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ABSTRACT: We present a complete framework of stochastic thermodynamics for a
single-mode linear optical cavity driven on resonance. We first show that the steady-state
intracavity field follows the equilibrium Boltzmann distribution. The effective
temperature is given by the noise variance, and the equilibration rate is the dissipation
rate. Next, we derive expressions for internal energy, work, heat, and free energy of light
in a cavity and formulate the first and second laws of thermodynamics for this system. We
then analyze fluctuations in work and heat and show that they obey universal statistical
relations known as fluctuation theorems. Finite time corrections to the fluctuation
theorems are also discussed. Additionally, we show that work fluctuations obey Crooks’
fluctuation theorem which is a paradigm for understanding emergent phenomena and estimating free energy differences. The
significance of our results is twofold. On one hand, our work positions optical cavities as a unique platform for fundamental studies
of stochastic thermodynamics. On the other hand, our work paves the way for improving the energy efficiency and information
processing capabilities of laser-driven optical resonators using a thermodynamics based prescription.
KEYWORDS: nanophotonics, stochastic thermodynamics, optical cavity, fluctuations, fluctuation theorem

■ INTRODUCTION
Science usually precedes technology, but thermodynamics is an
exception. Steam engines worked before thermodynamic laws
were discovered. Actually, thermodynamics emerged from the
desire to increase engine efficiencies. Eventually, the formulation
and experimental validation of thermodynamic laws yielded
more than better engines. Thermodynamics earned the timeless
authority to determine which processes are possible, and to
discard those ideas that do not abide by its principles. To date,
technologies are conceived and optimized based on thermody-
namics. This work is motivated by the conviction that many
nanophotonic devices are now at a stage comparable to that of
early steam engines. These devices can be made and
characterized on astonishingly small scales thanks to nano-
technology, but a framework to increase their energy efficiency
(with minimum sacrifice in speed and precision) in the
inevitable presence of noise is lacking. The standard optics
framework, based on deterministic Maxwell’s equations, cannot
solve this issue because it neglects noise. However, a second
chapter in the history of thermodynamics points at a solution.
Over the past 25 years, stochastic thermodynamics (ST)

emerged as a comprehensive framework for describing small
energy-harvesting and information-processing systems in
contact with heat or chemical reservoirs.1−4 Consider, for
example, a laser-trapped colloidal particle as shown in Figure 1a.

This system works as a micron-scale heat engine,5,6 with laser
and particle respectively replacing the piston and working gas.

Received: July 27, 2024
Revised: November 6, 2024
Accepted: November 8, 2024

Figure 1. (a) A laser-trapped particle as widely studied in stochastic
thermodynamics. U is the internal energy,W the work, and Q the heat
dissipated to the environment. (b) A single-mode Fabry−Perot́ cavity,
as studied in this manuscript. Notice how the roles of light and matter
are reversed. In (a) the trapping potential is light, and the system of
interest is made of matter. In contrast, in (b) the trapping potential is
made of matter, while the system of interest is light.
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The first law of thermodynamics, δU = W − Q relates the
system’s change in internal energy δU to the workW done on the
system (usually negative for an engine) and the dissipated heat
Q. ST is concerned with fluctuations in these and other
thermodynamic quantities, which are prominent in small
systems. By accounting for these fluctuations, ST places
fundamental limits on energy and information processing
capabilities of materials. ST advances the types of ideas needed
to address current and emerging challenges in nanophotonics,
many of which are related to stochastic effects. However,
relations between optical and thermodynamic quantities need to
be established.
Since photons typically do not reach thermal equilibrium,

except under special conditions,7 thermodynamics is rarely used
to describe states of light and their transformations. Recently,
however, thermodynamics has been increasingly used to
understand how material properties limit or enable optical
functionalities.8−14 In addition, thermodynamic concepts have
enabled the discovery and engineering of fascinating phenom-
ena in multimode optical systems.15−17 Some aspects of
stochastic quantum thermodynamics have been theoretically
explored in optical resonators.18 However, a classical framework
of stochastic thermodynamics has never been presented for a
single-mode linear optical cavity. Filling this important knowl-
edge gap is the goal of this manuscript.
Here we present a complete stochastic thermodynamic

framework for a coherently and resonantly driven linear optical
cavity. This manuscript is organized as follows. First we
introduce the model for our system, and derive the scalar
potentials confining light. In the second section, we show
effective equilibrium behavior of light in a resonantly driven
cavity. The steady-state intracavity field is shown to follow the
equilibrium Boltzmann distribution, and an expression for the
partition function is presented. In the third section, we formulate
the first and second laws of thermodynamics for our system.
Next, we analyze the averaged work and heat generated when
modulating the laser amplitude. We elucidate how non-
equilibrium behavior emerges when the modulation time is
commensurate with the dissipation time. We then analyze work
and heat fluctuations, and show that they obey universal
statistical relations known as fluctuation theorems (FTs). We
furthermore show that light in the cavity satisfies Crooks’
fluctuation theorem (CFT), enabling the estimation of free
energy differences based on nonequilibrium work measure-
ments. Finally, we summarize our results and discuss
perspectives they offer.

