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Abstract

Gene expression patterns in developing organisms are established by groups of cross-

regulating target genes that are driven by morphogen gradients. As development pro-

gresses, morphogen activity is reduced, leaving the emergent pattern without stabilizing

positional cues and at risk of rapid deterioration due to the inherently noisy biochemical pro-

cesses at the cellular level. But remarkably, gene expression patterns remain spatially sta-

ble and reproducible over long developmental time spans in many biological systems. Here

we combine spatial-stochastic simulations with an enhanced sampling method (Non-

Stationary Forward Flux Sampling) and a recently developed stability theory to address how

spatiotemporal integrity of a gene expression pattern is maintained in developing tissue

lacking morphogen gradients. Using a minimal embryo model consisting of spatially coupled

biochemical reactor volumes, we study a prototypical stripe pattern in which weak cross-

repression between nearest neighbor expression domains alternates with strong repression

between next-nearest neighbor domains, inspired by the gap gene system in the Drosophila

embryo. We find that tuning of the weak repressive interactions to an optimal level can pro-

long stability of the expression patterns by orders of magnitude, enabling stable patterns

over developmentally relevant times in the absence of morphogen gradients. The optimal

parameter regime found in simulations of the embryo model closely agrees with the predic-

tions of our coarse-grained stability theory. To elucidate the origin of stability, we analyze a

reduced phase space defined by two measures of pattern asymmetry. We find that in the

optimal regime, intact patterns are protected via restoring forces that counteract random

perturbations and give rise to a metastable basin. Together, our results demonstrate that

metastable attractors can emerge as a property of stochastic gene expression patterns

even without system-wide positional cues, provided that the gene regulatory interactions

shaping the pattern are optimally tuned.
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Author summary

Embryonic development requires the formation of gene expression patterns that locally

specify distinct cell fates. In order to provide positional information reliably to the devel-

oping cells, these patterns have to remain stable for required time periods. However,

gene-expression patterns are created by intrinsically noisy biochemical processes, and

moreover employ mutually repressive interactions for generating their shapes. It is there-

fore a priori unclear if they can remain stable autonomously, without control by external

cues to prevent their gradual disintegration in time. In this work, we combine mathemati-

cal theory and spatial-stochastic simulations to assess for how long initially well-formed

multi-gene expression patterns can persist in the absence of external control inputs. We

find that pattern persistence times can be dramatically increased when the repressive

mutual interactions between the genes are optimally tuned. We trace this stability

enhancement back to the emergence of effective restoring forces that create a metastable

basin in the state space of the system. The optimal regime found via simulations is con-

firmed by our mathematical theory of stability of expression boundaries. Our work dem-

onstrates that when properly tuned, alternating cross-repression suffices to stabilize

positional gene expression patterns to ensure accurate development.

Introduction

Maintaining the integrity of spatial gene expression patterns over time is essential in embry-

onic development. In early embryo development locally expressed morphogenetic proteins

spread through the tissue to form gradients of chemical signals [1–11]. Inside developing cells,

these chemical signals are interpreted by gene regulatory networks to form remarkably precise

and reproducible spatial patterns of gene expression that subsequently give rise to different

body parts and organs [12–23]. However, as spatial patterns are established by reading out

upstream morphogen gradients, their stability is constantly subject to inherently noisy cellular

and extracellular processes [24–30]. Moreover, the activity of morphogenetic gradients that is

interpreted by target cells can decrease over developmental time. This decrease in activity can

take different forms, including reduction of the relative signaling range as the embryo grows

in size [16, 31, 32], signalling pathway desensitization [33], or complete disappearance of the

gradients at later developmental stages [34, 35]. Together, the inherent cellular stochasticity

and reduced role of morphogen gradients at later stages raise the question whether stable pat-

terns can be maintained over sufficiently long developmental times in the absence of morpho-

gen gradients, and, if so, how.

Focusing on the cellular stochasticity, biological cells are facing two types of noise, namely

intrinsic and extrinsic noise, with different notions of robustness against the respective noise

types [24–30]. Intrinsic noise originates from the processes of gene regulation, protein produc-

tion, and intracellular transport. Thus, robustness of spatial patterns to intrinsic noise amounts

to buffering random fluctuations in the copy numbers of patterning proteins. Extrinsic noise,

on the other hand, terms the variations originating from different external conditions includ-

ing cell size variability [36, 37], cell-to-cell variation in ribosome abundance [27] or fluctua-

tions in the cellular environment [38, 39]. Therefore, the robustness of spatial patterns to

extrinsic noise refers to the capability of producing precise patterns in spite of imperfect initial

conditions, classically termed “canalization” in Waddington’s picture of development [40, 41].

Several gene regulatory strategies providing either type of robustness have been studied
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[11, 21, 29], but our understanding of how nature orchestrates them in the fully interacting

wild-type organism is still incomplete.

Among the regulatory mechanisms that drive developmental pattern formation, the regula-

tory motif in which two genes mutually repress each other is particularly prevalent [4, 15, 20,

30, 42–47]. Intriguingly, mutual repression can have a dual role in the establishment of spatial

patterns. On the one hand, in systems driven by threshold-dependent activation of patterning

genes via morphogen gradients, mutual repression is crucial for shaping out expression

domains that are bounded from two sides, thus increasing the positional information carried

by the expression pattern [14, 16, 20, 22, 48]. On the other hand, mutual repression can induce

bistability leading to stochastic switching between cell fates. Hence, it is a priori unclear to

which extent mutual repression supports or counter-acts the formation of stable spatial pat-

terns [14, 16, 20]. This issue is particularly relevant to systems that lack external cues for sym-

metry breaking, such as morphogen or maternal gradients, that could force bistable cells into

one of their opposing fates.

Here we ask whether a system of mutually interacting genes can maintain an initially

arranged expression pattern in the absence of upstream input gradients. To address this ques-

tion we study a spatially resolved gene regulatory network, conceptually motivated by the gap

gene system in the early embryo of the fruit fly Drosophila melanogaster [49–54]. This system

implements a particular regulatory architecture, in which weak and strong mutual repressive

interactions between expression domains of different genes alternate depending on whether

the domains are adjacent or not. This motif, termed “alternating cushions”, was earlier investi-

gated in terms of stability and robustness against extrinsic noise in initial conditions [43]. That

study employed a reaction-diffusion model with step-like activation functions for representing

the underlying gene expression dynamics. Using the so-called “moving kink approximation”,

the study predicted an extensive basin of pattern stability in the parameter space of the model,

where the stability could be attributed to repulsive forces between mutually repressing gene

expression domains (“cushions”). More recently, an exact solution was obtained in an analo-

gous model for the dynamics of the contact zones between two gene expression domains and

for arbitrary combination of activating or repressing interactions between the involved genes

[55]. This work provided exact conditions for stability, leading to a better quantitative under-

standing of the conditions under which gene expression patterns can survive arbitrary long

time. Importantly, it was shown that perfect pattern stability (i.e., a pattern surviving infinitely

long) can only be achieved for a very specific combination of system parameters; nevertheless,

in the vicinity of these states, there exists a continuity of well-defined but slowly changing gene

expression patterns, which can fulfill their biological role for a finite but typically sufficiently

long period of time. However, since the reaction-diffusion model considered in [55] is only a

continuous and deterministic limit of the genuinely stochastic microscopic dynamics of gene

expression, it remained unclear whether the derived stability conditions provide useful insight

into the regime of strong fluctuations.

In this work, we assess the temporal stability of gene expression patterns interacting via the

“alternating cushions” motif by numerical simulations of a minimal spatial-stochastic model

that features a full microscopic representation of stochastic gene expression and protein diffu-

sion, thus incorporating the relevant intrinsic noise sources. Using Non-Stationary Forward

Flux Sampling (NS-FFS) [56, 57], an enhanced biased sampling technique for stochastic sys-

tems changing in time, we quantify for how long patterns shaped and maintained only by

mutual repression can self-sustain. Contrasting with previous approaches [43, 49, 58], NS-FFS

allows us to go beyond a local, linear stability analysis of the studied system, and to assess the

depth and the width of the emerging basin of stability from large ensembles of stochastic tra-

jectories of the full spatially interacting gene expression pattern. Moreover, we derive the

PLOS COMPUTATIONAL BIOLOGY Stable developmental patterns of gene expression without morphogen gradients

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012555 December 2, 2024 3 / 37

https://doi.org/10.1371/journal.pcbi.1012555


effective, deterministic model of simulated system that expands the stability theory from [55]

to the case of multiple interfaces and allows us to determine the parameter regime within

which the distances between boundaries of adjacent gene expression domains are predicted to

remain stable. Eventually, we employ this model to identify the mechanism enhancing the pat-

tern survival time.

Our results show that the stability of patterns arranged in the alternating cushions scheme

strongly varies with the strength of mutual repression between adjacent gene expression

domains. We find that pattern stability time is significantly longer when spatially adjacent

genes repress each other with intermediate strength and the next-nearest neighbor genes

repress each other strongly. This results in a broad peak of pattern survival time for a range of

interaction strength ratios, with a single maximum at the optimal choice. In this enhanced

regime, we confirm the existence of robust restoring forces and find signatures of a metastable

basin that stabilizes well-ordered patterns (dynamical attractor), in accordance with the previ-

ous findings of [43]. Away from the optimum, forces induced by strong nearest neighbor

mutual repression destroy the stripe patterns rapidly, while for weaker nearest neighbor

repression the forces are imperceptible when compared to stochastic fluctuations. We manage

to explain these observations employing our deterministic, effective model and the recent

exact stability theory. We determine the theoretical optimal interaction strength ratio, situated

in the vicinity of the numerically predicted optimum. Further analysis reveals a nuanced inter-

play between fluctuations and a few stabilizing mechanisms present in the deterministic, effec-

tive model, leading to enhanced survival time in the vicinity of optimal choice and

qualitatively in agreement with numerical observations. In result, we highlight the connection

between effective restoration forces seen in simulations, moving-kink approximation model

[43] and exact stability theory [55]. Going beyond the setting studied in [43], we also show that

pinning of the pattern at the embryo boundaries, which could be achieved by very short-rang-

ing, peripherally acting maternal inputs, can significantly further enhance the optimal pattern

stability.

Taken together, we demonstrate that forces generated in the alternating cushions scheme

can maintain the gene expression pattern subject to stochastic production and diffusion of

proteins for extremely long times, thanks to the interplay between fluctuations and determin-

istic dynamics, constituting emergent noise-control mechanism for the close-to-optimal

choice of mutual repression parameters.

Modeling framework

In order to investigate stability of gene expression patterns without external input gradients,

we performed stochastic simulations of a spatial pattern of four mutually repressing genes,

using NS-FFS. Here we opted for a minimal spatially resolved stochastic model, shown in

schematic Fig 1, inspired by the posterior gap gene pattern in Drosophila development [49].

The model considers four mutually interacting genes A, B, C and D, arranged in a five-stripe

pattern (with order A-B-C-D-A) along a cylindrical spatial lattice. The four genes are analo-

gous to the arrangement of the expression domains of gap genes hb, kr, kni and gt in nuclear

cycle 14 in the posterior half of the early fly embryo, where hb is expressed in two stripes, in

the first (anteriormost) and last (posteriormost) stripe [49–54]; in the following, we use the

term “expression domain” or just “domain” of gene A for referring to both of the A stripes

together. The spatial lattice consists of Nz × Nϕ equally spaced and well-stirred reaction vol-

umes with periodic boundary conditions in the circumferential (ϕ-) direction motivated by

the arrangement of cortical nuclei in the developing fly embryo. Protein diffusion and

nuclear exchange are modeled via hopping between neighboring reaction volumes, with a
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rate proportional to the diffusion coefficient. In each nucleus, proteins of the genes A, B, C

and D are produced from their corresponding promoters, dimerize and mutually repress

each other by promoter binding. Each gene can repress the promoter of each other gene.

Repression is non-competitive, i.e., each promoter has binding sites for each of the three

other genes’ dimers and is inactivated when at least one dimer is bound (“OR”-logics). The

model combines transcription and translation into one production step, neglecting some fea-

tures of eukaryotic gene expression such as transcriptional bursts and enhancer dynamics,

but previous work has shown that this does not alter the results qualitatively [14, 59]. We

provide a list of the biochemical equations governing the dynamics of our system in Sec S1.1

and a graphical summary in Fig L in S1 Text.

