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Abstract: The optical cross sections of plasmonic nanoparti-

cles are intricately linked to their morphologies. Accurately

capturing this link could allow determination of particles’

shapes from their optical cross sections alone. Electromag-

netic simulations bridgemorphology and optical properties,

provided they are sufficiently accurate. This study exam-

ines key factors affecting simulation precision, compar-

ing common methods and detailing the impacts of mesh-

ing accuracy, dielectric function selection, and substrate

inclusion within the boundary element method. To sup-

port the method’s complex parameterization, we develop a

workflow incorporating reconstruction, meshing, andmesh

simplification, to enable the use of electron tomography

data. We analyze how choices of reconstruction algorithm

and image segmentation affect simulated optical cross

sections, relating these to shape errors minimized during

data processing. Optimal results are obtained using the total

variation minimization (TVM) reconstruction method with

Otsu thresholding and light smoothing, ensuring reliable,
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watertight surface meshes through the marching cubes

algorithm, even for complex shapes.
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1 Introduction

Metal nanoparticles (MNPs) can be exploited in a large

range of optical applications [1], such as optical data storage

[2], [3], sensing [4], [5], or photocatalysis [6]–[11] owing to

their highly tuneable localized surface plasmon resonances

(LSPRs) ranging from the UV to the IR region. Next to the

plasmonic and surroundingmaterial, themorphology of the

MNP is the key ingredient in defining the optical response

[12]. For that reason, a lot of effort has gone into develop-

ing new protocols for the colloidal synthesis of MNPs with

varying shapes and compositions [13], [14]. In particular, for

gold NPs an amazing control over the morphology has been

achieved and highly anisotropic NPs can now be routinely

made [15], [16]. Examples include but are not limited to

platelets [17], platonic solids [18], stars [19], [20], and even

twisted [21] or wrinkled NPs [22]–[24]. The more complex

the MNP shape, the less straightforward it becomes to cor-

relate morphological and optical properties as several LSPR

modes emerge. In addition, the polydispersity of the sample

is often increasing for more complex shapes. An increased

polydispersity leads to broader ensemble spectra, therefore

possibly masking correlative features [25].

Consequently, analysis on a level of single particles

has become increasingly important in understanding the

structure-property correlation [9], [26]–[29]. For plasmonic

MNPs, the optical properties of single entities are mostly

measured by scattering techniques such as dark-field scat-

tering spectroscopy [30]–[32]. For a full picture, such optical
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data are then ideally correlated to morphological informa-

tion on the same NP [33], [34]–[40]. Due to the small dimen-

sions of typical plasmonic MNPs, electron microscopy can-

not be avoided to obtain the necessary morphological infor-

mation. Because of a simpler sample preparation and mea-

surement workflow, scanning electron microscopy (SEM)

is often preferred over transmission electron microscopy

(TEM). In both cases, conventional SEM or TEM imaging

provides 2D impressions of the 3D NPs. For the emerg-

ing increasingly more complex morphologies, however, 2D

information is not sufficient and electron tomography (ET)

has been established as a powerful technique to visualize

but also quantify structural andmorphological properties of

MNPs [41]–[48]. For crystalline materials, high-angle annu-

lar dark-field scanning TEM (HAADF-STEM) imaging is typ-

ically applied as the resulting signal satisfies the projection

requirement for tomographic reconstruction [49]. For ET,

the holder containing the TEM grid with the NPs is tilted

over the maximal possible range, in practice often limited

to around ± 75◦ because of shadowing by the sample holder

[50]. At every tilt angle a 2Dprojection image is acquired and

finally all projection images are combined to retrieve the 3D

morphology using a reconstruction algorithm.

Unfortunately, involving ET makes the correlative sin-

gle particle workflow even more complex. For example,

thin carbon-based TEM grids are well suited for ET but

are ill-suited for optical scattering experiments. Using SiO2

TEM grids with a few tens of nanometers in thickness can

result in good optical data [40], [51], but these grids are

fragile in handling, non-conductive and can lead to charg-

ing artefacts and shadowing at high tilt angles in the TEM

thereby limiting the available angular range further. A new

leverage for addressing this dilemma in correlating optical

and structural properties of nanoparticles can be gained by

employing electromagnetic simulations. On the one hand,

they can provide the optical response based on themorpho-

logical input, e.g. obtained by ET. In this manner, next to

the far-field response, the near-field can be determined as

well, which is often the property of interest for plasmonic

applications [4]–[6], [9], [52], [53]. On the other hand, if

performed accurately enough, electromagnetic simulations

can help us to do the inverse: getting information on the

morphology from optical scattering data, e.g. via machine

learning approaches [54]. A particular strength of such an

optics-based approach is that it can provide morphological

information about nanoparticles exposed to various con-

ditions, such as high temperatures and liquid or gaseous

environments typical in catalysis applications, for example.

Such environments are difficult to introduce in electron

microscopes [55], which limits our knowledge of realistic

particle morphologies in operando conditions. Obtaining

such insight from optical data would therefore be invalu-

able in nanoplasmonics.

However, performing accurate electromagnetic simula-

tions based on ET input is surprisingly non-straightforward

as several factors need to be taken into account [56]. First,

several different electromagnetic simulation methods exist,

each with their own advantages and disadvantages [36],

[57]–[59]. Second, for each method different parameters

influence the convergence results. In addition, for plas-

monic simulations, the dielectric function of the metal

and simulation of the accurate surrounding are critical

[60]–[64]. Third, ET reconstructions need to be segmented

and possibly surface-meshed to be useable as input for such

simulations. To do so, a variety of different reconstruction

[65], segmentation [66] andmeshing algorithms exist [67]. So

far, no comprehensive study exists that compares all these

factors and the resulting parameter space quantitatively.

In this study, we tackle such a quantitative comparison.

Afterweighing several standard electromagnetic simulation

methods against each other, we discuss the effects of the

main parameters for the boundary element method (BEM).

Finally, we carefully design a workflow to be able to use

electron tomography data as input for our simulations. We

focus the main discussion on Au nanorods but compare the

workflowresults ondifferent shapes aswell.Wefirst discuss

the effects of themeshing accuracy, choice of dielectric func-

tion, and the inclusion of a substrate. Then, we go into detail

for our case study of a Au nanorod, in which we highlight

the effect of the choice of reconstruction algorithm, and the

intricacies of image segmentation. Ultimately, we compare

how morphological changes, induced by different process-

ing pipelines, influence the results of the BEM simulations.

