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ABSTRACT: The efficient conduction of mobile ions in halide perovskites is
highly promising for artificial synapses (or memristive devices), devices with a
conductivity that can be varied by applying a bias voltage. Here we address the
challenge of downscaling halide perovskite-based artificial synapses to achieve
low energy consumption and allow high-density integration. We fabricate
halide perovskite artificial synapses in a back-contacted architecture to achieve
microscale devices despite the high solubility of halide perovskites in polar
solvents that are commonly used in lithography. The energy consumption of a
conductance change of the device is as low as 640 fJ, among the lowest
reported for two-terminal halide perovskite artificial synapses so far.
Moreover, the high resistance of the device up to hundreds of megaohms,
low operating voltage of 100 mV and simple two-terminal architecture enable
implementation in highly dense crossbar arrays. These arrays could
potentially show orders of magnitude lower energy consumption for computation compared to conventional digital
computers.

Recent years have seen the rapid development of ever
more capable artificial intelligence (AI) models. These
models now rival or even surpass human capabilities in

a wide range of tasks, such as complex strategy games,1−3

image analysis,4,5 predicting protein folding6 or practicing law7

and medicine.8 While these feats are certainly impressive, the
development comes with an exponential increase in computa-
tional demand and therefore power consumption.9 As an
example, at the time of writing the generative pretrained
transformer (GPT) models underlying ChatGPT are run on
clusters ranging from eight up to thousands of GPUs each
consuming up to 700 W of power.10 This large computational
demand and power consumption is especially problematic for
AI applications where relatively small devices, such as smart
sensors, are required to function autonomously and without
connecting to large external servers and power sources. By
contrast, the most complex neural network we know, the
human brain, only consumes roughly 20 W of power.11 One
elegant solution to tackle this large discrepancy in power
consumption is therefore to move to a novel way of
computation that is inspired by the brain. In these so-called
neuromorphic computing systems, electronic circuits are
employed to mimic the functioning of biological neurons
and synapses. Some well-known first implementations of this
principle by Intel and IBM have demonstrated orders of

magnitude reduction in power consumption for classification
tasks already.12,13 The synapses in these neuromorphic systems
were so far implemented by complementary metal-oxide
semiconductor (CMOS) circuits.14 However, these circuits
are bulky and typically take up most of the available area on the
chip.14,15 Moreover, the energy consumption of tens to
hundreds of pJ per synaptic event in the aforementioned
neuromorphic chips12,13 is still significantly higher than the 1−
10 fJ consumed by their biological counterpart.16

Memristive devices have recently gathered significant
attention as an alternative building block of artificial synapses.
These two-terminal devices have a resistance that can be varied
by the application of a bias voltage and their working principle
is typically based on formation of metallic filaments in metal
oxides,17,18 a phase change from a nonconductive amorphous
to a conductive crystalline material19,20 or polarization of a
ferroelectric material.21,22 Their low energy consumption of
operation down to the femtojoule range17−22 and the
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possibility to implement memristive devices in dense crossbar
arrays23,24 make them an attractive alternative to synapses that
are solely based on CMOS circuits. There are several
requirements for memristive devices before they can effectively
replace or be incorporated into CMOS-based artificial
synapses. First, memristive devices with a range of switching
speeds and state retention times are required to construct
neuromorphic systems capable of learning and remembering of
information.25,26 In addition, the resistance of the device
should be high to prevent parasitic voltage drops on the
interconnecting wires and to prevent electromigration of wire
material.23,24 Lastly, large conductivity changes are required to
help reduce read errors in downscaled devices with low
operating currents.24

Recently, halide perovskites have been proposed as a novel
material for implementation in memristive devices.27−30

