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ABSTRACT

Phononic crystals are renowned for their distinctive wave propagation characteristics, notably bandgaps that offer precise control over
vibration phenomena, positioning them as a critical material in advanced vibro-elastic engineering and design. We investigate how pore
shapes influence the bandgap in continuum two-dimensional phononic crystals made from a single material. Using the square lattice and
unit cells with fourfold symmetry, our numerical analyses reveal that the normalized gap size is highly dependent on the minimum ligament
width in the structure. Additionally, we find that fine geometric features represented by higher-order Fourier coefficients decrease the gap
size. This study offers insight into the design of phononic crystals and vibro-elastic metamaterials for precise wave control through void
patterning.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0203024

Phononic metamaterials are artificially architected solids with peri-
odic structures, and they are designed to control the propagation of
vibro-elastic mechanical waves.1–3 The bandgap, a frequency range in
which waves cannot propagate through the structure, is a crucial prop-
erty of phononic metamaterials that determines wave manipulation
capabilities.4–6 By engineering bandgaps, we can precisely control the
transmission of elastic waves, leading to significant advancements in
noise reduction,7–9 vibration control,10–13 and seismic wave shielding.
Potential applications also include wave guiding14–17 and filtering,18–20

vibration damping,21 acoustic cloaking,22–24 energy harvesting,25–29 and
medical applications.30

Typical phononic crystals with bandgaps may comprise multiple
materials with distinct properties, including multi-stubs,31 multi-mate-
rials,32–34 and local and nonlocal resonators.35–40 Furthermore, the
bandgaps can be extended and shifted by employing multilayered
structures.41 However, the fabrication of such multi-phase and multi-
layered systems poses considerable complexity. In contrast, monolithic
porous periodic structures offer ease of fabrication, even with complex
geometries, making them a practical choice for potential industrial
applications. With this motivation, our research focuses on bandgaps
of monolithic porous phononic crystals, where the material property
contrast is between the solid and void phases.

Previous research has demonstrated that introducing pores
influences the bandgap properties.42–46 Here, the shape of voids in a

two-dimensional porous phononic metamaterial plays a significant
role as it can affect the bandgap properties of the material.43,47–50

Similarly, the pore shape can also affect and improve other mechani-
cal properties and structural response such as compaction and nega-
tive Poisson’s ratio.51–57 An interesting and flexible strategy has been
to employ the Fourier series to define the pore shape,51–53 as a
Fourier series can represent any periodic curve. However, the extent
to which Fourier series-represented pores can modify the bandgap
properties, either enhancing or diminishing them, remains unex-
plored. Therefore, this study provides a great opportunity to investi-
gate the interplay between pore design and bandgap behavior in
metamaterials.

In this study, we investigate the effect of geometric parameters of
the pore shape on the bandgap properties of phononic metamaterials
in a two-dimensional square array lattice formation. We consider in-
plane elastic wave propagation under the plane-strain condition. We
use the Fourier series to systematically generate a variety of pore shapes
and employ the finite-element method to analyze their bandgap prop-
erties. We use the relative gap width as the dimensionless metric to
compare the gap size from different void geometries. Our data confirm
that a small minimum ligament width in the unit cell geometry is nec-
essary for a large gap size. More intriguingly, our results also show that
finer geometry features corresponding to higher-order Fourier coeffi-
cients have inverse correlations to the relative gap size.
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Based on the mathematical fact that any smooth curve can be
well approximated by a Fourier series, we define the pore contour of a
diverse set of unit cell designs in the polar coordinates ðr; hÞ as

rðhÞ ¼ r0 1þ
XN
n¼1

cn cosð4nhÞ
" #

; (1)

where rðhÞ is the radial distance from the unit cell center, r0 denotes
the nominal radius, and the factor 4 is included to ensure fourfold
symmetry, which is commensurate with the lattice symmetry of a 2D
square array. We expect that the individual unit pore shape defined by
Eq. (1) will primarily impact wave propagations in the short-wave-
length/high-frequency regime, whereas the anisotropy in the long-
wavelength/low-frequency regime is mostly dictated by the square
lattice arrangement of pores. Here, intricate geometric features can be
realized by the Fourier coefficients cn’s, which are dimensionless. In
particular, setting all cn’s to zero simplifies the shape to a circle with
radius r0. One crucial design constraint here is to select only the sets of
geometric parameters that maintain the structural integrity, i.e., all the
solid portions of the periodic structure must be connected. To ensure
this, we introduce another pivotal parameter, the minimum ligament
width h,58 defined as

h ¼ L� max
h2½0;2pÞ

2rðhÞ cosðhÞð Þ > 0; (2)