2 Results and discussion

2.1 Considerations for electromagnetic

simulations

We started by choosing a suitable electromagnetic simu-

lation method. For efficient characterization of nanoparti-

cles with complex geometries, we need fast and accurate

electromagnetic simulations. To discover what method is

best for our purpose, we performed careful convergence

testing for the discrete dipole approximation (DDA), the

finite-difference time-domain (FDTD) method, the discon-

tinuous Galerkin time-domain (DGTD) method, and BEM. A

description of the methods and computational details can

be found in Section S2.1 of the Supporting Information (SI).

These classes of methods were chosen because they are
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the most widely used methods for simulating the optical

properties of metal nanoparticles, with each of them rep-

resenting a different way of morphology discretization [36],

[57]–[59]. It should be noted that DGTD represents a class

of finite element method solvers, with COMSOL and CST

being alternative commercial implementations. We applied

the four different methods for a spherical Au nanoparticle,

because the simulated cross sections can be quantitatively

compared to the accurate analytical Mie solution [68]. How-

ever, for a fair comparison it is important to make sure that

the different simulations are performed with the optimal

parameters ensuring a good convergence for each method

[69]. Convergence is reached when changing a parameter

d, which is relevant for the accuracy of the simulation

method, e.g. the discrete element size, does not significantly

change the result 𝜎 of the simulation, e.g. the scattering

cross section spectrum. The magnitude of change Δ𝜎 can

be measured by various metrics, for example normalized

root-mean-square deviation and reflects the error due to

discretization (Equation (1)).

Δ𝜎(di) =
√

∫ (𝜎(di,𝜆)− 𝜎(di−1,𝜆))
2d𝜆

∫ 𝜎
2(di,𝜆)d𝜆

(1)

where di = d1,… , dn is a monotonic sequence of simula-

tion parameter values, 𝜎(di, 𝜆) is thewavelength-dependent

simulation result, and d𝜆 is the wavelength step. Typically,

the user optimizes the simulation by varying the value of di
until an acceptably small value ofΔ𝜎 (discretization error)

is reached. The same equation can be used for calculating

the error of the scattering spectrum compared to a known

reference spectrum:

Δ𝜎ref (di) =

√√√√∫ (𝜎(di,𝜆)− 𝜎ref (𝜆))
2d𝜆

∫ 𝜎
2
ref
(𝜆)d𝜆

(2)

in which the exact error of the result 𝜎(di, 𝜆) can be calcu-

lated compared to a reference result 𝜎ref (𝜆), e.g. the analyt-

ical Mie solution.

The convergence of a simulation method can be

affected by multiple interdependent parameters. For

instance, the simulation time and auto-shutoff parameter in

FDTD strongly depend on each other. In case the simulation

time is chosen too short, energy is still present in the

simulation region when the simulation finishes, leading

to a non-converged result. Controlling the end of the

simulation with the auto-shutoff parameter results in

converged simulations, but an inconsistent simulation

time. Therefore, each relevant simulation parameter was

optimized successively until the desired convergence

threshold was reached for each of them. Details of the

different parameters that were optimized for each method

can be found in Section S2.1 of the Supporting Information.

Figure 1(a) compares the resulting scattering spectra

of a Au sphere with a diameter of 50 nm immersed in oil

(n = 1.51) for the four electromagnetic simulation meth-

ods to the analytical Mie solution. We limited ourselves to

scattering since most experimental single particle setups

measure scattering and not absorption. In order to quanti-

tatively compare the different simulation methods, we used

results obtained with a same discretization error of 2 %,

which was chosen as a trade-off between the accuracy and

the simulation time. The zoomed inset shows that the cross

section calculated by DGTD resembled Mie theory most.

However, from the legend it becomes clear that it was not

the fastest method, which instead was BEM. The reported

times correspond to the simulation time it took to reach

a discretization error of <2 %, which resulted in a spec-

trum error of<5 % compared to Mie theory for all methods

(enlarged markers in the green inset in Figure 1(b)).

Figure 1(b) displays the results of the convergence

tests which were performed by sweeping the following

discretization parameter for the different methods: the

maximum edge length of the tetrahedral elements for

DGTD, the number of triangles for BEM, the number of

dipoles for DDA, and the edge length of the cubical ele-

ments for FDTD. These parameters were defined as the

most critical for the respective simulation methods (see

Section S2.1 in Supporting Information). The discretization

error was calculated by comparing each refinement step

with the previous step using Equation (1). The errors of the

obtained cross sections were calculated using Equation (2)

with Mie theory as a reference. For instance, the right-

most point for DGTD was obtained by calculating the cross

sections with edge length values of 15 and 10 nm. To calcu-

late the discretization error, the result from 10 nmwas taken

as next step (i) in Equation (1), while the result from 15 nm

was taken as initial step (i-1). To calculate the spectrumerror,

the result from 10 nmwas taken as the result in Equation (2)

andMie theorywas taken as the reference. This resulted in a

discretization error of 17.0 %and a spectrumerror of 10.8 %.

As expected, the general trend is that refinement of

the mesh resulted in a lower discretization error and lower

spectrum error compared toMie theory. However, only BEM

truly followed this trend in a straightforward manner. DDA

showedan irregular trend indiscretization error,while both

FDTD and DGTD showed an irregular trend in spectrum

error. For example, the resulting cross section from DGTD

seemed to move away from Mie theory for a finer mesh-

ing parameter, while the convergence still went down. This

makes these methods less predictable, as it is unsure if a
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Figure 1: Comparison to Mie theory of simulated scattering spectra of a Au sphere with a diameter of 50 nm immersed in oil (n= 1.51) using the

discontinuous Galerkin time-domain (DGTD) method, the boundary element method (BEM), the discrete dipole approximation (DDA), and the

finite-difference time-domain (FDTD) method in a qualitative (a) and quantitative (b) manner. The times in the legend of (a) correspond to the times it

took to produce the results in (b) that were the first in the optimization sweep to reach a discretization error of<2 % and a spectrum error of<5 %

(within the green rectangle), except for FDTD which did not reach this error of discretization for the swept parameters. These displayed spectra in (a)

are indicated with the enlarged markers in (b).

lower discretization error (and hence a better convergence)

also results in a lower spectrum error.