■ THE MODEL
We consider a single-mode coherently driven linear optical
resonator. We envision a laser-driven plano-concave Fabry-
Perot́ cavity for concreteness, as illustrated in Figure 1b.
However, our model equally describes any coherently driven
resonator under three major assumptions. First, we assume that
one mode is sufficiently well isolated, spectrally and spatially,
from all other modes. Second, we assume that the laser intensity
is sufficiently low for linear response to hold. Third, we assume
that the physics under study is independent of the mode’s spatial
structure. All three assumptions are frequently employed to
successfully describe various optical resonators, such as open
cavities,19 whispering-gallery-mode,20 photonic crystal,21 and
plasmonic22 resonators. The third assumption, in particular,
underlies the temporal coupled-mode theory that has enabled
many important results in nanophotonics for decades.23−26 To

date, temporal coupled-mode theory continues to inspire further
scrutiny that, remarkably, continues to elevate its status as a
useful theory.27

In a frame rotating at the laser frequency ω, the field α in the
cavity obeys the following equation of motion:

= + +i
k
jjj y

{
zzzi i i A D t

2
( )L (1)

= 0 is the detuning between ω and the cavity
resonance frequency ω0. = + +a L R is the total loss
rate, comprising the absorption rate γa and input−output rates

L R, through the left and right mirrors. A is the laser amplitude,
which we assume to be real. D t( ) is a stochastic force
compr i s ing a complex -va lued Gauss i an proces s

= +t t i t( ) ( ) ( )R I . t( )R and t( )I have zero mean
= =t t( ) ( ) 0R I , a u t o c o r r e l a t i o n

= =t t t t t t( ) ( ) ( ) ( ) ( )R R I I , and cross-correlation
=t t( ) ( ) 0R I . The constantD is the standard deviation of the

stochastic force.
Our model accounts for two sources of noise in every

coherently driven resonator. One of them is the noise of the
incident laser. The other is the dissipative interaction of the
cavity with its environment. According to the fluctuation−
dissipation relation, that interaction results in fluctuations of the
intracavity field. We can use a single pair of stochastic terms R I,
to effectively account for both noise sources under the
reasonable assumption that they are additive and Gaussian.
Reference 28 presents one of many examples in the literature of
an experimental system described by our model.
To analyze the deterministic force acting on α, we decompose

eq 1 into real and imaginary parts. Setting = + iR I , we get

= + +
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eq 2 is a two-dimensional overdamped Langevin equation
(OLE). The underbraced term contains the deterministic force
F, divided by Γ to recover the normal form of the OLE. Notice
that, unlike a standard OLE, eq 2 does not describe dynamics in
position space. It describes instead Langevin dynamics in the
phase space (αR, αI) of the optical resonator. Furthermore, αR
and αI do not have units of length; they are unitless numbers. As
a result, all thermodynamics quantities derived in this manu-
script have units that deviate from convention. Nonetheless, a
self-consistent effective thermodynamic framework can still be
constructed as shown ahead.
F is fundamentally different when 0 or = 0. When

0, F contains a conservative and a nonconservative part.29

A conservative force is one that can be derived from a scalar
potential U, i.e., = UFc . A nonconservative force is equal to
the curl of a vector potential: = ×F An . This manuscript
focuses entirely on the case = 0, wherein the cavity is driven
exactly on resonance and =F Fc. Only in this case, an
equilibrium steady-state can be expected.29,30

When = 0, eq 2 decouples into a pair of independent one-
dimensional OLEs:
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= +
U

D t( )R I
R I

R I
R I,

,

,
,

(3)

The potential energies UR I, are obtained by integrating the
deterministic forces in eq 2:

=U A
4R R L R

2
2

(4a)

=U
4I I

2
2

(4b)

The potentials are harmonic, as expected for a linear cavity.
Their only difference is that the minimum of UR is shifted from
zero by the incident laser amplitude.

