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ABSTRACT: Free electrons are excellent tools to probe and
manipulate nanoscale optical fields with emerging applications
in ultrafast spectromicroscopy and quantum metrology.
However, advances in this field are hindered by the small
probability associated with the excitation of single optical
modes by individual free electrons. Here, we theoretically
investigate the scaling properties of the electron-driven
excitation probability for a wide variety of optical modes
including plasmons in metallic nanostructures and Mie
resonances in dielectric cavities, spanning a broad spectral
range that extends from the ultraviolet to the infrared region.
The highest probabilities for the direct generation of three-
dimensionally confined modes are observed at low electron and mode energies in small structures, with order-unity (∼100%)
coupling demanding the use of <100 eV electrons interacting with eV polaritons confined down to tens of nanometers in
space. Electronic transitions in artificial atoms also emerge as practical systems to realize strong coupling to few-eV free
electrons. In contrast, conventional dielectric cavities reach a maximum probability in the few-percent range. In addition, we
show that waveguide modes can be generated with higher-than-unity efficiency by phase-matched interaction with grazing
electrons, suggesting a practical method to create multiple excitations of a localized optical mode by an individual electron
through funneling the so-generated propagating photons into a confining cavity�an alternative approach to direct electron−
cavity interaction. Our work provides a roadmap to optimize electron−photon coupling with potential applications in electron
spectromicroscopy as well as nonlinear and quantum optics at the nanoscale.
KEYWORDS: electron-beam spectroscopies, strong light−matter interaction, free-electron−light interaction,
electron energy-loss spectroscopy, cathodoluminescence, confined optical modes, generation of guided light

Probing confined optical excitations with nanometer
resolution is important for understanding their micro-
scopic dynamics and properties down to the atomic

scale. Currently, energy electron-loss spectroscopy (EELS) and
cathodoluminescence (CL) spectroscopy permit studying
photonic nanostructures with an unparalleled combination of
spatial and energy resolution.1−8 While the direct emission or
absorption of photons by free electrons is forbidden in free
space due to energy−momentum conservation, the near-field
associated with confined optical modes provides the necessary
momentum to break such a mismatch, materializing an
inelastic interaction. In EELS, the electron beam (e-beam)
couples to both dark and bright optical modes,9 resulting in a
loss of energy that is recorded using an electron spectrometer.
In CL, one measures the light emission produced by excited
bright modes. However, when the spectral features associated
with optical modes in the EELS and CL signals are integrated
over photon frequency, one generally finds small excitation
probabilities, several orders of magnitude smaller than

unity.10−12 This weak-coupling regime is advantageous to
resolving clean linear spectra, but it represents a strong
limitation when envisioning applications that require multiple
excitations, which are needed to trigger a nonlinear response
and enter the terrain of quantum optics at the nanoscale.
A practical way of increasing the probability of interaction

per electron is exploited in photon-induced near-field electron
microscopy13−17 (PINEM)�a form of stimulated inelastic
electron−light scattering (SIELS) in which strong external
light fields are aimed at a specimen in coincidence with the
electron arrival. While EELS and CL rely on spontaneous
excitation processes of previously unexcited optical modes,
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PINEM (and SIELS in general) is dominated by stimulated
transitions of modes that are highly populated through external
illumination, generally resulting in a symmetric set of loss and
gain sidebands in the electron spectrum, with the interaction
probability increased by the mode population relative to EELS
and CL.18 Importantly, when employing external laser light,
the sidebands form a coherent superposition (i.e., a single
electron wave function consisting of an energy comb) evolving
with different energy-dependent velocities and eventually
resulting in a temporal comb of strongly compressed
pulses.16,19,20 SIELS thus enables a wide degree of control
over the free-electron wave function21−28 while holding the
promise of achieving a combined attosecond/subnanometer
resolution in time/space.20 In addition, electron energy-gain
spectroscopy18,29 (EEGS) capitalizes on SIELS to combine the
spatial resolution of free electrons with the energy resolution
inherited from the spectral precision with which the laser
frequency can be tuned. EEGS has been recently demonstrated
to map microring30 and Mie31 optical cavities with μeV energy
resolution. However, SIELS involves the presence of intense
optical fields, and therefore, it does not help us to explore
nonlinear and quantum phenomena at the few-photon level.
Several theoretical works have explored the use of free

electrons to herald the production of single photons,32

entangled photons,33 and other nonclassical light states,34−37

while a recent experiment has demonstrated Fock photon-state
generation in optical resonators correlated with energy losses
of the electron.38 A large electron−photon coupling is then
required at the single-electron/single-photon level, which is
currently achieved in such resonators by matching the phases
of the electron excitation current and the light propagating
inside a curved waveguide over an interaction distance of
several microns.38 This is the so-called phase-matching
approach,30,32,38−42 which provides an alternative method to
couple single electrons to confined modes, as we discuss below.
Fundamental upper bounds for the maximum electron−mode
coupling have been formulated for these and other geo-
metries.43−45

In this article, we determine the conditions under which
unity-order coupling is possible between free electrons and
optical modes confined in all three spatial directions. We find
that low-energy modes (sub-eV) confined down to small
structures (tens of nm) can be excited with high probability
(∼100%) by low-energy electrons (tens of eV). Suitable
systems to support the required modes are two-dimensional
material nanostructures made of polaritonic films (e.g.,
graphene), while electronic transitions in artificial atoms also
emerge as a plausible platform. We illustrate our results with a
comprehensive exploration of the scaling properties of EELS
and CL probabilities as a function of the size of the polariton-
supporting structure and the electron velocity, translated into
simple analytical expressions that should facilitate the task of
designing optimum electron−cavity configurations. We further
present extensive numerical simulations for a wide range of
relevant materials and nanostructure morphologies. This
analysis is supplemented by a discussion of free-electron
coupling to waveguide modes, which we argue to offer a viable
approach to generating multiple excitations in a given three-
dimensionally confined mode by an individual electron when
the so-generated propagating photons are funneled into a
confining optical cavity. Our results support the use of free
electrons as pivotal ingredients to manipulate confined optical
excitations and provide a roadmap to optimize electron−cavity

coupling and reach the sought-after nonlinear regime triggered
by an individual electron.

RESULTS AND DISCUSSION
In what follows, we present results based on a classical
treatment of the electron as a moving point charge.
Commonly, electron spectra are dominated by coupling to
bosonic excitations in a specimen, for which quantum theory
shows that the associated EELS and CL probabilities follow
Poissonian distributions with an average number of excitations
that coincides with the classically calculated probabilities.46−48

For example, for a bosonic mode i of energy ℏωi initially
prepared in the ground state, the mode-integrated EELS
probability PEELS,i, which is calculated from classical theory as
shown below, must be interpreted as a Poissonian distribution
of loss features in the EELS spectra at energies nℏωi with
probabilities !P e n/i

n P
EELS,

iEELS, , where n = 0, ..., ∞ indexes the
Fock state |n⟩ resulting from the interaction with the electron.
EELS and CL measurements typically reveal small probabilities
≪1, so that only the n = 1 state becomes relevant. Here, we
investigate certain conditions under which the classical
excitation probability is greater than unity, and therefore, for
modes following bosonic statistics, we need to understand such
a probability as the average population of a Poissonian
distribution.
Scaling of the EELS Probability. One of the central

quantities analyzed in this work is the frequency-integrated
EELS probability PEELS (i.e., the fraction of electrons that lose
some energy after interaction with a specimen). We assume
high electron kinetic energies (KEs) compared with the
excitation energies so that the electron velocity vector v
remains approximately constant during the interaction (non-
recoil approximation9). We further consider an incoming
electron wave function ψ(r) consisting of a narrow distribution
of wave vectors peaked around a central value q0 = mevγ/ℏ,
where = 1/ 1 2 and β = v/c. In particular, we are
interested in the probability of exciting an isolated resonance
mode of energy ℏωi, which, upon integration over the
corresponding spectral width (indicated by a subscript i in
the integration symbol), is given by9,49

= | |P v d d vr r R( ) ( ) ( , , )i
i

EELS,
3 2

EELS (1)

where

=

× { }

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑv c dz dz

v
z z

G z z

R

R R

( , , ) 4 cos ( )

Im ( , , , , )zz

EELS

(2)

is the frequency-resolved EELS probability,9 α ≈ 1/137 is the
fine structure constant, and we set v = vz ̂ without loss of
generality. We explicitly indicate the dependence on velocity v
because this parameter is playing an important role in the
present work. In eq 2, the composition and geometry of the
specimen are encapsulated in the electromagnetic Green tensor
G(r, r′, ω), implicitly defined by the equation

× ×

=

G k G

c

r r r r r

r r

( , , ) ( , ) ( , , )
1

( )

2

2 (3)
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where k = ω/c and we restrict our analysis to materials
characterized by a nonmagnetic, isotropic, local permittivity
ϵ(r, ω).
We start our discussion by studying the behavior of the

EELS probability when spatially scaling the system by a
dimensionless factor μ (<1 for compression and >1 for
expansion). Specifically, we consider two types of systems.
(i) General structures in the quasistatic limit [3D

quasistatic]. Three-dimensional (3D) structures made
of a material described by a complex, frequency-
dependent permittivity ϵ(ω) and supporting resonances
at optical wavelengths much larger than their character-
istic size D. For these systems, scaling laws can be
formulated in the quasistatic regime (i.e., ωD/c ≪ 1).

(ii) Dielectric cavities [3D dielectrics]. Structures made of a
lossless dielectric material that is characterized by a real,
frequency-independent permittivity ϵ. Scaling laws can
be established for these types of systems with full
inclusion of retardation effects.

In structures of type (i), the dependences on optical
frequency and spatial position are decoupled because of the
lack of an absolute length scale. Consequently, eq 3 implies
that the Green tensor G̃ associated with a system in which all
distances are scaled by a factor μ is related to the Green tensor
G of the original system through the equation

=G Gr r r r( , , ) ( / , / , )3 (see Methods for a self-
contained derivation of this result). In addition, eq 2 for the
EELS probability can be recast into

=

× { }

Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑv

c
v

dz dz
v

z z

z z

R

R R

( , , ) cos ( )

Im ( , , , , )

EELS 0 2

0 0 (4)

in terms of the screened interaction r r( , , ), defined as
the electric potential created at r by a unit charge placed at r′
and oscillating with frequency ω. Equation 4 can readily be
derived from eq 2 by noticing that the Green tensor can be
approximated as G r r r r( , , ) ( , , )/4r r

2 in
this limit (see Methods).
In contrast, for structures of type (ii), eq 3 leads to the more

general scaling =G Gr r r r( , , ) ( / , / , )1 . These two
scaling laws can be directly applied to the frequency-integrated
EELS probability PEELS,i(R0, v) = i

dω[dΓEELS(R0, v, ω)/dω],
where the subscript i indicates that we integrate over the
spectral range of a given mode i, we indicate the lateral
position R0 under the assumption of a well-focused electron
(i.e., |ψ(r)|2 ∝ δ(R − R0) in eq 1). Indeed, combining the
noted properties of the Green tensor with eq 2, we find

= [ ]

= [ ]

P v P v

P v P v

R R

R R

( , )
1

( / , / ) 3D quasistatic (5a)

( , ) ( / , ) 3D dielectrics (5b)

i i

i i

EELS, 0 EELS, 0

EELS, 0 EELS, 0

where a tilde is used to refer to the scaled system. For
dielectrics, eq 5b implies that the electron coupling remains
identical in a structure expanded by a factor μ > 1 as long as
the impact parameter R0 is increased by the same factor.
However, when the response of the system depends on
frequency, such as in metals and doped semiconductors in the
optical regime (see below), the interaction probability can be
indefinitely increased by reducing the size of the structure