In the anterior-posterior arrangement A-B-C-D-A, the genes repress each other mutually

via the characteristic pattern of strong next-nearest neighbor (NNN) and weaker nearest-

neighbor (NN) repression (alternating cushions), as observed in the Drosophila embryo [43,

49, 54, 60–64]. Specifically, there are two pairs of strongly repressing genes, (A,C) and (B,D),

and four pairs of genes that repress each other weakly, (A,B), (B,C), (C,D) and (D,A). In our

model, the difference in repression strength is tuned via the unbinding rates of the repressors

from the repressed promoter. The strong-repressor unbinding rate koff
s is set to a fixed value

such that the NNN gene pairs (A,C) and (B,D) are in the bistable regime, while the weak-

repressor unbinding rate koff
w that tunes the repression between NN gene pairs is varied (rang-

ing from very high unbinding rates, corresponding to very weak repression, towards rates as

Fig 1. Schematic of the spatial gene-regulatory model. We use a cylindrical lattice of reaction volumes to mimic the

arrangement of cortical nuclei in the posterior Drosophila embryo at developmental cycle 14. In each nuclear volume

(shaded squares) we simulate production, degradation, dimerization and mutual repression of the four genes A, B, C

and D via the Gillespie algorithm. Each gene is subject to repression by the protein dimers of the other genes, as

indicated by the schematic promoters. Neighboring nuclei can exchange monomers and dimers via diffusive hopping.

The system is initialized in a five-stripe pattern of expression domains in the order A–B–C–D–A, corresponding to the

experimentally observed order in the fly embryo. The strength of mutual repression varies among gap gene pairs: genes

associated with nearest neighbor (NN) domains repress each other weakly (dashed arrows), while next-nearest

neighbors (NNN) domains exhibit strong mutual repression (thick arrows). By default, the concentration of A is

pinned at the system boundary where the set of modeled reactions differs from the rest of the system by the fact that

the A promoter can not be repressed. See “Materials and methods” section for details.

https://doi.org/10.1371/journal.pcbi.1012555.g001
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low as koff
s , which also brings the NN repressive interactions into the bistable regime). Here

being in the bistable regime means that in individual nuclei only one of the two strongly

repressing genes can be expressed at a high level, while its counterpart is expressed at very low

level, e.g. the state in which A is expressed at high and C at very low levels, or vice versa. Since

the repression between the two genes is assumed to be symmetric, i.e. A and C unbind from

each other’s regulatory region with the same rate koff
s (and likewise for B and D), these two

mutually exclusive stable expression states are equally probable without any further inputs that

could break their symmetry, and therefore form a perfectly symmetric “genetic switch”. Thus,

in the absence of external cues capable of forcing the bistable systems into a preferred state,

stochastic switching is expected to eventually result in one of the domains to dominate over

the respective other domain in the NNN pair, causing its elimination and simultaneous expan-

sion of the dominating gene’s domain. This partial breakdown of the initial pattern can happen

independently for both strongly repressing NNN pairs and thus in random temporal order;

however, ultimately one of the strong repression partners is eliminated in each of the NNN

pairs and the system settles in a new, effectively irreversible state in which only the remaining

two genes are co-expressed.

On the one hand, we expect that the presence of the third expression domain in between

the NNN pair domains can impede elimination of (one of) the NNN pair domains when addi-

tional NN repression is present, because it can spatially move apart the strongly repressing

(NNN) expression domains and form a “cushion” domain between them, effectively replacing

one interface of strong competition by two interfaces of weak competition that allow for local

coexistence of the competitors. On the other hand, overly strong NN repression is expected to

enhance pattern breakdown because then even the overlapping NN expression domains are

brought towards the bistable regime. We therefore study the pattern stability as a function of

the repression strength ratio κ, defined as

k � koff
w =k

off
s ; ð1Þ

where koff
w and koff

s are the repressor unbinding rates for weakly repressing NN pairs and

strongly repressing NNN pairs, respectively. κ is varied through the weak repression unbind-

ing rate koff
w . For κ = 1, i.e. koff

w ¼ koff
s , both the NNN and the NN gene pairs are deeply in the

bistable regime and repress each other strongly (because both koff
s and koff

w are low), while in the

opposite limit κ!1 (koff
w !1) only the NNN gene pairs form bistable switches whereas the

NN pairs do not affect each other at all.

Results

Pattern stability is quantified by asymmetry factors

In order to quantify pattern stability, here we define how we understand pattern collapse and

construct order parameters that track pattern destruction by mapping the pattern dynamics

onto a low-dimensional phase space. A typical “intact” spatial pattern of gene expression with

(roughly) equally-sized domains is shown in Fig 2. We consider patterns in which the expres-

sion domain of one gene is lost completely as being “destroyed” (note that in our terminology

the expression domain of gene A refers to both stripes at the system boundaries). In our sys-

tem, the strong mutual NNN repression and resulting bistability effectively prohibit coexis-

tence of the strongly repressing genes at one location. Hence, an increase in the size of one

domain is always accompanied by a reduction in the size of the domain belonging to the

strongly interacting partner. This lead us to introduce the following two order parameters, λAC

and λBD, here termed asymmetry factors, that measure the asymmetry of the expression
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domain sizes for each of the two strongly antagonistic NNN pairs:

lAC � maxð½A�tot; ½C�totÞ=N ; lBD � maxð½B�tot; ½D�totÞ=N : ð2Þ

Here [P]tot is the total copy number of P proteins (counting dimers twice), and N = [A]tot +

[B]tot + [C]tot + [D]tot is the total protein number in the system across all species.

In the spatially well-ordered pattern each protein domain occupies roughly the same frac-

tion of the system, such that λAC’ λBD’ 0.25. As expansion of a domain progresses at the

expense of its strong antagonist, λAC (or λBD) is enlarged and reaches values around 0.5 when

the shrinking domain is eventually lost. In order to track progress of complete pattern losing

one of its domains, we use the sum λ = λAC + λBD, with values around 0.5 for five-stripe pat-

terns and values above 0.75 indicating pattern breakdown.

Our initial simulations revealed that even for very low protein copy numbers (≲ 20) the

waiting times until one domain is lost are long compared to the duration of the actual break-

down event, and therefore difficult to sample by direct simulation. This lead us to ask whether

the pattern breakdown is merely a slow random process akin to an unbiased random walk in

configuration space, or whether the patterns have intrinsic restoring capabilities which would

counteract the breakdown process; in such scenario, many more (counteracted) random

attempts would be required for concluding the pattern breakdown, effectively rendering it a

barrier crossing problem in which the transition states towards destroyed patterns form the

barrier. In order to resolve which of these alternative mechanisms is responsible for the stabili-

zation of the expression pattern, we combined our stochastic simulations with Non-Stationary

Forward Flux Sampling (NS-FFS), which is particularly suited for enhanced sampling of non-

equilibrium rare events. We used λ as the progress coordinate for NS-FFS, which aims at gen-

erating a branched and weighted trajectory ensemble that, in the most favorable cases, samples

the relevant λ-range uniformly. This allowed us to generate sufficient statistics of rare

Fig 2. Spatial pattern of gene expression. Snapshots of the total copy numbers of all considered patterning proteins as

a function of the axial coordinate z of the cylinder, averaged over its circumference. Colors correspond to Fig 1

(green = A, blue = B, red = C, black = D). Snapshots were taken every 60 min over a total simulated time of 20 h after

an initial relaxation phase of 30 min, starting from rectangular domain profiles of equal length. No-flux boundary

condition at either end.

https://doi.org/10.1371/journal.pcbi.1012555.g002
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breakdown events even in the most stable regions of parameter space (see “Materials and

methods” section).

The initial simulations also showed that, in the regime of significant NN repression (small

κ), the expression domains of gene A at the boundaries of the system (green expression

domains in Fig 2) are particularly prone to destruction by their opponent domains, as we

hypothesized for two reasons: Firstly, they can expand only in one direction, towards the inte-

rior of the system; thus, unlike all the other domains, they cannot compensate shrinkage of the

domain at one interface by an expansion at the other interface, and therefore take less effort to

get completely destroyed. Secondly, their NN domains (B and D) are not counteracted by any

strongly repressing partner at their interfaces with the A domain, which makes it easier for

them to invade the A domain. We therefore decided to study a setup in which we “pin” (keep

constant) the level of A proteins at the system boundaries by locally disallowing repression in

the first and last rings of reaction volumes along the z-axis. This setup is not merely an ad hoc
modeling assumption but motivated by experimental findings in the Drosophila gap gene sys-

tem, which arguably is the most widely studied example of the alternating cushions arrange-

ment. There, the anterior stripe of the gap gene hunchback (hb), which corresponds to gene A

in our system, not only is under stringent control by Bicoid (Bcd) but additionally translated

from maternal mRNA localized towards the anterior pole [65, 66]; conversely, in the posterior,

zygotic hb expression is driven by a second enhancer under the control of Tailless (Tll) [67],

which in turn is directly controlled by the maternal terminal system and thus tightly localized

[68, 69]. Our “pinning” prescription mimics this biological situation. To assess how the

assumed pinning influences our results, we later compare to simulations in which expression

of A can be repressed at the system boundaries, finding our main results hold up also in this

less restricted system. In particular, pinning is not necessary for enhanced stability but can fur-

ther increase the maximal stability time by more than an order of magnitude compared to the

system without pinning, as we present further below.

Long-term pattern stability requires optimal repression strengths

In order to see how varied repression strength affects pattern stability, we reweighted histo-

grams of simulated trajectories over the reduced phase space spanned by order parameters λAC

and λBD at different times, for different values of κ ranging from strong NN repression (κ’ 3)

to the limit of non-interacting nearest neighbors (κ =1), see Fig 3. We found that there exists

a region of stable expression patterns in phase space which is populated rapidly and then

remains quasi-stationary, indicating that the system can remain in a metastable state if NN

repression is moderate. In particular, the velocity with which the system escapes from the

quasi-stationary region strongly depends on κ, with low and very high κ resulting in quick pat-

tern deterioration, and intermediate κ values resulting in the most long-lived quasi-stationary

states.

Stochastic fluctuations can lead to two different events corresponding to partial pattern

destruction: one in which either the A or C domain is lost first and one in which either the B

or D domain is lost first. Motivated by these observations we defined a region of stable patterns

in terms of the asymmetry factors as RS� {(λAC, λBD)|λAC� 0.45 and λBD� 0.43}, see Fig 3.

States that lie outside of RS are considered deteriorated patterns, and accordingly we also

defined two regions RyAC and RyBD and a region R‡ accumulating patterns with one expression

domain lost and patterns with two domains lost, respectively. The pattern survival probability

SðtÞ ¼
RR

RS
pðlAC; lBD; tÞdlACdlBD is the probability for the system to remain in the region of

stable patterns until time t. We have never observed re-entry into RS. We found that S(t) is

well-described by an exponential decay, SðtÞ/e� kDt, for times t larger than a certain lag-time
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tlag. kD then defines a deterioration rate, corresponding to average pattern stability time or the

mean time until pattern has lost one of its domains, τD� 1/kD (see “Materials and methods”

section).

By quantifying pattern stability time, we found that τD depends strongly on the repression

strength ratio, with a maximum of τD as a function of κ at κopt’ 30, see Fig 4 (blue curve). For

κ values close to κopt pattern stability is still markedly enhanced. While significantly less stable

Fig 3. Pattern breakdown in the phase space spanned by asymmetry factors. Probability density snapshots of the phase space spanned

by asymmetry factors λAC and λBC, defined in (2), at different times t for varied repression strength ratio κ. The conditions are following:

strong NN repression, κ = 3.16 (top row), optimal NN repression for pattern stability, κ = 31.6 (middle row), and lack of NN repression, κ
=1 (bottom row). The simulation was started with the initial rectangular five-stripe A-B-C-D-A pattern (λAC, λBD) = (0.4, 0.2) (white

circle) in the pinned system. All snapshots are normalized histograms of reweighted (λAC, λBD)-points within t ± 5 min. In the middle and

bottom rows we identify three densely populated regions: a broad region centered around (0.30, 0.30), RS, which contains five-stripe

patterns, and two smaller regions close to (0.55, 0.30), RyAC, and (0.30, 0.55), RyBD, representing patterns with one expression domain lost

(region boundaries (dashed white), details in “Materials and methods” section). Ultimately, trajectories converge towards the region

centered around (0.55, 0.55), R‡, where two domains are lost.

https://doi.org/10.1371/journal.pcbi.1012555.g003
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than in the region around the optimum, patterns with stability time on the order of several

hours remain possible in the absence of NN repression (κ!1). In contrast, when NN and

NNN repression have close to equal strength (κ! 1) patterns collapse almost immediately.

Examples of individual trajectories leading to (partial) pattern destruction as they proceed

in biased simulation time (with increasing λ) are described in Sec S1.5 of S1 Text and shown in

Figs G, H and I in S1 Text, for the most stable regime, i.e. for κ = κopt in the system with pin-

ning. These examples demonstrate that multiple destruction pathways are possible in which

the individual domains are destroyed in different order, and that destruction of one domain of

a strongly competing gene pair can (but does not need to) facilitate subsequent destruction of

a domain in the other strongly competing pair.