■ EFFECTIVE EQUILIBRIUM
In Figure 2 we present numerical solutions to eq 3, obtained
using the xSPDE MATLAB toolbox.31 Figure 2a shows sample

trajectories of αR and αI as black and blue curves, respectively.
Based on 20000 of such trajectories, we constructed probability
density functions (PDFs) of αR and αI; these are shown as black
and blue curves in Figure 2b, respectively. For both αR and αI, we
consider two different standard deviations of the noise D. In the
following, we explain how Figure 2 displays effective
thermodynamic equilibrium behavior. This behavior is present
both at the level of the individual trajectories and of the PDFs.
Figure 2a shows αR rising to a steady state and fluctuating

thereafter. Meanwhile, αI fluctuates around 0 (its steady state
value) all the time. We can calculate the deterministic evolution
of R I, by solving eq 3, with D = 0, analytically:

=
i
k
jjjj

i
k
jjj y

{
zzz

y
{
zzzzt

A t
( )

2
1 exp

2R
L

(5a)

=t( ) 0.I (5b)

The above solutions are plotted as dashed curves on top of the
numerical results in Figure 2a. Notice that Γ−1 is the
characteristic time in which αR reaches its steady state. Since

the steady-state distribution is the equilibrium Boltzmann
distribution (shown next), Γ−1 is also the equilibration time of
the fields.
The PDF of a gas in thermal equilibrium, confined in a scalar

potential U, is the well-known equilibrium Boltzmann
distribution { }Z Uexp1 . Z is the partition function, and

= k T1/ B with kB Boltzmann’s constant and T the temper-
ature. Following Peters et al.,29 we can relate the noise variance
D2 to the effective temperature of the light field via the
fluctuation dissipation relation =D k T22

B . Using this relation
and the scalar potentials UR I, in eq 4a and 4b, we arrive to the
following expression for the Boltzmann distribution of the
intracavity field:

=
i
k
jjjj

y
{
zzzzZ

U

D
( ) exp

2
R I R I

R I
, ,

1 ,
2 (6)

The partition functions can be obtained by imposing the
normalization condition on eq 6, i.e., =( ) d 1R I R I, , .
Doing this, we get:

=
i
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D A
D

2
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2
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L
2 2

2
(7a)

=Z
D2

I

2

(7b)

Notice that both the equilibrium Boltzmann distribution and
the partition functions are written in terms of the experimentally
accessible standard deviation of the noise D and dissipation
(cavity line width) Γ, instead of β which cannot be directly
measured. In the next section we will use the expression for ZR to
formulate the second law of thermodynamics.
The white dashed lines in Figure 2b were calculated using eqs

6 and 7a, 7b. Their excellent agreement with the numerically
calculated distributions demonstrates that light confined in a
linear optical resonator displays effective thermal equilibrium
behavior: the steady-state distribution is the equilibrium
Boltzmann distribution. The effective temperature is related to
the noise according to the aforementioned fluctuation−
dissipation relation. For a detailed discussion about the meaning
of the effective temperature T, we refer to ref29.

■ FIRST AND SECOND LAW OF THERMODYNAMICS
In this section we formulate the first and second law of
thermodynamics for our resonantly driven linear optical cavity.
Starting from eq 3, we apply the approach of Sekimoto32 to
derive expressions for the internal energy, work, and heat. Since
αR and αI are decoupled, we can treat them separately and obtain
expressions for thermodynamic quantities in each case. In this
vein, we first derive expressions for αR (which will prove to be
the more general case) and then for αI.
We begin by multiplying both sides of eq 3 with an

infinitesimal field change d R:

= +U
Dd d dR R

R

R
R R R

(8)

Next, we use the expression for the total differential of
=U U A( , )R R R , which according to the chain rule is

Figure 2. (a) Sample trajectories of the real and imaginary parts of the
field, αR and αI in black and blue, respectively. Solid curves are
numerical simulations of eq 3. Dashed curves are theoretical predictions
from eq 5a and 5b. (b) Probability density functions (PDFs) of αR and
αI in black and blue, respectively. Dark and light shades correspond to
two different noise standard deviations D. White dashed curves are
theoretical distributions using eqs 6 and 7a, 7b. Model parameters are

= 0, =A 2 , = 1, = /2L .
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= +U Ad d dR
U

R
U
A

R

R

R . Using this expression for dUR, and the

relation = td dR R , we obtain from eq 8:

= + +t U
U
A

A D td d d dR R
R

R R
2

(9)

We now substitute =A A td d and rearrange terms to get:

= +
+
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W

R R R
Qd

2

d (10)

Using the expression for UR in eq 4a and integrating all terms in
time (across an arbitrary trajectory from t = 0 to t = s) we get:

=
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

U t A t t
4

( ) ( ) ( )R R L R

s2
2

0 (11a)

=W t A t t( ) ( ) d
s

R L
0 (11b)

=Q t D t t t( ( ) ( ) ( )) d
s

R R R
0

2
(11c)

Using the above expressions, we can now formulate the first law
of thermodynamics for a resonantly driven stochastic linear
optical cavity:

=U W QR (12)

δUR is the net change in internal energy of the cavity over the
trajectory. It comprises two terms. The first term is proportional
to R

2. For = 0, as considered throughout this manuscript, R
2

is also the number of intracavity photons. The second term is the
force due to the laser AL times the “displacement” αR in phase
space. This work-like contribution to the internal energy is
present even in the absence of a protocol, i.e., when A is
constant.
W is the work done by the laser field on the intracavity field.