(down to the quasistatic regime), provided we also slow down
the electron and bring the trajectory closer to the material.
Scaling of the CL Probability. For CL, the process

leading to the production of free light far from the specimen
can be separated into two steps: coupling of the free electron
to an excited state of the structure and subsequent decay to a
final state accompanied by the emission of a photon. Under the
same assumptions as for EELS, the CL emission probability
corresponding to the excitation of a mode i in the specimen
can be written as

=P v d d
d v

d d
R

R
( , )

( , , )
i

i
r

r
CL, 0

CL 0

where9

= | |d v
d d k

R
f R

( , , ) 1
4

( , )
r

r
CL 0

2 0
2

(6)

is the angle-resolved probability expressed in terms of the far-
field amplitude

= ·e dz G zf R r R z( , ) 4 ( , , , ) ei z v
r 0 ff 0

/

and we use the far-field limit of the Green tensor

=G
r

Gr r r rlim ( , , )
e

( , , )
kr

ikr

ff

For structures of type (ii) (dielectric cavities), the absence of
absorption in the material implies PCL,i = PEELS,i (i.e., all energy
losses are converted into radiation), and the scaling expressed
in eq 5b applies. In contrast, a general scaling of PCL,i cannot be
obtained for materials described by a frequency-dependent
permittivity, not even in the small-particle limit: space and
frequency mix due to the finiteness of the speed of light
because the radiative part of the CL emission process involves
a transverse free photon, which only exists when retardation is
taken into consideration. Nevertheless, an interesting relation
can still be obtained through a perturbative analysis based on
the Dyson equation for the Green tensor by adopting the
quasistatic approximation for the response of the structure but
incorporating retardation in its outcoupling to radiation (see
details in Methods)

+
+ ··· [ ]

P v P v P vR R R( , ) ( / , / ) ( / , / )
3D quasistatic

i i iCL, 0
2

CL,
(0)

0
3

CL,
(1)

0

(7)

According to eq 7, the CL emission probability increases when
simultaneously increasing the size of the object, the electron
velocity, and the impact parameter, in contrast to the behavior
of EELS based on eq 5a.
Polaritonic Structures in the Quasistatic Limit. In what

follows, we study the scaling laws for different types of systems,
starting with structures of type (i) that can sustain optical
resonances when they are made of polariton-supporting
materials (e.g., plasmons in metals,50 phonon-polaritons,51−53

and excitons54). The corresponding mode frequencies ωi span
a wide spectral range extending from the mid-infrared to the
ultraviolet region, with the typical structure sizes D going from
a few nm to ∼1 μm. We focus on systems operating in the
quasistatic limit (ωiD/c ≪ 1) and consider electrons traveling
without crossing any material boundary. The optical response
can then be rigorously expanded in eigenmodes i with
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associated eigenpotentials55,56 = D Dr r( ) ( / )/i i , where u( )i
are dimensionless, scale-invariant, and material-independent
functions of the scaled coordinates u = r/D (see eq 26 in
Methods). Likewise , we define the mode fields

= = D DE r r E r( ) ( ) ( / )/i i i
2, also written in terms of

dimensionless, scale-invarient vectors =E u u( ) ( )i iu . As
shown in detail in the Methods section, the excitation
probability of a mode i can be written as

[ ]P v A FR( , ) ( ) 3D quasistatici i i iEELS, 0
(8)

where

=

=

F Dv dzE z

du D u

R

E R

( ) ( , )e

1
( / , )e

i i
i

i z
i z

i
z i z z

i u

, 0

2

, 0

2

i

i z

(9a)

is the squared spatial Fourier transform of the mode electric
field along the e-beam direction, taken at a spatial frequency
ωi/v, which permits defining the characteristic phase

= D v/i i (9b)

In eq 8, the material-dependent constant Ai encapsulates the
details of the dielectric function and its derivative at the mode

frequency ωi. We note that Ai is independent of size and
electron velocity (see Methods). In analogy to the mode fields,
the function Fi(φi) only depends on morphology but not on
composition and size. This function plays a fundamental role
in determining the electron−mode coupling, and its maximum
determines the so-called phase-matching condition.57 In
analogy to the optimum overlap between the oscillations of a
pendulum (period 2π/ωi and size D) and the position of a
particle interacting with it (passing with velocity v, see Figure
1a, left inset), phase matching is realized under the condition
φi = ωiD/v ∼ π.
The phase-matching concept is illustrated in Figure 1, where

we explore the coupling probability between an electron
passing parallel and just outside a silver nanorod (Figure 1a
right inset) and the longitudinal plasmons supported by the
particle. For fixed aspect ratio and electron energy, the
coupling is maximized at an optimum value of the rod length D
(Figure 1a), while the mode frequency red-shifts with
increasing D due to retardation. To explore the validity of
eqs 8 and eq 9a, we consider the mode field distribution
(Figure 1b) and, in particular, its variation along the electron
trajectory (Figure 1c). Performing the Fourier transform in eq
9a, we find a profile of Fi(φi) (Figure 1d) that matches very
well the frequency-integrated excitation probability (Figure
1e), whose maximum is in good agreement with the expected
value φi ∼ π.

Figure 1. Maximizing plasmon excitation through electron-energy matching. We consider the interaction of free electrons with the
longitudinal dipolar plasmon of silver nanorods. (a) EELS probability experienced by electrons with a kinetic energy (KE) of 90 keV passing
parallel and close to the surface of a silver nanorod (see right inset) for several values of the rod length D (see color-coordinated labels) and
fixed aspect ratio (length-to-diameter) D/2a = 1.5. The electron−surface separation is 0.075D. (b) Near-electric-field intensity associated
with the longitudinal plasmon mode of the D = 20 nm rod in (a) (photon energy ℏω1 = 2.97 eV). (c) Field extracted from (a) along the e-
beam direction z [dashed line in (b)]. (d) Absolute squared value of the spatial Fourier transform of the field in (c), which depends on KE
through the phase φ1 = ω1D/v (upper horizontal scale), where v is the electron velocity at the KE in the lower horizontal scale. (e) KE
dependence of the EELS probability integrated over the color-coordinated spectra shown in the inset under the conditions of (a) for D = 20
nm.
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Equation 8 corroborates the prediction made based on the
quasistatic scaling of eq 5a: the EELS coupling probability can
be indefinitely increased by lowering the velocity while
maintaining the phase-matching condition (i.e., the value of
φi), such that Fi takes its maximum value (limited by nonlocal
effects, see below). In Figure 2, we test this observation for a
self-standing silver sphere (see Figure S1 in Supporting
Information for a gold sphere), calculated from the analytical
solution in terms of Mie scattering for aloof electron
excitation.59 Figure 2a shows that the coupling of a grazing
electron to a dipolar plasmon can reach ∼1% for a KE of 20
keV. Once we are in the quasistatic regime (size-independent
mode frequency ωi), which is reached for a particle diameter D
≲ 50 nm (see Figure 2b,c), we can increase the probability by
reducing D, although in practice a limit is imposed by nonlocal
effects that shift and broaden the plasmon when D is few
nanometers60−63 (i.e., not too large compared with the Fermi
wavelength in the metal ∼0.5 nm).
As already mentioned in the derivation of eq 7, the

outcoupling process leading to CL emission introduces a
dependence on the effective mode size and a quadratic scaling
with the electron velocity. In addition, because the CL
probability (eq 6) is the square of an amplitude expressed as
the sum of contributions from multiple modes, pairwise mode
interference can emerge. For simplicity, we focus on modes
with a small spectral overlap, such that any interference
disappears, and then, we can rewrite the contribution of mode i
to the CL emission probability as

[ ]P v B FR( , ) ( , ) ( ) 3D quasistatici i i i i i iCL, 0
2 3

(10)

where Fi(φi) and φi are given by eq 9a, while χi carries
information on the radiative part of the process and the
coefficient Bi only depends on the material permittivity, and its
derivative at the mode frequency ωi (see Methods for a
detailed derivation). Although eq 10 has a similar structure as
the coupling probability in eq 8, the presence of the emission

function χi renders the scaling analysis of PCL,i more involved.
However, χi becomes independent of β and φi for small
particles (see eq 42 in Methods), so that the CL probability
vanishes as ∝ β2 with decreasing electron velocity. Therefore,
in contrast to the EELS probability, which is favored by small
velocities under phase-matching conditions, the maximum of
CL emission must lie at some finite value of β.
Considering again silver nanospheres, PCL,i for i correspond-

ing to the ( = 1) m = 0 electric dipole exhibits an absolute
maximum value of ∼0.2% at β ≈ 0.39 (≈44 keV) and D ≈ 82
nm (Figure 2d). In addition, Figure 2e,f corroborates the
different behaviors of the CL emission with electron velocity
for different modes: PCL,i scales as β2 for the dipole and β4 for
the quadrupole. Mode symmetry is therefore a critical aspect in
the optimization of CL, and as a general rule, faster electrons
interact more efficiently with more delocalized excitations.
Dielectric Cavities. For specimens of type (ii) (lossless

dispersionless permittivity ϵ), neglecting radiative losses, one
can also define a normalized field64 = D DE r E r( ) ( / )/i i

3/2 for
each mode i in terms of material- and size-independent
functions E u( )i of the scaled coordinate u = r/D, while the
mode frequency scales as ωi ∝ 1/D with size (see Methods for
details). Calculating the spatial Fourier transform of the field
and the mode phase as prescribed by eq 9a, the excitation
probability is found to satisfy the scaling

[ ]P v FR( , ) 2 ( ) 3D dielectricsi i iEELS/CL, 0
(11)

A rigorous description including radiative losses requires a
proper treatment of the excited modes as resonances (e.g.,
through quasinormal modes65−68), which should produce just
small corrections for high-quality resonances as those
considered below. Equation 11 can also be derived by inserting
the mode decomposition of the Green tensor (eq 32 in
Methods) into eq 2, separating the contribution of a single
mode i, and integrating over frequency.

