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Flexibility in noisy cell-to-cell information dynamics
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The exchange of molecules allows cells to exchange information. How robust is the information to changes in
cell parameters? We use a mapping between the stochastic dynamics of two cells sharing a stimulatory molecule
and parameters akin to an extension of Landau’s equilibrium phase transition theory. We show that different
single-cell dynamics lead to the same dynamical response—a flexibility that cells can use. The companion
equilibrium Landau model behaves similarly, thereby describing the dynamics of information in a broad class of

models with coupled order parameters.
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I. INTRODUCTION

In the choreography of life, cells respond to environmental
stimuli by detecting chemical signals and secreting molecules.
This process, fundamental to cellular communication, has
attracted much attention, and recent advances in our under-
standing of information transfer in biological systems include
quantifying the energy cost of information transmission in
coupled receptors [1], interpreting positional information and
spatial coupling [2,3], establishing bounds on the energy cost
of transmitting information in various settings [4], and outlin-
ing essential trade-offs between cost and predictive power [5].
These studies underscore the complexity and efficiency of cel-
lular communication using molecular exchange and highlight
the importance of understanding how cells manage and op-
timize information exchange. However, despite the dynamic
nature of cellular environments, a scaling theory for cell-to-
cell information dynamics under changing conditions has yet
to be developed.

Our previous work described a minimal model of feedback
in cellular sense-and-secrete dynamics [6] and investigated
how pairs of such cells share information [7]. For example,
upon antigen stimulation, T cells exhibit a bimodal distribu-
tion of doubly phosphorylated extracellular signal-regulated
kinase (ERK) (ppERK), a critical protein that initiates cell
proliferation and determines the immune response [8—10].
We were able to show that a broad class of models, in-
cluding Schlogl’s second model, can be used to explain
and extract key features from single-cell measurements of
ppERK [6,11]. Here, we extend this line of inquiry to ex-
plore how time-varying individual cellular properties impact
overall information exchange. How does information in a

“These authors contributed equally to this work.
TContact author: amir.erez1 @mail.huji.ac.il

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2024/6(4)/043252(8)

043252-1

minimal sense-and-secrete two-cell system respond to grad-
ually changing cellular parameters? We demonstrate that
inherent flexibility allows one cell to match the dynamics
of the other, in a choreographed dance, so that in a broad
class of models, cell-to-cell information is maintained, and
key observables scale universally.

Our minimal model of cellular sense-and-secrete dynamics
maps a class of well-mixed stochastic biochemical feedback
models, in steady state, to parameters analogous to those
in Landau’s thermal equilibrium phase transition theory. Al-
though applicable to other stochastic models, we focused
specifically on mapping the dynamics of Schlogl’s second
model [12,13] as if it were a Landau theory. Instead of
stochastic reaction rates, one may describe the dynamics with
an effective reduced temperature 6, magnetic field 4, and a
magnetizationlike order parameter m [6,7]. These parameters
can be extracted from biological data without fitting or knowl-
edge of the underlying molecular details [6]. The stochastic
dynamics are never in thermal equilibrium, and the noise is
demographic in nature. For this reason we will refer to the
Schlogl model at steady state and the Landau model at thermal
equilibrium as “companion” systems. The critical transition
from a finite to a zero “magnetization” in the Landau theory
is equivalent to the bifurcation point of the stochastic dy-
namics [14]—between a bimodal state, having both high and
low molecule counts as stable points the dynamics fluctuate
about—to a unimodal state with an intermediate molecule
count (see Appendix A). Near the transition point, the corre-
lation time of the system diverges, exhibiting critical slowing
down, as expected from the Landau theory [11].

A diverging timescale and critical slowing down do not
matter much when considering systems at equilibrium or
steady state. In contrast, in a dynamically changing setting,
collective properties are expected to be influenced by the
slowing down of the collective dynamics. The two-cell sys-
tem (cells X and Y) has four main parameters: two “fields”
(hy, hy) that control overall molecule count bias in each cell
and two “reduced temperatures” (6x, 6y) that act as a bifur-
cation parameter. The steady state can be described by two
collective coordinates: H and T'. These collective coordinates
dictate both the steady-state mutual information between the
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cells and the autocorrelation time of the molecule count,
which are closely related [7,15]. In this two-cell collective
state, each individual cell’s reaction rates can be set away
from its critical point, while the two-cell collective system
remains at criticality. Because the collective state is criti-
cal, both the mutual information and the correlation time
are maximized; to gain information at steady state one must
“pay” with an increased correlation time [7]. Importantly, the
collective coordinates H and T are steady-state, linearized
solutions that need not apply to the system’s dynamics. Here,
we consider the universal properties of the two-cell response
to time-varying conditions.