In the maximally stable regime restoring forces reconstitute perturbed

patterns

The observation of a phase space region in which system trajectories persist for long times

raises the question whether this region constitutes a true metastable basin of attraction. We

first addressed this question next by analyzing transient behavior of the perturbed patterns. If

enhanced phase space density in certain regions of the (λAC, λBD)-space were indeed due to the

presence of a metastable basin, perturbations that transiently drive the system away from the

stable pattern should be counteracted by restoring forces. To test this hypothesis, we perturbed

relaxed five-stripe patterns from the hypothetical basin by artificially enlarging domains in

which one gap gene is dominant. Using these perturbed states as initial conditions, we then

ran the spatial-stochastic simulator with higher time resolution, and checked whether the per-

turbed systems relax back into the presumed basin. We investigated two types of asymmetric

perturbations: “C expansion”, in which the central C domain is unidirectionally expanded at

Fig 4. An optimal strength of nearest neighbor repression maximizes pattern stability. The mean time until pattern

destruction τD as a function of κ, the ratio between the weak and strong repressor off-rate, for the system in which

expression of gene A is fixed at the boundaries. We observe a pronounced maximum of the stability time when the

weak repression is about 30 times weaker than the strong repression (κopt = 31.6) in the system with pinning at the

boundaries (blue line). When pinning of the pattern at the system boundaries is relaxed (red line), the maximum of

stability time moves to κ = 100. The dashed horizontal lines indicate the values for the completely uncoupled systems

with κ =1. The dashed vertical line (orange) shows the optimal repression strength ratio predicted analytically by our

stability theory, κtheor’ 76 (see last part of the “Results” section).

https://doi.org/10.1371/journal.pcbi.1012555.g004
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the expense of the posterior A domain, and the converse “A expansion”, in which the anterior

A domain is enlarged at the expense of the C domain. The perturbation experiments are

described in detail in the “Materials and methods” section, and Sec S1.2 and Fig A in S1 Text.

We find that at κ = κopt, for both perturbations the perturbed pattern ensembles relax back

to their original positions on a timescale * 10 h (see supporting Fig A in S1 Text). This dem-

onstrates that for optimal repression strength ratio an effective restoring force counteracts

deviations from the five-stripe pattern for varied λAC. Moreover, this suggests that the proba-

bility-enriched region within RS is a real metastable state confined by an underlying force field.

In accordance, the timescale of relaxation is orders of magnitude shorter than the timescale of

pattern collapse. Thus, for κ = κopt pattern destruction is a Markovian transition between

metastable basins with transition waiting times much longer than the timescales of intra-basin

dynamics. In contrast, we could not observe clear restoring behavior in the systems with very

weak or no nearest neighbor interaction. Here perturbations of similar strength tend to result

in almost immediate pattern destruction.

In summary, for the repression strengths ratio κopt’ 30 that maximizes stability, pattern

breakdown appears to be an activated process characterized by a restoring force towards the

initial state.

Statistical analysis of phase-space dynamics reveals a metastable basin

We further figured that the existence of a true metastable basin should manifest itself also in

the statistics of transient dynamics in phase space. Here the local velocities in the (λAC, λBD)

phase space are particularly informative: forces that drive trajectories back into basins of

attraction should translate into local mean phase space velocities with a clear bias towards the

bottom of the basin.

To extract the velocity field for our system we modeled the coarse-grained pattern dynamics

as overdamped diffusive motion in the~l � ðlAC; lBDÞ plane, assuming that these degrees of

freedom capture the slowest time scales of the system and making a Markov approximation

for the fast dynamics [70, 71]. This technique has been successfully applied in protein folding

[72–75]. The corresponding model equation is

d
dt
~l ¼ h~vlið~lÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Dlð
~lÞ

q

d~W ð3Þ

where ~W is uncorrelated (2D) white noise with unit covariance. We estimated the local drift

h~vlið~lÞ and diffusion coefficient Dlð
~lÞ from our reweighed simulated trajectories by averag-

ing local displacements (see “Materials and methods” section, and Sec. S1.3 in S1 Text). Fur-

thermore, h~vlið~lÞ is proportional to the effective force acting at the reduced phase space point

~l in the overdamped Langevin model. The local mean velocity field~vlð~lÞ is determined by

the conditional transition probabilities pð~l;~l 0Þ between states~l and~l 0, and thus can be

extracted from our transient simulation data. The resulting average velocity field in the

reduced phase space of (λAC, λBD) for the optimal repression strength ratio (κ = 31.6) is in

Fig 5A, and for suboptimal (κ = 1000) is shown in Fig 5B.

Interestingly, in Fig 5A one can identify two regions of (λAC, λBD)-space with low average

velocities: one within the region of stable states RS, the other within the region RyAC of states in

which the C expression domain is lost. The region RyBD in which either B or D are lost, has no

clear boundaries for optimal κ = 31.6, and only for much larger κ = 1000 a low-velocity plateau

is clearly seen in this region (Fig 3B). Notably, in the lower-left corner of the RS plateau we

notice a small region in which average velocities are significantly higher and all pointing
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Fig 5. Phase space velocity fields and passage statistics reveal metastable basins. (A, B) Average phase space velocity fields for the system with

optimal (κ = κopt, A) and suboptimal (κ = 1000, B) repression strength ratio, in the phase space spanned by asymmetry factors λAC and λBD as defined

in (2). The small subregion with concentrically inwards-pointing velocities towards which perturbed trajectories relax, corresponding to metastable

basin of five-stripe patterns, is indicated (RMB, dashed circle). Velocity fields were obtained by averaging displacements of all trajectories that exit the

local bin (see “Materials and methods” section). Two examples of trajectories relaxing after perturbations are shown (blue lines = pert. from boundary,

turquoise lines = pert. from center) with their starting points (circles). The boundaries of phase space regions (thin dashed lines) are as in Fig 3. Velocity

magnitude is indicated with colors. (C) The velocity field corresponding to κ = κopt for the alternative asymmetry factors (“differences”) δAC and δBD, as

in (4). In C the metastable basin RMB is localized around the “center point” ðdAC; dBDÞ ¼
1

2
; 1

2

� �
, corresponding to an intact pattern with equal

proportions of strongly competing genes. For additional clarity, the inset in the upper left corner shows this region without the relaxing trajectories.

Note the almost concentric pattern of velocity vectors pointing towards the center, highlighting the presence of the metastable basin. The magnitude

unit “phase space unit per hour” (PSU/h) is specific to the chosen asymmetry factors. (D, E) The landscapes of the “pseudopotential” � log ~p computed

from the total number of phase space trajectories registered in the respective bin of the phase space. The contour plots to the right of the 3D views show

a projected view of the same landscapes. (F, G) Comparison of sections in λAC and λBD directions, respectively, at λ? = 0.28 between the optimal and

suboptimal choice of the repression strength ratio κ. Here the � log ~p profile is almost identical in the metastable basin RMB, but transitions towards the

destroyed pattern states face a higher barrier in the system with optimal κ = κopt, in both phase space directions.

https://doi.org/10.1371/journal.pcbi.1012555.g005
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inwards. We refer to this region as RMB, and identify it as the metastable basin of intact, relaxed

five-stripe patterns. In accordance, the two shown exemplary perturbed trajectories relax into

RMB after randomly exploring the RS plateau, and remain confined to the RMB for later times

(Fig 5A). However, if the system drifts far away from RMB, in the direction of RyAC, the trajecto-

ries are quickly absorbed into RyAC once they reach the edge of RS characterized by high velocity

components towards RyAC.

In order to further investigate the low-velocity attraction basins and the high-velocity ridges

that separate these basins, we use a different representation of pattern asymmetry, defining the

shifted difference coordinates

dAC �
1

2
ð½A�tot � ½C�totÞ=N þ

1

2
; dBD �

1

2
ð½B�tot � ½D�totÞ=N þ

1

2
: ð4Þ

These coordinates measure the deviation from an intact pattern with equal proportions of the

strongly competing gene pairs, corresponding to the point P0 ¼ ðdAC; dBDÞ ¼
1

2
; 1

2

� �
in the

phase space of the shifted difference coordinates, in a way that retains information about

which of the antagonistic genes becomes dominant. Similar latent-space projections have

recently proven instrumental in analyzing the temporal dynamics of the emerging gap gene

expression pattern [76]. The corresponding average velocities in (δAC, δBD)-space are shown in

Fig 5C. The low-velocity basin, corresponding to RMB, occupies the central part of (δAC, δBD)-

space in Fig 5C. Accordingly, perturbed trajectories relax towards the region enclosed by con-

centric velocity vectors pointing towards P0 (the concentric vector pattern is best seen in the

inset), again highlighting the presence of the metastable basin and restoring forces that tend to

drive back fluctuations that perturb the intact pattern. Overall, the finding of a metastable

basin is in line with the Waddington picture of canalization [40, 41], in which developmental

stages are seen as successive attractors of the underlying dynamics with the intact five-stripe

pattern considered here representing such an attractor.

In Fig 5B we show the average velocity field for the case with weaker NN repression (κ =

1000). Here the velocity fields are even more plateau-like in the region corresponding to

weakly asymmetric patterns, and the characteristic concentric velocity pattern indicative of the

basin in the optimal case cannot be clearly discerned any more in this case. In accordance, tra-

jectories starting from perturbed patterns do not relax back and progress towards patterns

with at least one domain lost. See also Sec S1.4 and Figs C–F in S1 Text for the corresponding

velocity fields in shifted difference coordinates and additional alternative projections.

In addition to the average velocity fields of the registered phase space trajectories, the signa-

tures of the metastable basins are also visible in the local phase space density sampled over

many trajectories that explored the phase space during the whole sampled time interval, pð~lÞ.
A suitable quantity for visualizing the corresponding phase space “landscape” is the negative

logarithm of pð~lÞ; note that in an equilibrated, stationary system this quantity would be pro-

portional to the energy (landscape) defining the stationary probability distribution of the sys-

tem. Since our system is genuinely non-stationary, this relationship does not hold.

Nevertheless we can consider our most stable systems transiently equilibrated in the metasta-

ble basins or origin and akin to stationary systems until they irreversibly cross the barrier

towards one of the basins corresponding to destroyed patterns. Note that the depth of these

destroyed pattern basins grows with the amount of simulated time after the destruction events,

because then the basins continue to be explored by phase space trajectories corresponding to

fluctuations of the destroyed patterns; their apparent depth therefore depends on the pre-

scribed maximal duration of the biased simulation trajectories in the NS-FFS scheme, which is

a technical simulation parameter. In contrast, the height difference between the metastable
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basin of intact patterns and the barrier separating it from the destroyed patterns basin is

entirely determined by the biophysical parameters that set the average time scale for the sto-

chastic destruction process. Therefore, the barrier height, as seen from the metastable basin of

intact patterns, is a biophysical property that does not depend on technical choices (but obvi-

ously the maximal simulation time has to be chosen larger than the fastest barrier crossings in

order to make the barrier visible).

In Fig 5D and 5E we plot the “pseudopotential landscape” defined as � logð~pð~lÞÞ for opti-

mal κ = 31.6 (D) and suboptimal κ = 1000 (E), where ~pð~lÞ is a locally smoothened version of

pð~lÞ which equalizes out small local spikes in pð~lÞ but preserves the overall structure of the

resulting landscape (see “Materials and methods” for details). The small plots right of the land-

scape visualizations show sections through the landscapes in direction of the asymmetry fac-

tors λAC and λBD at chosen constant values of the respective orthogonal factor (see Fig 5

caption). In both cases we can clearly identify the metastable basin of undestroyed patterns

and a barrier separating it from the basins of (half-) destroyed patterns. The basin correspond-

ing to the states in which either the B or D domain is lost is less pronounced for the optimal

choice of κ due to its lower accessibility, and—more importantly—separated by a higher bar-

rier. This is best seen in a more detailed explicit comparison of the sections through the land-

scapes, shown in Fig 5F and 5G. The comparison clearly reveals that the barrier separating the

metastable basin of intact patterns from the basin in which the C domain is lost is both higher

and wider for the optimal choice of κ, overall leading to a markedly lower rate of pattern

destruction.

Taken together, the analysis of both the velocity fields and the empirically sampled phase

space density demonstrate that the long-time confinement of phase space trajectories close to

the five-stripe pattern at optimal NN repression is due to the existence of a metastable basin

which impedes progress towards losing one of the domains by restraining the system from

leaving the metastable basin. With decreasing strength of NN repression the basin gradually

disappears, thus enhancing the probability of pattern deterioration.