Figure 2. Scaling of EELS and CL probabilities for silver spheres. (a,b) Analysis of the frequency-integrated EELS probability (a) and the
integrated probability multiplied by β = v/c (b) for one of the electric dipole modes ( = 1, m = 0) excited by electrons passing grazing to a
silver sphere [see inset in (a)]. (c) Same as (b) but for an electric quadrupole mode ( = 2, m = 0). (d−f) Analogous analysis as in (a−c) but
for CL. In panels (e) and (f), the probability is multiplied by β−2 and β−4, respectively. The EELS probability is indicated by a label in (a) for
D = 20 nm and a KE of 20 keV. The maximum CL probability in (d) lies close to the dashed line ωpD/v = 9.8 with ℏωp = 9.17 eV (the Drude
bulk frequency of silver58). Gray areas correspond to v ⩾ c.
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We start our discussion by considering an e-beam traversing
a cylindrical dielectric cavity (permittivity ϵ, radius a, and
length D; see inset in Figure 3a) along the axis. Although this
model system has mainly academic interest, it captures the
general characteristics of dielectric cavities as well as their
interaction with fast electrons, so we hope that it can help in
general when investigating any type of cavities in which light is
trapped in the form of standing waves bouncing at the
boundaries (in contrast to, for example, small plasmonic
cavities, where the response of the material provides the
leading trapping mechanism). In this system, eq 11 is exact.
For simplicity, we assume the dielectric to be coated by a
perfect electric conductor. Then, the dependence on geometry
enters only through the aspect ratio D/a. The cavity supports
transverse electric and magnetic (TE and TM) modes, but
only the latter has a nonzero electric field component along the

e-beam and can therefore be excited. Modes are further
indexed by longitudinal, azimuthal, and radial numbers n, m,
and k, respectively. For the axial trajectory under consid-
eration, only m = 0 modes couple to the electron. We focus in
particular on the n = 2 and k = 1 TM mode (i.e., TM201). The
corresponding function Fi = F201 entering eq 11 admits a
closed-form analytical expression (eq 50 in Methods), while
the mode frequency reduces to

= +c
D

z D a( / ) 4201 1
2 2

where z1 ≈ 2.405 is the first zero of the J0 Bessel function.
We find that Fnmk increases with the square of the aspect

ratio D/a and presents an absolute maximum at φnmk ≈ nπ as a
function of the coupling phase, signaling the phase-matching
condition for this system (see Figure 3a). Moving along the

Figure 3. Electron coupling to dielectric optical cavities. (a,b) Coupling to a model cylindrical cavity (radius a, length D) coated by a perfect
metal and filled with a material of permittivity ϵ [see inset in (a)]. The electron traverses the cavity with velocity v along the axis. Panel (a)
shows the squared spatial Fourier transform of the TM201 mode field (F201) along the axis as a function of the electron-velocity- and shape-

dependent phase defined by = /201 201
1/2 with = +z D a( / ) 4201 1

2 2 , where z1 ≈ 2.405 is the first zero of the Bessel function J0. The
mode excitation probability P201 is proportional to F201 (eq 11). Panel (b) shows the normalized probability ϵ1/2P201 as a function of aspect
ratio a/D and = v c/ (the electron velocity normalized to the speed of light in the dielectric). The phase-matching condition φ201 =
2π signals the probability maximum (dashed curve). (c−h) Excitation of a dielectric Mie sphere by a grazing electron. Panels (c,d) show the
contribution of two electric dipolar modes ( = 1 with azimuthal symmetries m = 0 and 1) to the EELS spectra for different values of the
particle diameter D and permittivity ϵ. Panels (e,f) present maps of the mode electric field amplitude (component along the e-beam
direction z) for D = 180 nm and ϵ = 30. Panel (g) represents the field as a function of position along the trajectory [dashed lines in (e,f)].
Panel (h) compares the mode excitation probability (i.e., the frequency-integrated EELS) to the spatial Fourier transform of the field for ϵ =
15 (red and green curves) and ϵ = 30 [purple and blue curves, same conditions as in (g)].
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phase-matching curve requires changing the permittivity while
modifying the cylinder aspect ratio (dashed curve in Figure
3b). Upon inspection of eq 50 in Methods, we find that the
excitation probability scales as P D a/( )nmk for D/a ≫ nπ,
thus producing stronger coupling for large aspect ratios, in
agreement with Figure 3b, where we observe moderate
probabilities (P201 ∼ 3%) even for ultrarelativistic electrons
(∼300 keV), high permittivities (ϵ ∼ 100), and extreme aspect
ratios (D/a ∼ 25).
A paradigmatic configuration consists of an electron passing

grazingly to a self-standing dielectric sphere (diameter D,
permittivity ϵ) supporting Mie resonances. The EELS
probability can be calculated analytically using closed-form
expressions derived from the Mie theory.9,59 For illustration,
we consider electric dipolar modes ( = 1) with either m = 0 or
1 azimuthal symmetry, whose associated electric fields are
plotted in Figure 3e,f. The EELS probability is then given by

= { }
i
k
jjjj

y
{
zzzzv

g
K

R
v

tR( , , )
3

Im ( )m
m

E
EELS 0 4 4

2 0
1

with R0 = D/2 (grazing incidence), where Km are modified
Bessel functions, t1E(ω) is the electric dipole scattering
coefficient,59 g0 = 2, and g1 = γ2 (see Figure S3 in Supporting
Information for a comprehensive study of excitation
probabilities of modes with different symmetries). Like in
the cylinder, the resonant frequency decreases with increasing
permittivity and cavity size (see EELS spectra in Figure 3c,d).
This behavior is consistent with the high-permittivity
frequency scaling c D/2i (see Figure S2a), suggesting
that the optimization of the coupling probability based on
phase-matching arguments could benefit from using materials
with high permittivities combined with slow electrons.
However, this approach is incompatible with the observed
reduction in the spectrally integrated loss function

= { }d tIm ( ) / 1/E
i

E
i1 1

2 as ϵ increases (see Figure
S2b). Instead, we should consider phase-matching with the
cavities of moderate permittivity and using large electron
velocities (see Figure S3 in Supporting Information, where
relativistic corrections are observed to contribute favorably).
For example, we find an optimum coupling of ∼0.1% for ϵ =
15 and β > 0.8 in the spheres of the figures.
In summary, the scaling PEELS,i ∝ Fi(φi)/β for dielectric

structures suggests that optimization of the coupling to
electrons can be pursued by playing with the shape of the
cavity while adjusting the size and the electron velocity such
that the phase φi is kept constant at a value that satisfies the
geometry-dependent phase-matching condition. In addition,
we note that increasing ϵ to control the effective mode size
leads in general to a reduction in the coupling, unless the
electron−cavity interaction time can be increased by changing
the morphology of the structure (e.g., in an elongated
cylinder), although this strategy is limited in practice by the
maximum currently available permittivities ϵ ∼ 20 at near-
infrared/visible frequencies.69

Coupling to 2D Structures. Two-dimensional (2D)
materials have become a relevant ingredient in nanophotonics
because of their robustness, flexible integration, large tunability
through electrical gating, and extraordinary optical properties
that include a plethora of long-lived polaritons in van der
Waals materials70 such as plasmons in graphene,71−73 phonon-
polaritons in hexagonal boron nitride51 (hBN) and α-

MoO3,
52,53 and excitons in transition-metal dichalcogenides54

(TMDs), as well as plasmons in atomically thin noble-metal
nanostructures.74,75 The scaling properties of 2D nanostruc-
tures are different from those of 3D particles, as one is
interested in maintaining a constant thickness d while varying
the lateral size D. In addition, the mode frequencies of
atomically thin structures are generally small, so they can be
described in the quasistatic limit.
The zero-thickness approximation is commonly employed to

reliably describe 2D materials assuming d → 0 and using a 2D
conductivity σ(ω). This approach renders similar results as
those obtained for films of finite thickness d ≪ D described
through a permittivity ϵ(ω) ≈ 4πiσ(ω)/ωd.72 Polaritons in 2D
materials are generally well-described in terms of local,
frequency-dependent conductivities of the form

=
+

ie
i

( ) D

g

2

(12)

with three parameters defined as a Drude weight ωD, an
intrinsic resonance frequency ωg, and a phenomenological
inelastic damping rate γ. Typical values for these parameters
are provided in Table 1 for materials of interest [graphene,

hBN, a TMD, and N layers of Ag(111)]. Adopting a 2D
quasistatic mode expansion, we find morphology-dependent
mode frequencies ωi prescribed by characteristic scale-
invariant eigenvalues ηi through the condition47,72 iσ(ωi)/ωi
= Dηi (see Methods). Plugging eq 12 into this expression, we
find

+ e D i/2 /4 / /2i g g D i
2 2

(13)

which contains a common imaginary part (i.e., equal mode
decay rate independent of size and morphology). Under the
assumption of long-lived polaritons, we neglect mode damping
in what follows and only retain the real part of ωi.
When the structure size is scaled by a factor μ, using eq 4 in

combination with eq 44, we find that the scaling properties of
the EELS and CL probabilities follow the same relations as in
eqs 5a and 7, respectively, but modified to accommodate a
change in the surface conductivity according to

Table 1. Parameters Used to Compute the 2D Conductivity
σ(ω) = (ie2/ℏ)ωD/(ω − ωg − iγ) (eq 12) in the Calculations
of the Coupling Probabilities of Figure 4 As Well As for
Ag(111) in Figure S4a

material
drude weight

ℏωD

intrinsic resonance
ℏωg

inelastic damping
ℏγ

graphene EF/π 0 1.6 (meV)
hBN 0.5 (meV) 170 (meV) 1.8 (meV)
WS2 0.5 (meV) 2 (eV) 42 (meV)
Ag(111) films 1.09N (eV) 0 21 (meV)
aWe focus on plasmons in graphene doped to a Fermi energy EF, the
LO phonon of hBN (data from ref 76), the A exciton of monolayer
WS2 (ref 54), and plasmons in Ag(111) films consisting of N atomic
planes, where74 ωD = ℏωp

2Ndz/4πe2 involves the bulk plasmon
energy58 ℏωp = 9.17 eV and the atomic layer spacing dz ≈ 0.236 nm.
Gold films share these parameters, but the damping changes to58 71
meV.
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(see Methods for details).
Using the noted quasistatic mode expansion, the probability

in eq 2 leads to (see Methods)
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i iEELS, 0

2
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(14)

where Fi(φi) and φi are again given by eq 9a. Comparison
between eqs 8 and 14 reveals that the dimensionality of the

system radically affects its coupling to free electrons: in 2D
nanostructures, PEELS,i ∝ 1/β2; in contrast, the scaling goes like
1/β in 3D systems. Another important consequence of eq 14
relates to the behavior of ωi when modifying the particle size D
(see eq 13): in materials with ωg = 0 such as graphene,

D1/i guarantees a coupling maximization through a
combined reduction of size D and electron velocity β (see
below). In the presence of an intrinsic material resonance (ωg
≠ 0), the behavior of PEELS closely resembles the one of a 3D
system because any variation of ωi with size can be neglected
as long as D|ηi| ≫ e2ωD/ℏωg

2 (e.g., for D|ηi|≫ 0.04 nm in WS2,
see Table 1). This condition is always met in the
configurations explored in this work.
We illustrate the predictions of eq 14 by considering a 2D

self-standing nanodisk of diameter D excited by an electron
passing either parallel or perpendicular to the surface (see inset
in Figure 4a). We focus on the lowest-order dipole mode with
m = 1 azimuthal symmetry, corresponding to an eigenvalue

Figure 4. Electron coupling to 2D nanodisks. (a) Dimensionless scaling function Fm=1 (see eq 14) for an electron passing parallel (solid
curve) or perpendicular (dashed curve) to a nanodisk of diameter D supporting a mode with azimuthal number m = 1 and frequency ωm=1.
The normalized impact parameter is z/D = 0.05 for the parallel trajectory and x/D = 0.05 for the perpendicular one (see inset). (b) Energy-
loss spectra for a 100 eV electron moving parallel (solid curves) or perpendicular (dashed curves) to a graphene nanodisk doped to a Fermi
energy EF = 0.4 eV for different disk sizes (see color-matched labels). (c,f) Frequency-integrated probability in graphene nanodisks as a
function of electron KE and the dimensionless parameter (EFD/e2)1/2. Dashed lines indicate a KE of 100 eV, and black dots signal the
maximum coupling probability at such energy. (d,g) Same as (e,h) but for hBN nanodisks as a function of D and φm=1 ≡ ωm=1D/v. (e,h)
Same as (d,g) but for WS2 nanodisks. Panels (c−e) and (f−h) correspond to the parallel and perpendicular electron trajectories, respectively
[see inset in (a)].
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ηm=1 = −0.0731 and an associated charge density
[ + ]= R D e R DR( ) ( / ) 1 /(4 1 2 / ) cosm