Conductance changes in halide perovskite-based electronic
devices are thought to originate from migration of ions or ion
vacancies under the application of a bias voltage.31 The low
activation energy of ion-migration in this class of materials
means that their projected energy consumption is among the
lowest of all memristive materials reported in literature, in the
femtojoule range for device areas at or below 10 μm2.28,32 In
addition, large changes in the conductance29,33 and the large
range of time scales for conductance changes ranging from
hundreds of milliseconds down to hundreds of pico-
seconds28,33 make halide perovskites attractive candidate
materials for artificial synapses. However, so far few studies
have focused on downscaling of halide perovskite memristive
devices, which is a major challenge due to the high solubility of
halide perovskites in polar solvents that are commonly used in
lithography procedures.34 Downscaled halide perovskite
devices with their promised femtojoule energy consumption
have therefore not been demonstrated so far and there is
currently no method to implement them in dense arrays on a
chip. Moreover, downscaling of memristive devices based on
other materials has previously been shown to result in higher
operating voltages,35−37 leading to higher energy consumptions
than expected based on the macroscale device. The lack of
downscaled memristive devices of halide perovskites therefore
makes it difficult to assess whether these materials retain their
favorable resistance change properties for smaller device areas
and hence to verify their scalability.38 In previous attempts,
devices were downscaled by incorporation of halide perovskite
in porous alumina membranes or in holes in a SiO2 layer with
top contacts evaporated through a shadow mask. However,
with these approaches, the energy consumption of con-
ductance changes was still on the order of several picojoules
and the device geometry is difficult to scale to large
networks.33,39

Here we report a method to downscale halide perovskite
artificial synapses to the microscale to reach an energy
consumption of conductance changes down to 640 fJ. The
synapse is operated at low voltages of 100 to 200 mV with
large conductance changes up to 5 orders of magnitude.
Moreover, the synapse has a switching speed on the order of
tens of milliseconds and a retention time of tens of seconds,
similar to biological synapses. The time scales of conductance
changes differ significantly from those of synapses based on
metal oxides, phase change materials and ferroelectrics and
therefore complements these existing memristive devices. The
high resistance up to hundreds of megaohms and the two-

terminal architecture make our devices ideal for integration in
high density crossbar arrays.

The back-contacted, two-terminal device architecture that
was adopted for the downscaled synapses is shown schemati-
cally in Figure 1. The device consists of two gold electrodes

that form a crosspoint with a SiO2 spacer that separates the
electrodes. Methylammonium lead iodide (MAPbI3) perov-
skite is spin coated over the electrodes and forms the active
layer of the device. By depositing both electrodes prior to
perovskite deposition, our device avoids processing on top of
the relatively sensitive perovskite layer. Depending on the bias
voltage applied to the electrodes, current flows through the
MAPbI3 layer from the top of the bottom electrode to the sides
of the top electrode or vice versa. Bias voltages applied to the
MAPbI3 layer induce hysteresis that modulates the resistance
of the device, mimicking the plasticity of biological synapses.40

Embedded in a network, one of the electrodes would
electronically connect to the presynaptic neuron that sends
voltage pulses to the postsynaptic neuron via the other
electrode of this synapse.

The device fabrication procedure is outlined in Figure 2 a-e.
First, the gold bottom electrodes were patterned on a Si/SiO2
(100 nm) substrate by a UV-lithography procedure. A 60 nm
SiO2 layer was then deposited on the bottom electrode by
inductively coupled plasma chemical vapor deposition
(ICPCVD). Top electrodes were subsequently patterned on
the SiO2 layer by a second UV-lithography step, aligned
perpendicular to the bottom electrode. The SiO2 layer acts as
an insulating layer that prevents a short-circuit between the top
and bottom electrodes. The top electrodes were now used as a
hard mask for reactive ion etching (RIE) of the SiO2 layer. An
optical microscopy and scanning electron microscopy (SEM)
image of the crosspoint of the electrodes after the RIE of the
SiO2 layer are shown in Figure 2f. Finally, the MAPbI3 active
layer and a PMMA capping layer were spin-coated onto the
substrate. An X-ray diffraction (XRD) pattern and SEM image
of a spin-coated MAPbI3 film are given in Figure S1 of the
Supporting Information. Spin coating the halide perovskite
layer only in the final step prevents degradation of the
perovskite layer due to exposure to polar solvents used in the
lithography procedure. Moreover, the encapsulation with
PMMA has been shown to significantly reduce the rate of
degradation of the perovskite layer under ambient conditions
and at elevated temperatures.41