where L is the unit cell size (i.e., the lattice constant of the square
array). The constraint of h> 0 implies that the solid phase of the pho-
nonic crystal cannot have isolated islands. Equations (1) and (2) give
us a systematic way to study the effects of pore shape on the bandgap.
For a Fourier series up to N terms, there are a total of Nþ 1 dimen-
sionless parameters: c1; c2;…; cN and h/L, which collectively specify
the void shape completely. We explore this parameter space by varying
cn’s and h/L to investigate their combined effects on the bandgap. Our
study starts with the geometries shown in Fig. 1(a), where we enforce
h=L ¼ 10% in all cases. Here, we consider c1; c2 2 ½�0:3; 0:3� with a
step size of 0.1 and we set all higher-order cn¼ 0 for n � 3. The
selected values of c1 and c2 results 49 pore shapes shown in Fig. 1(a),
where the white areas represent voids. Figure 1(b) illustrates the loca-
tions of the minimum ligament length for four example unit cell
designs to visualize what h represents. All red line segments in the fig-
ure have a length of h=2. Additionally, in this study, we also include
the cases with nonzero cn’s for n up to 5, investigating the effects of
smaller-scale intricacies of the void geometry on bandgaps.

To calculate the dispersion bands, we employ the ABAQUS/
STANDARD finite-element platform. Our computational implementation
is universally applicable across all geometries. The solid material in
every design is characterized by the density of q¼ 1190kg/m3 with
transverse and longitudinal wave velocities of cT¼ 1800 m/s and
cL¼ 3100 m/s,59 respectively. For every analysis, we construct the
finite-element model with a corresponding mesh convergence study.
Then, applying Bloch-wave boundary conditions on a single unit cell,
we perform eigen-frequency analyses to obtain the dispersion relation.
We follow the implementation procedures detailed in a previous
study,42 and example PYTHON-script code files are provided in the sup-
plementary material.

To ensure a fair comparison among all cases, we calculate the rel-
ative dimensionless size42 of the bandgap defined as the ratio of the
width to the average frequency of the bandgap,

Dxr ¼
xupper � xlower

ðxupper þ xlowerÞ=2 ; (3)

where xupper and xlower denote the frequencies of the upper and lower
edges of the gap, respectively.

We first compute the dispersion bands over a range of the nor-
malized minimum ligament length h/L, which varies from 5% to 38%.
This spans over 18 different h/L values. For each h/L, we generate all
49 unique pore shapes as illustrated in Fig. 1(a). This culminates in a
set of 882 geometric configurations. Next, at a fixed value of
h=L ¼ 10%, we also study the effects of higher-order Fourier coeffi-
cients, c3, c4, and c5 in a total of 45 ¼ 1024 geometries.

We start with the basic unit cell geometry of a perfectly circular
void, as depicted in Fig. 2(a). The wave vector components are denoted
as (qx, qy) in the reciprocal space, and the irreducible Brillouin zone
(IBZ)42 is illustrated by a blue triangle in the reciprocal space, with its
center at the C point and vertices at the X and M points. To elucidate
the existence of phononic bandgaps, we compute the dispersion rela-
tions xðqÞ for in-plane mechanical wave propagation. The band struc-
ture in Fig. 2(b) manifests as a frequency vs wave vector function for
the metamaterial shown in Fig. 2(a). The band structure reveals

FIG. 1. (a) Example void geometries used in this study. Each shape is generated
by Eqs. (1) and (2), with varying Fourier coefficients c1 and c2. Some designs are
color-coded: yellow for the cases with (c1 � 0; c2 ¼ 0) and blue for (c1 � 0;
c2 � 0). All unit cell designs shown in (a) have h=L ¼ 10%. (b) Example unit cell
designs showcasing the locations of minimum-width ligaments. Each red line seg-
ment has the length of h=2 in its unit cell. Note that, for clear illustration, we use
h=L ¼ 20% for all four examples in (b).
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regions highlighted in dark gray, where elastic waves of those specific
frequencies do not correspond to any wave vector. These spectral
ranges, where the elastic waves are forbidden from propagating, consti-
tute the complete phononic bandgaps of the crystal.

Next, we fix h/L at 10% and vary c1 and c2. Figure 2(c) presents
the band structures corresponding to the pore shapes showcased in
Fig. 1(a). The gap above the first three dispersion bands, which is the
focus of this study, is highlighted as a dark-shaded rectangle within
Figs. 2(b) and 2(c). The gray curves correspond to dispersion relations.
All plots in Fig. 2(c) have a maximum normalized frequency
xL=2pcT ¼ 1:0 on the vertical axis, plotted against a set of 60 different
wave vectors at the edges of the IBZ. A critical observation from the
visualization in Fig. 2(c) is that pore shapes with almost all positive c1
values consistently present sizable bandgaps. This pattern underscores
a significant and robust correlation between c1 and the bandgap width,

indicating the potential of c1 as a key parameter for maximizing the
phononic bandgaps. This also motivates us to quantify the correlations
between each geometric parameter and the gap size.