Can the system’s dynamical changes be described using
the collective coordinates, disregarding each cell’s specific
dynamics? In this paper, we demonstrate that they can be.
Therefore, diverse single-cell parameter trajectories can lead
to identical systemic responses, allowing substantial flexibil-
ity in single-cell properties without impacting the two-cell
information. This flexibility in single-cell behavior enhances
robustness and evolutionary adaptability, facilitating the ex-
ploration of advantageous strategies. Furthermore, while our
focus is on cell-to-cell communication, manifested through
the stochastic nonequilibrium dynamics of the Schlogl model,
our study of the companion Landau model reveals a sim-
ilar degeneracy in the analogous equilibrium system. This
extension of equilibrium Landau theory has been used in
the context of phase transitions in minerals and surface and
hydration forces [16—18]. Therefore, this study describes a
general class of models with coupled order parameters, both
equilibrium and nonequilibrium, that bifurcate according to
the Ising mean-field universality class.

This paper is a direct continuation of our previous work
[71, in which we developed the theory under steady-state con-
ditions. In contrast, the current study focuses on dynamical
changes and presents a rigorous dynamical scaling analysis.
Our main contribution is demonstrating that numerous dif-
ferent single-cell trajectories can lead to the same two-cell
behavior. The rest of this paper is organized as follows: After
a brief recap of the model, we compare the steady state of
the stochastic dynamics of the extended Schlogl model to its
equilibrium Landau companion. We then dynamically ramp
both cells’ parameters across the bifurcation or critical point,
showing the lag in the dynamical response of the ramped sys-
tem and its scaling. Finally, we show how different single-cell
trajectories, sharing the same collective coordinates, lead to
identical responses in the information exchange between the
two cells.

II. MODEL AND MAPPING TO LANDAU’S EQUILIBRIUM
PHASE TRANSITION THEORY

Within each cell, biochemical reactions in a complex sig-
naling cascade result in the net production and degradation
of a molecular species of interest. As illustrated in Fig. 1(a),
in the first (second) cell, species X (Y) can be produced
spontaneously from bath species at rate k1+ (qf) and can be
produced nonlinearly at rate k& (g3 ) via a trimolecular reac-
tion involving two existing X (¥) species and a bath species.
Species X (Y) can be degraded linearly with molecule number
atarate k; (g;) or, in a reaction involving three existing X (¥')
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FIG. 1. Schematic of the two-cell model and its steady state.
(a) Representation of the two-cell version of the stochastic dynamics,
which extend Schlogl’s second model [12] similarly to our previous
paper [7]. (b) Varying the Monte Carlo temperature kzTyc in the
Landau model affects some observables, e.g., the variance of my.
The Schlogl model (black dots) exhibits a dependence on H which
cannot be captured by tuning the Landau model’s kzTyc, reflecting
its nonequilibrium nature. (c) The mutual information in the Lan-
dau model depends only weakly on kzTyc and closely matches the
Gaussian analytic result (black dots), although at T = H = 0 the
mutual information in the Gaussian case diverges. (d) Comparison
of the mutual information of the two-cell system as a function of
the collective field H. Blue line: the nonequilibrium Schlogl steady
state; orange line: the extended Landau model at thermodynamic
equilibrium; Dashed black line: the analytic results from the Gaus-
sian approximation. Here, both cells are identical: A, = h, = h and
0y = 6, = 0, with n. = 1000.

molecules, atrate k, (g, ). In addition to the internal reactions,
X (Y) can be exchanged from the neighboring cell at rate y;,
(¥yx).- Mechanistically, this can be through a gap junction or
through diffusion [7].