To recognize this, notice that the integrand in eq 11b contains
the product of αR and AL , which is the time derivative of the
force due to the laser. Interpreting αR as a displacement and
integrating eq 11b results in a force times displacement, i.e.,
work. W > 0 means work is done on the intracavity field. The
form of the work in eq 11b, introduced by Jarzynski,33 is in
general different from the “classical work” as known in the
statistical physics literature.34,35 The latter is defined as the time-
integral of a force times a velocity. In particular, for Ȧ = 0
(constant laser amplitude) the so-called Jarzynski work is zero
but the classical work is not. The two works are only equivalent
for periodic driving = +A t A t( ) ( ), with τ the period.
The heat Q in eq 11c quantifies the transport of energy from

the cavity to its environment. It contains two terms. The first
term is the time-integrated dissipated power, given by the
velocity squared as expected for a harmonic oscillator. The
second term contains the product of the stochastic force D t( )R
and the velocity R , integrated over time. This is precisely the
classical work done by the environment on the intracavity field.
Thus, the net heat transfer is given by the difference between the
dissipated energy to the environment and the work done by the
environment on the system.
The units of UR, W, and Q all deviate from convention by a

factor of Γ. Similarly, as evident in our fluctuation−dissipation
relation =D k T2 B

2 , kBT has units Γ2. Thus, the extra factor of
Γ also shows up in the thermal energy. The extra factor of Γ is

due to the fact that while eq 1 has the form of the OLE, the
dissipation Γ of our optical cavity is in the right-hand side of the
equation. In contrast, the standard OLE reads = +x tF ( ),
with γ the dissipation, F the deterministic force, and t( ) the
stochastic force. Besides the nonconventional units, our
thermodynamic quantities also have a nonconventional
interpretation because we describe Langevin dynamics in the
phase space of the optical resonator rather than in position
space. Our thermodynamic framework is thus effective in the
following sense. The internal energy is not a function of position.
It is a function of phase space distance relative to the fixed point.
The work is not a force times a distance. It is rather a force times
a distance in phase space. The same holds for the heat. It
includes the work done in phase space by the bath, and the
dissipated power in terms of a phase space velocity rather than a
physical velocity. Despite the unconventional units and
interpretation, the effective quantities we introduce are not
mere mathematical constructs. They can bemeasured, they have
a clear physical meaning related to phase space dynamics, and
they are inter-related as prescribed by thermodynamics.
We now proceed to formulate the second law of

thermodynamics for our system. The second law states

W F (13)

with ⟨W⟩ the average work and δF the free energy difference
between initial and final states. The lower bound ⟨W⟩ = δF is
only attained by a reversible process. Notice that, unlike the first
law, the second law does not hold at the level of individual
trajectories. Actually, in the early days of stochastic thermody-
namics, individual trajectories with W < δF were occasionally
called “transient violations of the second law”.36−38 Those were
not really violations of the second law of course, which applies
only on average.2

W for our resonantly driven stochastic linear optical cavity was
already defined in eq 11b. Hence, to formulate the second law
for our system we only need to define the free energy F. We can
easily get this from the relation

=F Zln (14)

with Z being ZR or ZI as defined in eqs 7a and 7b, respectively.
Like the internal energy, F has units of kBT. It does not depend
explicitly on time or α. It is therefore an intensive quantity that
does not fluctuate. In the next section we show, through
numerical simulations of our cavity system, that the second law
is indeed always respected. However, in a finite-time trajectory
there is a nonzero probability for <W F . That probability is
quantified by a fluctuation theorem.
Finally, we present expressions for thermodynamic quantities

corresponding to αI. Notice from eqs 3 and 4a, 4b that the
dynamics of αR and αI are similar. The only difference is the extra
term containing the laser amplitude A in eq 4a. Thus, by setting
A = 0 in eq 11a we get:

=
Ä

Ç
ÅÅÅÅÅÅÅÅÅ

É

Ö
ÑÑÑÑÑÑÑÑÑ

U t
4

( )I I

s2
2

0 (15a)

=W 0I (15b)

=Q t D t t t( ( ) ( ) ( )) dI

s

I I I
0

2
(15c)

The potential UI is harmonic, as expected. In contrast to UR, the
minimum of UI is not shifted from zero by the laser amplitude.
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This simply means that the average internal energy (number of
photons) of the degree of freedom that is not coupled to the
driving laser, namely αI, is zero as expected. Similarly, the work
done by the laser onαI is zero because αI is not coupled to αR and
the laser acts solely on αR. The only expression that remains
qualitatively the same as for αR is that of the heat. Energy can
spontaneously flow in and out of the cavity because it is an open
system, coupled to a (radiation) bath. As a result of these
modified relations, the first law associated with αI simply reads
δUI =−QI. Further, since no deterministic force does work onαI,
the second law is irrelevant.