Then, we expand the study to h=L ¼ 5%; 6%; 8%;… up to 38%.
We choose to present this specific range because we observe no
bandgap can exist for h=L � 38%. For each h/L value, we now explore
the effect of pore shape while keeping the minimum ligament thick-
ness the same. In Fig. 3, we present the variation of the relative
bandgap size, Dxr as defined in Eq. (3), as a function of the minimum
ligament width for all shape designs from different c1 and c2. Each
transparent blue data point represents the gap size for a specific void
geometry, and each vertical column of data points represents all 49
pore shapes featured in Fig. 1(a) for a fixed h/L. Across all geometries,
our findings consistently indicate that an increase in minimum liga-
ment width corresponds to a reduction of the gap size. The overall
mean and median of Dxr including all cases show bandgap and no-
gap are indicated by the solid and dashed black lines, respectively, fur-
ther illustrating the dominating trend across the entire data set.

We highlight in Fig. 3 some special geometric configurations
including the one that exhibits the largest gap. This pore geometry
characterized by c1 ¼ 0:3 and c2 ¼ �0:1 emerges as a standout,
exhibiting a dominant relative bandgap size of 1.0068 at h=L ¼ 5%
and 0.7526 at h=L ¼ 10%. Figures 4(a) and 4(b) present the detailed
band structures corresponding to these configurations. These findings
underscore the nuanced yet significant impact that specific geometric
modifications can have on the bandgap properties of phononic
crystals.

FIG. 2. (a) Illustration of a two-dimensional phononic crystal featuring circular voids
with h=L ¼ 10%, showing its unit cell specified by the red dotted boundary. The
irreducible Brillouin zone (IBZ) within the reciprocal lattice space is highlighted by
the blue triangle CXM. (b) Dispersion relations for the phononic crystal in (a). The
dark-shaded area indicates the bandgap where dispersion bands (gray curves) are
absent. (c) Dispersion relations corresponding to the unit cell configurations illus-
trated in Fig. 1(a), with the dimensionless minimum ligament width h/L set to 10% in
all cases.

FIG. 3. Relation between the dimensionless gap size (Dxr ) and the dimensionless
minimum ligament width (h/L). Each column includes 49 data points corresponding
to variations in Fourier coefficients c1 and c2 presented in Fig. 1(a). The colorful
lines represent the effect of minimum ligament width to the relative bandgap size of
some selected shapes including the geometry showing maximum Dxr .
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Using the data presented in Fig. 3, we can also quantify the corre-
lation between the gap size and each of the geometric parameters,
including the Fourier coefficients (c1 and c2), the nominal pore radius
(r0), the minimum ligament width (h), and the porosity (/), which is
defined as the percentage of void space in the unit cell. As shown in
Table I, we uncover a strong positive correlation (þ0.46) between the
relative bandgap width and the c1 coefficient. This indicates that an
increase in c1 will likely widen the bandgap. In contrast, c2 shows an
inverse correlation of �0.38 with the gap size. Furthermore, contrary
to popular belief, the overall porosity / is not strongly correlated with
the gap size. Neither is the nominal radius r0. Importantly, we identify
that the minimum ligament width exhibits the most substantial corre-
lation with the bandgap width, with a pronounced negative coefficient
of �0.48. This illustrates that as we decrease h, the relative bandgap
size increases, which provides a basic strategy for designs to achieve
desirable bandgap sizes. Through this correlative analysis, we compre-
hensively understand how each geometric parameter influences the
gap size. Such insights empower us to tailor the design precisely, opti-
mizing for either targeted bandgap width in various application
scenarios.

In addition, we also investigate the effects of higher-order Fourier
coefficients, namely c3, c4, and c5 in Eq. (1). As previous findings show
that a gap exists in almost all pore shapes within positive ranges of the
Fourier coefficients c1; c2 � 0, we now narrow our focus to the signifi-
cant subset of design generated by all positive Fourier coefficients. We
examine the evolution of pore shapes by varying each of these coeffi-
cients from 0 to 0.3 in increments of 0.1. In Fig. 5(a), we show how the

pores change due to the inclusion of c3 � 0 and c4 � 0 while fixing
c1 ¼ c2 ¼ 0 and h=L ¼ 10%. This visualization makes it apparent that
nonzero higher-order coefficients introduce geometric features at
smaller length scales.

FIG. 4. The band structures of geometry with c1 ¼ 0:3, and c2 ¼ �0:1 with
(a) h=L ¼ 5% and (b) h=L ¼ 10% while other Fourier coefficients are set to zero.