Reiterating our previous work [6,11], we use a mapping
from Schlogl to Landau-like parameters. Without exchange
(y = 0), the deterministic dynamics corresponding to the re-
actions in the left cell in Fig. 1(a) are dX/dt = kfr — ki X +
k; X2 — ky X 3 where we have neglected the small shifts of
—1 and —2 for large X. These shifts account for the fact that
once a molecule decreases in number by 1, the reaction prob-
ability changes, but at a large molecule number this change is
insignificant. Defining the order parameter m = (X — n.)/n.,
this magnetization is the scaled deviation from the typical
molecule number n.. We choose n. to eliminate the term
quadratic in m, leading to the Landau form [6],

dm m

e h—om -, 1
dt "3 M
where we have defined n. = ki /3k;, T = (k)% /3k; , 0 =
3k ks /(K — 1, and h =9k (ky )/ (ki)? —

3k, ks /(ky )? 4 2/3. The number of molecules in the system
is controlled by n., which controls all scaling properties
of the single-cell system, acting as a finite system size of
the equivalent critical Ising system [6,11]. The system size
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is determined by the ratio of the nonlinear production and
degradation terms; intuitively, increasing the production
increases the system size.

In steady state, dm/dt = 0. We can thus interpret m as an
order parameter for the single-cell system, 8 = (T — T,)/T.
as a reduced temperature, and % as a dimensionless field.
Analogous to the Ising model, when & = 0 in the single-cell
system and the reduced temperature, which acts as a bifurca-
tion parameter, 6 > 0, the system is in a unimodal steady-state
distribution. For 6 < 0, the steady state is a bimodal distribu-
tion. Similarly, positive or negative h biases the distribution
to higher or lower molecule count, respectively. In terms of
the Schldgl rates, the nonlinear production rate k5~ controls
all timescales together with the system size since T = n. k; 7.
For the system to be in its bimodal state, kg7 /kpT. < 1, so
0+ 1 <1, and thus, k; < n, k;r . Therefore, bimodality re-
quires that the spontaneous degradation rate k; be smaller
than the nonlinear production rate k;r times the system size
n.. Similarly, for 6 = 0, satisfying 4 > 0 means that k" >
in2 k3, so to deviate up from the typical molecule count, k"
needs to be larger than the scaled nonlinear production rate.

Applying the same mapping to two coupled cells (with
k — g for Y) results in the Landau form,

dm m3
—X =y —Oxmy — X + gxyMmy — gyxmy,
dt 3
dmy m
—— = hy — Oymy — —= + gyxmyx — gxymy. ()
drt 3
In this context, gxy =3ynk; /(ky)* and gyx =

3vmdy /(4 )> represent intercellular exchange terms. For
simplicity, we set gxy = gyx = g = 1 throughout this paper.

Although Eq. (2) is a reparameterization of the nonequi-
librium stochastic dynamics of the extended Schlégl model
[Fig. 1(a)], one may separately consider it to be an extension
of the well-known Landau model [Eq. (1)], computed at ther-
mal equilibrium. This extension of equilibrium Landau theory
to two bilinearly coupled order parameters has been consid-
ered before in the context of phase transitions in minerals [16],
surface and hydration forces [17], and more generally [18].
Here, we focus on the biological system, with its nonequi-
librium stochastic dynamics, while in parallel demonstrating
similar dynamical scaling results for the companion Landau
theory computed at thermal equilibrium.

Linearizing the deterministic steady state (% = 0) of the
Landau form [Eq. (2)] gives the collective coordinates

T = 6x0y + g(0x + 6y),
H = g(hx + hy) + (hx6y + hyOx)/2. 3

These collective coordinates, H and 7', act as an effective field
and effective temperature for the stochastic two-cell system
described in the Landau parameters. They account for the
collective system’s bias towards a higher or lower number
of molecules (positive and negative H, respectively) and as a
bifurcation parameter between a unimodal (“centralized”) and
bimodal (“polarized”) molecule count distribution (positive
and negative T, respectively) [7]. The effect of H when T = 0
is shown in Fig. 2; although 7 = 0 in this paper, for com-
pleteness, the effect of T is shown in Appendix A in Fig. 5.
At the critical point, T = H = 0, the two cells exhibit critical
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FIG. 2. The effect of H at steady state in the two-cell model. The
heat maps show the joint probability distribution P(X, Y), calculated
from Gillespie simulations of the two-cell Schldgl model. The color
map corresponds to Injy P. Note that for H = 0.1, the increased
number of molecules results in a wider distribution when compared
to H = —0.1, whereas the width of the distribution at H = 0 is due
to the critical behavior. In all simulations, Ay = hy, and 6y = 6y = 0
(therefore, T = 0), with n, = 1000.

slowing down and maximal mutual information between X
and Y, regardless of each cell’s individual / and 6 values.

