
SEARCH
IN

G
 FO

R
 STRU

CTU
RE

Ryan
van M

astrigt

Ryan van Mastrigt

SEARCHING FOR STRUCTURE
Uncovering Combinatorial Rules

to Design Metamaterials

ISBN 978-94-93391-19-2
Cover design by Ryan van Mastrigt
Copyright © Ryan van Mastrigt 2024. All rights reserved.

Searching for Structure
Uncovering combinatorial rules to design metamaterials

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. ir. P.P.C.C. Verbeek

ten overstaan van een door het College voor Promoties ingestelde commissie,

in het openbaar te verdedigen in de Agnietenkapel

op woensdag 4 september 2024, te 10.00 uur

door Ryan van Mastrigt

geboren te Utrecht

Promotiecommissie

Promotores: prof. dr. M.L. van Hecke Universiteit Leiden
dr. C.J.M. Coulais Universiteit van Amsterdam

Copromotores: prof. dr. ir. M. Dijkstra Universiteit Utrecht

Overige leden: dr. Z. Zeravcic ESPCI Paris

prof. dr. D.M. Kochmann ETH Zürich
dr. ir. B. Ensing Universiteit van Amsterdam
prof. dr. P.G. Bolhuis Universiteit van Amsterdam
dr. A. Pérez de Alba Ortíz Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

Contents

1. Introduction 1
1.1. Mechanical metamaterial design 2

1.1.1. Calculating zero modes 4
1.1.2. Classification of structural integrity 4
1.1.3. Towards mechanism-based design. 6

1.2. Combinatorial design . 8
1.2.1. Unimodal design 9
1.2.2. Multimodal metamaterial 11

1.3. Machine learning for metamaterials 15
1.4. Thesis outlook . 16

2. Combinatorial Design Rules 19
2.1. Introduction . 20
2.2. Phenomenology . 24
2.3. Compatibility constraints 27
2.4. Mode structure . 28
2.5. strip modes . 31
2.6. Transfer mapping formalism 34

2.6.1. Linear degree of freedom transformations 35
2.7. Constraints and Symmetries 36
2.8. Deriving rules for strip modes 38

2.8.1. Case 1: W=1 . 38
2.8.2. Case 2: W=2 . 41
2.8.3. Case 3: W=3 . 47
2.8.4. Towards general design rules. 53

2.9. Discussion . 54
A2.1. Open boundary conditions 57
A2.2. Realizations mode structure 58
A2.3. Linear coordinate transformations 58
A2.4. Deriving the transfer mapping 59
A2.5. nontrivial conditions . 60
A2.6. Diagonal compatibility constraints 62

A2.6.1. Diagonal constraints for W=2 configurations . . 67
A2.6.2. Diagonal constraints for W=3 configurations . . 68

i

Contents

A2.7. lower strip condition . 70
A2.8. Constraint mapping . 71
A2.9. W=3 constraint mapping. 71
A2.10.Invalid W=3 sequences . 73
A2.11.Numerical proof strip mode rules 75

3. Machine learning implicit combinatorial rules 77
3.1. Introduction . 77
3.2. Metamaterial Classification 80
3.3. Combinatorial structure 82
3.4. Volume before structure 84
3.5. Discussion . 84
A3.1. Floppy and frustrated structures 87

A3.1.1. Design rules for floppy structures 87
A3.1.2. Rarity of floppy structures 88

A3.2. Constructing and Training Convolutional Neural Net-
works for metamaterials 88
A3.2.1. Pixel Representation 89
A3.2.2. CNN architecture details 90
A3.2.3. Training set details 91
A3.2.4. Sparsity of the training set 92
A3.2.5. CNN hyperparameter grid search details 94

A3.3. Assessing the performances of CNNs 94
A3.3.1. Test set results . 94
A3.3.2. Varying the unit cell size 95
A3.3.3. Increasing the size of the training set 96
A3.3.4. Random walk near the class boundary 98
A3.3.5. Random walk near the decision boundary 99

A3.4. Computational time analysis 101

4. Data-driven design 105
4.1. Introduction . 105
4.2. Multimodal metamaterial 110
4.3. Predicting intensive modes 112
4.4. Extrapolation . 114
4.5. Designing for target deformations 115
4.6. Combining unit cells . 120
4.7. Discussion . 121

ii

Contents

A4.1. The metamaterial . 125
A4.1.1. Calculating the number of zero modes 126
A4.1.2. Determining the structure of a zero mode 127
A4.1.3. Capacity of a set of modes 128
A4.1.4. Randomized target deformations 128
A4.1.5. Distribution of edge-modes and global modes. . 130

A4.2. Convolutional neural networks 131
A4.2.1. Training the CNNs 131
A4.2.2. Neural network architecture 131
A4.2.3. Preprocessing . 132

