
Journal of Electron Spectroscopy and Related Phenomena, 38 (1986) 81-89 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

81 

CATASTROPHES IN SURFACE SCATTERING 

T.C.M. HORN; A.D. TENNER; PAN HA0 CHANG AND A.W. KLEYN 

FOM-Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam 

(The Netherlands). 

ABSTRACT 

Simulations to fit a model potential for rainbow scattering of K-ions on 
W(110) generate a complicated 3-dimensional hypersurface, which is projected 
onto a detector plane in experiments. To describe those projections catastrophe 
theory can be applied. To investigate how this theory can be applied some calcu- 
lations on hard wall scattering have been performed. 

INTRODUCTION 

Rainbow scattering of atoms or ions from solid surfaces is a well-known phe- 

nomenon. It gives information about the collision dynamics and hence about the 

interaction potential between projectile and solid. The rainbows appear in the 

scattered intensity versus the scattering angle. More complicated rainbows can 

be observed when the scattered intensity is measured as a function of both the 

scattering angle and the energy transfer to the solid. The latter experiments 

we have performed for the system K++W(llO) at energies around 35 eV and normal 

incidence [ll. The data indicate that there is a strong azimuthal dependence of 

the intensity, leading to so-called "real" rainbows of the triple differential 

cross section. The experiments can be reproduced successfully using classical 

trajectory calculations with a realistic interaction potential [2]. 

Rainbows are examples of elementary catastrophes in catastrophe theory [3]. 

Catastrophe theory is a mathematical tool to categorize singularities arizing 

from the mapping of more-dimensional continuous hypersurfaces. The presence of 

elementary catastrophes in light and surface scattering has been demonstrated by 

M. Berry [4]. In his calculations the Kirchoff's diffraction model has been 

applied to hard wall scattering. In this article we will perform similar hard 

wall calculations using simple classical dynamics to clarify the structures ob- 

served. The advantage of classical calculations is that the caustics are not 

masked by diffractive oscillations. With the help of these simple calculations 

and with scattering calculations on overlapping hard spheres we try to learn how 

to classify the catastrophes in our realistic simulation. This classification is 

a direct characterization of the topology of the interaction potential of the 

system involved. Hopefully these investigations will lead to a new method for 
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fast determination of important features of gas-surface interaction potentials 

and, e.g. adsorbate induced, changes thereof. 

CATASTROPHES IN HARD WALL SCATTERING 

To investigate the meaning of catastrophes occurring in surface scattering, 

some calculations on reflection of particles normally incident on hard surfaces 

with sinusoidal corrugation have been made. It allows the use of simple geometry 

to characterize the parameters involved. The two scattering angles, i.e. the 

polar angle 0 and azimuthal angle $I, are determined by the reflection from the 

surface and can be written with the hard wall function z=f(x,y) by the following 

mapping: 

cos($ = (fE+fi+l) -3 

tan(@)=3 
X 

(la) 

(lb) 

Here f,=af/ax and (x,y,z) form a usual Cartesian coordinate system. The caus- 

tics, i.e. the intensity maxima, present in the scattering profile are caused by 

reflection from certain sets of points in the unit cell. A formula to describe 

those sets can be derived by considering the points (x,y) on the surface where 

one of the two angles 0 and $ is stationary. This leads to the following demand 

upon the Hessian of the surface function: 

H[f(x,y)l = fxxfyy- 

The first corrugation 

fxyfyx = o (2) 

function to examine is given by: 

f(x,y) = (cos(x) +2) . (cos(y)+2) (3) 

Shown in figure 1 is: in part a) a 3-dimensional view on the surface unit cell; 

part b) shows the scattering profile at z=m; in part c) the contour representa- 

tion of the Hessian of this function has been plotted, and the last section (d) 

shows the corresponding caustics. In this case the Hessian looks like a diffi- 

cult quadratic equation: 

H[f(x,y)i =cos(x)cos(~)(c~~(x) +~)(cos(Y)+~) -sin2(x)sin2(y) (4) 

AS is shown in figure lc the equation H[f(x,y)l=O defines two non-overlapping 

curves in the unit cell. Both curves give rise to a (non-overlapping) caustic, 

which has been plotted in figure Id. Those caustics are examples of the catastro- 

phes of lowest order, namely the fold and the cusp catastrophe. The outer struc- 
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Fig. 1. Reflection from the corrugated hard wall f(x,y) =O.O5(cos(x) +2) 
(cos(y)+Z); a) hard wall unit cell, b) scattering profile at infinity, c) Hes- 

sian contour plot, d) caustics corresponding to H=O curves. 

ture in the scattering profile, let us call it the rainbow line following M. Ber- 

ry [4], is a curved fold projection and originates from the curve round the 

atoms at the corners of the square unit mesh. The inner structure is a projec- 

tion of four cusp catastrophes. Those cusps are due to scattering from the Hes- 

sian's zero-contour in the middle of the unit cell. Apparently there is no sig- 

nificant difference between those H=O curves. Being a mathematician one would 

proceed to calculate the generic functions of the fold and cusp catastrophe out 

of this example. But we will try to indicate the nature of the structures using 

physical arguments. 
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3' 
2. Contour plots for the polar angle 0 (a) and for the azimuthal angle $I 
corresponding to reflection of figure 1 (the dotted lines represent the H=O 

curtes). 