Compared to the other simulation methods, BEM was

also orders of magnitudes faster. The enhanced simula-

tion speed stems from the fundamental difference of BEM:

Maxwell’s equations only need to be solved at the surface

of the nanoparticle and not for the whole volume as is

the case for the other methods [59]. For FDTD, the fields

additionally need to be propagated in a large region outside

the particle. The spectrum error for BEM could be further

reduced to 2.1 % at the cost of a higher computation time

(Figure 1(b)). BEM also converged fastest with respect to

changing the meshing parameter. Although for DGTD the

lowest spectrum error in Figure 1(a) was slightly smaller

(1.1 %), although at a higher discretization error (around

12 % as shown in Figure 1(b)), the 2,700 times longer simula-

tion time and unpredictable convergence behaviour made

us favour BEM over DGTD. It should be noted that Trügler

et al. also reported the faster computation speed of BEM

compared to other methods but did not report quantitative

differences in scattering cross sections when comparing

different simulation methods [57]. Moreover, in that study

the normalized scattering spectra were compared, and no

convergence testing was mentioned in the discussion on

computation time. Since we are interested in simulating

absolute scattering cross-section spectra, these small differ-

ences between methods become important. For our pur-

poses, BEMdelivered the best combination in terms of speed

and accuracy. Therefore, we use BEM throughout the rest of

the paper.

Now that the need for convergence testing is clear, it is

key to look at the individual simulation parameters of BEM

inmore detail. In this paperwediscuss the three parameters

that influence the resulting cross sections most:

1. Meshing of structure: Depending on the shape of the

nanoparticle, the surface plasmon is localized around

regions of high curvature or small gaps, e.g. at tips in

nanorods. It is important to finely mesh these parts to

get accurate results.

2. Dielectric function of plasmonic material: Different

experimentally determined dielectric functions yield

significantly different results.Wewould like to advocate

for better awareness in its choice.

3. Substrate: The substrate is often excluded in elec-

tromagnetic simulations but cannot be neglected for

accurate comparisons between simulations and exper-

iments as in most single particle experiments the opti-

cal properties of the nanoparticles are measured on a

substrate.

In the remaining part of the section we focus the discussion

on the nanorod as the particle morphology because it is

the most widely used plasmonic anisotropic nanoparticle

shape [70]. For a nanorod, the electric field enhancement

is highest at the tips, which needs to be taken into account

when meshing its surface. In the MNPBEM toolbox that we

use for BEM simulations, a nanorod is definedwith the three

parameters listed below (Figure 2(a)). We determined the

corresponding conversion into a physical size by looking

at the resulting sizes of the surface triangles for a given

parameter [71]:
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Figure 2: The effect of discretization for a Au nanorod with a diameter of 30.0 nm and a length of 96.5 nm (AR= 3.2). (a) Visualization of the surface

mesh where the discretization values are dis
z
≈ 3 nm, dis

𝜃
≈ 1 nm, and dis

𝜙
≈ 3 nm. (b) Relative differences in discretization error and corresponding

simulation times as a function of (c) different discretization parameters and (d) the total number of faces.

1. The discretized polar component of a rod is denoted as

n
𝜙
and the conversion of the corresponding discretized

size into nm is given by: dis
𝜙
≈ 𝜋(d+1)

n
𝜙

where d is the

diameter of the rod.

2. The discretized azimuthal component of the hemi-

spherical caps is denoted as n
𝜃
and the conversion of

the corresponding discretized size into nm is given by:

dis
𝜃
≈ d+1

n
𝜃

3. The discretized meshing along the cylinder length is

denoted as nz and the conversion of the corresponding

size into nm is given by: disz ≈ l−d+1
nz

where l is the

length of the rod.

We hope that these estimated physical sizes of the

meshing elements can be useful when comparing different

simulation methods. The provided analysis illustrates that

it is important to optimize the number and distribution of

triangles in the mesh to obtain accurate electromagnetic

simulations in a realistically attainable time. For different

shapes, the optimal values are expected to be different from

this nanorod example, and we advise to perform the opti-

mization described below to obtain accurate results.

By changing the number of each component, conver-

gence tests were performed. Figure 2(b) shows relative dif-

ferences in discretization error (Equation (1)) between sim-

ulations that were performed with different combinations

of the three discretization parameters dis
𝜙
, dis

𝜃
, and disz

for a Au nanorod with a diameter of 30.0 nm and a length

of 96.5 nm (AR = 3.2). The sweep direction in this plot goes

from high disz to low disz values, and by changing dis𝜙 and

dis
𝜃
in parallel, the effect of all parameters is displayed at

once. Here, a lower value and brighter colour indicates that

the simulation has converged more, which is what we aim

for. As was discussed for Figure 1, the convergence in BEM

can be directly translated into the simulation accuracy and

is therefore a good metric for the parameter sweep.

The general message from Figure 2(b) is that changing

disz influenced the discretization error most, but without

small values fordis
𝜙
anddis

𝜃
the discretization error didnot

reach an acceptable level. For instance, when we decreased

disz from 12 to 3 nm, while keeping dis
𝜙
≈ 10 nm and dis

𝜃
≈

5 nm, the discretization error dropped from 27.6 % to 6.6 %,

which is still above our above defined threshold of 2 %.

Then, whenwe changed dis
𝜙
from 10 to 2 nm, we obtained a

discretization error of 0.3 %, which is well below our above

defined threshold of 2 %. It might be surprising that disz
influenced the discretization error most as it is connected

to the least curved part of the particle. We believe that one

explanation might be that a large difference between disz

and dis
𝜙
leads to highly non-equilateral meshing triangles,

which are known to be detrimental for finite element simu-

lations [72], [73].

The simulation time for the meshing with the small-

est disz was already 25 min (Figure 2(c)), which was signif-

icantly longer than for the more simple spherical geometry

discussed in Figure 1. Figure 2(c) demonstrates that the vari-

ation of meshing parameters had a strongly non-linear
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effect on the simulation time. Therefore, for rods and

other anisotropic shapes, the balance between accuracy

and speed needs to be adjusted. By allowing a discretiza-

tion error of 3.9 %, for example, the simulation time could

be decreased to 2.6 min for disz ≈ 3 nm, dis
𝜙
≈ 5 nm, and

dis
𝜃
≈ 3 nm. The simulation time is directly linked to the

total number of faces (Figure 2(d)), which can be estimated

according to Equation (3). It should be noted, that this is

an empirical estimate and not derived from mathematical

arguments. However, it is a helpful estimate when deciding

on the meshing accuracy at least in the case of nanorods.