For convenience, Table I is an annotation glossary for the
variables used in this paper.

III. RESULTS
A. Mutual information at steady state

We simulated the Schlogl system’s stochastic dynamics
using the Gillespie algorithm [19,20] and the equilibrium
fluctuations of the companion Landau model with the
Metropolis-Hastings Monte Carlo algorithm. The dynamics
in the Landau case are taken as “model A” in the Halperin-
Hohenberg classification [21,22],

de SL
— = -T—+¢(), “

dt Bmx
with a similar expression for my, with I setting the relaxation
timescale of the system and L = —hxmy + %me)z( +
ﬁmﬁ — hme + %Gym%, + ﬁm‘,‘, + %g(mx - mY)2. The

noise ¢(¢) is Gaussian white noise obeying (¢) =0 and
(¢(t)¢(r)))y =8(t —t/)D. In the equilibrium statistical
mechanics sense, to calculate the partition function or,
alternatively, to compute expectation values of observables
using the Monte Carlo simulation accept/reject, we
require a simulation temperature, which we refer to
as kpTymc. The long-time limit of the dynamics as a
Fokker-Planck equation approaches the equilibrium
solution with P(my, my) exp(—z%) and, accordingly,
a fluctuation-dissipation relation, D =2IkgTyuc [22].
To set the equilibrium temperature kpTyc we resort to
a heuristic argument: Near the bifurcation point of the
dynamics, (6 = 0, h = 0), we have mean[X] ~ Var[X] ~ n,,
and therefore, Var[my] = Var[X]/n?> ~ 1/n.. Away from
H =0 but at |H| < g, the Gaussian approximation gives
Var[myx] ~ kgTyc [see Appendix B, Eq. (B9)]. Therefore,
kgT. ~ 1/n.. However, tuning the precise value of kgTyic in
comparison to the stochastic simulations of the Schlégl model
is pointless since the steady state of the Schlogl model does
not comply with the equilibrium form, exp(— 2%). Therefore,
the probability distribution of my and an observable such as
the variance Var[myx] depend on kgTyic in the thermalized
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TABLE I. Annotation glossary.

Symbol

Description

Variables and parameters for cells X and Y
X, Y

ki, qf

k. a4y

hx, hy

Ox, Oy

my, my

Vays Vyx

8xy, 8rx

Common parameters and variables

8

ne

THE

Tq
1(X:Y)
a,B,y,8

Number of molecules in cells X and Y

Spontaneous production (+) and degradation (—) rates in cells X and Y

Nonlinear production (+) and degradation (—) rates in cells X and Y
Field parameters for cells X and Y

Reduced temperature parameters

Magnetizations, scaled deviation in molecule count from n,
Exchange rates from cell X to Y and back

Exchange terms in the Landau formulation

Simplified exchange parameter (set as gyy = gyx = g = 1)
Typical molecule number (system size)

Collective field parameter

Collective reduced temperature parameter

Collective magnetization [M = (my + my)/2]

Ramp time for driving across the transition

Mutual information between X and Y

Ising mean-field critical exponents

Landau model [Fig. 1(b), colored curves]. No value of kgTyic
in the Landau simulation will truly capture the nonequilibrium
Schlogl steady state [Fig. 1(b), dashed black curve]. In this
paper, setting the precise value of kzTyc is not necessary
since we focus on the mutual information between the two
cells, a quantity that changes only very weakly with kgTyic
[Fig. 1(c), colored curves].