TABLE I. Correlation coefficients between each of the geometric parameters with the
relative bandgap size (Dxr ). The coefficients can range from 1, indicating a perfect
positive correlation, to �1, signifying a perfect negative correlation. Note that,
although five geometric parameters are listed below, we only have three independent
ones (c1, c2, and h/L are used in this study).

Geometric parameter Correlation coefficient

c 1 þ0.46
c2 �0.38
h/L �0.48
/ þ0.17
r0=L þ0.20

FIG. 5. (a) Influence of higher-order Fourier coefficients, c3 � 0 and c4 � 0, on
pore shapes. We have c1 ¼ c2 ¼ c5 ¼ 0 and h=L ¼ 10% for all shapes shown
here. (b) Relative gap size (Dxr ) from pore shapes specified by non-negative
Fourier coefficients c1 through c5. Each circle represents one particular design,
while each column represents gap sizes corresponding to varying all lower-order
coefficients. For example, the c1 column has four yellow points corresponding to the
four yellow-colored shapes in Fig. 1(a), and the c2 column has 12 blue points corre-
sponding to the twelve blue-colored shapes in Fig. 1(a). Likewise, the c3 column
includes shapes with varying c1, c2, and nonzero c3 while keeping c4 ¼ c5 ¼ 0. In
total, there are 45 ¼ 1024 data points in this plot.
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We then calculate the relative bandgap size for all new geometries
prescribed by non-negative higher-order Fourier coefficients cn up to
n¼ 5. In Fig. 5(b), we present the results of our extensive parameter
sweep. The data show that higher-order Fourier coefficients do not
help increase the gap size at all. Moreover, the mean and median gap
sizes indicate a clear decreasing trend for including the higher-order
coefficients. Therefore, we find that geometric features at smaller
length scales tend to reduce the gap sizes, even when the minimum lig-
ament width h is held constant. Figure 5(b) reveals that when consider-
ing Fourier descriptors up to c5, the optimal geometry for maximizing
the relative bandgap size within the positive domain of cn solely
depends on c1. Specifically, the shape that presents the largest relative
bandgap has c1 ¼ 0:1 and cn¼ 0 for n> 1. This finding underscores
the predominant influence of the first Fourier descriptor on the relative
bandgap size.

To quantify this negative effect of higher-order Fourier terms on
the gap size, we calculate correlation coefficients between each cn and
Dxr based on the data in Fig. 5(b). Table II demonstrates the individ-
ual significance of cn’s for bandgap engineering. The coefficient c1 still
shows a robust positive correlation ofþ0.66 in this new set of data,
reinforcing its critical role—a larger c1 is indicative of a wider bandgap.
In contrast, the influence of c2 and c3 appears to be marginal, with cor-
relation coefficients close to zero atþ0.03 and �0.05, respectively.
However, as we proceed to higher-order terms, a consistent pattern
emerges: Each subsequent coefficient exhibits a stronger negative cor-
relation with the relative bandgap size, culminating in c5 with a corre-
lation coefficient of �0.32. The progression from c1 to c5 reveals a fact
that can serve as a useful design strategy: While c1 alone can signifi-
cantly widen the bandgap, the incorporation of higher-order coeffi-
cients with positive values will result in narrower gaps.

Table II delineates the substantial impact of the Fourier descriptors
c1 and c5 on the size of the bandgap. This is based on the non-negative
range of higher-order Fourier coefficients c3, c4, and c5, and it shows a
strong inverse correlation with the relative bandgap size. Motivated by
this insight, we conduct further analysis in the negative range of c5 on
three pore geometries specified by c1 ¼ 0:3; c5 ¼ �0:1;�0:2;�0:3,
and keeping other cn at zero. These configurations achieve a relative
bandgap size of Dxr ¼ 0:6713; 0:6749; and 0.6062, respectively, sur-
passing all 1024 shapes examined in Fig. 5(b). These results further rein-
force the correlation between the Fourier coefficients and the relative
bandgap size, as identified in Table II.

In this data-driven study, we establish the significance of the unit
cell minimum ligament width, h, which shows a very strong negative
correlation with the bandgap size of porous phononic crystals. Our
findings reinforce the argument that smaller ligament widths lead to

wider bandgaps. This is a useful insight for precise wave control appli-
cations, offering advancements in areas like acoustic filtering and
vibration isolation. Furthermore, the bandgap becomes narrower
when the design includes fine geometric features at small length scales
represented by higher-order Fourier coefficients. This finding is useful
for design strategies in many scenarios and can be used as a guideline
for not only 2D but also 3D continuum porous phononic crystals.

See the supplementary material for detailed source codes used for
the numerical analyses and a comprehensive README file for guid-
ance on executing the codes. We have also provided the raw data set
corresponding to the results presented in Fig. 2(b). Furthermore, we
briefly describe how Eq. (1) might influence the symmetry of the unit
cell, along with the statistical analysis of the bandgap data presented.
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