An I−V curve of the device before perovskite deposition was
measured to ensure that the SiO2 spacer does not form a shunt

Figure 1. Schematic representation of the artificial synapse. The
device consists of two gold electrodes that form a crosspoint and
sandwich a SiO2 spacer layer. A MAPbI3 active layer is spin-coated
over the electrodes. Bias-voltage-induced hysteresis leads to a
change in the postsynaptic current Isyn of the device with each
successive presynaptic voltage pulse Vpre that is applied.
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in the final device with the perovskite layer. As can be observed
in Figure S2, the current that flows between the electrodes
through the SiO2 spacer falls below the detection limit of our
measurement setup for all bias voltages used in this work. In
addition, no resistance changes were measured up to 3 V
without the perovskite. We can therefore exclude contributions
of the SiO2 layer to resistance changes of the final device.

The geometry of the current flow through the MAPbI3 layer
from the top of the bottom electrode to the sides of the top
electrode makes the exact device area difficult to define.
However, device volume can still be minimized by decreasing
the width of the electrodes. All devices discussed in the rest of
this work contained gold top and bottom electrodes that were
2.5 μm wide. This electrode width was chosen as a
compromise allowing for high fabrication yields and minimized
device area. A clear advantage of our crossbar geometry is that
the dimensions of the halide perovskite film do not limit the
device dimensions and therefore the crosspoints can be
implemented in dense arrays underneath a single, macroscopic
film.

Thirty-five I−V curves demonstrating the typical con-
ductance change behavior of the microscale device are
shown in Figure 3a. The current rapidly increases by
approximately three to 5 orders of magnitude when a potential
of 0.1 to 0.2 V is reached in the forward sweep from 0 to 0.2 V.
The device remains in this higher conductive state with
conductance SON in the reverse sweep from 0.2 to −0.2 V and
is reset to the lower conductive state with conductance SOFF
between 0 and −0.2 V. Similar rapid conductance changes of

several orders of magnitude have been reported before in
macroscopic perovskite memristive devices. Interestingly, for
macroscale devices these changes typically occur at higher
voltages than those reported here and are attributed to the
formation of conductive filaments through the film.42−44 One
of the I−V sweeps is shown in Figure S3, plotted on the linear
scale. From this measurement it follows that the synapse shows
Ohmic conduction after the conductance increase, which is
expected after the formation of a conductive filament through
the bulk of the film.45 The I−V sweep therefore suggests that
the measured conductance changes in our device are due to
the formation and rupture of a conductive filament as well.
Formation of these conductive filaments in metal-halide
perovskite-metal devices is well-established and has been
demonstrated experimentally in previous reports.43,44,46,47 The
lower voltages at which the conductance changes are observed
can be explained by the shorter distance between the
electrodes than those typically used in macroscale devices,42−44

resulting in proportionally larger electric field strength. In the
I−V sweep in Figure S3, the Ohmic response of the device is
not maintained for negative voltages, which we ascribe to the
relative instability of the filament and the large electric field
experienced by the filament, even at low applied voltages.
Importantly, these measurements show that halide perovskite
synapses maintain low operating voltages after downscaling.
We note that conductance changes can also occur for negative
applied voltages, as demonstrated in Figure S4. The device is
symmetric, but switches preferentially in the direction of the
initial voltage sweep. This behavior is consistent with the
conductive filament mechanism.45 Once the filament is formed
in one direction, the field within the device is small. Only after
the rupture of the filament can the voltage drop in the bulk of
the device be large enough to grow a new filament in the

Figure 2. Fabrication procedure of the perovskite synapses. (a) 2.5
μm wide Au bottom electrodes are patterned on a thermally
oxidized Si substrate by UV lithography. (b) A 60 nm insulating
SiO2 spacer is deposited by ICPCVD. (c) 2.5 μm Au top electrodes
are patterned perpendicular to the bottom electrode in a second
UV lithography step. (d) The top electrode is used as a hardmask
during removal of SiO2 from the bottom electrode with a reactive
ion etch. (e) The perovskite active layer and a PMMA capping
layer are spin-coated in the final fabrication step. (f) Optical
microscopy and tilted SEM image of the crosspoint of two 2.5 μm
electrodes.