From Equation (3) it can be seen, that disz should influence

the simulation time least and this is indeed observed in

Figure 2(c).

nfaces ≈ n
𝜙
(nz + 2n

𝜃
) (3)

From Figure 2 we can conclude that the following

approach should be followed for a nanorod. A low value for

disz is ideally chosen to reach a lowbase discretization error,

like 3 nm for this nanorod. Luckily, this can be achieved

without paying a high penalty in simulation time. It should

be kept in mind to avoid large distortions of the triangles by

choosing similar values for disz compared to dis𝜙. To obtain

an even lower discretization error, fine meshing with dis
𝜙

and dis
𝜃
is required, on the order of 1 nm for both for our

specific nanorod. However, these parameters heavily affect

the simulation time as a low disn leads to higher number

of faces (Figure 2(c) and Equation (3)), and a compromise

in terms of size should be made for one of them. For high

aspect ratio rods, the effect of dis
𝜙
on the simulation time is

expected to increase even more since the parameter affects

the meshing of the whole rod because it gets multiplied

with disz, which in turn needs to be more finely meshed

to not distort the triangles. Equation (3) and Figure 2(d) can

help to estimate what the expected simulation time is for a

specific combination of parameters. To keep the comparison

as general as possible between different rods the following

parameters were used throughout the remainder of this

section:

dis
𝜙
≈ 3 nm

dis
𝜃
≈ 1 nm

disz ≈ 3 nm

Next to themeshing parameters, the choice of dielectric

function of the plasmonic material influences the simulated

scattering cross sections. In Figure 3(a) we compare BEM

simulations with common choices of Au dielectric functions

for a Au nanorod of the same size as used for Figure 2 and

for the above determined mesh size parameters [74]–[77].

The peak position and height of the LSPR obviously strongly

depended on the chosen dielectric function. For example,

for the simulations using the dielectric function from the

single crystalline, but rough sample from Olmon et al. [74]

and the polycrystalline, but smooth sample from McPeak

et al. [77] the peak positions were 1.45 eV (855.1 nm) and

1.52 eV (816.7 nm), respectively,which is a relative difference

of 4.5 % (4.69 %). The peak heights were 45,946 nm2 and

55,940 nm2, respectively, which is a relative difference of

17.9 %. It is remarkable that these dramatic peak changes

arose from relatively small differences in the n and k values

(Figure 3(b)), which stem from the difference in the prepara-

tion protocol of the metal films. Two main parameters play

an important role here: the crystal grain size and the surface

roughness [77], [78]. The larger the grain size and the smaller

the surface roughness, the better is the plasmonic perfor-

mance. For the longitudinal plasmon of the studied Au NR

a better film should therefore result in a higher energy res-

onance and larger cross section. When using the dielectric

function for Au of McPeak et al., we obtained the highest

cross section and highest energy LSPR. This is expected as

the authors put in a lot of effort to optimize the optical

performance of their Au filmswith large grain sizes and low

surface roughness. For us it was surprising to see, however,

that the single-crystalline film of Olmon et al. displayed a

significantly red-shifted and lower scattering cross section.

Although the grain sizes might be expected to be bigger, the

surface roughness of their prepared films must have been

larger than for McPeak et al. as also evidenced from their

AFM data. In the end, the choice of dielectric function needs

to be made on a case-by-case basis depending on the nanos-

tructure preparation. Ideally, for our system we should use

a dielectric function that is measured on a single particle,

but, to our knowledge, this has only been done for a small

wavelength range [79]. Therefore, we settle for the dielectric

function measured by McPeak et al. It should be noted that

other effects, such as surface damping need to be added

to the dielectric function for small nanoparticles [39], [40],

[80], [81]. However, for our 30 nmdiameter nanorod surface

damping is negligible. In addition, for nanoparticle sizes

below 5 nm, quantum size effects need to be considered

as well, which can also be incorporated into the dielectric

function [82].

For almost all single-particle optical experiments, such

as in the commonly used dark-field scattering spectroscopy,

a substrate is used on which the sample is deposited, often

standard glass slides. However, for correlative studies on

MNPs a substrate is required that can be used both for

optical and electron tomography measurements. It there-

fore needs to be electron transparent and typical TEM

substrate thicknesses are below 50 nm. In Figure 3(c) BEM
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Figure 3: The effect of the dielectric function for a Au nanorod with a diameter of 30.0 nm and a length of 96.5 nm (AR= 3.2), discretized with

dis
z
≈ 3 nm, dis

𝜃
≈ 1 nm, and dis

𝜙
≈ 3 nm and immersed in oil (n= 1.51) (a and b), or on top of a substrate (c and d). (a) BEM scattering spectra

simulations using the single-crystalline (SC), evaporated (EV), and template-stripped (TS) data from Olmon et al. [74], the data from Johnson and

Christy [75], the data from Palik [76], and the data from McPeak et al. [77] with their corresponding n and k values shown in (b). (c) BEM scattering

spectra simulations using the data from McPeak et al. for the nanorod on different substrates, surrounded by immersion oil (n= 1.51), using the

substrate dielectric constants from references [83]–[85] for an infinitely thick substrate. (d) The peak position of the LSPR for different substrate

thicknesses using the system in (c) where the brown dashed line is the peak position of the simulation without a substrate.

simulations of the same Au nanorod including a substrate

surrounded by immersion oil are shown for three common

materials for TEM grids: SiO2, Si3N4, and C [83]–[85]. The

significant difference in material clearly affected the LSPR

of the nanorod. For instance, the lossy nature and high

refractive index of C (Figure S1) damped and red shifted the

LSPR significantly. Finally, as expected [62], the substrate

thicknessmattered as well (Figure 3(d)). The LSPR shift with

increasing substrate thickness was largest for C due to the

largest dielectric constant discrepancy with respect to the

surrounding oil. Since SiO2 is much better index matched

to the surrounding oil, the shift was marginal. To exclude

thickness effects, due to e.g. locally varying thicknesses,

SiO2 TEM grids immersed in oil during the optical mea-

surements are therefore ideal. When the optical measure-

ments are done in non-index matched environments, the

thickness of the underlying substrate needs to be clearly

considered when performing quantitative electromagnetic

simulations.