B. Analytic Gaussian approximation

The mutual information shown in Fig. 1(c) is very well
approximated by a Gaussian analytical approximation (dashed
black curve). The approximation linearizes the dynamics
around the deterministic fixed point, whether of the Landau
model or the chemical Langevin description of the Schlogl
model. This yields a multidimensional Ornstein-Uhlenbeck
process [23]: d)?, = J()?, — ydt + oth, where X is the
column vector of variables of interest, magnetizations, or
molecule numbers; J is a negative-definite matrix; W is a
vector of independent Brownian motions; and ¢ is a matrix.
The solution is a Gaussian process in which the mutual infor-
mation is completely determined by the covariance matrix. By
computing the pathwise solution (see Appendix B and [23]),
one finds that the stead-state covariance matrix C satisfies the
Lyapunov equation 7C + CJT = —ooT. This is a linear sys-
tem for the coefficients of C, so all that is left is to determine
the matrices J and o for the two models. For the Lan-
dau model with 0 < |H| < g we find I angan = —5 In(1 —

p?), with p? = (Hg27)2 and m = (3H/2)'/3. Under the Gaus-
sian approximation, the covariance matrix is proportional to
kgTwuc, so the temperature cancels out when computing the
correlation coefficient. Therefore, to Gaussian order, the mu-
tual information is insensitive to the choice of kgTyic. Since
It andau 1S an even function of m, the information is sym-
metric in H. Repeating the process for the Schlogl model,
restricting ourselves to hy = hy, we find Ischisgl = —% In(1 —
4> (=T +7+2)>
282 i+ 2)+m(m+2)+ 4l )2

p?), with p2={ This Gaussian

approximation for the Schlégl model is not even in m and is
therefore asymmetric in H. As H — 0, the Gaussian infor-
mation diverges, indicating that the cubic terms are needed
for stabilization and suggesting that the mutual informa-
tion attains a maximum. For the mathematical details, see
Appendix B and [23].

Setting Oy = 0y = T = 0 and hy = hy and therefore H =
hx + hy, we calculated numerically the mutual information
between X and Y at steady state for the Schlogl model and
at equilibrium for the Landau case. As expected, the mu-
tual information is maximized at the critical point, H = 0
[Fig. 1(d)]. The Gaussian approximation captures well the
numerical simulations away from the critical point, including
the asymmetry in the Schlogl case, reflecting the slightly
higher information at positive H due to a higher molecule
count. Interestingly, despite the typical number of molecules
n. being the same in both systems, the mutual information
for the equilibrium Landau model is higher than that for the
companion Schlégl model.

C. Hysteresis in the magnetization

When a system is gradually driven through a critical point,
critical slowing down causes a lagged response to the driving.
This phenomenon, known as the Kibble-Zurek (KZ) effect in
the statistical physics literature, results in a lag that follows
scaling rules governed by the critical exponents of the tran-
sition point [24-32]. Does our two-cell system exhibit KZ
scaling when the collective coordinate H is driven across the
transition point? While various driving protocols are possible
in a biological context, when crossing the critical point, terms
beyond the leading-order linear term do not asymptotically al-
ter the critical scaling [27]. This theoretical advantage allows
us to focus on a simple protocol of H(¢) changing linearly
with time without losing biological realism—any reasonable
trajectory with H (¢) crossing the transition point at a constant
rate should scale the same.

Maintaining 7 = 0, we first let the system relax at H =
H; = 0.1, then varied H(t) from H; to Hy = —0.1 at a rate
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FIG. 3. Lagged response of the collective magnetization of the
two-cell system, M = (my + my)/2, to time-varying H(t) as it is
driven across the transition point at H = 0. The collective field
H(t) is ramped according to H(t) = H; + (H; — H;)/t4. The ar-
rows indicate the direction of the ramp, starting at either H; =
0.1 or —0.1. (a) Schlogl dynamics for r; = 2000, 1000, 500, 250.
To control for finite-molecule-number effects, we scale n. = 4 rj/ >
[11,27]. (b) The Schlogl results scaled according to the Kibble-
Zurek scaling prediction. (c) The extended Landau system with 7, =
100000, 50000, 25000, 12500 and n. = 17;”. (d) Kibble-Zurek
collapse of the Landau system response. In all plots, as in the Ising
mean-field universality class, § = %, vz=1,and § = 3.

determined by 14, i.e., H(t) = H; + (H; — H;)/74. Similarly,
we initiated at H; = —0.1 and reversed the trajectory. Impor-
tantly, to control for the damping effect of the finite-molecule
number on the divergence of the correlations, the system size
n. must be scaled according to n, ~ r;/ > [11,27]. Consistent
with KZ theory, driving across the transition induced hystere-
sis loops in both the Schlogl and Landau cases, with loop
characteristics dependent on the ramp time 7, and the critical
exponents of the transition point. In both cases when scaled
as per KZ predictions, Mtf/(””ﬂa) ~ Htf‘s/(””’%), the Ising
mean-field values for the exponents led to the collapse of the
disparate hysteresis loops to a single curve (Fig. 3).