Figure 3. Conductance changes of the synapse. (a) The median
(blue) of 35 I−V sweeps (gray) of the synapse, showing a rapid
increase of the current between 100 and 200 mV. (b) The
conductance in the forward (SOFF) and backward (SON) sweeps,
calculated from the current measured at 0.02 V in the I−V sweeps
in (a). An increase in the conductance of 3 to 5 orders of
magnitude is observed for each cycle. (c) Pulsed I−V measure-
ments demonstrating the reversible conductance changes with ten
80 ms pulses of +100 mV, followed by ten pulses of −100 mV and
of the same duration. (d) Retention time measured directly after
switching the conductance of the synapse to SON with 10 pulses
(200 mV, 80 ms). The retention time is measured with a 1 mV
probe pulse. The conductive state is stable for tens of seconds.
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reverse direction. The preference of switching in one sweeping
direction that we show here is consistent with previous work
on symmetric metal-halide perovskite-metal devices.44

The conductance values at 0.02 V for the forward and the
backward sweeps were calculated by dividing the measured
current by this voltage (Figure 3b). In each of the cycles the
device shows a large SON to SOFF ratio between 3 and 5 orders
of magnitude and a low conductance down to the nS range,
which is important for the scalability of the device.23,24

Although the conductance in the SOFF state is consistent
between cycles, there is some variation in the conductance in
the SON state. There is no clear trend of decreasing or
increasing SON with each successive cycle. Therefore, the
variation is unlikely due to degradation of the device, but
probably due to a stochastic nature of the resistance changes.26

The distribution of the voltages where conductance changes,
the SOFF and SON state conductance, and the SON to SOFF ratio
are given in Figure S5 of the Supporting Information. The
voltages at which the conductance is switched on and off are
0.16 ± 0.03 V and −0.12 ± 0.06 V, respectively. Despite these
low switching voltages, the device shows a remarkably high
SON to SOFF ratio of 2.7 ± 2.2 × 104.

To investigate the switching behavior, we applied a pulsed
voltage. Voltage pulses produced more gradual conductance
changes, as demonstrated in Figure 3c. Ten consecutive
voltage pulses of 0.1 V and 80 ms in duration were applied to
the device, followed by ten consecutive pulses with the same
duration, but of opposite polarity. The measured current
during the application of the positive voltage pulses increased
from 0.1 nA in the first pulse to 8 nA in the tenth pulse. During
the subsequently applied negative voltage pulses, the current
changed from −6 nA in the first negative pulse to −0.1 nA in
the tenth pulse, indicating a decrease in the conductance of the
device. The pulsed measurement demonstrates the change of
the conductance of the device over orders of magnitude upon
application of a bias voltage. In addition, the measurement
shows that several conductive states are accessible between the
SON and SOFF states demonstrated in Figure 3b. This tunability
of the conductive state of the synapse is analogous to the
tunability of the connection strength of biological synapses,
where several states are accessible depending on the degree of
potentiation of the synapse.48

The retention time of the SON state was determined by
applying periodic 1 mV probe pulses immediately after setting
the device in the SON state. This voltage is too low to cause
conductance changes of the device, as can be observed in

Figure S6a. The evolution of the conductance over time is
shown in Figure 3d, while the full measurement is given in
Figure S6b. The conductive state does not decrease for the first
20 s of the measurement, after which the conductance starts to
decay to the SOFF state, which is reached 30 s after the start of
the measurement. Similar time constants for changing and
retention of the state of the synapse have been reported for
biological synapses.40

I−V curves and the corresponding SON and SOFF values at 20
mV of different devices are shown in Figure S7. From these IV
curves it follows that devices from different batches all show
similarly large conductance changes of several orders of
magnitude with an onset between 200 and 400 mV,
demonstrating the reproducibility of our fabrication procedure.