R D
R1

5(1 2 / ) for
R = (x, y) in the disk (see ref 77). From σm=1(R), we obtain
the mode field =E u( )m 1 (see Methods), and in turn, using eq
9a, the Fm=1(φm=1) coefficient that enters eq 14. We find that
Fm=1(φm=1) (see Figure 4a) displays an absolute maximum
around φm=1 ≈ 4 for the parallel trajectory (solid red curve) as
well as an oscillatory behavior produced by spatial modulation
of the charge density around the disk, whereas Fm=1(φm=1)
decreases monotonically with phase for the perpendicular e-
beam (dashed red curve). Applying these functions to compute
the corresponding EELS spectra, we obtain the results
presented in Figure 4b for graphene nanodisks of different
sizes doped to a Fermi energy EF = 0.4 eV. We then integrate
the spectra over the observed peaks to calculate the mode
excitation probabilities presented in Figure 4c,f as a function of
electron kinetic energy and scaled size. Upon inspection of the
analytical expressions for the excitation probability Pm=1, we
corroborate that it depends on Fermi energy and size only
through the dimensionless parameter EFD/e2 in this material.47

We also perform a similar analysis for hBN (Figure 4d,g) and
WS2 (Figure 4c,f) disks using the conductivity parameters
listed in Table 1 (see also results for ultrathin Ag(111)
nanodisks in Figure S4 of the Supporting Information). Among
these materials, graphene stands out for its ability to provide
very high electron−sample coupling probabilities (∼60% for
100 eV parallel electrons, a diameter D ∼ 73 nm, and a Fermi
energy EF = 0.4 eV). This needs to be compared to the maxima
of ∼26 and ∼4% observed in hBN and WS2 disks, respectively,
for D = 10 nm. We attribute this advantage of graphene to its
scaling = Dm 1 , in contrast to materials hosting intrinsic
resonances, which exhibit a φm=1 ∝ D behavior. In
consequence, small graphene disks excited by electrons with
low velocities undergo high excitation probabilities that cannot
be reached with the other two materials.
The frequency-integrated CL probability associated with 2D

systems is obtained by following a similar procedure as used to

derive eq 10. We find PCL,i(R0, v) ≈ (α5/β2)Ci χiFi(φi)/φi (see
e q 4 3 i n M e t h o d s ) , w h e r e t h e c o effi c i e n t

= [ + ]C /8 ( )i D i i i g
4 2 2 2 is weakly dependent on

D, while the phase φi is still given by eq 9b. Interestingly, since
the emission process involves the particle surface rather than
the volume, the scaling of the CL emission intensity
significantly departs from the one observed in 3D particles
(∝ β2 in the small-particle limit; see eq 10).
Free-Electron Coupling to Atomic-Like Excitations.

The observation of single-atom electronic transitions in the
optical regime has remained a challenge in electron
microscopy. In a relevant study, the modifications produced
in the plasmonic response by the presence of atomic defects
have been monitored through EELS in nanomaterials,78 while
CL emission from defects in nanodiamonds has also been
resolved.79 The atomic-like excitations supported by quantum
dots,80 excitons in semiconductors,54,81 and defects in TMDs82

are promising candidates for probing the interaction at the
single-electron level, so we are interested in finding the
optimum excitation probability in these types of systems. To
this end, we explore a simple model consisting of a single
electron bound to an effective Coulomb potential in an initial s

orbital = Dr( ) e /s
r D/ 3 and study the transition to a p

orbital = · Dr r n( ) ( )e / (2 )p
r D/2 5 (oriented along the

direction of a unit vector n̂ , either parallel or perpendicular
to v; see Figure 5a) induced by the passage of a free electron
moving with velocity v = vz ̂ and impact parameter R0 relative
to the Coulomb singularity. The size of the atomic-like states is
defined by D, which also determines the transition energy ℏωsp
= 3ℏ2/(8meD2) (see Methods).
In analogy to the previously studied systems, we express the

excitation probability in terms of a retarded electric field
produced by the bound-electron current when transitioning
from the ground state to the excited state. The spatial profile of
that electric field is captured by a dimensionless vector field

Figure 5. Electron-induced atomic-like s−p transition. (a) Illustration of a bound-electron transition from an s orbital of size D to a p orbital
triggered by the interaction with a free electron passing at a distance R0 from the origin of such orbitals. We consider final p orbitals oriented
either perpendicularly or parallel to the electron trajectory (upper and lower sketches, respectively). (b,c) Excitation probability (from s to
p) as a function of the scaled impact parameter R0/D for p orbitals with perpendicular (b) or parallel (c) orientations. Dashed and solid
curves are obtained for two different orbital sizes; curve colors refer to different electron velocities β = v/c (see labels); and the R0 ≫ D limit
is also shown for v/c = 0.01. (d,e) Excitation probability under the same conditions as in (b,c) as a function of electron velocity/energy
(lower/upper horizontal scales) and orbital size for R0 = D. Dashed vertical lines indicate an electron KE of 10 eV, while black dots signal the
maximum coupling probability at such energy.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c12977
ACS Nano 2024, 18, 14255−14275

14263

https://pubs.acs.org/doi/suppl/10.1021/acsnano.3c12977/suppl_file/nn3c12977_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c12977?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c12977?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c12977?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c12977?fig=fig5&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c12977?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


DE r( / )sp (see Methods) that allows us to write the excitation
probability as

=P v FR( , )
1

( )sp
sp

sp sp0

2

2
(15)

where Fsp(φsp) is given by eq 9a (see eq 53 for an explicit
expression) and depends on the phase φsp = ωspD/v (see
detailed derivation in Methods). As in the nanoparticles
discussed above, we note again that Fsp(φsp) is the squared
Fourier transform of the scaled transition field. In the
quasistatic limit, the field DE r( / )sp becomes independent of
the size of the orbital D, which enters only via the phase φsp ∝
1/D. We find that Psp is maximized for R0/D ∼ 1.4 when the
electron moves perpendicular to n̂, whereas it saturates to a
finite value as R0 → 0 when v∥n̂ (see Figure 5b). As ωsp ∝ 1/
D2, eq 15 prescribes that Psp only depends on β = v/c and the
orbital size D. We can thus present universal plots for the
excitation probability (Figure 5d,e), revealing values as high as
∼15% for 10 eV electrons and D ∼ 1.5 nm in the perpendicular
orientation (see Figure 5d).
In the long-distance limit (R0 ≫ D), the electron only sees a

dipolar transition similar to those in metal spheres. This regime
is already approached for R0/D ≳ 6 (Figure 5b,c). As the
transition dipole scales as d ∝ D and the excitation probability
as Psp ∝ d2ωsp

2 Km
2 (ωspR0/vγ) with m = 0/1 for n̂ oriented

parallel/perpendicular to v (see a detailed expression in
Methods), the perpendicular orientation produces a larger
coupling (cf. Figure 5d,e). Furthermore, under the expected
condition that the size of the system is small compared to the
transition wavelength (i.e., ωspD/c ≪ 1), Psp becomes

approximately independent of ωsp and scales with the size of
the system as D2 if R0 ≫ D.
Excitation of Waveguide Modes. We conclude by

discussing how waveguide modes confined in one or two
spatial dimensions can be efficiently excited by electrons
moving parallel to the propagation direction under phase-
matching conditions.30,32,38−40 In the nonrecoil approximation,
assuming a structure with translational invariance along the e-
beam direction, electrons are capable of exciting modes that
have a longitudinal wave vector k∥ and frequency ω within the
ω = k∥v line determined by the electron velocity v.9 Waveguide
modes can thus be excited when this electron line crosses their
dispersion relation ω = ωkd∥

at a point with wave vector k∥ = kc,
as illustrated in Figure 6a. We limit our analysis to one-
dimensional (1D) waveguides, where the generated modes are
easier to collect. This configuration was suggested as a basis to
generate single photons heralded by electron energy losses32

and demonstrated in a recent experiment.38

We find it convenient to define an excitation probability per
unit of electron path length dPEELS/dz, which is derived in
Methods starting from eq 11 and can be expressed as

= [ ]
dP

dz
c
v v
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R
( ) 2
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k k
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, 0

2
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where ωkdc
and vkdc

= ∂ωkdc
/∂kc are the frequency and group

velocity of the phase-matching mode with parallel wave vector
k∥ = kc (i.e., the crossing point between the mode dispersion
and the electron line), and Ekdc

(R0) is the corresponding mode
field evaluated at the transverse position of the e-beam R0. For
waveguides made of a lossless, nondispersive material, the field

Figure 6. Excitation of waveguide modes by free electrons. (a) Electron moving parallel to the waveguide can efficiently excite guided modes
when the phase-matching line ω = k∥v (red), which relates the in-plane wave vector k∥ and frequency ω that the electron can transfer, crosses
the mode dispersion relation of the waveguide (dark blue) at a wave vector k∥ = kc. The uncertainty in the parallel electron velocity v (e.g.,
through the velocity spread Δv of the e-beam) translates into a finite width Δω of the generated optical spectrum. (b) The excitation
probability reaches values of a few percent per micron of electron path length for metallic and dielectric waveguides with commonly used
dimensions, here illustrated for gold, silver, and silicon waveguides with rectangular cross sections, as indicated in the inset. We show the
corresponding loss spectra and the mode-integrated probabilities (in parentheses). Waveguide edges are rounded with a radius of curvature
of 10 nm. The electron passes 1 nm away from the surface at the position indicated by the dot in the inset. We take ϵ = 12 + 0.1i for Si and
ϵ(ω) from ref 58 for the metals. (c) Large interaction lengths can be realized in curved waveguides matching the profile of a Gaussian e-
beam. The penetration distance λ⊥ of the waveguide mode amplitude outside the surface relative to the e-beam waist W0 determines the
effective interaction length Leff. (d) In a simpler configuration, a broad e-beam can be specularly reflected at the surface of a planar
waveguide upon incidence with a glancing angle θ0 ≪ 1, thus defining an effective interaction length Leff ≈ λ⊥/θ0. (e) The so-generated
waveguide modes can be efficiently coupled to localized excitations using integrated optic schemes.
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satisfies the normalization condition ∫ d2R ϵ(R)|Ekdc
(R)|2 = 1,

with ϵ(R) = 1 outside the waveguide and equal to the material
permittivity inside it; then, the factor |Ekdc, z(R0)|2 in eq 16 scales
as 1/μ2 when the cross section of the waveguide and R0 are
both enlarged by a factor μ, and therefore, the loss rate in the
scaled system dP dz( / )EELS is related to the original one
(dPEELS/dz) through =dP dz dP dzR R( )/ ( / )/EELS 0

2
EELS 0 .

For waveguides with a dispersive permittivity, mode normal-
ization involves contributions from magnetic and electric
terms,83 generally leading to a more complex scaling behavior.
Nevertheless, in plasmonic waveguides with highly confined
modes, the electric component dominates, and one can use the
above normalization condition with ϵ(R) replaced by ∂[ωϵ(R,
ω)]/∂ω (evaluated at ω = ωkdc

), so that the scaling with μ
remains the same as for dielectric waveguides.
Figure 6b shows examples of the excitation of plasmons in

gold and silver waveguides as well as propagating optical
modes in silicon waveguides using grazingly incident 200 keV
electrons. We consider rectangular waveguides with dimen-
sions that are feasible using the currently available nano-
fabrication techniques. The excitation probability dPEELS/dz,
normalized per unit of electron path length and integrated over
the spectral peak of the mode, lies in the range of a few percent
per micron. Over the entire electron trajectory, the total
excitation probability is then given by this quantity multiplied
by the effective electron interaction length Leff. In these
calculations, we place the electron very close to the material
surface (electron−surface distance x = 1 nm), but analogous
results are obtained at larger distances x, for which the
probability is reduced by a factor e x2 / , where λ⊥ is the
characteristic penetration length of the mode field amplitude
into the surrounding vacuum (i.e., the impact-parameter-
dependent excitation probability can be approximated as