To clarify our arguments contour representations of the two scattering angles 

involved in the process are shown in figure 2 as a function of the 2-dimensional 

impact parameter, In those plots the dotted lines represent the zero-contours of 

the Hessian of this surface. The information in such a contour representation is 

that a particle impinging on the surface at a certain point (x,y) will scatter 

off at an angle which can be read with the help of the contours. And so it can 

be noticed directly that the curve responsible for the rainbow line is situated 

on a flat region in the 0 contour plot. This means that the first derivatives of 

8 to x and y are zero, which is indeed indicated by the name rainbow. In the 4 

plot this curve lies in a region where the azimuthal angle changes almost con- 

stantly perpendicular to this curve. This gives rise to the folded structure 

called the rainbow line, which is almost independent of (J. 

On the contrary the effect of scattering along the second curve is not easily 

reflected in the contour plots of figure 2. Looking to the o plot it is obvious 

that along this curve nothing peculiar will happen. The polar angle will change 

from a minimum, through a maximum and back to the same minimum when the impact 

parameter walks along the curve. The minima lie on the x and y axes, while the 

maxima can be found on the diagonals of the square unit cell. 9 goes from 0 to 

90 degrees, while no extrema is reached in between. The only remarkable fact is 

that again 

very broad 

the top of 

maximum in 

direction. 

profile. 

at the impact parameter where the H=O curve crosses the diagonal a 

saddle point is present. The impact parameter in question is exactly 

the saddle point. So scattering from this parameter will end up in a 

0 and scattering around this point will be focussed into the @=45" 

This is the reason why a cusp catastrophe appears in the scattering 
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Fig. 3. Reflection from the corrugated hard wall f(x,y) =0.6 Ices(x) .cos(y) +21; 
a) scattering profile at infinity, b) Hessian contour plot. (Note the atom in 
the middle of the unit cell.) 

The second hard corrugated surface discussed in this paper is described by: 

f(x,y) =cos(x) .cos(y) +2 (5) 

Because of the high symmetry in this corrugation, its Hessian is very simple: 

H[f(x,y)l=cos2(x) -sin'(y) (6) 

In figure 3a the scattering profile has been plotted and in 3b the contour re- 

presentation of the Hessian of this function. Here it can be seen that the two 

H=O curves from figure Ic have been changed into two squares, which are essen- 

tially the same, so that only one caustic is observed in the profile. Although 

this example looks much easier to handle, catastrophe theory tells that this is 

not the case. The hypersurface, constructed by the envelope of the trajectories 

of the particles after reflection, is degenerated as a consequence of the high 

symmetry of the surface. Breaking this symmetry is a rigorous condition to see 

one of the elementary catastrophes reflected in the scattering profile [41. A 

calculation with a small, symmetry-breaking perturbation has been made and the 

result is plotted in figure 4. Immediately the hyperbolic umbilic catastrophe is 

recognized. This is fully equivalent to the results obtained by M. Berry using 

Kirchoff's approximation method [41. 

To show that in this classical scattering model it is possible to predict the 

cusped structure without using the catastrophe theory, an expansion of g(e,$)=O 
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Fig. 4. Scattering profile 
at infinity of reflection 
from the perturbated hard 
wall f(x,y) =0.6 {cos(x) 

cos(y) +2 +E . (cos(x) + 
COS(Y))l, E =0.2. 

round $=O" and 6= Orainbow 

is made. Substituting eq. 

(5) into the mapping for 8 

and $ (eq. (la) and (lb)) 

and using goniometrical for- 

mulas one obtains: 

g(e,$) =cos(e) - 

f tan(+) 

tan2($) *tan($) + 1 
=o (7) 

Here the different signs are 

due to square roots in the 

equation H=O (see eq. (6)). 

For $1+0' the expansion be- 

comes: 

cos(0) =* s- s2+O(s3), s =tan(4)+0 

So in first order the local behaviour of %/a$ is not univalent. This proves 

that the scattering profile contains a continuous but non-differentiable point 

at @=O", like a mirror image in the $=O"-axis. This is equivalent with the 

projection of the cusp catastrophe. 