It should be noted that the choice of substrate, dielectric

function and meshing accuracy does not only influence the

far-field properties as highlighted here, but also need to

be considered for near-field simulations. It should also be

noted that our simulated gold nanorod is a spherocylinder

and that synthesized crystalline nanorods contain crystal

facets. Depending on the contact area on the substrate, this

influences the optical cross sections as well [86], [87]. When

comparing the simulated spectra to experimentally mea-

sured ones, this effect is automatically included with our

workflow as the input shape is based on the experimentally

measured morphology from tomography as detailed in the

next section.
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2.2 From electron tomography to mesh

When correlating optical and structural properties of

single plasmonic nanoparticles, the most straightforward

approach is to use 2D SEM or TEM images to retrieve the

structure of the nanoparticle. As discussed in the introduc-

tion, this approach is not applicable to complex shapes,

and one needs to resort to electron tomography. But even

for seemingly symmetric particles extracting a 3D structure

from 2D images might lead to incorrect estimation of mor-

phological parameters, complicating the structure-property

interpretation. An example is shown in Figure 4 for a Au

nanorod imaged by HAADF-STEM (Figure 4(a)). In order to

extract the length and width of the Au nanorod, the image

needs to be segmented to differentiate the particle from

the background signal. The corresponding pixel intensity

histogram of the image in Figure 4(a) is displayed in green

in Figure 4(c), revealing two peaks in the intensity distri-

bution. The peak at lower intensities corresponds to the

background, while the peak at higher intensities corre-

sponds to the foreground.

One problem for 2D data like the one in Figure 4(a)

is the rather smooth transition between the two distribu-

tions due to the thickness-dependent HAADF-STEM inten-

sity and the strong influence of Poisson noise, which makes

it difficult to segment the particle [88]. Several algorithms

exist for segmentation, with the most common one being

Otsu’s method [89], [90], but none of them are designed

for the case of a smooth transition between two intensity

distributions. Therefore, choosing a threshold value in this

is not straightforward as demonstrated in Figure 4(b) and

(c). The vertical lines in Figure 4(c) correspond to thresh-

old values using Otsu’s method (green line) or fractions

thereof (0.5: blue, 0.75: orange, 1.25: red, 1.5: purple). All these

values could seem like a reasonable choice for separating

the two distributions. However, the effect of this choice

can be seen directly in Figure 4(b), where the colors corre-

spond to the threshold choice. In combinationwith the finite

Figure 4: The effect of segmentation of high-angle annular dark-field scanning TEM (HAADF-STEM) projections and a reconstruction thereof.

(a) HAADF-STEM image of a Au nanorod on a homemade holey-C Cu TEM grid at 0◦ tilt angle. (b) Different segmentations of the tip for which the colors

correspond to (c) and (d). (c) Pixel intensity distributions with corresponding Otsu thresholds or fractions thereof (0.5: blue, 0.75: orange, 1: green, 1.25:

red, 1.5: purple) of reconstructed data from the complete 3D data set (pink) and the 2D data shown in (a) (green). (d) Simulated BEM scattering spectra

of Au nanorods with sizes corresponding to the legend, resulting from the different segmentation thresholds in (b) and our 2D fitting algorithm

(Section S2.2.5), discretized with dis
z
= 3 nm, dis

𝜃
= 1 nm, and dis

𝜙
= 3 nm and immersed in oil (n= 1.51) using the gold dielectric function measured

by McPeak et al. [77].
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pixel size, the choice of threshold for the 2D HAADF-STEM

image resulted in highly changing extracted dimensions

of the nanorod. The changing nanorod sizes directly influ-

enced the simulated LSPR of the MNP tremendously, which

is shown in Figure 4(d) by performing BEM simulations

with models of fitted sizes using the 2D fitting algorithm

described in Section S2.2.5 of the Supporting Information.

This illustrates the uncertainty of relying on 2D data when

aiming for accurate simulations of electromagnetic proper-

ties of plasmonic nanoparticles.

We proceeded by comparing the 2D pixel intensity his-

tograms to the voxel intensity histogram of the 3D data

set. The latter was obtained by acquiring a set of 2D pro-

jection images in the tilt range of −77◦ to +72◦ (details

in Section S1.2 of the Supporting Information), which were

subsequently reconstructed using the total variation min-

imization (TVM) algorithm. The influence of the choice of

reconstruction algorithm and segmentation method will be

detailed later. For now, the pink histogram in Figure 4(c)

demonstrates another advantage of using ET in addition to

providing the realistic 3Dmorphology: The separation of the

background and foreground became significantly clearer

after reconstructing an experimental tilt series of the Au

nanorod, reducing the uncertainty in the segmentation pro-

cess. Segmenting and fitting the 3D reconstruction of our

experimental example resulted in a diameter of 30.0 nmand

a length of 96.5 nm (AR= 3.2). It should be noted that fitting

the nanorod shape to the 3D data was done for the sake of

comparing the sizes to the 2D results. However, in the fol-

lowing we use the 3D output of the tomographic reconstruc-

tion directly. This approach becomes particularly important

for simulations of MNPs with complex geometries, where

it is not possible to guess a 3D shape from 2D images. To

make the output of the tomographic reconstruction suitable

for BEM simulations, the voxelized reconstruction needs to

be transformed into a triangular surface mesh requiring

segmentation of the particle as an intermediate step. In

the following, we discuss considerations for an optimized

workflow to achieve this.

To evaluate the importance of the possible errors that

are introduced during the different steps along the way, we

used a well-defined ground truth. For that, we simulated

electron tomographydata for ananorodusing the sizes from

the fit to the experimental 3D data from Figure 4. Since

electron microscopy data contains noise and image arte-

facts, we need to account for this when simulating the 2D

projection images. Themost prominent contributions to this

are Gaussian blurring caused by defocus and astigmatism,

and Poisson noise arising from the discrete nature of the

recorded signal [88]. Additionally, the background signal

from the sample support needs to be taken into account

for a realistic representation of STEM images. The STEM

images were simulated by forward projecting a voxelized

model of a nanorod with the fitted sizes using the ASTRA

toolbox 2.1.0 for the experimental tilt angles (details in

Section S1.2) [91]. Then, for each 2D projection a Gaussian

filter was applied to model blurring, followed by simulating

the background signal from the sample support. To stay as

close to experimental parameters as possible, we modeled

the relative background signal level by calculating themean

of the background values for every experimental projection

image from the Au nanorod from Figure 4. We did that

by first removing the particle from the 2D image through

segmentation using a threshold that made sure that the

whole particle was removed and calculating the mean of

the remaining image. Figure 5(a) shows that the background

level increased with increasing tilt angle because of carbon

contamination throughout the experiment, which can be

clearly observed when comparing a 2D HAADF-STEM image

taken before and after the tilt series (see insets). The sharp

increase at the first and last tilt angle can be attributed to

detector shadowing. The estimated background level was

added to each simulated projection image independently,

and Poisson noisewas applied on a pixel-by-pixel basis after

manually tuning the scaling of the signal for the particle

and the background to match the experimental noise levels.

To assess the result of noise addition to the simulated data,

line profiles were compared between simulated and exper-

imental data. The insets in Figure 5(b) show representative

projections from both experimental and simulated electron

tomography data and the extracted line profiles showa good

qualitative match.