× [ ]dP x dz dP dz( )/ e (0)/x
EELS

2 /
EELS ). For example, one

finds = k c1/ /2 2 2 for the fundamental band in a
cylindrical waveguide with m = 0 azimuthal symmetry, while
we have λ⊥ ≈ 150 nm in the leftmost mode of the silicon
waveguide considered in Figure 6b (see Figure S5 in
Supporting Information).
In practice, one can use Gaussian e-beams running nearly

parallel to the waveguide. For an e-beam with 1D Gaussian
profile in the xz plane and translational invariance along y, the
electron probability density can be written as

| | = [ ] [ ]x z w z( , ) (2/ ) / ( ) e x w z2 1/2 2 / ( ) 2

with width = +w z W z W( ) 1 ( / )e0 0
2 2 that evolves along

the e-beam longitudinal direction z as determined by the
electron wavelength λe (e.g., 2.5 pm at 200 keV) and the width
W0 at the waist (≈λe/πNA for typical numerical apertures NA
≲ 0.02). The waveguide can be bent with a matching Gaussian
curvature (i.e., a surface profile x = −ξw(z), which blocks a
fraction [ ]1 erf( 2 ) /2 of the electrons, e.g., 1% for ξ =
1.16). This strategy should allow us to increase the interaction
length, as illustrated in Figure 6c. We now recall that the
excitation probability is the inelastic average of the e-beam loss
rate weighted with the electron density across the transverse
profile9,49 (see eq 1). For the sake of this discussion, the
excitation probability can then be written as ∫ dx|ψ(x,
z)|2[dPEELS(x)/dz]. Assuming an adiabatic evolution of the e-

beam profile along z and noticing that the electron velocity is
nearly parallel to the surface at all times and positions, the
resulting excitation probability becomes Leff × [dPEELS(0)/dz],
where = | [ ]|L dz dx x w z z( ), e x

eff 0
2 2 / . For large

|z| ≫ W0
2/λe, we have w(z) ≈ |z|λe/πW0, so the electron density

scales as |ψ[x − ξw(z), z]|2 ∝ 1/|z| near the surface, and the z
integral diverges logarithmically with the length Δz of the
curved surface. This divergence indicates that Leff can take
large values, which should be physically limited by inelastic
interactions and diffraction due to the presence of the surface.
As an example involving conservative parameters, we take 200
keV electrons and a width of the beam waist W0 = 10 nm, so
that the z -dependent e-beam diameter becomes

= × + [ ]w z z( ) 10 nm 1 /(125 m) 2 , which, combined
with dPEELS(0)/dz ≈ 0.02/μm for the silicon waveguide in
Figure 6b, should enable the excitation of many quanta per
electron for an interaction length Leff = Δz ∼ 200 μm over
which the e-beam width w(z) increases to ∼20 nm.
A simpler configuration consists in reflecting the electron

with a small glancing angle θ0 ≪ 1 on a straight-line waveguide
(Figure 6d). Assuming again an exponential decay of the mode
outside the waveguide and considering an adiabatic evolution
of the interaction with probability dPEELS(x)/dz per unit of
electron path length, as obtained for a classical point electron
moving parallel to the waveguide, we calculate an effective
interaction length Leff ≈ 2λ⊥/θ0. For example, for θ0 = 1 mrad,
assuming the above parameters for the leftmost silicon mode in
Figure 6b, we find Leff ≈ 300 μm and PEELS ≈ 6. For such low
θ0, the out-of-plane electron kinetic energy is small compared
with the potential inside the material, and thus, we anticipate
nearly perfect electron reflection. Incidentally, the attraction
exerted by image charges and currents should be taken into
consideration for a reliable description of the electron
trajectory, imposing a minimum θ0.
If the mode dispersion can be tailored such that it is tangent

to the electron line ω = k∥v (i.e., a mode dispersion containing
one point in which the phase and group velocities are the same,
and the electron velocity is tuned to match them), a stronger
interaction is expected, changing the coupling scaling with the
effective interaction length to a higher power of Leff.

84 In
general, we can consider a mode dispersion behavior ωk d∥

≈ k∥v
+ ζ(k∥ − kc)n near the matching point k∥ = kc, which
corresponds to a regular crossing with ζ = vkdc

− v for n = 1,
producing PEELS ∝ Leff (see above); an inflection point as
considered in ref 84 for n = 2, which leads to PEELS ∝ Leff

3/2 or an
even smoother tangent point for n > 2. As shown in Methods,
the coupling probability becomes

= | |P L
S

k
v E R(2 / ) ( )n n

c

n
k zEELS eff

2 1/ 1/
, 0

2
c (17)

with Sn=(2/n) d sinn
0

1/ 3 2 (in particular, S1 = π and,
using eq 3.762-1 of ref 85, Sn = (22−1/n/n)Γ(1/n) cos(π/2n)/
[(1−1/n)(2−1/n)] for n > 1), where we use the gamma
function Γ. We have a scaling PEELS ∝ Leff

2−1/n that starts at ∝
Leff for n = 1 and approaches ∝Leff

2 for high n.
These configurations for generating multiple photons per

electron in a waveguide mode can be combined with light-
optics schemes to couple them to localized excitations (Figure
6e), such as those of single molecules.86,87 This approach could
exceed the efficiency of direct e-beam coupling to localized
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modes discussed in previous sections as a route to
deterministically entangle single photons and excitations in
single molecules. Rather than relying on the direct interaction
of the e-beam with a 3D-confined optical mode, one could
instead generate multiple waveguided photons per electron,
which are then funneled into localized excitations in an
integrated optics setup. We renounce leveraging the excellent
spatial resolution of e-beams for mapping the targeted
excitation modes and, instead, use such resolution to couple
efficiently to waveguides and subsequently populate a localized
excitation, whose correlation with the energy loss experienced
by the electron should depend on the fidelity of the
waveguide−localized-mode coupling scheme.
A relevant question concerns the degree of coherence of the

generated waveguided photons, which has two interrelated
aspects: the temporal coherence of different photons created
by a single electron and the spectral coherence at the single-
photon level. Temporal coherence requires the electron
wavepacket to have a small duration compared with the
optical period of the emitted light,88 and therefore, unless
attosecond electron pulses are employed, different emitted
photons have random relative phases. Spectral coherence refers
to the phase associated with different frequency components of
the emitted light and whether we can identify individual
photons consisting of the superposition of different colors with
well-defined relative phases. For a given impact parameter (i.e.,
a specific electron−waveguide distance), the generated wave-
guide field contains a finite range of frequencies, with a spectral
width Δω that depends on the group velocity of the waveguide
mode (i.e., the difference in slopes of the electron line and the
mode dispersion, see Figure 6a). This spectral width is

acquired due to the finite time of electron−waveguide
interaction and the spread in incident electron velocities
among other factors. The frequency superposition can be
regarded as coherent if ℏΔω is small compared with the energy
spread of the incident electron wave function, as otherwise
different spectral regions of the generated light would be
associated with discernible energy losses in the electron, thus
defining an incoherent set when tracing out the electron
degrees of freedom (incidentally, the total electron spectral
width is expected to be generally larger than this coherent
spectral width, as it can also be contributed by incoherent
components of the electron density matrix). For example,
considering an interaction length Leff ∼ 10 μm (i.e., Δt ∼ 48 fs
at 200 keV), the optical spectral width ℏ/Δt ∼ 14 meV already
exceeds the zero-loss energy broadening of currently available
monochromated e-beams7,8 (∼ a few meV). This problem is
alleviated when Leff extends over hundreds of microns, as in the
examples discussed above. In addition, different impact
parameters produce incoherent superpositions of the generated
optical fields88 (see eq 1), unless one postselects (and heralds
the emission) by detecting electrons that have lost which-way
information.89 It should also be noted that these incoherent
components have different spectral distributions because the
excitation amplitude of each frequency component depends on
the electron impact parameter,9 so they are not spectrally
equivalent.

CONCLUSIONS
In conclusion, by formulating simple scaling laws for the EELS
and CL probabilities as a function of the size of the specimen
and the electron velocity, we perform an extensive exploration

Table 2. Overview of Free-Electron Coupling to Optical Modes: Scalings and Magnitudesa

aWe consider different types of systems (leftmost column) characterized by a size D, focusing on one of their optical modes i at frequency ωi. For
excitation by an electron with velocity v, we define the phase φi = ωiD/v (fourth column), which determines the coupling strength through a
coupling function Fi(φi) (the squared spatial Fourier transform of the mode field along the e-beam for a spatial frequency ωi/v). The table
summarizes the scalings of the frequency-integrated EELS and CL probabilities PEELS/CL,i (second and third columns) as well as the maximum
PEELS,i here obtained under practical configurations (rightmost column). The list of configurations includes (from top to bottom) a silver nanorod
(length D = 20 nm, 6.7 nm diameter, Figure 1e); the dipolar m = 0 mode of a silver sphere (diameter D = 20 nm, Figure 2a); the TM201 mode in a
metal-coated dielectric cylinder (ϵ = 100, length D = 1 μm, 40 nm radius, Figure 3b); the dipolar m = 0 electric mode of dielectric Mie spheres
(diameter D = 128 nm with either ϵ = 32 (absolute maximum in Figure S3a of Supporting Information) or ϵ = 15); the m = 1 mode in 2D
graphene (diameter D = 18 nm, 0.4 eV Fermi energy, Figure 4c) and monolayer WS2 (diameter D = 10 nm, Figure 4e) disks; and hydrogen-like s−
p transitions (orbital size D, p-orbital orientation parallel or perpendicular to e-beam, Figure 5d,e). The bottom row refers to the excitation of 1D
waveguide modes exemplified by the rectangular silicon rod in Figure 6b (width D = 400 nm) with an effective interaction length Leff = 300 μm
under the configuration of Figure 6d for a glancing angle θ0 = 1 mrad.
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of the inelastic coupling between free electrons and confined
optical modes, finding the conditions under which unity-order
excitation probabilities are possible and establishing practical
limits to the performance of general kinds of systems.
Specifically, we consider dielectric cavities, small 2D and 3D
polaritonic structures, atomic-like transitions, and waveguide
modes. A summary of the results is presented in Table 2, along
with the scaling properties for the excitation probability and
the mode frequencies. For a given mode i of frequency ωi, the
excitation probability is proportional to the squared spatial
Fourier transform of the mode field along the e-beam direction
(Fi(φi), eq 9a) evaluated at a spatial frequency ωi/v. This
defines a phase φi = ωiD/v when scaled by a characteristic
distance D of the system. A maximum excitation probability
takes place when φi ∼ π, with the actual optimum value
depending on the specific material and morphology under
consideration.
For polaritonic structures in the quasistatic regime (ωiD/c

≪ 1), ωi remains approximately independent of size and only
varies with shape. We then find a monotonic growth of the
excitation probability as observed in EELS with decreasing D,
and accordingly, the velocity needs to also be reduced to
maintain the optimum value of φi. For the 3D geometries
summarized in Table 2, the coupling probabilities can exceed
1% for structure sizes of tens of nm interacting with electrons
in the keV range. We find the largest interaction probabilities
(scaling as ∝1/β) under mode-phase-matching conditions in
materials without an intrinsic resonance (in contrast to ∝1/β2

when ωg ≠ 0), such as 2D graphene nanoislands, for which
values exceeding 100% are obtained with electron energies of
tens of eV and diameters of tens of nm (see Table 2).47