The finding that pattern stability is enhanced by the emergence of a metastable basin is fur-

ther supported by the quantification of the diffusion coefficient in~l space, Dλ (see Eq 3

above). As discussed in detail in Sec S1.3 and Fig B in S1 Text, we observe that the average dif-

fusion constant in the metastable basin of intact patterns (RS), hDlð
~lÞiRS

, monotonically
decreases with growing κ (i.e., with decreasing NN repression strength), meaning that the esti-

mated average time for leaving the metastable basin by random, “diffusive” motion (shown in

Fig B in S1 Text, panels (b) and (c)) monotonically increases with increasing κ. Pattern stabili-

zation around the optimal κ therefore cannot be explained by a decrease of a diffusive escape

rate, but rather by the emergence of restoring forces that drive deteriorating patterns back into

the metastable basin.

Stability enhancement does not require pinning

To assess whether pinning of the A-domains at the system boundaries is necessary for the

observed stability enhancement at intermediate NN repression, we repeated our simulations

and analysis for a system without pinning. In contrast to the system with pinning, here the

promoters of gene A in the nuclei at the system boundaries can be inhibited by the repressors

of A. We found that also in the system without pinning, pattern stability is markedly enhanced

by the presence of weak interaction partners between two strongly repressing gene domains.

In Fig 4 the red curve shows the mean destruction time τD against the ratio of the repressor

off-rates κ for the system without pinning. We again find the highest pattern stability at an
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optimal repression strength ratio k
ðnpÞ
opt ¼ 100 (red curve), which is close to the optimum in the

system with pinning (k
ðpÞ
opt ’ 30, blue curve), albeit with about 10 times lower overall stability

times; yet, these stability times are still about an order of magnitude larger than without fine-

tuning of NN interactions.

Overall this demonstrates that enhancement of pattern stability by at least one order of

magnitude is possible both with and without pinning of expression at the system boundaries.

However, pinning alters the proportion of destruction pathways that the collapsing patterns

pursue; in particular, it prevents the destruction of the peripherical A domain, which is the

dominant destruction pathway at low and optimal κ≲ 100 in the system without pinning. We

present this effect in more detail in Sec S1.6 and Figs J and K in S1 Text.

An analytical model of expression domain competition predicts optimal

pattern stability

The problem of pattern stability has been recently addressed analytically in [55], where general

and exact stability conditions for a pattern of two interacting domains were derived. In that

work “stability” refers not only to the robustness against perturbations, but to the ability of a

pattern to survive for infinitely long time. In this section, we show that these stability condi-

tions can be successfully applied to the multi-gene system studied in this work, in order to

obtain a coarse-grained prediction of the parameter values leading to pattern stabilization.

The central result reported in [55] is the description of the dynamics of a contact zone

between two gene-expression domains for various levels of mutual repression between the two

expressed genes. A single expression domain can form either by overcoming the “activation

threshold” in the nearby undifferentiated tissue, resulting in asymptotically constant-velocity

expansion, or emerge instantaneously in the entire available tissue, when expression is consti-

tutive (active by default). For two genes in the system (and two respective domains) the sce-

nario depends on the strength of mutual repression. If one gene cannot prevent the expression

of the other gene in the bulk of its own domain, the dominating gene overtakes the system

exponentially fast, expressing in the entire volume and without forming a meaningful contact

zone between domains. For stronger repression, which prevents gene expression deeper in the

bulk of its adversary domain, a contact zone emerges, within which both domains of active

expression overlap. However, this region of overlap grows indefinitely, albeit with asymptoti-

cally constant velocity. When the interaction strength surpasses a critical value, an asymptoti-

cally finite-size contact zone is formed. In this regime one domain can still shrink and the

other grow, but in a coordinated manner, preserving the width of the contact zone. Asymptoti-

cally, the contact zone drifts with a constant velocity that is determined by the system parame-

ters. This gives rise to a “travelling” gene expression pattern. The width and velocity of the

contact zone are stable against perturbations in this phase, acting as an attractor of the system

dynamics. However, while the travelling pattern is well-organized into two domains, it is not

stable in the sense that in finite-size systems it survives only for a limited time, until one

domain “pushes out” the other. Finally, perfectly stable patterns arise as a special case of travel-

ling patterns with zero-velocity drift. As such, they can survive arbitrarily long.

The simulations in this work are stochastic, tracking the chemical reactions at single-

molecule resolution across the set of reaction-volumes constituting the system. However, in

the limit of large particle number and small reaction volumes, this type of spatially discrete

and stochastic dynamics approaches the continuous and ultimately deterministic reaction-

diffusion dynamics of the type considered in [55]. The existence of this deterministic limit

can be also seen as the manifestation of the emergent noise-control mechanism that over-

takes the system. Therefore, we compare the numerically found optimal kopt with the
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theoretically predicted ktheor to assess how well the deterministic theory approximates the

dynamics in the highly stochastic regime, and to explain the nature of the emergent noise-

control mechanism.

To this end, we mapped the microscopic model used in our stochastic simulations onto the

effective reaction-diffusion model analysed in [55] (see “Materials and methods”). We

obtained the following continuous model for the expression of each gene X in {A,B,C,D}:

@tX2ðx; tÞ ¼ D @xxX2ðx; tÞ � gX2ðx; tÞ þH y 1 �
X

Y 2
fA;B;C;Dg;

Y 6¼ X

�XYY2ðx; tÞ

0

B
B
B
B
@

1

C
C
C
C
A
; ð5Þ

where X2(x, t), Y2(x, t) are the concentration profiles of the protein dimers (indicated by the

subscript 2), D is the diffusion constant, γ the degradation constant, H a production constant,

and �XY are gene-gene interaction strengths. θ(. . .) denotes the Heaviside step function, corre-

sponding to steep Hill-type regulatory kinetics. Note that the derivations in [55] only apply to

systems with size L� λ, where l �
ffiffiffiffiffiffiffiffi
D=g

p
is the characteristic length of gene interaction. For

the systems studied here, λ� 8.62 μm, which is much smaller than the system size L’ 340

μm, warranting application of the theory.

While the original theory in [55] describes only the contact zone involving exactly two

domain boundaries, we can adapt it to the four-gene system studied here. Fig 2 shows that in

the alternating cushions system there are only two types of contact zones: (i) between two

strongly interacting genes (NNN domains) with the third, weakly interacting gene (NN

domains), expressed in the background or (ii) between two weakly interacting genes (NN

domains), with all other genes having close-to-zero expression level. Thus, we will consider

stability of both contact zone types separately.

In the type-(i) contact zone, the dynamics of gene expression is described by the effective

equations

@tX2ðx; tÞ ¼ D@xxX2ðx; tÞ � gX2ðx; tÞ þHy 1 � K � 1
w

H
g
� K � 1

s Y2ðx; tÞ
� �

@tY2ðx; tÞ ¼ D@xxY2ðx; tÞ � gY2ðx; tÞ þ Hy 1 � K � 1
w

H
g
� K � 1

s X2ðx; tÞ
� �

8
>>>><

>>>>:

ð6Þ

where we approximate that the third “background gene”, has a constant expression level over

the contact zone. The equilibrium value of this expression level is H/γ. Kw and Ks are the weak

and strong repression constants, respectively and they satisfy (cf. Eq 1 and “Materials and

methods” section):

k ¼
Kw

Ks
¼

koff
w

koff
s

: ð7Þ

Type-(i) contact zones are established between genes A and C (with B or D in the back-

ground) as well as between B and D (with C in the background). In the type-(ii) contact zone,

the equations take the form:

@tX2ðx; tÞ ¼ D@xxX2ðx; tÞ � gX2ðx; tÞ þHyð1 � K � 1
w Y2ðx; tÞÞ

@tY2ðx; tÞ ¼ D@xxY2ðx; tÞ � gY2ðx; tÞ þHyð1 � K � 1
w X2ðx; tÞÞ

(

ð8Þ

This contact zone emerges between gene pairs (A,B), (B,C), (C,D), and (D,A).
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Having defined these contact zones, in the “Materials and methods” section we adapt the

more general derivation of the stability conditions from [55] to the system considered here.

The main idea of this derivation is that the shape of expression profile X2(x, t), defined by

Eq (5), can be found without knowing where the domain boundaries are located. Then, the

positions of domain boundaries are sought from a separate set of equations. In [55], it is

shown that the boundaries asymptotically travel with the common constant velocity v, preserv-

ing the distance Δr between them. This ansatz leads to an algebraic set of equations defining v
and Δr, which can be solved. Eventually, the conditions for pattern stability are equivalent to

ensuring that v = 0 is the correct solution. Let us define two sets of constants, one for each type

of contact zone:

ðiÞ ~CX ¼
~CY ¼ 1 � K � 1

w

H
g
; �XY ¼ �YX ¼ K � 1

s ; �XX ¼ �YY ¼ 0 ; ð9Þ

ðiiÞ ~CX ¼
~CY ¼ 1 ; �XY ¼ �YX ¼ K � 1

w ; �XX ¼ �YY ¼ 0 : ð10Þ

and two auxiliary variables:

RX ¼
2g~CX

�XYH
� 1 ; RY ¼

2g~CY

�YXH
� 1 ; ð11Þ

Then, the stability conditions, as derived in the “Materials and methods” section, come

down to:

RX ¼ RY ¼ R ; � 1 � R � 1 ; ð12Þ

Additionally, the width of the stable contact zone reads:

Dr ¼ � sgnðRÞl lnð1 � jRjÞ ð13Þ

In order to determine the range of parameters ensuring global stability of the pattern, we

apply the stability conditions (12) separately to type-(i) contact zone (Eq (9)) and type-(ii)

contact zone (Eq (10)). One can notice that in each type of contact zone the equality RX = RY is

automatically satisfied, due to the common choice of parameters γ, H and D for both genes, as

well as the symmetry in gene interactions. Sharing the same parameters is also the main reason

why stability conditions (12) are much simpler than their general counterpart reported in [55].

RX = RY = R means that each type of contact zone is characterized by one variable:

RðiÞ ¼
2 1 � K � 1

w
H
g

� �

K � 1
s

H
g

� 1 RðiiÞ ¼
2g

K � 1
w H
� 1 ð14Þ

The remaining stability condition, −1 < R< 1, applied to R(i) and R(ii), results in the following

inequalities:

ðiÞ Kw �
H
g
; Ks �

1

H
g

� �� 1

� K � 1
w

;

ðiiÞ Kw �
H
g
:

ð15Þ

These conditions show that the addition of weak interactions is instrumental for increasing

system stability. On the one hand, the type-(i) contact zone is stable (i.e., immobile) provided

that the weak interaction strength K � 1
w does not exceed (H/γ)−1; otherwise it would prevent the
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expression of strongly interacting genes in this region. On the other hand, for the type-(ii) con-

tact zone it is necessary that K � 1
w > ðH=gÞ� 1

, as this minimal strength of repression is required

to prevent co-expression of both weakly interacting genes in the same region. In order to

simultaneously stabilize both types of contact zones, one needs to negotiate between these two

largely opposite goals. This trade-off can be achieved only for the most marginal value in both

parameter ranges, Kw = H/γ, which highlights why in the alternating cushions architecture the

weak interactions have to be fine-tuned for pattern stability. In contrast, but in line with the

numerical findings, the strong interactions characterized by Ks can be arbitrarily large,

Ks� +1.

The simulations in this work were performed for Ks’ 0.003 μm−3 with Kw varied to

obtain different values of κ, see “Materials and methods”. Calculated from these microscopic

parameters, H/γ’ 0.23 μm−3. The resulting theoretical value of κ that ensures stability is then

κtheor’ 76. This number is of the same order of magnitude as the optimal κ in the simulated

stochastic systems, showing slightly better agreement with the no-pinning case (k
ðnpÞ
opt ’ 100)

than with the case with pinning at the boundaries (k
ðpÞ
opt ’ 30), see Fig 4.