D. Flexibility in dynamics

There are many different trajectories in {hx, hy, Ox, Oy}
that have the same values for collective {H, T'}. We wanted to
discern whether the dynamical response of the system is sensi-
tive only to {H, T}, even when their derivation assumed steady
state. To compare the dynamical response of the system to
different trajectories, we considered Eq. (3) with H(¢) = H; +
(Hf —Hj)t/tg and T = 0, setting H; = 0.1 and Hy = —0.1,
thereby crossing the two-cell transition point H = T = 0. We
focused on a time-varying H with a fixed 7 = 0 since it is
more experimentally feasible, with sy and Ay corresponding
to external stimuli. Since the numerical scaling collapse fol-
lows the theory, to establish the universal dynamics it suffices
to show scaling in the H case. We have made all simulation

code available for the interested reader to explore other sce-
narios. To maintain T = 0, we set 8y = — 0511' Therefore,
in terms of H(t), the {hx(¢), hy(t)} trajectories must obey
hy (1) = 1573 [H (@) — hx (1)(1 — g;;fl )]. For the special case
of Oy = 6y = 0 we retrieved hy (t) = H(t) — hx(t), where we
considered two situations: hy () = hx(t) as in Fig. 3 and
hy (t) = hx(t) — 0.1. Furthermore, we considered a third tra-
jectory where 0x(¢) = 0.04 — 0.08(¢/t;) and hx(¢) = 0.1 —
0.2(t/1)*>. We chose the quadratic dependence on time to
make explicit the freedom in choosing the trajectories of two
of the four control parameters while maintaining the same
collective dynamics. Although many other trajectories are
possible, we trust that demonstrating that these three examples
give identical information is enough to establish the generic
flexibility in the cell-to-cell dynamics.

In contrast to the steady-state calculation (Fig. 1) in which
one tracks the system over a sufficiently long time, here, to
compute the information at each time step we averaged over
an ensemble of independent stochastic trajectories, a signif-
icant computational effort. We found that all three driving
protocols, which share the same H(¢) and T (¢), indeed have
the same mutual information. As expected, the mutual infor-
mation lags in response to the changing conditions (Fig. 4).
As with the other results in this paper, the degeneracy between
the three protocols is true for both the Schlégl dynamics and
the equilibrium simulations of the companion Landau model
(using Metropolis Monte Carlo).

IV. SUMMARY AND DISCUSSION

In this paper we considered a simple theoretical question
with a minimal model of cell-to-cell communication: two cells
that exchange a molecule and thereby share information while
each cell’s parameters change with time. We parameterized
the stochastic dynamical system using the variables my (¢) and
my (1), representing the activity levels or concentrations of
key signaling molecules or transcription factors within cells
X and Y. External stimuli hx(¢) and hy(¢) correspond to
external signals or environmental factors influencing each cell
independently, such as hormones, nutrients, or stress signals.
Damping terms —Oxmy and —6Oymy represent degradation
processes or natural decay rates of the signaling molecules,
including enzymatic breakdown or dilution due to cell growth.
Nonlinear saturation terms —@ account for self-regulatory
feedback mechanisms, such as inhibition due to high con-
centrations (negative feedback loops) that prevent runaway
activation. Coupling terms, gxymy, etc., describe the interac-
tion between the two cells, such as the exchange of signaling
molecules through gap junctions, synaptic connections, or
paracrine signaling. Biologically, this system could represent
signaling between cells, including between immune cells,
coupled genetic circuits, quorum sensing, and more. Exper-
imentally, one could apply external stimuli such as varying
nutrient concentrations or chemical inducers to represent sy
and hy, using time-lapse fluorescence microscopy and a mi-
crofluidic device for live-cell imaging of my and my.