One of the promises of perovskite artificial synapses is that
their energy consumption might be very low, approaching
biological synapses. We reduced the voltage pulse duration to
55 ms to reduce the dissipated energy during a conductance
change of the synapse. At such short time, and at the low
current measured, the parasitic capacitance of our measure-
ment setup introduced a significant measurement artifact, as is
evident when comparing the measured data of the synapse in
Figure S8a and Figure S8b with data measured without
contacting the sample in Figure S8c. We therefore corrected
for this parasitic displacement current by subtracting the
current measured without contacting the synapse from the
measured data. The corrected pulsed measurement is shown in
Figure 4a. The mean current determined at each of the ten
pulses is plotted in Figure 4b. The current increased from 0.1
nA in the first pulse to 10 nA in the final pulse, similar to the
currents measured for the longer pulses (Figure 3c). Both the
exponential increase of the current with each successive
pulse,45 and the fact that not each pulse brings about the same
relative increase in the output current are expected for a
memristive device where the inherently stochastic growth of a
filament causes changes in the conductance.49 Moreover, the
figure again highlights that several conductive states can be
accessed between the SOFF and SON state by applying
consecutive voltage pulses to the device. Although artificial
synapses based on other materials have shown a larger number
of accessible states,20 our device still demonstrates the analog
conductance changes that are reminiscent of biological
synapses.40,48

The inset of Figure 4a and the first two data points in Figure
4b show that the conductance of the synapse is approximately
doubled in the second pulse. To calculate the energy

Figure 4. Performance characteristics of the artificial synapse. (a) Pulsed I−V measurements with 0.1 V, 55 ms pulses. An increase in the
conductance of 2 orders of magnitude is measured between the first and tenth pulses. The inset highlights the first two pulses of the
measurement in the dotted rectangle where approximately 640 fJ of energy is consumed to double the output current. (b) Average excitatory
postsynaptic current (EPSC) at each of the spikes in (a)..
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consumption E of this doubling of the conductance change we
take the product of the measured current I, applied voltage V
and pulse duration t, E = IVt, yielding an energy consumption
of 640 fJ. Considering the large 2-fold increase in the
conductance, we expect that a further decrease of the energy
consumption is possible by decreasing the pulse duration or
magnitude of the voltage. The energy consumption is
approaching values measured for biological synapses, which
is especially promising in our scalable device architecture that
could allow for the fabrication of entire microscopic artificial
neural networks on a chip.

Femtojoule energy consumptions have been reported in
previous work on macroscale halide perovskite artificial
synapses,43,50,51 but in those cases the energy consumption
of the read pulses was considered and not of the conductance
change itself, as we do here. In the final network the energy
consumption of the conductance update will be a significantly
larger contributor to the total energy consumption of the
synapse compared to the read pulse.12 In addition, the energy
consumption of a read pulse can be made arbitrarily small by
applying a pulse with the shortest possible time and voltage
amplitude. We therefore think it is more appropriate to
consider the energy consumption of the conductance update
when assessing the energy consumption of the synapse. We are
aware of only one work where a lower energy consumption, of
tens of femtojoules, was reported for a conductance change of
a halide perovskite synapse.52 However, in this work devices
were fabricated with a lateral architecture, which is not suitable
to achieve high device densities on the final chip.38 Moreover,
the distance between the electrodes in this work was 100 μm.
Downscaling of these devices for high device densities on a
chip will require a smaller distance between the electrodes,
which will likely increase the current and therefore energy
consumption of the devices significantly.53