■ AVERAGED THERMODYNAMIC QUANTITIES
UNDER PERIODIC DRIVING

In this section we discuss averaged thermodynamic quantities
under time-harmonic driving. Protocols of this kind have been
widely studied in stochastic thermodynamics.4,39−42 They have
the benefit of generality�any protocol can be decomposed into
sine and cosine modes via a Fourier transform.
Figure 3a−c show trajectories of αR for one realization of the

noise and three distinct τ. A and αR are plotted as gray and black

curves, respectively. Figure 3a was obtained for τ = Γ−1, which
results in highly nonadiabatic dynamics. αR cannot follow the
driving laser because its instantaneous rate of change is too large
compared to the equilibration time Γ−1. Next, Figure 3b was
obtained for τ = 10 Γ−1. Here the trajectory of αR resembles the
driving protocol, but there is a delay which results in hysteresis.
This hysteresis is due to the fact that αR does not fully equilibrate
at any point in time during the protocol. While the period
exceeds the equilibration time, the amplitude of the modulation
is so large that the system is constantly driven out of equilibrium.
Finally, Figure 3c was obtained for τ = 100Γ−1. For this slow
protocol, αR approximately follows the laser and departures from
equilibrium are minimal. Overall, Figure 3a−c illustrate how
nonequilibrium behavior emerges when the intracavity field
changes within a time that is commensurate with, or shorter
than, Γ−1.
In Figure 3d we analyze the average work and heat (as defined

in eq 11a−c) produced in one period of the modulation in A.
Averages are done over 2000 modulation periods, and we plot

the results as a function of τ. Notice that the average work and
heat are always equal to each other. This is a consequence of the
first law combined with a net zero change in average internal
energy. The average internal energy does not change because
initial and final states in our periodic protocol are the same.
Further, notice in Figure 3d that =W F01 , as expected
from the second law. Moreover, the lower bound

= =W F 01 is attained in the adiabatic limit ,
wherein the system remains in equilibrium and the dynamics
are reversible.
On top of the numerical simulations in Figure 3d, we plot the

theoretical prediction for the average work and heat as a black
c u r v e . T h i s w a s o b t a i n e d b y s e t t i n g

= +A t A t( ) (1 cos(2 / ))0 and D = 0 in eqs 3 and 11a−c,
which results in the expression

=
+

=W n
A

Q
2

16n
L

n

2
0
2

2 2 2 (16)

The subscript n is the number of modulation periods integrated
over, which is equal to one for the results in Figure 3d. The
theoretical prediction is in excellent agreement with the
simulations.
Figure 3d shows that ⟨W1⟩ and ⟨Q1⟩ depend nonmonotoni-

cally on τ. Both quantities follow a Lorentzian function, in
agreement with eq 16. We identify three regimes depending on
τ. In the adiabatic limit 1, the dynamics are reversible,
the system remains in equilibrium, and W 01 . In the
nonadiabatic regime 1, the dynamics are irreversible, the
system in driven far from equilibrium, and ⟨W1⟩ is maximized. In
the limit 1, the dynamics are still nonequilibrium but
W 01 . The work vanishes because the driving protocol A(t)
is so fast that α cannot respond to A(t).

■ FLUCTUATION THEOREMS
Symmetry Functions.While the second law demands ⟨W⟩

≥ 0, individual trajectories can yieldW < 0. At the heart of this
possibility is the time-reversibility of microscopic dynamics. A
solution to the OLE yielding +W has a time-reversed
counterpart yielding −W. However, the probabilities of
observing + W and −W are not equal. The ratio of these
probabilities is determined by a fluctuation theorem (FT).
Simply put, FTs are the extension of the second law to stochastic
systems. They transform the inequality in the second law into an
equality for the probability ratios of realizing positive and
negative work, or positive and negative entropy production in
general.1

FTs can generally be expressed in the form of a symmetry
function,4
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Xn can represent work Wn or heat Qn, and ⟨Xn⟩ its average.
X X( / )n n and X X( / )n n are the probability of positive

and negativeXn/⟨Xn⟩, respectively. Thus, the symmetry function
quantifies the asymmetry between the negative and positive
regions of the PDF of Xn. Here, inspired by the works of
Ciliberto et al.42 and Cohen et al.43 for mechanical and electrical
oscillators, we calculate the symmetry functions of the workWn
and heatQn for our linear optical cavity driven on-resonance by a
time-periodic laser amplitude.