Using the tomography data simulated for the ground

truth shape, it becomes possible to compare different meth-

ods for the different steps in our processing pipeline. For a

quantitative comparison we used the ground truth shape

on a voxel grid with the same voxel size as used in the

experiments as a reference for calculating the shape error

ES induced by the different choices in the data processing

steps:

ES =
∑|Voxsim − Voxref |∑ |Voxref | ⋅ 100% (4)

The shape error takes into account misclassified voxels

and therefore reveals shape deviations and possible mis-

alignments of two structures even if the total volume is

the same. In the case of our simulated data, there is no

effect of misalignment but it needs to be kept in mind when

using experimental data, for which careful object regis-

tration needs to be performed first for an accurate shape

error calculation [45]. To calculate the shape errors, the
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Figure 5: Simulating electron tomography data with realistic experimental input. (a) Shows the mean values of the background of the data from

Figure 4 at different tilt angles. The inset shows a projection image at 0◦ before and after tilting with a logarithmic intensity scale to show the

background more clearly. (b) Compares representative line profiles of experimental (blue) and simulated (orange) 2D projection data. The inset shows

the corresponding projection images and lines along which the profiles were extracted.

reconstructions needed to be segmented. For the compar-

ison here, we used the Minimum method [66], which out-

performed othermethods for the nanorod shape as detailed

below. A more in-depth discussion of the segmentation

method is provided in Section S2.2.3 of the Supporting Infor-

mation with Figures S2 and S3.

As a first step, we compared different pre-processing

methods applied to the input projection images before per-

forming tomographic reconstruction. It was observed that

pre-processing had negligible influence on the final result

due to the high signal-to-noise ratios for our data (details

in Section S2.2.4 of the Supporting Information). Interest-

ingly, smoothing the input projection images resulted in the

samemarginally improved shape error as smoothing the 3D

reconstruction as a whole in the case of a low noise recon-

struction (see Figure S5 in Section S2.2.4 of the Support-

ing Information). Therefore, in the following discussion we

used the unprocessed projection data. Next, three common

iterative tomographic reconstruction algorithms were com-

pared: expectation-maximization (EM) [92], simultaneous

iterative reconstruction technique (SIRT) and total variation

minimization (TVM) [65]. These algorithms utilize different

assumptions about the reconstructed object: EM and SIRT

algorithms produce maximum likelihood reconstructions

in case the input data are coming from Poisson or normal

distributions, respectively. Both of these algorithms mini-

mize the discrepancy between the input data and the pro-

jection of the reconstructed object, and TVM incorporates

an additional objective ofminimizing intensity variations in

the solution, thereby promoting smooth, piecewise-constant

reconstructions.

Figure 6 shows the obtained shape errors with refer-

ence to the voxelized ground truth for a variety of differ-

ent reconstructions for which the reconstruction method,

the number of algorithm iterations, the object shape, and

the angular sampling range were varied. Figure 6(a) dis-

plays the effect of the number of iterations, illustrated

using the EM algorithm. Increasing the number of itera-

tions from 15 to 25 decreased the shape error but more

iterations led to its increase. This effect is common to the

iterative algorithms thatminimize the discrepancy between

the reconstruction and the noisy input data. At lower iter-

ations the algorithm converges to the true solution, but

eventually the reconstruction is overfitted to experimental

noise, and the error compared to the ground truth increases.

Thereby, there is an optimal number of iterations depending

on the noise level in the input data, which in our case

was around 25 iterations [92]. The effect of the limited

angular sampling range was evaluated by comparing the

shape errors for the reconstructions obtained for differ-

ent tilt ranges with 25 iterations of EM (Figure 6(b)). Non-

surprisingly, the shape error increased when the number

of tilt angles decreased. The ‘residual’ error of 1.18 % for a

full tilt range of ±90◦ is a combination of the discrete tilt

step and segmentation process [50]. For the experimental tilt

range of−77◦ to+72◦ the shape error increased marginally
to 1.63 %. However, when the tilt range was significantly

decreased to ±45◦, the shape error severely increased to

7.26 %.

When comparing different reconstruction algorithms,

EM significantly outperformed the more commonly used

SIRT algorithm (Figure 6(c)). This is not surprising since it is
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Figure 6: The effect of the number of iterations (a), the angular sampling range (b), and the reconstruction algorithm on the shape error (c) when

reconstructing our simulated data from Figure 5(b). (d) Comparison of EM and TVM for three different shapes using the Minimum and Otsu

segmentation methods.

suitable for Poisson distributed data typical in STEM imag-

ing,whereas SIRT is based onnormally distributed data [65].

EM was even more outperformed by TVM with a remark-

ably low resulting shape error of 0.58 % for a tilt range of

−77◦ to+72◦. This is expected, since TVM incorporates addi-

tional prior knowledge about the smoothness of the recon-

structed object, which allows for compensating the noise

and limited angular sampling range artefacts. The same con-

clusion was drawn for more complex reconstructed object

shapes, such as a triangle and an octopod (Figure 6(d)). The

triangle served as an example of a shape that ismore suscep-

tible to the limited angular sampling range artefacts, which

stems from the alignment of the particle with respect to

the tilt axis. Whereas for elongated shapes like nanorods,

the missing information can be reduced by positioning

the nanorod perpendicular to the tilt axis as done here,

a triangle cannot be rotated in a similar optimal manner.

An octopod, on the other hand, is an example of a shape

with smaller and sharper geometrical features. For both

of these more challenging shapes, utilizing TVM led to the

reconstructions with the smallest shape error similar to the

nanorod case.

Figure 6(d) also demonstrates that the choice of seg-

mentation method becomes crucial when the limited angu-

lar sample range produces larger artefacts as is the case

for the triangle. In the case of the nanorod or the octo-

pod, using the Minimum or Otsu segmentation method

resulted in similar shape errors, although the Minimum

method slightly outperformed the Otsu one for both the

TVM and EM reconstructions. However, for the nanotrian-

gle the segmentation method had a significant influence.

Using the Minimum threshold almost tripled the shape

error compared to the Otsu method for the TVM and

EM reconstructions. The reason behind this is detailed in

Section S2.2.3 in the Supporting Information. In short, the

Minimummethod used here calculates the Minimum in the

smoothed intensity histogram, which is much more sensi-

tive to noise in the reconstruction and therefore produces

less predictable segmentation results. The Otsu method, on

the other hand, minimizes the inter-class variance, which is
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significantly more robust in the case of noisier and lower

quality data. Hence, the Minimum method can be assumed

to work less well for noisier data, which includes shapes

that suffer from a larger influence due to a limited angular

range, and should be applied to high signal-to-noise data

only. It is advisable to look at the actual histograms to help

with the judgement (see Figure S4).