Importantly, as a consequence of the two-step process
underlying CL emission (i.e., excitation by the electron and
decay into radiation), the probability is proportional to β2, thus
suppressing the benefits that we find in EELS when coupling to
low-energy electrons and setting the optimal parameters in a
region where retardation effects may play a leading role. This
conclusion is supported by an experimental study published in
the same issue,90 in which the CL intensity measured from
gold nanospheres is shown to reach maximum values for
optimum electron energies as indicated in eq 10, also showing
that larger particles produce stronger signals.
We also discuss lossless dielectric structures, which, in

contrast to polaritonic particles, display a scaling ωi ∝ 1/D, so
small mode frequencies ωi are not compatible with small sizes
unless unrealistically large permittivities are considered. A high
excitation probability then requires long interaction
lengths.32,39 In this respect, it has been argued39 that, for
dielectric waveguides extending over a longitudinal distance
Leff, the normalized mode electric field scales as L1/ eff , while,
under phase-matching conditions, the coupling amplitude
receives an additional factor of Leff, such that Fi(φi) ∝ Leff.
Although one could in principle achieve arbitrarily large
excitation probabilities by elongating the waveguide, the e-
beam is required to be laterally confined along an increasingly
long propagation distance Leff, which imposes a constraint on
the beam−structure distance due to diffraction-induced
divergence along the propagation direction. In this work, we
analyze practical configurations for coupling to waveguides,
specifically considering either Gaussian e-beams running close
to curved waveguides or collimated e-beams under glancing
incidence on 1D straight-line waveguides. We find that several

photons can be generated per electron under phase-matching
conditions, thus establishing an alternative strategy to couple
single electrons and single localized optical excitations
efficiently by first generating waveguided photons that are
subsequently coupled to localized excitations through light-
optics schemes (see Figure 6).
In electron-driven atomic-like transitions, we find the

opposite dependence on the size of the system relative to
2D and 3D polaritonic structures: the interaction probability
grows with size due to the 1/D2 scaling of the excitation
frequency. We illustrate this effect for hydrogenic s → p orbital
transitions (Table 2). The orbital size can be controlled in
practice in artificial systems such as defects in TMDs82 and
quantum dots.80 Excitation probabilities nearing 20% are
predicted for 10 eV electrons, while higher values are possible
due to the 1/v2 scaling of the excitation probability. Achieving
such a high coupling between free electrons and two-level
systems is important to trigger and explore nonlinear optical
responses at the few-photon level and also to develop a novel
platform for quantum-optics protocols based on nanoscale
systems in which, for example, an electron can probe quantum
blockade91 or materialize delayed-choice experiments.92

The present results contribute to consolidating a complete
understanding of the inelastic coupling between free electrons
and confined optical excitations, establishing general rules to
maximize the interaction and providing scaling laws that
involve the size of the physical system and the electron
velocity. The list of unresolved problems that could benefit
from the present study includes the use of free electrons to
perform spectroscopy on individual molecules, possibly
coupled to cavities that mediate an optimum interaction to
free electrons; the creation of multiple excitations by the same
electron to probe the nonlinear dynamics of nanostructures
and materials in general, such as, for example, quantum-optics
effects in the few-body limit; the generation of high-order Fock
states |n⟩ in an optical mode of frequency ω triggered by a
more efficient probability of finding electrons that have lost an
energy nℏω; and the extraction of more information per
electron when performing spectrally resolved microscopy. Our
work may lay down a way to tackle these research challenges
from a fresh perspective, invoking the strong electron−light
interaction regime to grant us access to unexplored
fundamental phenomena such as the generation of nonclassical
light and the complex nonlinear processes taking place in out-
of-equilibrium nanostructures down to atomic scales.

METHODS
Electrostatic Mode Expansion in 3D Structures. We briefly

describe a well-known method used to solve the quasistatic problem
in terms of a mode expansion of the surface charges induced by an
external perturbation (see, for example, refs 55, 56 and 93). Working
in frequency space ω, we begin by writing the Poisson equation
corresponding to the total scalar potential ϕ(r, ω) = ∫ dt eiωtϕ(r, t)
created by an external charge density ρext(r, ω) in the presence of a
structure described by a complex, frequency-dependent dielectric
function ϵ(r, ω):

·[ ] =r r r( , ) ( , ) 4 ( , )ext (18)

A formal solution of eq 18 can be written as the sum of external and
induced potentials

=
| |

dr r
r r

r
r

( , )
1 ( , )

( , )
ext 3

ext

(19a)
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= · [ ]
| |

dr r
D r r

r r
( , )

( , ) 1/ ( , )
4

rind 3

(19b)

with D(r, ω) = −ϵ(r, ω)∇rϕ(r, ω). We focus on systems involving
two values of the dielectric function, ϵ(ω) and ϵh(ω), in the regions
occupied by a homogeneous nanostructure [defined by a step
function Θ(r) = 1] and a host medium (Θ(r) = 0), respectively,
separated by an abrupt interface S. This allows us to write

[ ] =r n1/ ( , ) (1/ 1/ )hr s s, where δs is a surface δ-function
that restricts r to interface points s, while ns is the unit vector
perpendicular to the interface at s and pointing toward the host
medium. Then, we can rewrite eq 19b in terms of the surface-charge
density = [ ] ·s n D s( , ) ( )/4 ( , )h h s as

=
| |

dr s
s

r s
( , )

( , )
S

ind 2
(20)

Assuming ρext(r, ω) to be free of singularities on S, the continuity of
the normal displacement ·n D s( , )s at the interface allows us to
write56

· = [ ·

+ ]

= [ ·

]

d F

d F

n D s n s s s s s

s

n s s s s s

s

( , ) ( , ) ( , ) ( , )

2 ( , )

( , ) ( , ) ( , )

2 ( , ) ,

h
S

S

s s s

s s

ext 2

ext 2

(21)

where we introduce the continuous part of the normal derivative of
the Coulomb field = · | |F s s n s s s s( , ) ( )/s

3 and separate the
singular part at s′ → s giving rise to terms proportional to 2π.56 From
eq 21, we obtain the self-consistent equation

= · + d Fs n s s s s s2 ( ) ( , ) ( , ) ( , ) ( , )
S

s s
ext

(22)

for the charge density, where λ(ω) = (ϵh + ϵ)/(ϵh − ϵ). The operator
Ô defined by [ · ] =O f d F fs s s s s( ) ( , ) ( )

S
can be proven to admit a

complete set of real eigenvalues λi and eigenfunctions σi(s) such
that55

=d Fs s s s s( , ) ( ) 2 ( )
S

i i i (23)

Moreover, the eigenfunctions fulfill the orthogonality relation55

| |
=d d

D
s s

s s
s s
( ) ( )

S S

i i ii2 2
(24)

where we introduce a characteristic distance of the structure D for
normalization. We now expand the surface charge density as a linear
superposition of σi(s) terms. The expansion coefficients are then
obtained from eqs 22 and 24, leading to

=

= =
+ +

=
| |

·

= [ + ]

g f

g

f
D

d d

D d
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r r
r

r
r

( , ) ( ) ( ) ( ) (25a)
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(25b)
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( , ) (25c)
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1 2 ( ) (25d)
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3
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where eq 25d involves the eigenpotential

=
| |

dr s
s

r s
( )

( )
i S

i2
(26)

Note that eq 25d is obtained from eq 25c by applying eq 23 after
using the properties of

S
d2s F(s, r)/|s − r′| following Green’s identity

upon exchange of r and r′ when these points lie exactly at the surface,
on opposite sides of the interface, or the same side.55 From here, we
write the solution of eq 18 as

= dr r r r r( , ) ( , , ) ( , )3 ext
(27)

where

=
| |

+ [ + ]

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
D g

r r
r r r

r r r

( , , )
1

( , )
1

1 2 ( ) ( ) ( ) ( )
i

i i i i

(28)

is the screened interaction r r( , , ), which enters naturally the
calculation of EELS and CL probabilities (see below). We interpret

r r( , , ) as the potential created at r by a unit charge placed at r′
and oscillating with frequency ω. Incidentally, reciprocity requires the
symmetry property =r r r r( , , ) ( , , ), which implies the
completeness relation D∑iϕi(r)ϕi(r′) = 1/|r − r′| for r and r′ on
opposite sides of the interface.

The absence of an absolute length scale in the quasistatic
approximation is reflected in the fact that the eigenvalues λi are
independent of the size of the system. However, according to eq 24,
the eigenfunctions change with the size of the system D according to
the rule = D Ds s( ) ( / )i i

2 , where i are scale-invariant functions.
This implies the property = D Dr r( ) ( / )i i

1 , where u( )i is also a
scale-invariant function of the dimensionless coordinates u = r/D.
Electrostatic Mode Expansion in 2D Structures. We consider

a planar 2D structure placed in the z = 0 plane, embedded in a host
medium of permittivity ϵh and having a small thickness compared to
both the lateral size and the characteristic distances over which the
optical field varies significantly. This type of system has been analyzed
through quasistatic modal expansions with the material assimilated to
a zero-thickness film of frequency-dependent surface conductivity
σ(ω).47 Such expansions can be constructed from the self-consistently
induced surface charge,47 but they can also be derived from the
formalism presented above for 3D structures by taking the limit of a
vanishing thickness d → 0+ combined with a permittivity ϵ(ω) =
4πiσ(ω)/ωd that embodies the finite surface conductivity. For
example, we can rewrite eq 28 for r and r′ in the host medium as

=
| |

+
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
Dr r

r r
r r

( , , )
1 1 ( ) ( )

/ ( ) 1h i

i i

i (29)

where we have made use of eq 25b, neglected ϵh compared with ϵ, and
defined the parameters η(ω) = iσ(ω)/ϵhωD and ηi = (d/4πD)[(λi −
1)/(λi + 1)]. We recall that this analysis is based on the continuity of
the normal displacement at the material interface (i.e., eq 22). An
equivalent procedure for zero-thickness structures consists of writing a
self-consistent equation for the in-plane electric field.47 Although the
link between these two approaches is rather involved, the latter leads
to the same expression as in eq 29, where each ηi is found to take a
finite value in the d → 0+ limit, arising from an eigenvalue λi → − 1.
In addition, ηi is negative and independent of D, while ϕi(r) satisfies
the same scaling property as deduced above for 3D structures.
Scaling of the EELS and CL Probabilities in 3D Dielectric

Cavities. We are interested in deriving general scaling properties of
the EELS and CL probabilities using eqs 2 and 6 for different types of
cavities. We start by considering dielectric cavities with the inclusion
of retardation effects. For a structure made of a self-standing lossless
material characterized by a real, frequency-independent permittivity ϵ,
eq 3 readily leads to the following property for the Green tensor94
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= [ ]G Gr r r r( , , )
1

( / , / , ), dielectrics
(30)

where the tilde indicates that we refer to a system with the same
morphology but in which all distances are scaled by a factor μ (e.g., μ
> 1 for expansion). Using this result in combination with eqs 2 and 6,
we obtain

=

=

v v

v v

R R

R R

( , , ) ( / , , ), (31a)

d ( , , )
d d

d ( / , , )
d d

(31b)
r r

EELS 0 EELS 0

CL 0 CL 0

The spectral signature associated with a mode resonance i can be
integrated over frequency by using these expressions to obtain the
following scaling property for the mode excitation probabilities:

=P v P vR R( , ) ( / , )i iEELS/CL, 0 EELS/CL, 0 . We recall that the EELS and
CL probabilities must be identical under the assumption of lossless
dielectrics, and therefore, PEELS,i(R0, v) = PCL,i(R0, v).