Figure 3. (a)−(c) Gray and black curves are the laser amplitude A and
intracavity field αR, respectively. The modulation period τ is indicated
in each panel. (d) Average work ⟨W1⟩ and heat ⟨Q1⟩ done in one
modulation period of duration τ. The black curve is the theoretical
prediction in eq 16. Model parameters: =D /2 , = /2L ,

= +A A t(1 cos(2 / ))0 , =A /20 .
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We focus on a particular class of FTs that describes
nonequilibrium fluctuations around a steady state, the so-called
Steady-State Fluctuation Theorem (SSFT).44−46 In terms of the
s ymme t r y f u n c t i o n s , t h e SSFT p r e d i c t s t h a t

=S X X X X( / ) /n n n n in the extensive limit n . Essen-
tially, the SSFT states that negative fluctuations of Xn/⟨Xn⟩ are
exponentially suppressed as Xn/⟨Xn⟩ grows. At finite time the
following linear relationship is assumed:

=
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X
X

X
X

n

n
X

n
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The slope X measures finite-time deviations from the SSFT. If
= 1X , the SSFT holds exactly.41

We now elucidate the FT and symmetry functions through
numerically calculated PDFs of work and heat. These are
presented in Figure 4a,b, respectively. We obtained these PDFs

from 10000 trajectories of αR, each comprising 24 cycles of a
time-harmonic protocol in A(t) with period τ = 100Γ−1. We
include 4 different PDFs in Figure 4a,b, corresponding to a
different number n of cycles over which the work or heat are
calculated. PDFs are centered at 1 because both heat and work
are divided by their average values.
Work distributions are Gaussian. Indeed, the solid curves

Figure 4a are Gaussian distributions perfectly fitting the
numerical data. Heat distributions, in contrast, are approx-
imately Gaussian for small fluctuations only. To evidence this, in
Figure 4b we fitted a Gaussian distribution to the numerical data
for n = 24 in the neighborhood of Qn/⟨Qn⟩ = 1. For
| |Q Q/ 5n n , all heat PDFs are non-Gaussian. Instead, they
depend linearly onQn/⟨Qn⟩ in the log−linear scale, meaning the
distributions have exponential tails.

Notice that both work and heat distributions become
narrower as n, and therefore the integration time, increases.
Accordingly, the probability of observing large negative
fluctuations (the so-called “transient violations of the second
law”) decreases. Further, notice that large fluctuations are more
likely in the heat than in the work. Q Q( / )n n is wider than

W W( / )n n for all n. We can understand this different behavior
in view of the expression for the heat, eq 11c, which contains two
quantities. The quantity D t t t( ) ( ) d

s
R R0

is the work done
by the bath on the system. It is linear, and dominates the heat
when fluctuations in αR are small. As a result, small heat
fluctuations are work-like and Gaussian distributed. The other
quantity, t t( ) d

s
R0

2 , is the power dissipated within a
harmonic potential, which is quadratic in αR. This nonlinear
term dominates the heat when fluctuations in αR are large. These
large heat fluctuations are exponential distributed, just like the
potential energy fluctuations of an harmonic oscillator.47 We
thus see that the difference in shape of work and heat PDFs is
due to the complex interplay between power dissipation and
energy transfer to the cavity that is present in the heat, but not in
the work. From a mathematical perspective, large fluctuations
are more likely to occur in the heat than in the work simply
because the exponential falls off more slowly than the Gaussian.
We stress that the different statistical properties of work and heat
are not particular to our optical system. They are simply the
result of having a harmonic potential.
Using eq 17, with =k T D /2B

2 , we can now calculate the
symmetry functions of work and heat. These are presented in
Figure 4c and 4d, respectively. The slope W of the work
symmetry function is equal to 1 for any number of cycles
integrated over. However, the heat symmetry function is very
different. First, the symmetry function of heat is only linear in the
region of smallQn/⟨Qn⟩. Therein, the slope Q of the symmetry
function is 0.5. Second, for large fluctuations the symmetry
function is nonlinear and converges to ≈2 for very large
fluctuations. This means that large negative fluctuations in Qn
are still relevant compared to large positive fluctuations.
Overall, Figure 4c,d show thatWn follows the standard SSFT

exactly, while Qn does not. Instead, Qn follows an extended form
of the SSFT developed by van Zon and Cohen.48 Under
nonadiabatic driving, deviations from the SSFT (and its
extension) arise due to finite time effects, as shown next.
Finite Time Corrections. We now analyze finite time

corrections to the SSFT when the period τ of the driving
protocol becomes comparable to the equilibration time Γ−1. We
consider a fixed number of cycles n = 8. In Figure 5a we compare
PDFs of the rescaled work Wn/⟨Wn⟩ for three distinct τ,
indicated in the legend of Figure 5b. The PDFs are Gaussian for
all τ, as expected. They broaden as τ decreases. Large
fluctuations become increasingly relevant in fast protocols.
Figure 5b shows the work symmetry function for three

different τ. Notice how the slope W of the symmetry function
decreases as τ decreases. In Figure 5c we plot W across a wide
range of τ. W is less than 1 for small τ, but converges to 1 in the
adiabatic limit 1. The change in W quantifies the finite
time corrections to the SSFT for nonadiabatic driving.
Figure 6 presents a similar analysis to the one in Figure 5, but

now for heat instead of work. Figure 6a shows the PDFs. They
are approximately Gaussian for small±Qn, but exponential at the
tails. As τ decreases the PDFs broaden and the Gaussian region