We sought to discern whether cell-to-cell information shar-
ing could be robust to varying individual cell parameters. We
showed that, indeed, there are different single-cell driving
protocols that lead to the same system response as long as the
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FIG. 4. Mutual information for the two-cell system with dy-
namically changing parameters. (a) Three different driving pro-
tocols are shown, with the same collective dynamics, T =
0 and H(t) = H;+ (H; — H;)/t4, but different realizations of
{hx (1), hy (1), Ox (1), Oy (¢)}. Protocol 1: hx (t) = hy(t) and Ox = 6y =
0; protocol 2: hx(t) = 0.1 + hy(z) and 6y = 6y = 0; protocol 3:
Ox(t) = 0.04 — 0.08(t/74) and hx(t) = 0.1 —0.2(t/T)* (see text).
(b) Mutual information calculated from the stochastic dynamics of
the Schlogl model, demonstrating the same behavior of all three
protocols (P1, P2, P3), with 7, = 250, showing lag and hysteresis
when the transition point is crossed. Dashed lines show the steady-
state mutual information from Fig. 1(d). The black arrow indicates
the direction of the parameter ramp. (c) Mutual information of the
companion Landau model simulated using Metropolis Monte Carlo,
with 7, = 6400, showing convergence of the three protocols. Dashed
lines show the equilibrium mutual information. In all simulations,
n. = 1000.

collective coordinates have the same dynamics. This suggests
a robustness in cell-to-cell communication and a flexibility
in the routes cells can take to achieve the same information-
sharing outcomes. Despite the minimal nature of the model
here studied, our results generalize to all models with either
demographic or thermal noise that belong to the Ising mean-
field universality class.

We compared the cell-to-cell stochastic dynamics of the
Schlogl model with the companion equilibrium system, an
extension of Landau theory that had been used in the past to
describe phase transitions in minerals [16] and surface and
hydration forces [17] and even more generally [18]. This is
an example of KZ scaling of four-parameter nonequilibrium
dynamics, here applied in the context of cell-to-cell infor-
mation. Inspired by the analogy between the systems, one
may consider reversing the sign of g, making the exchange
molecule inhibitory, rather than excitatory, to the other cell. In
the Landau formulation, this corresponds to antiferromagnetic
interactions between the two subsystems. However, in the
Schlogl case, one must be careful since a negative g would
imply that when there are zero copies of molecule X, having
nonzero Y could lead to a negative number of X molecules—a

0 =-0.1 0=0 6 =0.1

o p

F x

.

FIG. 5. Examples of the joint distribution P(X,Y) shown as a
heat map, calculated from Gillespie simulations of the Schlogl model
[7]. The bifurcation point at & = 0 separates a bimodal from a uni-
modal steady state. The color map corresponds to log;, P. In all
simulations, iy = hy = 0 and n, = 1000.

contradiction. Therefore, mechanistically, one would need to
model an “interaction” where X encounters Y.

The dependence of the two-cell system on its low-
dimensional representation could potentially allow cells to op-
timize other aspects of their function without compromising
information exchange, a possible mechanism for evolutionary
adaptation. Indeed, such degeneracy in single-cell configu-
rations obeying collective coordinates could extend beyond
two-cell systems to entire tissues or even larger biological
systems.

All code and data used for this paper are freely available
from GitHub [33].
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APPENDIX A: VISUALIZING
THE BIFURCATION TRANSITION

To make explicit the shape of the probability distributions
for the molecule counts of the two cells (X, Y), we show in
Fig. 5 the effect of the bifurcation parameter 6 on the two-cell
collective state when H = 0. Note the flat-topped shape at the
critical point [7].

APPENDIX B: GAUSSIAN MUTUAL INFORMATION

Linearizing a stochastic differential equation around a
deterministic fixed point i yields an Ornstein-Uhlenbeck
process [23]:

dX, = J (X, — pydt +odW,, (B1)
where the matrix 7 is negative definite and X and W are
column vectors. Pathwise solutions may be computed as

t
X=i+e"X—p)+ / e gdW,.  (B2)
0
Note that, for normally distributed initial conditions, this can
be interpreted as a sum of normally distributed variables, so
solutions are normal at all times.
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The mutual information [34] between two variables V| and