To derive the functional dependence of eq 11, we expand the
transverse part of the Green tensor in terms of normal modes64

=
*

+ +G
i

r r
E r E r

( , , )
( ) ( )

0i

i i

i
2 2

(32)

where Ei(r) are mode fields satisfying the wave equation
× × = cE r r E r( ) ( / ) ( ) ( )i i i

2 and the orthogonality relation
· * =d r r E r E r( ) ( ) ( )i i ii

3 with ϵ(r) = 1 + Θ(r)(ϵ − 1). Incidentally,
eq 30 is readily verified by noticing the scaling relations

=E r E r( ) ( / )/i i
3/2 and = /i i imposed by normalization and

the wave equation. Now, inserting G(r, r′, ω) into the EELS
probability (eq 2), using the noted scaling relations, integrating over
frequency around the mode spectral width, and considering a small
radiative mode damping rate (≪ ωi), we obtain eq 11 in the main
text.
Scaling of the EELS Probability in the Quasistatic Limit: 3D

Structures. For small structures compared to the wavelengths λi =
2πc/ωi associated with the excitation frequencies ωi, we can work in
the quasistatic limit (c →∞) and calculate the EELS probability using
eq 4. Upon inspection of eq 28, using the scaling properties of ϕi(r)
(see above), we find

=r r r r( , , )
1

( / , / , )
(33)

which allows us to write the scaling law

=v vR R( , , )
1

( / , / , )EELS 0 EELS 0 (34)

where again quantities with tilde refer to a system in which distances
are multiplied by a factor μ. By integrating over frequency, the mode
excitation probability scales as =P v P vR R( , ) ( / , / )i iEELS, 0

1
EELS, 0

(eq 5a).
When considering aloof trajectories with the electron moving

always in a vacuum (ϵh = 1), eqs 28 and 4 lead to

= { + }

×

v D
v

g

du D u

R

R

( , , )
e

Im ( 1) ( )

( / , )e

i
i i

z i z
i Du v

EELS 0

2

2

0
/

2
z

(35)

where uz = z/D. Now, we assume a weakly absorbing medium (Im{ϵ}
≪ |Re{ϵ}|) and approximate the loss function (see eq 25b) as

{ + } { }

×
{ } + { }

l
mooo
nooo

|
}ooo
~ooo

g

i

Im ( 1) ( ) (Re ( ) 1)

Im
1

Re ( ) ( ) Im ( )

i i i

i i ii

This expression is obtained by setting the real mode frequency ωi
such that Re{ϵ(ωi)} = (λi − 1)/(λi + 1) (i.e., from the corresponding
zero of the real part of the denominator in gi), linearizing the
frequency dependence of ϵ(ω) and neglecting Im{∂ωiϵ(ωi)}. Then,
integrating over ω and assuming that the integral factor in eq 35 does
not vary significantly within the width of the resonance, we obtain

{ }
| { }|

i
k
jjjjj

y
{
zzzzzP v FR( , )

1 Re ( )
Re ( )

( )i
i

i i
i iEELS, 0

(36)

(i.e., eq 8), where Fi(φi) is given by eq 9a. To derive this result, we
integrate by parts in eq 35 and write the scaled electric field as

=Ei z u i, z
in terms of the potential. Importantly, the probability is

guaranteed to be positive by the fact that |λi| < 1.55

Scaling of the CL Probability in the Quasistatic Limit: 3D
Structures. In the quasistatic limit, the screened interaction

r r( , , ) accurately approximates the longitudinal component of
the near field close to the sample, but to compute CL, we need to
evaluate the far-field scattering amplitude f r( , )r , which involves the
transverse component of the Green tensor in the kr → ∞ limit (see
eq 6), with k = ω/c. To this end, we use the Dyson equation
associated with G(r, r′, ω)

=

+

G G

d G G

r r r r

r r r r r

( , , ) ( , , )

(1 ) ( , , ) ( , , )
V

0

2 3
0

(37)

where the integral is restricted to the volume V occupied by the
dielectric and we introduce the free-space Green tensor95

= + | || |G kr r r r( , , ) ( 1/4 )( )e /ik
r r

r r
0

2 2 with
standing for the 3 × 3 identity matrix. By taking the far-field limit

= ·G c e rr r r rlim ( , , ) (1/4 ) ( )/
kr

ik r r r
0

2 ( ) , approximating

t h e r i g h t - m o s t G r e e n t e n s o r i n e q 3 7 a s
G r r r r( , , ) ( , , )/4r r

2 in terms of the screened
interaction, and integrating by parts, we obtain the far-field amplitude

=

× [ · ]

·ek
v

d

dz z

f R r

r r r R

( , )
4

(1 ) e

( ) ( , , , )e

V

ik

i z v

r
r r

r r

0

2
3

0
/

(38)

To relate the CL emission probability vRd ( , , )/dCL 0 in a system
in which all distances have been scaled by a factor μ to the probability
dΓCL(R0, v, ω)/dω in the original system, we substitute

zr R( , , , )0 by zr R( , , , )0 in eq 38, integrate over r″
within the scaled volume, and use the scaling law in eq 33. In addition,
we Taylor-expand the exponential ·e ikr r inside the r″ integrand and
write = =

+f R f R( , ) ( , )n n
n n

r r0 0
1 ( )

0 with αn = (n!)−1 and

= ·

× [ · ]

×

ek
v

d ik

dw w

f R w w r

r r w R

( , )
4

(1 ) ( )

( ) ( , / , , )

e

n

V

n

z z

i v w

r

w w

( )
0

2
3

0

( / ) z

where the variable of integration w = r″/μ is normalized using the
scaling factor μ. Finally, we insert the far-field amplitude into eq 6 to
derive the sought-after CL scaling

=
=

+d v
d

d v
d

R R( , , ) ( / , / , )

n

n
n

CL 0

0

2 CL
( )

0

(39)

where
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By integrating eq 39 over the mode spectral width and defining

= [ ]P v d d v dR R( , ) ( , , )/i
n

i

n
CL,
( )

0 CL
( )

0

we obtain the scaling relation in eq 7.
Because the CL probability is the square of the far-field amplitude,

it contains contributions arising from the interference between
different modes.96 For simplicity, we focus here on systems in which
such modes are spectrally separated and mode interference can be
disregarded. By again taking the electron to follow a trajectory entirely
contained in a vacuum, we insert eqs 28 into eq 6 and use the scaling
properties of the eigenpotentials to obtain the CL probability
integrated over all solid angles

+
+ +
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e D
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z

(40)

where u = r/D is the position coordinate normalized to the
characteristic distance D in the structure. We work in the small-
damping limit, by analogy to the discussion of EELS above. Then,
integrating over frequency, we obtain
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where we introduce the radiating function

= [ · ]·d d u u r r u( , ) e ( ) ( )( )i i
i

i ir
r u

u u
3 ( )

2
i

(42)

and use Fi(φi) as given in eq 9a. Finally, we absorb some of the factors
of eq 41 mode-dependent constant Bi to write the CL scaling law in
eq 10.
Scaling of the EELS and CL Probabilities in the Quasistatic

Limit: 2D Structures. For flat samples of vanishing thickness, we
follow similar steps as for 3D systems but with the screened
interaction replaced by eq 29 and using the surface conductivity in eq
12. We focus on modes i that have large frequencies ωi compared with
the damping rate γ. From the corresponding poles in eq 29 (i.e., η(ωi)
= ηi), we find = + e D/2 /4 /i g g D i

2 2 (eq 13), where ωg

and ωD are inherited from eq 12 and we have neglected γ. After some
algebra, the frequency-integrated EELS probabilities for exciting the
modes under consideration are found to satisfy eq 14, whereas the CL
probabilities are given by

[ + ]
P v FR( , )

8 ( )
( , )

1
( )i

D

i i i g
i i

i
i iCL, 0

5

2

4

2 2 2

(43)

where the factors χi(β, φi) become independent of particle size and
electron velocity in the limit of very small particles.

To obtain the scaling properties of EELS and CL probabilities for
2D structures, we first notice that, because the permittivity depends
on the sample thickness d, a transformation of the structure size must
reflect on the screened interaction properties. Indeed, by using the

scaling properties of the eigenpotentials and the fact that ηi does not
depend on particle size, we obtain the relation

=r r r r( , , ; )
1

( / , / , ; / )
(44)

between the screened interaction of a system with size μD ( on the
left-hand side) and the one for a system with size D ( on the right-
hand side), where we have explicitly indicated the dependence on the
surface conductivity σ of the 2D material. Equation 44 closely
resembles its 3D equivalent in eq 33, except for the difference that the
equality in eq 44 only holds if all lengths and the conductivity are
simultaneously scaled. This leads to the EELS and CL scaling
relations (also indicating an explicit dependence on σ)

=v vR R( , , ; )
1

( / , / , ; / )EELS 0 EELS 0 (45)

=
=

+d v
d

d v
d

R R( , , ; ) ( / , / , ; / )

n

n
n

CL 0

0

2 CL
( )

0

(46)
which show the same behavior with μ as in eqs 34 and 39,
respectively, because of the combined change in the dimensionality of
the sample and the dependence of EELS and CL probabilities with
conductivity (see eqs 4 and 38).
Mie Modes in Dielectric Spheres. For a self-standing sphere of

diameter D and permittivity ϵ, Mie theory97 gives the mode field
distributions. Following a standard procedure,98 one identifies electric
and magnetic modes indexed by the orbital and azimuthal numbers
and m at m-independent frequencies determined by the conditions95

[ ] [ ] =h x x j x j x x h x( ) ( ) ( ) ( ) 0i x i i i x i i
(1) (1)

i i (47a)

=h x j x j x h x( ) ( ) ( ) ( ) 0i x i i x i
(1) (1)

i i (47b)

where xi = ωiD/2c, ωi are mode frequencies labeled by i, while j and

h(1) are spherical Bessel and Hankel functions. The solutions of eq 47a
are complex eigenfrequencies in general, which can be dealt with
through the quasinormal-mode formalism.65−68 In the present work,
we focus on modes with a low level of radiation losses and consider
only the real part of ωi (see Figure S2 in Supporting Information). By
approximating the spherical Bessel and Hankel functions in eq 47b for
small arguments,99 the electric mode frequencies are found to satisfy
the equation

+
+ +

+
+ = + +
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É
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x
2 3

3(2 1)
(2 3)(2 1)

1
2 1

2( 1)i
2 2

which leads to +c D( /2 ) 2(2 3)i for ϵ ≫ 1.
Electromagnetic Green Tensor in the Electrostatic Limit.