Figure 4. Probability distribution functions of (a) the rescaled work
Wn/⟨Wn⟩ and (b) the rescaled heat Qn/⟨Qn⟩, for varying number of
cycles n integrated over. Symbols represent numerical data. Solid curves
are Gaussian fits in (a) and linear interpolation in (b). The dashed black
curve in (b) is a Gaussian distribution fitted to the numerical data for n
= 24 in the neighborhood ofQn/⟨Qn⟩ = 1. Below their respective PDFs,
the symmetry functions of Wn/⟨Wn⟩ and Qn/⟨Qn⟩ (from eq 17) are
shown in (c) and (d). Model parameters are the same as in Figure 3,
except for τ = 100Γ−1 and =D 7 /2 .
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widens. This significantly changes the symmetry function, as
Figure 6b shows. In particular, the symmetry function becomes
linear over a wider range of Qn/⟨Qn⟩ for small τ. In Figure 6c we
plot the slope Q of the heat symmetry function. We observe a
nonmonotonic dependence on τ. Q converges to 0.5 in the
adiabatic limit, consistent with the results in Figure 4.
Crooks’ Fluctuation Theorem.We previously studied FTs

for a protocol starting and ending in the same equilibrium steady
state. Now we demonstrate a FT for the work done during the
forward and backward parts of such a protocol; by forward and
backward parts we mean the half-cycles whereby the laser
amplitude increases and decreases, respectively. In particular, we
demonstrate Crooks’ fluctuation theorem (CFT)49 for our
coherently driven linear optical resonator. The CFT is a
paradigm for understanding emergent phenomena.4,50,51 It
enables estimating free energy differences by measuring forward
and backward work PDFs. Crucially, the CFT holds regardless of
the speed of the process, and hence on how far from equilibrium
the system is driven. However, the CFT assumes that the system
starts and ends in equilibrium.
Consider a driving protocol that takes a system from initial to

final state and back symmetrically. Then, the CFT states that

=
W

W

( )

( )
ef

b

W F( )

(19)

W is the work. W( )f is the probability of +W being generated
in the forward half-cycle and W( )b is the probability of −W

being generated in the backward half-cycle. δF is the free energy
difference between initial and final states.
Essentially, eq 19 quantifies the reversibility of a transition

between two equilibrium steady states. It does so in terms of the
asymmetry of work distributions in the forward and backward
directions. The crossing point of the two distributions, i.e., the
value of W for which W( )f = W( )b , is exactly δF. This
possibility, namely to estimate equilibrium free energies by
performing nonequilibrium measurements, is possibly the main
reason for which the CFT became a pillar of stochastic
thermodynamics.
The CFT has been used to measure free energy differences in

single molecules34,50,52,53 and mechanical systems.35 Here we
use it in the context of our coherently driven linear optical
resonator. To this end, we performed numerical simulations of
eq 3 with a time-harmonic protocol in the laser amplitude. A
increases from 0 to 10 in the forward part of the protocol,
and decreases from10 to 0 in the backward part. The period
is τ = 200Γ−1. For each half-cycle we calculated the work done
using eq 11b. Finally, we obtained the distributions W( )f and

W( )b from an ensemble of 10000 independent cycles.
Figure 7 shows the forward and backward work distribution as

red and blue dots, respectively. The two distributions intersect at

W = −2.041 kBT, as indicated by the dashed line in Figure 7.
According to the CFT, this is exactly the free energy difference
between the steady states at the start and end of our protocol in
A. We can verify this result by calculating free energies of those
states using eq 14. Indeed, inserting the parameters reported in
Figure 7 into eq 14, we exactly calculate the free energy
difference between initial and final states of our protocol to be δF
= −2.041 kBT. We highlight that while the results presented in
this manuscript were obtained for a large driving period, we
verified that the results are independent of the period. However,
if a small (compared to Γ−1) driving period is used, the system
needs to be allowed to equilibrate by halting the protocol for
some time at the start and end of each half-cycle.

