories of the time-
integrated intensity as shown in Fig. 2. Black curves in (a)
and (b) are analytical predictions of Eqs. (1a) and (1b), respec-
tively.

FIG. 4. Mean squared residuals between the arcsine distribution
CðTþÞ [Eq. (1b)] and the finite time distribution CnτðTjÞ as the
transmitted intensity is integrated over an increasing number of
cycles. Purple stars correspond to experiments. All other data are
calculated numerically, using 104 simulations with distinct noise
realizations per data point. Each symbol corresponds to a
different protocol. Lines are power laws with exponent −1 fitted
to the data. Blue squares, green stars, and orange diamonds
correspond to periodic modulations of A=

ffiffiffi
Γ

p
between 5 and 12

while Δ=Γ is fixed at 0, 3, and 10 respectively. Black circles
correspond to a periodic modulation of Δ=Γ between −10 and 10
while A=

ffiffiffi
Γ

p ¼ 7. D ¼ 2
ffiffiffi
Γ

p
and τ ¼ 50=Γ in all simulations;

both choices do not alter the results.
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To explain the origin of the arcsine laws, we first note
that αR;IðtÞ and jαðtÞj2 are Gauss-Markov processes. Such
processes do not obey the arcsine laws; only the time-
integrated quantities

R
αR;IðtÞdt and

R jαðtÞj2dt do.
Therefore, the arcsine laws cannot be ascribed to a trivial
transformation of the laser noise by the cavity. Time
integration crucially transforms a Gauss-Markov process
into a Lévy process [74,75], for which the arcsine laws
hold. In the Supplemental Material we show that the
variance of the experimental time-integrated intensity Inτ
grows linearly with time [45], as expected for a diffusive
Lévy process. In addition, our companion paper [40] shows
distributions of first passage and return times with power
law tails. Such distributions characterize Lévy processes.
Power-law tailed distributions have a divergent first

moment. For Inτ, this means that the mean first passage
and return times diverge. In this situation, where the time to
explore the entire phase space and return to the mean
diverges, time and ensemble averages of Inτ are in general
different. Figure 2 illustrates this effect for a likely
trajectory of Inτ, whose time average significantly deviates
from the expectation value E½Inτ�. Such differences are a
signature of weak ergodicity breaking, expected in proc-
esses governed by the arcsine laws [8,76–78]. Ergodicity
breaking is “weak,” as opposed to “strong,” when the phase
space is unrestricted but the time spent in any region
diverges [79]. Intuitively, we can understand this to be the
case for Inτ by considering the first arcsine law. It states
that most trajectories of Inτ spend most of their time far
above or far below E½Inτ�. Hence, their time average will
largely deviate from E½Inτ�. Ergodicity is therefore broken
because, as shown in our companion paper [40], ensemble
averaging over several trajectories gives a more faithful
estimation of E½Inτ� than time averaging when the total
measurement time is equal. Our companion paper explores
the consequences of this weak ergodicity breaking for
optical sensors made of resonators such as the one studied
in this Letter. We show that, given a fixed energy budget
and a finite measurement time, the sensing precision of
ensemble averaging can exceed that of time averaging by
orders of magnitude. However, this effect disappears as the
measurement time diverges and ergodicity emerges.
To conclude, we showed that the time-integrated inten-

sity transmitted by a coherently driven resonator, Inτ,
obeys Levy’s arcsine laws. As the number of considered
trajectories Inτ increases, finite-time cumulative distribu-
tions of Tþ;0;m converge to CðTþ;0;mÞ by following a power
law with a universal exponent, regardless of nonequili-
brium behavior. Fundamentally, our work demonstrates
how coherently driven resonators enable probing emergent
statistical structures arbitrarily far from equilibrium.
For example, our optical experiment simulated two-
dimensional Brownian motion in a fluid with time-
dependent stirring. Implications of our results for sensing
technologies, as used in biosensing [80] and LiDAR [33]
for example, are discussed in our companion paper [40].

Finally, a perspective of our work is the study of emergent
statistical structure in resonators with memory, such as dye-
filled [81,82] and oil-filled [83,84] microcavities. In such
systems, memory effects arise from the coupling of light to
slow material degrees of freedom like temperature.
Whether and how the arcsine laws (derived for memoryless
systems) generalize to such systems is an open question.
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