The emergent noise-control mechanism can be understood via the

analytical model

The analytical deterministic model can be employed to obtain further insights into the mecha-

nism of increased pattern robustness against noise in the vicinity of optimal κ. For this, we

must first consider the width of type-(i) and type-(ii) contact zones in their stability regions

predicted by the theory from [55]. Inserting R(i) and R(ii) into Eq (13) with Kw = κKs, we obtain

Δr(i) and Δr(ii) as functions of κ, shown in Fig 6A. Here, Δr> 0 indicates a no-expression

region between the domains (a gap), while Δr< 0 means that active expression regions over-

lap. One can instantly notice that Δr(i)! +1 and Δr(ii)! −1 at κ = κtheor. Tending to infinite

values is an artefact of our analysis, in which we treat each contact zone as a separate region,

disconnected from the others. However, this behaviour conveys an important message. At

κ = κtheor the system attempts to maximize the size of each contact zone, forming five contact

zones tightly filling the entire system. In this state, any pattern perturbation distorts at least

two contact zones. Since each contact zone is stable, their maximized widths are attractors for

the deterministic dynamics [55], and consequently the system tends to remove the perturba-

tion. This is the origin of increased survival time of patterns at optimal κ. This restoration

behavior is qualitatively similar to the model of repulsive forces between domain boundaries

(kinks), discussed in [43]. Although the analytical stability theory [55] does not rely on the

concept of explicit restoration forces, these forces arise effectively, leading to the occurrence of

the pseudopotential in our phase space analysis, in Fig 5. Thus, the effective restoration forces

form a link between the exact stability theory [55] and the approximation of interacting kinks

in [43].

The existence of a rigorously sharp stability condition, Kw = H/γ, raises the question about

the deterministic dynamics for suboptimal choice of κ and its influence on the stochastic sys-

tem. Let us first consider the case κ< κtheor, in which type-(ii) contact zones are stable. In this

regime, the system forms a pattern of domains A-B-C-D-A, but the NNN domains are so dis-

tant from each other that strong interactions are not yet important. There are four type-(ii)

contact zones in this system. For κ’ 0, the weak interactions are extremely repressive and

Δr(ii)! +1. Thus, the pattern collapses. For somewhat larger κ, a finite-size gap (Δr(ii) > 0)

between NN domains emerges (see Fig 6B) and is reduced to zero width (Δr(ii) = 0) at κ0’ 38.

In this regime, the pattern can survive arbitrarily long in the absence of fluctuations, but the

domain widths are not stabilized in any way. Thus, in the presence of noise, the survival time
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of the domain depends on its size (which grows with κ), as larger domains take longer to be

destroyed. For κ> κ0, NN domains begin to overlap, as Δr(ii) becomes negative (see Fig 6C).

This marks the first emergence of the additional stabilizing mechanism, as the deterministic

dynamics will tend to restore Δr(ii) in each contact zone if perturbed. This means that, in the

presence of noise, Δr(ii) would keep returning to its deterministic value, but fluctuations can

still shift a stable contact zone as one entity. If, as a result, two contact zones meet or one is

pushed to the system boundary, this causes the collapse of a domain and partial desintegration

Fig 6. Analysis of theoretical contact zone widths uncovers a deterministic stabilization mechanism. (A) Plot of

theoretical contact zone widths in the approximation of separate interfaces, Δr(i) and Δr(ii), for type-(i) contact zones

(between two NNN domains with third interacting gene expressed in the background) and type-(ii) contact zones

(between NN domains), calculated from Eqs (13) and (14) with κ = Kw/Ks and Ks kept constant. In their respective

regimes of stability, the widths are restored by deterministic dynamics if perturbed. Vertical lines: κ0’ 38 (red,

dashed) at which Δr(ii) changes sign; critical κtheor’ 76 (black, dashed) ensuring simultaneous stability of type-(i) and

type-(ii) contact zones. Horizontal line (gray, dashed): limit of Δr(i)’ 31.3 [μm] without any weak interactions (κ! +

1). (B-E) Schematic representations of system states in various regimes of κ, predicted by the deterministic model.

Solid arrows: stable contact zones (restorable width); dashed arrows: unstable contact zones (non-restorable width);

inward arrowheads indicate Δr(ii) < 0; contact zones of type-(ii) (red), and type-(i) (blue). (B) 0< κ< κ0: type-(ii)

contact zone stable, Δr(ii) > 0, no type-(i) contact zones, domain widths lack stabilization against fluctuations. (C) κ0 <

κ< κtheor: type-(ii) contact zone stable, partial overlap of domains, Δr(ii) < 0, provides minimal domain width

stabilization against fluctuations, but fluctuations can shift entire contact zones. (D) κ = κtheor: type-(i) and type-(ii)

contact zones stable, maximizing their widths (Δr(i) and Δr(ii) tend to ±1 in the approximation of separate contact

zones). Pattern is restored after any perturbation. (E) κ> κtheor type-(i) contact zones stable, but Δr(i)� L,

fluctuations can shift entire contact zones.

https://doi.org/10.1371/journal.pcbi.1012555.g006
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of the pattern. As κ further approaches κtheor, the overlap becomes large enough such that

NNN domains begin to interact and type-(i) contact zones are formed. These contact zones

have a certain minimal width, but they are not stable, in the sense that this width would not be

restored if increased. The occurrence of type-(i) contact zones imposes a barrier for the further

growth of Δr(ii) with κ (see Fig 6D). At this stage, a major enhancement of pattern stability

occurs, as stable type-(ii) contact zones and type-(i) contact zones tightly fill the system. At

κ = κtheor also the type-(i) contact zones gain stability, due to the further increase of overlap

between NN domains. This results in the maximal global robustness of the pattern against

noise. For κ> κtheor, the width of the now-stable type-(i) contact zones quickly decreases and

eventually saturates at Δr(i) = 31.3 [μm] in the limit of completely absent weak interactions

(κ! +1). In this regime, with type-(i) contact zones width Δr(i) < L/3 and no mechanism

restoring the width of type-(ii) contact zones (see Fig 6E), the pattern gradually loses stability

against noise. Fluctuations can shift each type-(i) contact zone as one entity (analogous behav-

iour to the type-(ii) interfaces in κ0 < κ< κtheor regime), eventually leading to pattern

destruction.

In summary, the emergent deterministic dynamics, described in [55], is crucial for stabiliz-

ing the highly stochastic system simulated in this work. The increase in survival time τD,

towards κopt, illustrated in Fig 4, is directly associated with the gradual activation of determin-

istic stabilization mechanisms, described in the paragraphs above. General principles of pat-

tern stabilization, outlined in [55] for two genes, apply also to the four-gene system studied

here, but many-gene competition and stochasticity results in a more nuanced picture of stabili-

zation. A more detailed investigation would require considering the full spatial variability of all

expression profiles together, but the approximated effective model proves useful in predicting

optimal parameters.

Discussion

In many developing organisms, morphogen gradients provide a long-range positioning system

by activating downstream patterning genes in a concentration-dependent manner. Prominent

examples are the gap gene system in Drosophila, whose main maternal regulators are the mor-

phogen gradients of Bcd and Cad spreading along the embryo axis [49, 53, 77–83], and the ver-

tebrate neural tube with Shh and BMP/Wnt secreted from the opposite sides of the neural tube

[4, 7, 8, 18, 20, 23]. For the Drosophila embryo, multiple studies have shown that mutual inter-

actions between gap genes play a crucial role in abdominal segmentation [14, 48, 49, 51–53,

58, 84, 85], leading to the formation of stable domains with slow effective dynamics [43]. How-

ever, it remains unclear how such a system could be robust given the stochastic nature of gene

expression and regulation if the emergent interactions are not fine-tuned to mitigate the result-

ing noise. Moreover, it is observed that maternal regulators such as the Bcd gradient disappear

while the expression patterns invoked downstream persist [86, 87]. In support of the view that

self-coordination properties emerge in the gap gene system after maternal activation, a more

recent study which found that the gap gene expression pattern scales with the size of the

embryo with high precision, while—surprisingly—the Bcd gradient does not display any scal-

ing properties [88]. Similar emerging self-organizing properties have been observed in other

developmental systems [15, 32, 89].

Here we asked whether a system of mutually repressing developmental patterning genes

arranged in successive expression domains can indeed be stable over developmentally relevant

time intervals without upstream morphogen gradients while facing unavoidable fluctuations

in the expressed gene products. Such copy number fluctuations can induce bistable switching

at the domain boundaries, resulting in stochastic movement of the boundary which ultimately

PLOS COMPUTATIONAL BIOLOGY Stable developmental patterns of gene expression without morphogen gradients

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012555 December 2, 2024 20 / 37

https://doi.org/10.1371/journal.pcbi.1012555


can lead to destruction of one of the gene expression domains. We quantified the mean stabil-

ity time of a five-stripe expression pattern formed by four interacting genes in a stochastic

model conceptually inspired by the posterior Drosophila embryo in cycle 14 as a function of

the repression strength between neighboring stripes. To be able to simulate the breakdown of

very stable patterns we employed Non-Stationary Forward Flux Sampling (NS-FFS), an

enhanced sampling scheme for simulating rare events in non-stationary systems with transient

dynamics [57]. We find that for an optimal value of the repression strength between adjacent

expression domains the stability of the pattern is increased by about an order of magnitude.

This stability optimum can be traced back to the fact that bistable switching at the boundary

between domains of strongly mutually repressing genes is inhibited by an intervening cushion

domain of a gene that weakly represses both strong partners. This stabilizing mechanism

works best if the spacer gene represses its nearest neighbors (NN) with moderate strength:

very weak NN repression has no effect while strong NN repression globally destabilizes over-

lapping domains. At the optimal repression strength (κ = κopt) the cushion thus slows down

the random motion of the domain boundary and subsequent pattern destruction.

Stability is enhanced even more, by one more order of magnitude, if expression of the out-

ermost gene is pinned at the system boundaries, which effectively anchors the whole expres-

sion pattern. Such a situation may emerge when the outermost gene remains under control of

maternal cues, such as maternally deposited mRNA, while the other gene stripes form only by

zygotic interactions. Furthermore, it resembles the late stages of neural tube development in

which the Shh and BMP morphogen gradients are acting close to system boundaries [16, 31].

In the system considered here we find that five-stripe patterns form a metastable attractor of

the dynamics with a restoring force that counteracts perturbations, such as non-perfect initial

conditions. In the optimal stability regime, our observations are consistent with the Wadding-

ton picture [40, 41] of development as canalization into successive metastable states, with the

ordered initial gap gene pattern representing one of the metastable states in this succession.

Earlier work already demonstrated that developmental attractors may emerge as an intrinsic

property of the gene expression pattern established through mutual interactions [52, 58]. Here,

we demonstrate that even without morphogen gradients metastable basins can arise and pro-

tect expression patterns against stochastic fluctuations.

Further insight comes from the application of the stability theory derived in [55] to the

model of four genes interacting in the alternating cushions scheme. In agreement with the sim-

ulations, these analytical calculations reveal that the presence of weak interactions is necessary

for stabilizing the system and establishing long-surviving patterns. More specifically, theoreti-

cal analysis shows that requirements for stability of type-(i) contact zones (i.e. two strongly

interacting genes with the third weakly interacting in the background) and type-(ii) contact

zones (i.e. two weakly interacting genes with other genes at very low expression level) are to

certain degree incompatible, and agreement between them can be achieved only for the most

marginal value of κ = κtheor in the respective stability range for each type. As a consequence,

simultaneously ensuring perfect stability of both contact zone types requires fine-tuning of the

weak repression strength, quantified by the corresponding dissociation constant Kw. This ana-

lytical prediction of one optimal value of κ is in qualitative agreement with the numerical sim-

ulations, which show a very sharp rise in the survival time of expression pattern near one

particular value of κ = κopt, see Fig 4.

Quantitatively, the numerical κopt and theoretical κtheor agree particularly well in the no-

pinning case (for pinning: jk
ðpÞ
opt � ktheorj=k

ðpÞ
opt ¼ 139%, for no-pinning:

jk
ðnpÞ
opt � ktheorj=k

ðnpÞ
opt ¼ 24%). This is in line with the assumptions of [55], where an open system

was considered and system boundary effects, such as pinning, were neglected. Differences
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between κopt and κnum are expected due to the nature of approximations employed in the map-

ping of microscopic model on its effective representation (5). It is plausible that this discrep-

ancy could be resolved by constructing an even higher-level stability theory that takes into

account the spatial variability of all four genes in each contact zone.

Further, using the division into type-(i) and type-(ii) contact zones, we investigated the

behaviour of effective deterministic model Eq (5), in the entire range of κ. We found that the

preference of the system to form possibly large contact zones, combined with the stability of at

least one type of interfaces between domains, results in the increased robustness of the pattern

against fluctuations, in the vicinity of optimal κ. These observations are in agreement with our

highly stochastic and microscopically detailed simulations, for which the deterministic model

is only the continuous-limit approximation. Yet, the approximate agreement between κopt and

κtheor as well as the broad peak of increased survival time (Fig 4), suggest that the deterministic

dynamics of model (5) is still remarkably important for this system. The interplay between

deterministic and stochastic component of dynamics in simulations results in the emergent

noise-control mechanism, significantly increasing survival time of patterns. We also found

that the shifting of the stable contact zones by fluctuations is the major reason of pattern

destruction for κ away from the optimal value.