The 3D visualizations of the final segmented TVM

reconstructions of the three simulated particle shapes are

displayed in Figure 7(a)–(c). The high quality of the recon-

struction and segmentation as evidenced by the low shape

errors is clearly visually reproduced. Figure 7(d)–(i) demon-

strates why TVM led to a smaller shape error, in par-

ticular for the triangle and the octopod. Representative

slices of reconstructions using either EM (Figure 7(d)–(f))

or TVM (Figure 7(g)–(i)) for the three different shapes are

shown. Strikingly, the TVM reconstructions had a signifi-

cantly higher subjective quality than the EM reconstruc-

tions, as theywere less noisy and displayed a less significant

effect of the limited angular sampling range. This is also

reflected in the voxel intensity histograms, which displayed

clearer separation of the foreground and background

Figure 7: 3D visualizations of the (a) nanorod reconstructed with TVM and segmented with the Minimum threshold, (b) triangle reconstructed with

TVM and segmented with Otsu threshold and (c) the octopod reconstructed with TVM and segmented with the Minimum threshold. Slices through the

(d–f) EM and (g–i) TVM reconstructions before segmentation highlight the differences in the reconstruction methods. The slices were taken along the

blue planes in (a–c). The light blue outlines in (d–i) correspond to the segmentations mentioned above and the double-sloped colormap is used to aid

in visualizing both background and foreground noise in these segmentations.
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compared to EM (Figure S4). Consequently, segmentation

(segmented boundaries are displayed in light blue) was eas-

ier and more robust on the TVM data. As a result, the quan-

titative shape errors obtained for the TVM reconstructions

were surprisingly low even for themore challenging shapes.

To proceed with electromagnetic simulations based on

the BEM method, the obtained reconstructions need to be

converted to surface meshes. One possible approach is to fit

a 3Dmodel of a particle to the reconstruction data as we did

for the experimental data to obtain the length and diameter

for our ground truth simulations (Figure S6). However, this

introduces an additional shape error because it is just an

approximation of the shape. In fact, for the experimentally

measured nanorod in Figure 4, the discrepancy between

shape fitting and directly meshing of the particle resulted

in a shape error of almost 5 %. It is therefore beneficial to

create the surface mesh from voxel data directly. The most

popular algorithm for achieving this task is the marching

cubes method [93], [94]. In this algorithm, segmented 3D

data on a voxel grid are converted into a mesh by placing

triangles at the boundary of the object with their orienta-

tions determined from the local arrangement of voxels in

the segmentation. Surface meshing of the reconstructions

did not result in significantly larger shape errors compared

to Figure 6, see Section S2.2.7 and Figure S8 for details. We

observed small but noticeable differences in obtained shape

error for different implementations of the marching cubes

algorithm (see Section S2.2.7 for a full discussion). It should

be noted that we had to slightly smooth the reconstruc-

tions with Gaussian of pixel size 1 to be able to create sur-

face meshes for all reconstructions presented in Figure 6.

Without smoothing, some of the created meshes contained

otherwise holes, which could not always be fixed. Whereas

we did not see an effect of smoothing of the reconstructed

3D data set for the less noisy reconstructions (Figure S5),

smoothing led to a significantly decreased shape error for

the reconstructions performed by SIRT and 100 iterations of

EM, which were noisier compared to the rest. In the case of

a more limited angular tilt range of ±50◦, the actual miss-
ing information could non-surprisingly not be retrieved

through smoothing (Figure S9).

Themarching cubes algorithmusually produces amesh

with the same resolution as the input voxel data, which

leads to a number of triangles on the order of 106 in our

case. In fact, the 3D visualizations in Figure 7(a)–(c) are

these surface meshes. Such a large mesh size makes it com-

putationally intractable to perform electromagnetic simu-

lations [40]. For this reason, we used a mesh simplification

algorithm that reduced the number of triangles to a user

specified value [95]. After comparing several algorithms in

terms of the shape error introduced by mesh simplification

(see Figure S8 in the Supporting Information), we chose to

use the so-called fast simplification algorithm, a quadric

error metric-based algorithm, which iteratively removes

mesh edges that contribute the least to the final simplifica-

tion error. For this fast simplification algorithm, an aggres-

sion parameter needs to be chosen, which determines how

aggressively faces are removed from the mesh. We found

that 7 was a suitable aggression parameter (Figure S7).

The final test is to identify how the different process-

ing steps influence the simulated scattering cross sections,

which is displayed in Figure 8. Figure 8(a) displays the scat-

tering cross sections andFigure 8(b) plots the corresponding

spectrum errors (Equation (2)) as a function of the shape

errors with respect to the voxelized ground truth for the

nanorod (same as reported in Figure 6). The ground truth

for the spectrum error was based on a spherocylinder mesh

with the dimensions of 30 nm × 96.5 nm and optimal dis-

cretization (see Figure 2), corresponding to 4,960 triangles.

For a direct comparison, all other meshes were simplified

to the same number of triangles. Note that because of mesh

simplification, even the ground truth model for spectrum

error has a shape error of about 1 %.

We first compared the simplified surface meshes based

on the segmented reconstructions obtained with differ-

ent tilt ranges, reconstruction algorithms and segmenta-

tion methods from Figure 6 for the nanorod shape. Both

spectrum and shape errors for the majority of cases were

very low, below 1 % and 2 %, respectively. This is because a

nanorod is a simple, symmetric shape and different investi-

gated data processing steps, such as reconstruction smooth-

ing and mesh simplification, are effective in removing arti-

facts originating from noise and suboptimal reconstruction

parameters. In turn, the remaining small shape deviations

do not significantly influence the spectral response, and

there is no clear correlation between the shape and spec-

tral error in this regime. In contrast to the data processing

parameters, limited input data, as in the case of strongly

restricted angular range reconstruction (pentagon symbol

in Figure 8(b)), led to significant shape and spectrum errors.