Energy consumptions of conductance changes in the
femtojoule range have been reported for memristive devices
based on filament growth in metal oxides,17 phase change
materials19 and ferroelectrics22 as well. However, device areas
were significantly smaller in these earlier reports already.
Assuming a linear decrease of the energy consumption with
decreasing device area, we estimate that for similar device areas
we can reach orders of magnitude lower energy consumptions
with our device architecture, as illustrated by Figure 5a. Only
three-terminal transistor versions of artificial synapses based on
doping of an organic semiconductor have been reported to
reach significantly lower energy consumptions for a given
device area.53,54 Nevertheless, for these devices typically only
the drain-source current is considered when calculating the
energy consumption of the synapse, while the gate-source
current due to leakage currents and capacitive charging is
ignored. Taking into account this extra contribution to the
energy consumption of the device would likely give
significantly larger energy consumptions of these synapses.
Apart from that, the three-terminal architecture is less scalable
due to the incompatibility with high density crossbar arrays,
unlike the simpler two-terminal architecture of the synapse
presented here.23,24 Moreover, the organic artificial synapses
only achieved SON to SOFF ratios of up to 1 order of
magnitude,53,54 while the synapse in our work reaches SON to
SOFF ratios of 3 to 5 orders of magnitude. In fact, the SON to
SOFF ratio we report here is among the highest of those
reported for energy-efficient artificial synapses, as can be seen
in Figure 5b. This high SON to SOFF ratio is important for the

accuracy of computation, in particular for further downscaled
devices with lower operating currents.24

It should be noted that crosstalk between devices could
occur with our current device layout if devices are
implemented in high density. However, we show in
Supplementary Note 2 that lateral devices with a 90 nm
distance between the electrodes do not show the same changes
in the resistance over orders of magnitude. Hence, crosstalk
should not be an issue for lateral distances of at least 90 nm
between devices.

Figure 5c compares the performance characteristics of the
artificial synapse presented in this work with two-terminal
artificial synapses based on the other materials presented in
Figure 5a and Figure 5b. Compared to the previously reported
synapses, the artificial synapse presented in this work excels in
terms of energy consumption and its simultaneously high ON/
OFF ratio. The halide perovskite synapse has a switching speed
on the order of tens of milliseconds and a retention time of
tens of seconds. As efficient processing of data by neuro-
morphic hardware requires synapses with switching speeds and
state retention times that are well-matched to those of the
incoming data,14,55 these synapses are well suited for
processing input signals such as speech or gestures that are
received at a low rate.56 Moreover, memristive elements with a
large range of time constants for switching and state retention
are required to design neuromorphic circuits that efficiently
emulate the different forms of plasticity in the brain and to
enable both learning and remembering of information by the
same network.12,25,26,56 The synapse we present here therefore
nicely complements metal oxide resistive switching,17,18 phase

Figure 5. Comparison of the halide perovskite-based artificial
synapse with low-energy consumption artificial synapses based on
other materials. Energy efficiency with respect to (a) the device
area and (b) ON/OFF ratio of the synapse compared to values
reported in previous work. The error bar represents one standard
deviation. (c) Comparison of the halide perovskite-based artificial
synapse with two-terminal low-energy consumption artificial
synapses based on other materials in terms of several key
characteristics of artificial synapses. Supplementary Note 3
explains how the figure was compiled.
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change19,20 and ferroelectric21,22 synapses for which faster
switching speeds and longer retention times were reported.

In conclusion, we have described an artificial synapse with an
energy consumption as low as 640 fJ, high ON/OFF ratio, with
time constants for switching and state retention that are similar
to those of biological synapses and that are complementary to
existing downscaled artificial synapses based on other
materials. Additionally, the synapse retained the low switching
voltages and large conductance changes when scaled down,
which proves that halide perovskite based artificial synapses
can be scaled effectively at least to the microscale. This device
is enabled by a UV-lithography procedure to fabricate back-
contacted halide perovskite artificial synapses on the micro-
scale. The back-contacted architecture allows deposition of the
halide perovskite material in the final step and thereby prevents
degradation of the perovskite layer. Further downscaling of the
device might reduce the energy consumption even further,
potentially making the halide perovskite synapse the most
energy efficient of all existing two-terminal devices. Moreover,
the large conductance changes up to 5 orders of magnitude,
large resistance up to hundreds of megaohms combined with
the low 100 mV operating voltage and simple two-terminal
architecture make the synapse promising for integration in
dense crossbar arrays.
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