The observed stability times appear sufficient for early fly embryogenesis (’ 2h until cycle

14) for all NN repression strengths weaker than the optimal value, with or without pinning,

even for the reduced system size considered here for computational feasibility. We expect that

the stability times will systematically increase when a larger system size is chosen in a more

realistic description. Note that the system size can increase in two ways, either by increasing

the considered lattice of reaction volumes (nuclei) or by allowing for a larger maximal copy

number per reaction volume. In the first case, stability is enhanced because the expression

states of more reaction volumes need to be switched in order to destroy the now larger expres-

sion domains, while the local molecular noise level (which is a key determinant for the speed

of this process) remains the same. In the second case, the molecular noise is reduced, such that

detrimental cell switching events are impeded, leading to longer average destruction times for

the individual expression domains and consequently overall longer stability. Nevertheless,

based on the theoretical and numerical evidence we believe that the stability enhancing mecha-

nisms uncovered in this study will also apply to biologically relevant system sizes. Other factors

potentially affecting stability are autoactivation interactions and interactions with other genes

not included in the simplified regulatory network studied here, which will likely affect the

dynamics of the gene expression pattern. Moreover, in our system the parameters do not differ

between the four interacting genes (with the exception of the repressor unbinding rate from

the A promoter at the boundaries in the system with pinning); as expected, we therefore did

not observe any directional preference for domain shifts and destruction events, unlike in Dro-
sophila, where the gap genes exhibit a systematic anterior shift in early developmental cycle 14

[46, 50, 90] (which appear to require the action of shadow enhancers not considered here

[91]). The possible effect of asymmetric regulatory interactions on pattern stability is an inter-

esting open question that could be assessed in future iterations of the model and theory pre-

sented here. Note, however, that the adapted stability theory clearly identifies the weak

nearest-neighbor repression strength as the key parameter for enhancing stability, while the

strong repressive interactions are found not to affect stability as long as they are chosen strong

enough. Furthermore, since in the theory the predicted value of the optimal repression

strength ratio is entirely determined from the properties of the contact zones between the

expression domains, this prediction does not depend on the spatial system size, provided that

it is large enough as to accommodate all the contact zones. We therefore expect that increasing

the size and realism of our spatial-stochastic model in the described ways would alter the
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recorded stability times, but at the same time retain the observed key property of strong stabil-

ity enhancement at an optimal repression strength ratio.

Our work puts an interesting perspective on the role of maternal gradients in establishing

and maintaining developmental patterns. We show that sufficiently stable patterns can exist

without morphogen gradients, but at the same time that their stability is significantly enhanced

by pinning the patterns at the embryo boundaries. Taken together, this suggests that morpho-

gens do not act deep inside the embryo interior, which could explain why the patterns remain

stable even when the morphogen inputs disappear [86, 87]. Instead, they may predominantly

act at the embryo boundaries as to break symmetry, by selecting the desired pattern from the

larger set of patterns that, by permutation, would also be stable. By acting only at the periphery,

the morphogens, which themselves do not exhibit scaling, still would allow scaling of the

downstream pattern with embryo length, in line with recent findings [88].

The stabilizing mechanism arising from fine-tuning nearest-neighbor interactions in the

alternating cushions scheme can be also considered in the broader class of regulatory mecha-

nisms providing pattern stability against intrinsic and extrinsic noise [11, 21, 29]. In future

studies, it may be instrumental to further numerically and analytically explore the proposed

model by including other biologically relevant features. Possible extensions include growth of

the tissue by cell divisions, self-correcting mechanisms through cell-to-cell communication

other than diffusive exchange of proteins, or inclusion of more specific noise types. Another

interesting scenario would be studying the alternating cushions system considered here but

with periodic boundary conditions, possibly relevant to sea urchins and sea stars that develop

pentaradial symmetry in later stages of development [92]; this likely would allow for further

increase of pattern stability in the optimal repression strength regime without any pinning, as

it would provide an alternative way of stabilizing the A domain. These extensions could further

test the validity of our stability theory under more realistic biological conditions. However,

due to the remarkable agreement between our adapted stability theory and the numerical sim-

ulations of the minimal model studied in this work, we believe that more realistic variants of it

will result in quantitative but not qualitative changes in our predictions.

Materials and methods

Details of the model

Our model is inspired by arguably the most paradigmatic developmental system in which

development of distinct cell fates is determined by local protein expression patterns driven by

external morphogen gradients, the early embryo of the fruit fly Drosophila melanogaster. We

model the egg-shaped embryo with its cortical layer of nuclei as a cylindrical array of reaction

volumes coupled by diffusion of proteins. Every volume (nucleus) contains four individual

promoters for each of the genes A, B, C and D. Each promoter can be repressed by the prod-

ucts of the three others with different affinities; this system of four mutually inhibiting genes

represents the gap gene system in the early fly embryo, formed by the four genes hb, kr, kni
and gt, and comprises its essential regulatory interactions. For combined repressive interac-

tions, we employ OR-logic, i.e. whenever one of the three repressor sites is occupied expression

of the gene is completely blocked. There is no competition for repressor sites on the promot-

ers. In the unrepressed state the promoters exhibit constitutive protein production, i.e. no

external activator signal is required. This deliberately mimics a situation in which activation of

the genes is not provided by external morphogen gradients but by either an omnipresent mas-

ter activator or auto-activation with a low activation threshold. Consequently, our model

explicitly does not include morphogen gradients. As a simplifying assumption, we treat the

whole production process, i.e. transcription, elongation and translation, as one step governed
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by a single rate β. Proteins however can form (homo)dimers and dedimerize again [93, 94],

and only in their dimeric form they act as repressors. This is to ensure that antagonistic genes

form bistable pairs for sufficiently strong mutual repression. Initially, all simulations are set up

in a stripe pattern similar to the experimentally observed order in the embryo posterior, i.e.

A-B-C-D-A [49, 53, 54]. This implies a fixed definition of “gene neighborhood” to which we

refer throughout this paper: by nearest neighbors (NN) we mean the pairs (A, B), (B, C), etc.,

while the pairs (A, C) and (B, D) are considered next-nearest neighbors (NNN). A key ingredi-

ent of our model is that nearest-neighbor repression is weaker than repression between next-

nearest neighbor domains (see “Parameter choice” in “Materials and methods”). By default we

pin the expression of A at the system boundaries, i.e. in nuclei on the two outermost rings of

the cylinder the A promoter is irrepressible, and therefore constitutively produces A proteins.

This is motivated by the fact that in the real Drosophila embryo the gene Hb is under strict con-

trol by the maternal morphogen Bcd throughout the anterior half [65], while in the posterior a

second enhancer exposes Hb to positive regulation by the maternal terminal system [67–69].

We compare this system to a system in which there is no pinning and all nuclei are identical.

Simulations

To perform rare-event sampling of the spatially resolved system we integrate our “Gap Gene

Gillespie” (GGG) simulator used in previous work [14, 59] with the NS-FFS scheme [57].

NS-FFS is used to monitor and process a progress coordinate written out by GGG at regular

simulation interrupts, at which GGG trajectories are cloned and restarted in a way that sam-

pling is enhanced in the direction of increased progress coordinate, i.e. towards pattern

destruction.

Spatially resolved stochastic simulations (GGG). In GGG, the model is implemented via

the Stochastic Simulation Algorithm by Gillespie [95, 96] on a cylindrical 2D lattice of reaction

volumes at constant distance l = 8.5 μm, with periodic boundary conditions in the circumfer-

ential direction of the array.

An abstract graph of the reaction network that displays the set of reactions for any of the

simulated promoters is shown in Fig L in S1 Text. Diffusive chemical species (patterning

gene proteins and their dimers) hop between neighboring volumes via the next-subvolume

method [97] which integrates diffusion into the Gillespie algorithm by annihilation of a spe-

cies copy in the volume of origin and instantaneous insertion of that copy in a randomly cho-

sen neighboring volume with a rate kdiff = 4DP/l2, where DP corresponds to the protein

diffusion coefficient. The source code of GGG can be downloaded from https://github.com/

TheSokoLab/Pabra-GGG.

Forward flux sampling. We employ the recently developed non-stationary forward flux

sampling (NS-FFS) method [56, 57, 98] to enhance stochastic sampling of system realizations

that increase a (reaction) progress coordinate λ while retaining correct statistical weight.

NS-FFS achieves this by branching off multiple child trajectories upon crossing predefined

interfaces in undersampled regions of (λ, t)-space and pruning trajectories that cross interfaces

in oversampled regions. The NS-FFS scheme aims at equilizing the flux of simulated trajecto-

ries in the reaction coordinate direction among the time bins. The rate of branching and prun-

ing is calculated from the temporal trajectory crossing statistics collected during runtime. To

that purpose the time domain is subdivided into equidistant time intervals. For a detailed

account of the reweighting procedure we refer to [57].

Progress coordinates. The choice of a suitable progress coordinate is a critical step of the

FFS technique. Here, we seek to enhance progress of the simulated patterns towards their

destroyed state. The destruction events are in particular characterized by the disappearance of
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one of the partners within each of the strongly repressing gene pairs. Progress towards destruc-

tion thus is accompanied by increasing pair asymmetry, which can be quantified for each pair

separately by the following two asymmetry factors:

lAC � maxð½A�tot; ½C�totÞ=N ð16Þ

lBD � maxð½B�tot; ½D�totÞ=N ð17Þ

where N = [A]tot + [B]tot + [C]tot + [D]tot is the number of all proteins in the system. Based on

this we define our progress coordinate, which increases whenever asymmetry among any of

the pairs is augmented, via

l � lAC þ lBD ¼ ½maxð½A�tot; ½B�totÞ þmaxð½B�tot; ½D�totÞ�=N : ð18Þ

Since NS-FFS features multi-dimensional reaction coordinates we compared our standard

choice to a setup in which the two components λAC, λBD of the reaction coordinate λ are

treated as two separate reaction coordinates with an own set of interfaces each. While an

orthogonal pair of reaction coordinates captures the principal reaction paths in our system

more accurately, the acquisition of crossing statistics is prolongated because of the increased

number of bins in these simulations, and we did not find any substantial advantage of this

choice in terms of branching behavior. We therefore preferred the standard definition.

Combination of simulation methods. In order to wrap NS-FFS around the GGG simula-

tor we run GGG for a predefined simulation time tGGG = 60 s. At the end of the simulation the

reaction coordinates are calculated and passed on to the NS-FFS module, and the end state of

the simulation is recorded. The NS-FFS module then determines whether an interface crossing

has occurred and, if so, decides on whether the trajectory shall be branched or pruned. In case

of branching NS-FFS will prompt nB� 1 restarts of the GGG simulator with the recorded end

state as initial condition, different random seeds and with new statistical weights. At each

crossing and at measuring times spaced by a regular interval Δt the time, branch weight and

reaction coordinate values are stored in a tree-like data structure that facilitates later analysis.

Trajectory trees are started from a standardized, regular-stripe initial condition passed to

the first call of GGG. Propagation of the tree stops when all child branches have either reached

the end of the time histogram or have been pruned. Subsequently a new tree is started with a

different random seed. NS-FFS monitors the cumulative simulated time Tcum and terminates

simulation when Tcum exceeds a predefined maximal simulation time Tmax and the last trajec-

tory tree has been propagated towards the end. Typically, Tmax = 3 − 7 h and Tcum = 2 − 5 � 107

s, which usually results in several thousand independent starts from the initial condition. By

default we start from an artificial pattern consisting of five non-overlapping stripes with rect-

angular profiles occupying an equal part of the total system length L/5 each and equal number

of monomers (no dimers) in each nucleus close to the expected total copy numbers. We find

that these initial patterns quickly relax towards typical metastable patterns, i.e. into the meta-

stable main basin of attraction, which justifies our approach a posteriori.

The source code of the NS-FFS path-branching algorithm (Pabra) combined with GGG can

be downloaded from https://github.com/TheSokoLab/Pabra-GGG.

Parameter choice

Repression. We are mainly concerned about the importance of distinct repression

strength of nearest-neighbor (NN) as compared to next-nearest neighbor (NNN) interaction.

We assume repressor binding-rates to be diffusion-limited via kR
on ¼ 4psRDN, where DN is the

intranuclear diffusion constant and σR an effective target radius. Repression strength therefore
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is varied by changing the unbinding rates of the repressing dimers. The main parameter in our

simulations is k ¼ koff
w =k

off
s , the ratio between NN and NNN repressor off-rate. In this work

only koff
w is varied, while koff

s is chosen sufficiently low to guarantee bistability between next-

nearest neighbor genes, which is a precondition for the formation of individual stripe domains

in the first place, see Table A in S1 Text. For κ = 1 NN and NNN repressive interactions are

equally strong, while for large κ values NN repression is much weaker than NNN repression.