The fact that the spectrum errors for the differ-

ent reconstruction and data processing parameters were

mainly below 1 % with our workflow demonstrates that

our meshing pipeline is rather robust and can create low

spectrum errors even in the case of sub-optimal reconstruc-

tion choices. However, from Figure 6(d) we know that the

nanorod is actually the most forgiving shape in terms of

reconstruction and segmentation workflow. The situation

is indeed different for the more challenging shapes of the

triangle and octopod shown in Figure 8(c) and (d) (with their
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Figure 8: The effect of the shape error on the spectrum error. (a) Simulated BEM scattering spectra of meshes created by reconstructing, segmenting,

smoothing, meshing, and simplifying simulated HAADF-STEM data of the rod. (b) Their corresponding shape and spectrum errors. (c) The shape and

spectrum errors for the triangle meshes and (d) for the octopod meshes. It should be noted that all results from Figure 6 are included, which means

that there are two different thresholded results for TVM (dashed line and triangle markers) and EM (dotted line and square markers), i.e. using the

Minimum (blue) and Otsu (orange) methods. The numbered labels correspond to results that were reconstructed using a different number of EM

iterations. ‘Half’ and ‘full’ correspond to the used angular sampling range for the reconstruction. The labels ‘50’ and ‘100’ also correspond to the

number of iterations for the EM reconstruction using the experimental angular range, which was the same as for 25 iterations, labeled here

‘25/EM/Experimental’.

corresponding scattering spectra in Figure S10(a) and (b)).

In both cases we meshed the voxelized ground truth from

Figure 7(b) and (c) to use as the reference for the spectrum

error. Same as for the nanorod shape, mesh simplification

led to a small shape error of below 1 %. For the ground

truth mesh two general observations can be made for these

more complex shapes. First, the higher shape errors com-

pared to the nanorod shape led to significantly higher spec-

trum errors. Second, even with comparable shape errors,

the spectrum errors were significantly higher for shapes

with higher complexity. Whereas a 5 % shape error for the

nanotriangle still resulted in a spectrum error around 2 %,

for the octopod the spectrum error increased to 15 % for

a similar shape error. The reason is that more important

morphological features are affected by the missing shape

information. For triangles, the reconstructed shape inaccu-

racy mainly resulted in thickness variations (Figure 7(e)).

For octopods, a higher shape error was connected to blunt-

ing of the tips, which blue-shifted and decreased the scat-

tering cross section (Figure S10(b)). Thus, the more complex

the shape, the better the reconstruction needs to be for

a successful electromagnetic simulation. In our compari-

son, TVM performed significantly better than other algo-

rithms because of incorporating additional prior knowledge

about the reconstructed object. A promising future direction

could be employing reconstruction methods based on mesh
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Figure 9: The overall proposed workflow in which HAADF-STEM tomography is performed on a nanorod. The resulting projections are aligned

and reconstructed with TVM. These voxelized data are segmented with the Otsu method and smoothed before meshing with marching cubes.

The resulting mesh is simplified using the fast simplification algorithm and the result is used as input for a simulation with BEM.

representation [96], which would allow for minimizing

shape errors stemming from mesh simplification.

The overall proposed workflow and main findings are

summarized in Figure 9. For optimal results, and in partic-

ular for complex shapes, we recommend to use TVM as a

reconstruction algorithm together with Otsu segmentation,

which proved to be more generally robust compared to

other segmentation methods. To transform the segmented

reconstruction into a surface mesh, the marching cubes

algorithm worked well for all shapes analyzed here. We

recommend to smooth the segmented reconstruction with 1

px before meshing to create a watertight mesh. We further

recommend to use the fast simplification algorithm with an

aggression parameter of 7 to reduce the number of surface

elements. This is needed to ensure that the electromagnetic

simulations can be performed in a feasible time. For the

simulations itself, we found that BEM performed the best

for our purpose in terms of accuracy and speed. Finally,

special attention should be given to the dielectric function

and accurate description of the local dielectric surrounding.

This is underlined in Section 2.2.8 of the Supporting Informa-

tionwherewe show preliminary data on a darkfield scatter-

ing measurement correlated to 2D HAADF-STEM data of an

individual Aunanorod. By removing the uncertainty inmor-

phology the local dielectric surrounding can be resolved,

resulting in an exact single particle correlation.

3 Conclusions

In conclusion, performing electromagnetic simulations of

plasmonic nanoparticles is an intricate interplay between

different factors that play a role. In this work, we quantified

possible error sources for a simulationworkflow taking gold

nanoparticles as an example system. First, we identified that

BEM was a reliable simulation method with a clear conver-

gence behavior and orders of magnitude faster simulation

times compared to other conventional methods. Second, we

demonstrated that even supposedly less important meshing

parameters can be critical in the accuracy of the simulations

and that themeshing accuracy needs to be tunedmore thor-

oughly as is normally done. In addition, the choice of metal

dielectric function ideally reflects the experimental system

as it has a significant influence on the simulated optical

cross sections and for accurate results, the substrate needs

to be included as well. Third, BEM is known for its rather

complex parametrization as it requires a triangular surface
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mesh as input, which is often seen as a hindrance for using

it for complex morphologies. We demonstrated that using

morphologies obtained from electron tomography can cir-

cumvent that problem and we developed an optimal work-

flow to turn a voxel-based reconstruction into a surface

mesh by quantifying the introduced shape errors for differ-

ent steps. Although for volume-based simulation methods

the voxelized tomography output can be directly used as an

input for the simulations, the less predictable convergence

behaviour might not be favourable. In the end, turning the

reconstruction into a surface mesh to be able to use BEM

can be completely automated when following our steps.

In terms of reconstruction algorithm, for all nanoparticle

shapes, TVM significantly outperformed EM and SIRT. The

optimal segmentation method depended on the nanoparti-

cle shape. In general, the Otsu method was more robust and

is likely the best method for single nanoparticle shapes like

the ones studied here. However, for high quality and low

noise data, the Minimum method performed slightly better

although it is more difficult to evaluate its performance

without knowing the ground truth. We demonstrated that

these different processing steps can alter the final input

morphology, which can in turn result in errors when sim-

ulating the optical response. Although slight smoothing of

the reconstruction and the necessary surface mesh simplifi-

cation could additionally lower the shape error of the object,

we observed that the best approach is to enforce object

smoothness during the reconstruction process rather than

before. We also observed that the same shape error did

not translate into a similar spectrum error for the differ-

ent nanoparticle shapes, in particular when high curvature

features are affected by the shape inaccuracies. The dis-

cussed topics in ourwork can help to achievemore accurate

simulations and therefore bridge the gap between experi-

mental optical cross sections and simulated ones by mini-

mizing artificial discrepancies stemming from sub-optimal

morphology retrieval, and thereby possibly allowing for

a more accurate retrieval of the nanoparticle morphology

from optical data alone. Similar considerations are valid for

correlation of electron-based spectroscopies and electron

tomography data and our workflow can be applied in that

case as well.
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