The Green tensor defined in eq 3 permits calculating the electric field
E(r, ω) = −4πiω∫ d3r′G(r, r′, ω)·j(r, ω) produced by a current
density j(r, ω). In the electrostatic limit, the screened interaction

r r( , , ) r e l a t e s t h e i n d u c e d p o t e n t i a l
= dr r r r r( , ) ( , , ) ( , )3 to the generating charge

density ρ(r′, ω). Expressing the latter as ρ(r′, ω) = (1/iω)∇′·j(r′,
ω) in virtue of the continuity equation, integrating over r′ by parts,
and calculating the electric field as E(r, ω) = −∇ϕ(r, ω), we find E(r,
ω ) = − 4 π i ω ∫ d 3 r ′ G ( r , r ′ , ω ) · j ( r , ω ) w i t h

=G r r r r( , , ) ( , , )/4r r
2, which can therefore be

understood as the electrostatic approximation to the Green tensor.
Combined with eq 33, we readily obtain the scaling

=G Gr r r r( , , ) ( / , / , )3 in this limit.
Free-Electron Coupling to an Optical Mode. We provide a

more general derivation of the excitation probability, leading to the
same result as obtained above for dielectric cavities (i.e., eq 11).
Consider an optical mode i of frequency ωi characterized by an
electric field Ei(r) that satisfies the normalization condition ∫ d3rϵ(r)|
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Ei(r)|2 = 1 (i.e., like those in the Green tensor expansion in eq 32).
The coupling to a swift electron that moves with constant velocity v∥z ̂
is then described through the interaction Hamiltonian48

= ·[ * ]†t ie a av E r E r( ) ( / ) ( ) ( )i i i , where the position vector r
needs to be evaluated at the time-dependent electron position R0 + vt.
Starting from the mode in the ground state |0⟩, the postinteraction
am p l i t u d e o f t h e | 1 ⟩ F o c k s t a t e i s g i v e n b y

= | |i dt t1 ( ) 0 ei
i t1 i . Combining these elements, the

excitation probability reduces to

| | =P ev dt vtR( / ) ( , )ei i i
i t2 1 2

0

2
i

which can readily be recast into eq 11 with Fi(φi) and φi defined by eq
9a by expressing = D DE r E r( ) ( / )/i i

3/2 in terms of the dimensionless
scaled field DE r( / )i .
EELS Probability in a Metal-Coated Cylindrical Cavity. We

investigate the excitation probability of the electromagnetic modes
supported by a dielectric cylinder (real permittivity ϵ, radius a, length
D) coated by a perfect electric conductor and traversed by an electron
moving parallel to the axis at a distance R0. The cavity supports TE
and TM modes, but only the latter has a nonvanishing electric field
along the axis and can therefore couple to the electron. Adopting well-
known expressions for the electric field distribution of cylindrical TM
waves100 and using cylindrical coordinates r = (R, φ, z) (with the
cavity defined by 0 < z < D and R < a), we impose the condition of
vanishing surface-parallel electric field components at the boundaries
and find the cavity-mode fields
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where q = π/D, n indicates the number of nodes in the z component,
m is the azimuthal number, k labels different radial modes of
transverse wave vectors Qmk = zmk/a determined by the condition
Jm(zmk) = 0, Jm are Bessel functions, and

= + +
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(49)

i s a normal i za t ion constant ensur ing the condi t ion
| | =d r E r( ) 1

V nmk
3 TM 2 , with the integral running over the cavity

volume V. The mode frequencies = +c Q n q( )/nmk mk
2 2 2 are

determined by imposing the conservation of the total electromagnetic
wave vector. As shown above, the excitation probability is given by eq
11 with the Fi(φi) factor specialized to the i = {nmk} mode. By taking
the Fourier transform of eq 48, the dimensionless function in eq 9a
becomes
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(50)
where φnmk = ωnmkD/v.
Excitation Probability for a Free-Electron-Induced s−p

Transition. We consider a model system comprising ground and
excited states described by one-electron hydrogenic s and p orbitals
ψs(r) = Cse−r/D and = ·Cr r n( ) ep p

r D/2 , where =C D( )s
3 1/2 and

=C D(32 )p
5 1/2 are normalization constants, while n̂ is a unit vector

that defines the direction of the transition dipole. To satisfy the
Schrödinger equation, the transition energy ℏωsp must satisfy the

identity ωsp⟨ψp|r|ψs⟩ = −ℏ⟨ψp|∇r|ψs⟩/me, which, for the orbitals under
consideration, leads to ωsp = 3ℏ/(8meD2). We describe the s−p
transition through the minimal coupling interaction Hamiltonian

= · + ·t i e m c t t e tr A r A r r( , ) ( /2 )( ( , ) ( , ) ) ( , )e i n
which we neglect A2 terms, while A and ϕ are the vector and scalar
potentials of the electromagnetic field produced by the electron,
treated as a point charge that moves with constant velocity v along z
(nonrecoil approximation9).

We take the system to be initially prepared in the s state and
calculate the amplitude of the p state αp(t) within first-order
perturbation theory. The postinteraction amplitude then reads

*i dt d tr r r r( ) ( ) ( , ) ( )ep p s
i t1 3 sp , which can be

rewritten in terms of the electric field Esp(r) = −4πiωsp∫ d3r′G0(r, r′,
ωsp)jsp(r′) produced by the transition current jsp(r)=(iℏe/2me)[ψs∇ψp
− ψp∇ψs] as

= *e dz E zR( ) ( , )ep
sp

sp z
i z v

, 0
/sp

(51)

To derive this result, we have considered the vector potential

=t ec d dz G zA r r R( , ) 2 e ( , , , )i z v t( / )
0 0

produced by an electron traveling in vacuum and crossing the
transverse position R0 at t = 0, and we have used the Onsager
reciprocity relation G0,ii′(r, r′) = G0,i′i(r′, r). We note that an
incomplete calculation would have led to a different definition of the
transition field containing G0*(r,r′,ωsp) instead of G0(r, r′, ωsp).
However, the two expressions differ by a term −4πiωsp ∫ d3r′Im{G0(r,
r′, ωsp)}jsp(r′) that contains only real transverse photons with a
dispersion ω = kc, so they do not couple to the free electron.
Reassuringly, a coupling coefficient of the form in eq 51 corresponds
to the one adopted in previous works48 to describe the coupling of
free electrons to atomic transitions in a quantum-optics framework.

We can now compute the transition electric field from the atomic
orbitals combined with the electromagnetic Green function in the
momentum representation. We find the result = ·n( )p with
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(52)

where q = (Q, ωsp/v). The azimuthal part of the Q integral can be
expressed in terms of Bessel functions, so the excitation probability Psp
= |αp(∞)|2 finally reduces to eq 15, where
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(53)

and φsp = ωspD/v. We note that the result in eq 53 can be alternatively
expressed as the squared Fourier transform of the scaled field

=D D eE r E r( / ) ( / ) ( )sp sp
2 ; namely,

=F du D uE R( ) ( / , )esp sp sp z sp z
i u v1 /

2
sp z
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which becomes scale invariant only in the c → ∞ limit.
In the long-distance limit (R0 ≫ D), we have φsp ≪ 1, and only the

s ≪ 1 region contributes to the integral, which can then be
approximated to yield
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+ ·
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(54)

where = * =e d eDd r r r r n( ) ( ) (2 /3 )p s
3 15/2 5 is the transition

dipole and Km are modified Bessel functions. Equation 54 coincides
with the frequency-integrated EELS probability in a dipolar particle
described by a polarizability α(ω) = (d ⊗d/ℏ)[1/(ωsp − ω + i0+) +
1/(ωsp + ω + i0+)] (i.e., hosting a single resonance at the same
frequency and with the same transition dipole).
Free-Electron-Induced Excitation Probability of Waveguide

Modes. As a specific instance of 3D dielectric structure, we consider a
1D waveguide running along z. We focus on a band in which
waveguide modes are labeled by the parallel wave vector k∥. Mode
fields can be written as e LE R( ) /k

ik z (i.e., with i → k∥), where L is
the quantization length along z. For dielectric waveguides, the
condition ∫ d2R ϵ(R)|Ek d∥

(R)| = 1 is imposed by mode normalization,
whereas in waveguides with a dispersive permittivity that condition
can be more involved.83 Using this field in eq 9a, integrating over z
along an effective interaction length Leff, inserting the result into eq
11, and summing over k∥ modes by adopting the prescription ∑kd∥

→
(L/2π)∫ dk∥, we find

= | |P c
dk

E
L

R4 ( )
sin ( /2)

k
k zEELS , 0

2
2

eff
2

(55)

where Δ = k∥ − ωkd∥
/v, the lateral position of the electron trajectory is

defined by R0, and ω = ωkd∥
gives the dispersion relation of the

waveguide band. The quantization length L has disappeared from this
result and only Leff remains. We now approximate sin2(ΔLeff/2)/Δ2 ≈
2πLeffδ(Δ) assuming k∥Leff ≫ 1. Phase-matching with the electron
field occurs under the condition Δ = 0 (i.e., the electron line ωkd∥

=
k∥v), which defines a crossing point with k∥ = kc defined by the
geometrical construction in Figure 6a. Finally, we divide the
probability by Leff and directly obtain the excitation probability per
unit of electron path length in eq 16.

When the electron line is tangent to the dispersion relation with a
general behavior near k∥ = kc given by ωkd∥

= k∥v + ζ(k∥ − kc)n with n =
1, 2,···, changing the integration variable in eq 55 to

= k k L v( ) /2c
n

eff yields eq 17 with a scaling PEELS ∝ Leff
2−1/n.
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(33) Rasmussen, T. P.; Echarri, Á. R.; Cox, J. D.; García de Abajo, F.
J. Generation of Entangled Waveguided Photon Pairs by Free
Electrons. Sci. Adv. 2024, 10, No. eadn6312.
(34) Di Giulio, V.; García de Abajo, F. J. Optical-Cavity Mode
Squeezing by Free Electrons. Nanophotonics 2022, 11, 4659−4670.
(35) Huang, G.; Engelsen, N. J.; Kfir, O.; Ropers, C.; Kippenberg, T.
J. Electron-Photon Quantum State Heralding Using Photonic
Integrated Circuits. PRX Quantum 2023, 4, 020351.
(36) Dahan, R.; Baranes, G.; Gorlach, A.; Ruimy, R.; Rivera, N.;
Kaminer, I. Creation of Optical Cat and GKP States Using Shaped
Free Electrons. Phys. Rev. X 2023, 13, 031001.
(37) Karnieli, A.; Fan, S. Jaynes-Cummings Interaction between
Low-Energy Free Electrons and Cavity Photons. Sci. Adv. 2023, 9,
No. eadh2425.
(38) Feist, A.; Huang, G.; Arend, G.; Yang, Y.; Henke, J.-W.; Raja, A.
S.; Kappert, F. J.; Wang, R. N.; Lourenço-Martins, H.; Qiu, Z.; Liu, J.;
Kfir, O.; Kippenberg, T. J.; Ropers, C. Cavity-Mediated Electron-
Photon Pairs. Science 2022, 377, 777−780.
(39) Kfir, O. Entanglements of Electrons and Cavity Photons in the
Strong-Coupling Regime. Phys. Rev. Lett. 2019, 123, 103602.
(40) Adiv, Y.; Hu, H.; Tsesses, S.; Dahan, R.; Wang, K.; Kurman, Y.;
Gorlach, A.; Chen, H.; Lin, X.; Bartal, G.; Kaminer, I. Observation of
2D Cherenkov Radiation. Phys. Rev. X 2023, 13, 011002.
(41) D’Mello, Y.; Dahan, R.; Bernal, S.; Shi, X.; Kaminer, I.; Plant,
D. V. Efficient Coupling between Free Electrons and the Supermode
of a Silicon Slot Waveguide. Opt. Express 2023, 31, 19443−19452.
(42) Talebi, N.; Sigle, W.; Vogelgesang, R.; Esmann, M.; Becker, S.
F.; Lienau, C.; van Aken, P. A. Excitation of Mesoscopic Plasmonic
Tapers by Relativistic Electrons: Phase Matching versus Eigenmode
Resonances. ACS Nano 2015, 9, 7641−7648.
(43) Yang, Y.; Massuda, A.; Roques-Carmes, C.; Kooi, S. E.;
Christensen, T.; Johnson, S. G.; Joannopulos, J. D.; Miller, O. D.;
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