VQiS
PV, V2)
1V, V) =E|1 — ] . B3
1. 2) [H<P(VI>P(V2>>] (B3

If V| and V; have a joint normal distribution, then this becomes

1 Cov(Vi, V)?
I(Vi,V2) = =5 In (1 ~ VeV Ve )Var(vz)) (B4)

It suffices to compute the covariance matrix of our process
X, at steady state. This can be done by subtracting the mean
from Eq. (B2), right multiplying by it by its transpose, taking
expectations and using the Itd isometry [23], taking t — oo,
and, finally, using integration by parts. The result is that the
covariance matrix C obeys the Lyapunov equation:

JC+CcJ" = —ool. (B5)

This is a linear system of equations in the coefficients of C that
may be solved algebraically.

The matrices J and o can be calculated at the level of
the deterministic dynamics [Eq. (2)], so it is insensitive to the
distinction between the Landau and Schloégl models. We did
this in previous work [7], where, in the limit 0 < |hy|, |hy| K
g =1, we found

1/3
M) — 7 (B6)

mx,ﬁy’”< >

We start with the Landau dynamics. These take the form

dmy = —T'3,, Ldt + /2T ksTyc AWV,
dmy = —I'0,,, Ldt + /2T kgTvc dWT(Z), (B7)

where the Wiener processes used here are dimensionless (with
variance 7). Linearizing the deterministic dynamics around
(mx,my) = (m, m) and evaluating the noise matrix at that
point, we find that

—2 _
j = —F|:g+m g i|, o = \/2FkBTMC Hz, (B8)

—g g4 m

where I, is the 2 x 2 identity matrix. Substituting Eq. (B8)
into the Lyapunov equation [Eq. (B5)] and solving gives

kgThc (g + m°)
Var(my) = Var(my) = —————
(mx) (my) 2P+
gkgTyvic
Cov(my,my) = ——. B9
( X Y) ng2 + m4 ( )
Therefore, the mutual information gives
1 'S

]Landau = —5 In (1 — (g+—mz)2> (BIO)

Because the covariance matrix was proportional to Tyc under
this approximation, this Monte Carlo completely cancels out
from the mutual information at the Gaussian limit. Addition-
ally, note that this expression is even in 7 and therefore in
H.

Now we turn to the case of the Schlogl model, which
has demographic noise. The dynamics under the chemical

Langevin approximation [20] can be written as

d, = (k7 — ki + K x) — k7 x + yyxy — yxrx)dt

Kk kR ko dw Y
— Vv % AW + iy dWD,

dy, = (qf — g7y + 43 y; — @5 ¥ — vvxye + vayx)dt

_ — 2
+\JaF + v+ gy + gy dW

+ VVxr % dW, — Jrvxy dW Y.

In previous work, we inverted the relations between the Lan-
dau parameters and the chemical reaction rates [7]. If we have
n. > 1 and Oy = Oy = 0, the inverse mapping becomes

gy = ki, wyxy = vrx = gky, ki = nck; (hxy +1/3),
i = ncky (hy +1/3), ky =q; =k /(3n2),

ki =qF =k /n..

(B11)

(B12)

We define the mean reactive/nonexchange propensity for X
as

Ry = ki + k[ X+ k% + ky X°

_ _ m+1)°
= nckl‘[hx + 13+ @@+ 1)+ @+ 1) + %}
TR

= nck; hX+8/3+4m+2m2+? ) (B13)
Analogously, for Y, we have

— m

Ry = nck; | hy +8/3 + 4m + 2m* + = | (B14)
Finally, we define the mean diffusive propensity as

D = yxyXx = gky n.(m + 1). (B15)

The noise matrix in the linearization is the matrix evaluated at
(x,y) = (n.(m+ 1), n.(m + 1)). We find that
o _|VR« 0o D D B16)
o V& b -VB|
Evaluating the derivative of the deterministic part at the fixed
point gives

(B17)

_ o [e+m —g

which is proportional to the result from the Landau case. It is
readily apparent that o is not even in 1, SO we expect asym-
metry in H with demographic noise. The case with iy = hy
allows some simplification:

1
Ischisgl = -3 In(1 — p?) (B18)

2 4 (—m* +m + 2)?
T 2g(2m* 47 + 2) + [m(m + 2) + 422

In the general case where hy # hy, the expression is messy
and is studied numerically.

0
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