In the “uncoupled limit” κ!1 the two bistable pairs coexist without sensing each other. We

do not consider cases with κ< 1.

Dimerization. We set the dimerization forward rate kD
on to be equal to two times the diffu-

sion-limited repressor binding rate, which is accounting for the fact that both reaction partners

are diffusing. The dimerization backward rate is set via kD
off ¼ kD

on=VN (VN = nuclear volume)

as in [14, 99–101] to ensure that at any moment most of the proteins are dimerized.

Production and degradation. In our model both monomers and dimers are degraded.

This leads to a nontrivial dependence of the total copy number on production, degradation

and (de)dimerization rates, as we discuss with more detail in [14]. Since we did not find any

experimental reports of gap protein lifetimes, we chose equal monomeric (μM) and equal

dimeric degradation rate (μD) for all genes and set these quantities to values that lead to a rea-

sonable effective lifetime of the corresponding proteins of teff’ 100 s. The steady-state copy

number is tuned via the production rate β. By default, we consider copy numbers as low as

possible (’ 15) to minimize computational effort. The effect of increasing the average copy

number is discussed in the “Discussion” section.

Geometry and internuclear transport. The choice of our geometric parameters, in par-

ticular of the lattice constant, is inspired by experimental measurements in the Drosophila
embryo by Gregor et al. [1]. Information on the diffusion constants of proteins involved in

early Drosophila patterning is scarce. The diffusion constant of the morphogen Bcd has been

measured by several groups, yet its true value is still under debate [12, 102]. In our model we

therefore set for all patterning proteins an effective internuclear diffusion constant DP = 1

μm2/s, which comprises both protein import/export and actual diffusion. This value is a rea-

sonable cytoplasmic diffusion coefficient and well within the bounds reported for Bcd.

The simulated lattice is 40 nuclei long so that the total system length L roughly corresponds

to the posterior 2/3 of the Drosophila embryo in cycle 14. To reduce computation effort we

simulate a system with smaller circumference (8 nuclei) as compared to the living embryo.

This is justified by the fact that for our standard diffusion constant DP and effective protein

lifetime μeff the diffusive correlation length lcorr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP=meff

p
is�2 nuclei. A larger circumfer-

ence therefore is not expected to introduce new features into the system, but might alter the

timescales of expression boundary movement and domain desintegration. We discuss the

effect of reduced system size on measured stability times in the “Discussion” section.

A complete overview of the specific numerical values of our model parameters is found in

Table A in S1 Text.

Data analysis

Quantification of pattern stability. In order to analyse pattern stability we represent

each simulated pattern as a point in (λAC, λBD) phase space. For every pattern simulation from

time t = 0 until time t = tend the temporal sequence of these points corresponds to a trajectory

in the (λAC, λBD) space. For each parameter choice and pinning scenario, we restarted the sim-

ulations with 6000 trajectories started from the relaxed initial patterns at t = 0; the trajectories

ensemble is then further enriched by the branching process at the NS-FFS interfaces. Next, the
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trajectories are binned with the statistical weight assigned by NS-FFS, and then the histograms

are normalized. As a result, we can identify a few distinct regions that accumulate probability.

In order to formally define these regions we define rectangular boundaries that enclose

accumulated probability regions corresponding to different types of patterns:

• the metastable main basin with five-stripe pattern:

RS� {(λAC, λBD)|λAC� 0.45 ^ λBD� 0.43}

• the basin in which either the A or C protein domain was lost:

RyAC � fðlAC; lBDÞjlAC > 0:45 ^ lBD � 0:43g

• the basin in which either the B or D protein domain was lost:

RyBD � fðlAC; lBDÞjlAC � 0:45 ^ lBD > 0:43g

• the basin in which either A or C and one of B or D were lost:

R‡� {(λAC, λBD)|λAC > 0.45 ^ λBD > 0.43}

Note that the location of the regions slightly changes for different values of κ. We found

that the above boundary definitions constitute a good compromise. For each basin we com-

pute the fraction of total probability as a function of time by integrating the weights of trajecto-

ries that are within the basin at time t. We define the pattern survival probability to be the

integrated probability in RS at time t after initialization: SðtÞ ¼
RR

RS
pðtÞdlACdlBD. As expected,

S(t) displays roughly exponential decay behavior after a certain lag phase that can be attributed

to initial relaxation. To obtain the pattern destruction rate kD we fit a function f(x)� exp

(−kD(t − tlag)) to S(t). This only yields satisfactory results if the fitting range is adapted accord-

ingly, i.e. only S(t) values for t> tlag are taken into account. Since tlag itself is a fitting parameter

we adopted the following protocol: Starting from a value of tstart that is clearly in the relaxation

regime we perform the fit on the interval [tstart, tend] where tend is the largest time recorded.

We then choose the fitted values kD and tlag for which |tlag − tstart| is minimal. From this we

compute the pattern stability time (average time until pattern has lost one of the domains) via

τD� 1/kD. In most considered cases the patterns are very stable, i.e. kD very small, and we can

expand S(t)’ 1 − kD(t − tlag). As a control, we therefore also fitted g(t)� kD(t − tlag) to 1 − S(t)
for a fixed tlag clearly in the exponential regime and obtained almost identical results.

Computation of average probability fluxes. To quantify which destruction pathways are

dominant we computed the average fluxes Javg into the regions of (partly) destroyed patterns.

Here the average flux is defined as the average rate of increase in time of the fractional proba-

bility in the region and obtained by fitting a linear function h(t)� Javgt + P0 to PR(t)�∬R p(t)
dλACdλBD for R 2 fRyAC;R

y
BD;Rzg over the interval [tstart, tend] with tstart chosen such that

@tPR(t) 6¼ 0 for t> tstart. P0 depends on the particular choice of tstart and is discarded.

Computation of average flux velocities. The average local drift velocity and diffusion

constant of the trajectories in the (λAC, λBD) phase space are computed by averaging displace-

ments ΔλAC(BD)� λAC(BD)(t + Δt) − λAC(BD)(t) and squared displacements Dl
2
� Dl

2

AC þ

Dl
2

BD on a two-dimensional lattice of bins covering the whole phase space. Displacements

ΔλAC(BD) are assigned to the bin at~l � ðlAC; lBDÞ, i.e. we are averaging outgoing displace-

ments and the averaged vector h ~Dlið~lÞ therefore will represent the average velocity with

which trajectories leave this bin. The local phase space diffusion constant is calculated as

Dlð
~lÞ � 1

4Dt hDl
2
ið~lÞ � hDlACi

2
ð~lÞ þ hDlACi

2
ð~lÞ

� �h i
. This is done in the same way for

other combinations of phase space coordinates. The diffusion-drift decomposition is explained

in more detail in Sec S1.3 in S1 Text.
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Computation of “pseudopotential” landscapes. The trajectory binning procedure used

for computing the average flux velocities as described above was at the same time used for

computing the “pseudopotential” � logð~pð~lÞ. Herein ~pð~lÞ is the local density calculated from

the reweighed number of trajectories leaving the bin at~l ¼ ðlAC; lBDÞ, and smoothened after-

wards by 2D median filtering over nfilt neighboring bins. For the 2D median filtering we used

the medfilt2 function from the MATLAB Image Processing Toolbox. We empirically chose

nfilt = 4 as we found that this choice efficiently removes local spikes in pð~lÞ without changing

the overall shape of the landscape.

Perturbation experiments

Simulations starting from perturbed initial conditions were performed directly via the GGG

simulator. First the systems were relaxed to representative states within the metastable basin

for a simulated time of trelax = 30 min. The final states of these runs then were post-modified

according to the following two protocols:

1. “C expansion”: starting from mid-embryo the central C protein domain was expanded as

follows: the configurations in the nuclei just posterior to mid-embryo were copied and used

to overwrite configurations in the subsequent Δ rows in the axial (z-) direction of the cylin-

der. The original configurations were stored and for each nucleus at row zi> Nz/2 + Δ
(counting from the anterior) the configuration was overwritten by the original configura-

tion at zi − Δ. The posterior-most nucleus was exempted from overwriting to preserve

pinning.

2. “A expansion”: here the anterior A protein domain was enlarged at the expense of the C

protein domain. To this purpose we applied the same copy-paste procedure as above start-

ing form zi = 5, however only nuclei up to mid-embryo (zi� Nz/2) were overwritten by the

original configurations at zi − Δ.

Δ quantifies the severity of perturbation. We found that Δ< 4 results in changes to the pat-

tern that were hard to distinguish from noise, while for Δ> 12 perturbations were large

enough to induce immediate pattern destruction with high probability. We therefore limited

systematic tests to perturbations with Δ 2 {4, 8, 12}. Starting from the perturbed initial condi-

tions simulations were continued for tsim = 20 h and snapshots of the current configurations in

all nuclei were written out with an acquisition interval of tsim = 20 h (simulated time). 10 sam-

ples starting from 10 different perturbed initial conditions were produced for each set of

parameters.

In order to overcome the difficulties of boundary detection we quantified the motion of

protein domains by tracking their center of mass (CoM) along the z-axis of the cylinder. For

each considered gene G we define the CoM zG as

zG �
R

z

R

r zGtotðr; zÞdrdzR

z

R

r Gtotðr; zÞdrdz
ð19Þ

where Gtot = [G] + 2[G2] is the total copy number. Since our system features two A domains

we calculate zA separately for the anterior (Aant) and the posterior (Apost) part of the embryo

by restricting z-integration adequately. While the CoM remains unchanged upon symmetric

changes of the domain boundaries or global copy number increase, it is well-suited to indicate

relaxations from the asymmetric perturbations that we apply. To find general trends in the

time-evolution of the domains CoM trajectories were averaged over the 10 samples.
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Effective reaction-diffusion dynamics of dimer expression

In this section we map the fully microscopic model defined in Fig 1 onto the effective model

from [55]. First, we postulate that the stochastic dynamics of gene expression studied in this

paper corresponds to the following effective dynamical equations:

@tX1ðx; tÞ ¼ � mMX1ðx; tÞ � kD
onX

2
1
ðx; tÞ þ kD

offX2ðx; tÞ þ bf ðfY2ðx; tÞgY6¼XÞ ;

@tX2ðx; tÞ ¼ D0@xxX2ðx; tÞ � ðkD
off þ mDÞX2ðx; tÞ þ kD

onX
2
1
ðx; tÞ ;

ð20Þ

where X, Y 2 {A, B, C, D} denotes the expressed protein species, X1, Y1 are the concentrations

of its monomer, and X2, Y2 are concentrations of its dimers. The synthesis and decay of dimers

is described by rates kon and koff. The monomers and dimers degrade with rates μD and μM,

respectively. In this system, only dimers are allowed to diffuse (with diffusivity D0) and only

monomers are primarily synthesized, with a maximal production rate β and production kinet-

ics described by function f({Y2(x, t)}Y6¼X), which we specify later. However, we assume that the

production of dimer X2 is active by default in the absence of other dimers (Y2 6¼ X2), so f({0}) =

1. Since the system has a cylindrical symmetry, we will treat the axis x as distinguished and

treat the system as effectively one-dimensional.

The fact that the model defined by Eq (20) involves monomers and dimers complicates its

mapping onto the model in [55]. We therefore translate it into a simplified model, tracking the

effective dynamics of dimers only. To this end, we will first determine the ratio between sta-

tionary concentrations ~X1 and ~X2 in the absence of other dimers (Y2(x, t) = 0) and assuming

system homogeneity. In this case, equations (20) turn into:

0 ¼ � mM
~X1 � kD

on
~X2

1
þ kD

off
~X2 þ b ;

0 ¼ � ðkD
off þ mDÞ

~X2 þ kD
on

~X2
1
:

ð21Þ

Solving for ~X1 and ~X2, we obtain:

~X1 ¼
1

2kD
on

�
kD
off þ mD

mD
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðkD
off þ mDÞ

2

m2
D

m2

M þ 4kD
onb

kD
off þ mD

mD

s0

@

1

A ;

~X2 ¼
b

mD
�
mM

mD

~X1 :

ð22Þ

We will now sum both equations in (20) to obtain

@tðX1ðx; tÞ þ X2ðx; tÞÞ ¼ D@xxX2ðx; tÞ � mDX2ðx; tÞ � mMX1ðx; tÞ þ bf ðfY2gY6¼XÞ ; ð23Þ

and approximate

X1ðx; tÞ �
~X1

~X2

X2ðx; tÞ : ð24Þ

In other words, we assume that X1(x, t) follows strictly X2(x, t). The advantage of this

approximation is that it becomes exact in the stationary state. This procedure results in the fol-

lowing effective equation for X2(x, t):

@tX2ðx; tÞ ¼ DX@xxX2ðx; tÞ � gXX2ðx; tÞ þHXf ðfY2gY6¼XÞ ; ð25Þ
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where the rescaled constants are:

DX ¼
D0

1þ
~X1
~X2

; gX ¼
mD þ mM

~X1
~X2

1þ
~X1
~X2

; HX ¼
b

1þ
~X1
~X2

: ð26Þ

We can now specify the kinetics function. The microscopic dynamics is such that each gene

X is expressed, unless it is blocked by the biding of any other dimer to its repressor site on the

promoter. In the averaged-out description, we expect that a sufficiently high concentration of

free repressor particles effectively shuts down the production of X. Similarly to [55], we will

assume that this transition is steep, so we can choose the functional form of the regulatory Hill

function in (25) to have the overall shape of Heaviside step function:

f ðfY2gY6¼XÞ ¼ y
X

Y6¼X

�XYY2ðx; tÞ � CX

 !