SCATTERING FROM HARD SPHERES 

To get an idea of the effect of double collisions a calculation of reflection 

from overlapping hard and massive spheres has been performed. To compare the re- 

sults with our realistic simulation the spheres were placed on the positions of 

the W(110) surface atoms in a diamond-shaped unit cell. This W(110) unit cell is 

shown in the inset of figure 5, where the scattering profile for spheres with a 

radius of 3 A is given. In general the rainbow line originates from a curve 

around a crystal atom. Looking to scattering from this curve around atom 1 (see 

inset figure 5) shows that blocking will appear on the short axis (y-axis, $= 

go"), due to the short distance to atom 3. Decreasing $ will reduce this block- 

ing so that a channeling direction at a= 70" is generated. For 70“<$< 10" block- 

ing by atom 4 will occur. But now coming to the long axis (x-axis, @=O") no 



Fig. 5. Scattering pr file at infinity of reflection from overlapping hard 
spheres with radii 3 w and positioned in a W(110) unit cell. 

blocking will be present anymore. The projectiles scattered off e.g. from atom 2 

will be focussed into the $=O" direction by the atoms 1 and 3 on the short axis, 

while these atoms simultaneously shadow off atom 4. So also for $=O" a channel- 

ing direction is observed. 

REALISTIC SIMULATION OF 35 eV K-SCATTERING ON W(110) 

The simulations performed to fit a model potential and to understand our scat- 

tering data of 35 eV K-ions on W(110) will be extensively described elsewhere 

[23. Here only the result of the classical trajectory calculation will be dis- 

cussed. This result will be presented as a 3-dimensional hypersurface in 

(x,y,v')-space, where v' is the final velocity of the K+. So this should be con- 

sidered as a measurement performed with an imaginary spherical detector with ve- 

locity resolution, which is positioned with the surface in its centre and has a 

large radius like a LEED screen. In figure 6 three projections of this hypersur- 

face are plotted: upon the xy-plane, the XVI-plane and the yv'-plane. We want to 

emphasize the difference between this simulation, including energy exchange, 

and the hard wall calculations, where the projectiles do not loose energy. Never- 

theless, it is meaningful to compare the xy-plane projection of figure 6 to 

the former results. This follows from e.g. Li-scattering on W, which lets the 

hypersurface shrink into a thick layer of particles. It also can be seen when 

taking into account energy losses in a hard wall calculation, which will result 

in stretching of the flat layer of particles into a 3-dimensional hypersurface, 
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Fig. 6. Three projections of hyper- 
surface in (x,y,v')-space, genera- 
ted by realistic simulation for K- 
ion scattering from W(110) at 
35 eV. 

which has a similar projection on 

the xy-plane. 

It should be noticed that projec- 

ting the hypersurface onto the xy- 

plane the information in energy, 

which has proven to be very valua- 

ble in the initial understanding of 

the scattering mechanism [1,2], 

will get lost. But one should bear 

in mind that in this particular representation of our realistic simulation a 

complete view on the azimuthal dependence of the scattering is gained. 

The projection to the xy-plane is the integral over all scattered projectiles 

seen by the spherical detector. Let us concentrate on that projection. Besides 

many structures in this picture, the rainbow line can be observed well. This 

line resembles that one observed in the hard sphere calculation: the blocking in 

$= 90" and the channeling in $=O" and 70" direction. It should be remarked that 

in this simulation a simultaneous interaction with several crystal atoms takes 

place and it is impossible to speak about single or double collisions. At $= 70" 

a *double folded structure can be recognized. Clearly the two folded structures 

in the $I= 0" and 90" directions at the rainbow line have a different status. 

The latter is just a folded surface, but the first one is a projection of a fol- 
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ded saddle point as can be seen at the projection onto the XVI-plane. The struc- 

ture in the middle of the hypersurface is caused by scattering from the hollow 

site in the unit cell, where energy transfer has been shown to be important. The 

structure contains several rainbowlike features [1,21, and is difficult to un- 

ravel, but looking to a video tape of sections with fixed v' gives an impression 

which is based on some elementary catastrophe plots. It is possible to recognize 

fold, cusp and swallow-tail catastrophes. 

CONCLUSIONS 

Simple hard wall scattering simulations can teach us about the use of ca'ta- 

strophe theory to analyze realistic scattering data. Further efforts will be 

made to describe our data in terms of elementary catastrophes and eventually 

this type of analysis could be used as a powerful tool to analyze characteristic 

features of the gas-surface interaction potential. 
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