■ CONCLUSION AND PERSPECTIVES
In summary, we presented a complete framework of stochastic
thermodynamics for a single-mode linear optical cavity driven
on resonance. We showed that light in such a cavity displays

Figure 5. (a) Probability distribution function of the rescaled workWn/
⟨Wn⟩ under time-harmonic driving. The period τ is indicated in the
legend of (b). Symbols are numerical data, solid curves are Gaussian fits.
(b) Work symmetry functions using the same color scheme. Solid lines
are symmetry functions obtained from the Gaussian fits to the PDFs.
(c) The slope W of the symmetry function as a function of Γτ.
Parameters are the same as in Figure 4, with n = 8.

Figure 6. Same as in Figure 5 but for the rescaled heat Qn/⟨Qn⟩ instead
of the work. Parameters are the same as in Figure 5.

Figure 7. Blue squares and red dots indicate probability distributions of
the work done during the forward and backward half-cycles along a
time-harmonic protocol in the laser amplitude, respectively. Solid
curves are Gaussian fits. The vertical dashed line indicates the
intersection point of the PDFs, which marks the free energy difference
between the initial and final states according to eq 19. Model
parameters are same as in Figure 3 except: τ = 200Γ−1, =A 50 ,

=D 7 /2 .
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effective equilibrium behavior. We formulated the first and
second laws of thermodynamics for the cavity in terms of optical
control parameters and observables. We analyzed the work and
heat generated when the cavity is driven by a periodically
modulated laser amplitude. The averaged work and heat
produced per cycle is maximized when the driving period is
commensurate with the equilibration time of the system and the
dynamics are strongly irreversible. Further, we discussed
fluctuation theorems for work and heat, including their finite
time corrections. Finally, we showed how measurements of
forward and backward work can enable the estimation of free
energy differences between optical states via Crooks’ fluctuation
theorem.
Our work opens a new research avenue at the crossroad

between stochastic thermodynamics and nanophotonics. To
date, nanophotonics has primarily provided tools for probing
stochastic thermodynamics of material systems in new regimes.
A prime example of this is in the field of levitodynamics, where
sophisticated nanophotonic methods are used to trap particles in
new settings,54 or to introduce entirely new types of particles in
the trap.55 Here, in contrast, we completely reversed the role of
light and matter: our trap is made of matter, while light is the
stochastic thermodynamic system. This difference opens
intriguing opportunities for new fundamental physics studies
and technological applications.
Fundamentally, optical cavities can facilitate probing

fluctuation theorems for systems relaxing to a nonequilibrium
steady state (NESS).2,30 The strength of nonequilibrium
behavior can be controlled via the laser-cavity detuning. As
the detuning deviates from zero, a nonconservative force in the
optical phase space leads to dynamics resembling two-
dimensional Brownian motion in a stirred fluid.28 The
nonconservative force makes it impossible to define a path-
independent work, and the heat contains an additional
contribution (the so-called housekeeping heat) associated
with maintaining the NESS.56 Consequently, we expect several
modifications to the results in this manuscript. In particular, the
CFT will not hold. We expect instead new fluctuation theorems
for generalized heat-like and work-like thermodynamic quanti-
ties.30 The derivation of such fluctuation theorems could be
achieved via the path-integral formalism for general Langevin
processes,30 or via the master equation approach.57 Either way,
this is a major theoretical effort that, if successful, could shed
light on fundamental bounds that thermodynamics places on
nanophotonic devices driven at any frequency.
A strength of optical cavities in the context of probing

fluctuation theorems is the extremely wide dynamic range they
offer, which is ideal for characterizing rare events. For example, a
single-mode cavity with Kerr nonlinearity can take longer than
the age of the universe to relax to its steady state.58,59Meanwhile,
relevant dynamics unfold within the dissipation time, typically
on the order of a picosecond. Thus, within a single second one
can in principle (pending practical limitations) attain statistics of
dynamics spanning 12 orders of magnitude in time. No other
system can give access to such a wide dynamic range and with
such ease. The access to rare events that this extraordinary
dynamic range offers can be particularly useful for characterizing
non-Markovian dynamics, which is theoretically challenging.
Experimentally, in contrast, non-Markovian dynamics can be
easily realized by introducing thermo-optical nonlinear media
inside a cavity.60,61

Finally, we foresee exciting technological opportunities in the
extension of stochastic thermodynamic concepts to optical

cavities. For instance, optimal protocols could be designed to
drive an optical system from one state to another with minimum
dissipation.62 Alternatively, time-information uncertainty rela-
tions63 could be used to establish speed limits for transitions
between optical states, and thus for optimizing optical devices
using such transitions. For these and other directions leveraging
stochastic thermodynamics to bound optical functionality, it
may be necessary to go beyond the present framework and
account for spatial effects. This could be achieved along the lines
of the recently developed spatiotemporal coupled mode
theory,64 which upgrades the standard temporal coupled-
mode theory to account for spatial effects. In summary, we
expect many fascinating opportunities to emerge from the
recognition that resonant optical systems can be described, and
eventually optimized, like light engines.
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