: ð27Þ

Finally, we relate the effective gene interaction constants �XY to microscopic parameters by

the following reasoning: In the microscopic simulations, the attachment of Y2 to the repressor

site is described by the constant kR
on and detachment by koff

s or koff
w . Assuming that the repressor

production speed can be approximated by Michealis-Menten kinetics, with the repressor site

acting like a “catalyst”, we know that

KY ¼ koff
w;s=k

R
on ð28Þ

where koff
w;s (standing for either koff

w or koff
s ) is the concentration of repressor dimers Y2 at which

the velocity of production of Y1 is at the half of its maximal value. We postulate that at this

point Y2 effectively switches off the production of X, and we equate this point with reaching

the threshold for production in (27). Hence, the following is satisfied:

�XYKY � CX ¼ 0 : ð29Þ

Solving for �XY we obtain:

�XY ¼
CX

KY
: ð30Þ

We choose CX < 0 to ensure that the production of X is active by default, in the absence of

repressive dimers (Y2(x, t) = 0). Since CX is now present in every term in (27), we can factor it

out and neglect. Taken together, and assuming that diffusion, degradation and production

constants are the same for all genes, that is: DX = D, γX = γ and HX = H for all X 2 {A, B, C, D};

the microscopic dynamics of gene expression mapped onto the effective model results in

Eq (5).

Derivation of stability conditions for a contact zone between two domains

This section outlines the origin of stability conditions for the effective continuous model,

derived in the previous section, which is employed for the analysis of the four-gene pattern in

the approximation of separate contact zones. We discuss the major steps leading to stability

conditions in the current case, taking advantage of the specific setting of the system studied in

this work. For a detailed and more general derivation we refer the reader to our earlier work

[55].
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Let us consider a pair of genes (X,Y), whose expression dynamics is described by the effec-

tive equations:

@tX2ðx; tÞ ¼ D @xxX2ðx; tÞ � gX2ðx; tÞ þ H y
�

~CX � �XYY2ðx; tÞ
�

@tY2ðx; tÞ ¼ D @xxY2ðx; tÞ � gY2ðx; tÞ þH y
�

~CY � �YXX2ðx; tÞ
� ð31Þ

These equations describe both type-(i) and type-(ii) contact zones, albeit for different values of

constants (see Eqs (9) and (10)). We assume that the system is open (L! +1) and two respec-

tive expression domains occupy the opposite ‘ends’ of the system. That is, initially, the expres-

sion profiles of the respective dimers read:

X2ðx; 0Þ ¼ AXyðqXð0Þ � xÞ Y2ðx; 0Þ ¼ AYyðx � qYð0ÞÞ ð32Þ

Here AX and AY are initial amplitudes, sufficiently high to initiate auto-activation, while qX(t)
and qY(t) denote the positions of the expression domain boundaries.

The effective equations in the form (5) can be solved analytically in this system, providing

the spatio-temporal profile of expression for both dimers:

X2ðx; tÞ ¼
Z þ1

� 1

dx0Gðx � x0; 0ÞX2ðx; 0Þ þ H
Z t

0

dt0
Z þ1

qXðt0Þ
dx0Gðx � x0; t � t0Þ

Y2ðx; tÞ ¼
Z þ1

� 1

dx0Gðx � x0; 0ÞY2ðx; 0Þ þH
Z t

0

dt0
Z qYðt

0Þ

� 1

dx0Gðx � x0; t � t0Þ

ð33Þ

where the Green’s function of Eq (5) in the open system reads:

Gðx � x0; t � t0Þ ¼
e� gt�

ðx� x0 Þ2

4Dðt� t0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDðt � t0Þ

p ð34Þ

However, the solution (33) is known only up to the position of the domain boundaries, qX(t)
and qY(t). In order to determine these positions, the “Free Boundary Problem” must be solved,

defined by the activation conditions at each boundary:

~CX ¼ �XYY2ðqXðtÞ; tÞ
~CY ¼ �YXX2ðqYðtÞ; tÞ

ð35Þ

Inserting the solution (33) into these equations leads to a system of coupled nonlinear integral

equations. For t large enough such that the system ‘forgets’ its initial conditions, these equa-

tions simplify into:

~CX

�XYH
¼

Z t

0

dt0
Z qYðt0Þ

� 1

dx0GðqXðtÞ � x0; t � t0Þ

~CY

�YXH
¼

Z t

0

dt0
Z þ1

qXðt0Þ
dx0GðqYðtÞ � x0; t � t0Þ

ð36Þ

In [55] we show that the asymptotic solution of these equations is provided by a constant

velocity ansatz, qXðtÞ ¼ vXt þ q1X and qYðtÞ ¼ vYt þ q1Y , where q1X and q1Y are constants. For

this choice, the right-hand side integrals in Eq (36) saturate at constant values, though corre-

sponding to domain boundaries travelling with constant velocities. Moreover, for sufficiently

strong interactions between the genes, these velocities must be equal, vX = vY = v, meaning that

the domains change their size in a coordinated manner. For the constant velocity ansatz, the
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integrals can be analytically computed. This turns the system of integral equations into an alge-

braic system, defining the common velocity v and the distance between the boundaries

Dr ¼ q1X � q1Y . In the t! +1 limit, this system reads:

2~CXg

�XYH
¼ sgnðDrÞ � evDr

D �
jDrj

ffiffiffiffiffiffiffiffiffi
4Dgþv2
p

2D
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dgþ v2
p þ sgnðDrÞ
� �

2~CYg

�YXH
¼ sgnðDrÞ þ evDr

D �
jDrj

ffiffiffiffiffiffiffiffiffi
4Dgþv2
p

2D
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dgþ v2
p � sgnðDrÞ
� � ð37Þ

Finally, the patterns for which v = 0 are stable, that is, they do not change in the long-time

limit. Substituting v = 0 turns Eq (37) into:

RX ¼ sgnðDrÞ 1 � e�
jDrj
l

� �

RY ¼ sgnðDrÞ 1 � e�
jDrj
l

� � ð38Þ

where RX and RY are defined as in Eq (11). In order to make v = 0 the solution of Eqs (37) and

(38) must be solvable and satisfied by the same Δr, as the system is over-defined. This happens,

provided that

RX ¼ RY ; � 1 < RX < 1 ; � 1 < RX < 1 ; ð39Þ

which constitutes the stability conditions utilized in this work. Further, we can also derive:

jDrj ¼ � l ln 1 �
RX

sgnðDrÞ

� �

ð40Þ

However, one can notice in Eq (38) that 1 − e−|Δr|/λ > 0 for any Δr, thus:

sgnðDrÞ ¼ sgnðRXÞ ¼ sgnðRYÞ ð41Þ

This allows us to obtain Δr, as provided by the formula (13).
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457. https://doi.org/10.1038/364454a0 PMID: 8332216

95. Gillespie D. A general method for numerically simulating the stochastic time evolution of coupled

chemical reactions. Journal of Computational Physics. 1976; 22(4):403–434. https://doi.org/10.1016/

0021-9991(76)90041-3

96. Gillespie D. Exact stochastic simulation of coupled chemical reactions. Journal of Chemical Physics.

1977; 81(25):2340–2361. https://doi.org/10.1021/j100540a008

97. Hattne J, Fange D, Elf J. Stochastic reaction-diffusion simulation with MesoRD. Bioinformatics. 2005;

21(12):2923–2924. https://doi.org/10.1093/bioinformatics/bti431 PMID: 15817692

98. Allen RJ, Warren PB, ten Wolde P. Sampling Rare Switching Events in Biochemical Networks. Physi-

cal Review Letters. 2005; 94(1):018104. https://doi.org/10.1103/PhysRevLett.94.018104 PMID:

15698138

99. Warren PB, ten Wolde PR. Enhancement of the Stability of Genetic Switches by Overlapping

Upstream Regulatory Domains. Physical Review Letters. 2004; 92(12):128101. https://doi.org/10.

1103/PhysRevLett.92.128101 PMID: 15089712

100. Warren PB, ten Wolde PR. Chemical Models of Genetic Toggle Switches. Journal of Physical Chemis-

try B. 2005; 109(14):6812–6823. https://doi.org/10.1021/jp045523y PMID: 16851767

101. Morelli MJ, Tănase-Nicola S, Allen RJ, ten Wolde PR. Reaction Coordinates for the Flipping of Genetic

Switches. Biophyiscal Journal. 2008; 94(9):3413–3423. https://doi.org/10.1529/biophysj.107.116699

PMID: 18222998

102. Abu-Arish A, Porcher A, Czerwonka A, Dostatni N, Fradin C. High Mobility of Bicoid Captured by Fluo-

rescence Correlation Spectroscopy: Implication for the Rapid Establishment of Its Gradient. Biophyis-

cal Journal. 2010; 99(4):L33–L35. https://doi.org/10.1016/j.bpj.2010.05.031 PMID: 20712981

PLOS COMPUTATIONAL BIOLOGY Stable developmental patterns of gene expression without morphogen gradients

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012555 December 2, 2024 37 / 37

https://doi.org/10.1038/324537a0
http://www.ncbi.nlm.nih.gov/pubmed/2878369
https://doi.org/10.1242/dev.121.4.1023
https://doi.org/10.1242/dev.121.4.1023
http://www.ncbi.nlm.nih.gov/pubmed/7743918
https://doi.org/10.1016/0092-8674(87)90197-8
https://doi.org/10.1016/0092-8674(87)90197-8
http://www.ncbi.nlm.nih.gov/pubmed/2433048
https://doi.org/10.1371/journal.pcbi.1002635
https://doi.org/10.1371/journal.pcbi.1002635
http://www.ncbi.nlm.nih.gov/pubmed/22927803
https://doi.org/10.1371/journal.pcbi.1002589
http://www.ncbi.nlm.nih.gov/pubmed/22807664
https://doi.org/10.1128/mcb.18.5.2892
http://www.ncbi.nlm.nih.gov/pubmed/9566908
https://doi.org/10.1242/dev.031195
http://www.ncbi.nlm.nih.gov/pubmed/19168676
https://doi.org/10.1016/j.stemcr.2021.03.026
https://doi.org/10.1016/j.stemcr.2021.03.026
http://www.ncbi.nlm.nih.gov/pubmed/33979592
https://doi.org/10.1242/dev.018697
https://doi.org/10.1242/dev.018697
http://www.ncbi.nlm.nih.gov/pubmed/18776142
https://doi.org/10.1016/j.cub.2016.02.054
https://doi.org/10.1016/j.cub.2016.02.054
http://www.ncbi.nlm.nih.gov/pubmed/27112292
https://doi.org/10.1242/dev.048967
http://www.ncbi.nlm.nih.gov/pubmed/21652646
https://doi.org/10.1016/S1097-2765(03)00043-1
http://www.ncbi.nlm.nih.gov/pubmed/12620233
https://doi.org/10.1038/364454a0
http://www.ncbi.nlm.nih.gov/pubmed/8332216
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1021/j100540a008
https://doi.org/10.1093/bioinformatics/bti431
http://www.ncbi.nlm.nih.gov/pubmed/15817692
https://doi.org/10.1103/PhysRevLett.94.018104
http://www.ncbi.nlm.nih.gov/pubmed/15698138
https://doi.org/10.1103/PhysRevLett.92.128101
https://doi.org/10.1103/PhysRevLett.92.128101
http://www.ncbi.nlm.nih.gov/pubmed/15089712
https://doi.org/10.1021/jp045523y
http://www.ncbi.nlm.nih.gov/pubmed/16851767
https://doi.org/10.1529/biophysj.107.116699
http://www.ncbi.nlm.nih.gov/pubmed/18222998
https://doi.org/10.1016/j.bpj.2010.05.031
http://www.ncbi.nlm.nih.gov/pubmed/20712981
https://doi.org/10.1371/journal.pcbi.1012555