A4.3. Genetic algorithm . 134
A4.3.1. GA exploits nonlocal structure 136
A4.3.2. Random walks . 137
A4.3.3. Comparison to other methods. 138

A4.4. Design approach . 138
A4.4.1. Combining and selecting designs for target defor-

mations . 138
A4.4.2. Prohibiting undesired zero modes 140

5. Discussion 141

iv

1

1 Introduction
Nature is replete with complex, emergent functionality. Think of atoms
binding together to form effector molecules that regulate biological activity,
chains of amino acids folding into transport proteins that move molecules
across cell membranes, and cells clumping together to form muscle tis-
sues with anisotropic elastic moduli. In all these examples, functionality
emerges from the collective response of building blocks —atoms, amino
acids, cells—intricately connected in some spatial structure. Abstractly,
this collective response is captured in the forward structure-property re-
lation that maps microscopic details—building block types and spatial
arrangement—to a macroscopic property of interest, such as the elastic
modulus. Thus, the goal of this relation is to predict for a given structure
the resulting property.

Conversely, the inverse relation—property-structure—aims not to pre-
dict but to design: produce a structure such that the desired property
emerges. In practice, this is an ill-posed problem—there may be many
structures that result in the same property and a solution is not guaranteed.
Crucially, there is an underlying (typically unknown) order to this inverse
relation. This order is captured in design rules: conditions that a structure
should satisfy to support a desired property. Without such rules, design is
limited by intuition or brute force trial-and-error.

In this thesis, we encounter such forward and inverse problems in
the context of mechanical metamaterials: artificially designed materials
that leverage geometric effects to achieve exceptional mechanical func-
tionalities [1, 2] such as tuneable mechanical properties [3–6], mechanical
memory [7–9], steerable deformations [10] , and shape-morphing [11–13]
(see Fig. 1.1 for examples). Specifically, we focus on metamaterials that
feature multiple deformation pathways that cost little energy to actuate.
These so-called multimodal metamaterials allow for new and exciting func-
tionalities, such as nonlocal resonances [14], multi-shape folding [15–17],
sequential buckling [18], and selectable mechanical responses [19]. How-
ever, a systematic strategy to design multimodal metamaterials is lacking.

We aim to find such systematic design strategies. To achieve this ambi-
tious goal, we consider a family of multimodal metamaterials comprised of
building blocks. The challenge is to find tilings of these building blocks
that feature desired deformation pathways. However, we find that such
tilings are rare exceptions in a vast sea of failed designs. This is emblematic
of combinatorial problems which are ubiquitous in science, for example,
in self-assembly [20–24], origami [17, 25], amorphous matter [7, 26–29],

1

1

1. Introduction

(a) (b)

(d)(c)

Figure 1.1: Examples of mechanical metamaterials. (a) The stiffness to uniaxial
compression can be tuned by changing the horizontal confinement. Adapted
from [3]. (b) The orientation of the slender beams flip iteratively upon compres-
sion, effectively counting the number of compression cycles. Adapted from [8].
(c) A topological defects renders a previously soft metamaterial stiff on the top
side and soft on the bottom side, allowing for steerable deformation along the
bottom [10]. Credit: AMOLF. (d) A kirigami-based metamaterial that can continu-
ously morph from a flat shape (left) into another curved shape (right). Adapted
from [12].

molecular design [30, 31], computer graphics [32–34], chip design [35, 36],
and metamaterial design [10, 11, 19, 37].

Here, we tackle combinatorial problems using both rational design and
machine learning. First, in chapter 2, we devise a theoretical framework
for kinematic constraints to derive design rules. While successful, this
approach can be strenuous, prompting us to explore effective alternatives.
Subsequently, in chapter 3, we use neural networks to accurately delineate
design space into rare compatible and abundant incompatible designs.
Finally, in chapter 4 we formulate a hybrid design approach that combines
computational and rational design to create metamaterials with multiple
targeted spatially-textured deformations. In what follows, we provide brief
background to these chapters and discuss our main findings.

1.1. Mechanical metamaterial design

Throughout this thesis, we take a mechanism-based approach to metama-
terial design. Below, we briefly discuss the basics of metamaterial design
and the challenges that arise.

In general, mechanical metamaterials feature “soft” deformation modes:
pathways of deformation that cost little energy. These soft modes impart

2

1

1.1. Mechanical metamaterial design

(a)

(b)

iii iv iv viv iviv v

Figure 1.2: Auxetic flexible and mechanism-based metamaterials. (a) A rubber
sheet (green) perforated with holes deforms auxetically when compressed from the
top. Adapted from [2]. (b) Rigid bars (black lines) enclose rigid squares (gray) that
are connected by hinges. These squares freely rotate in an auxetic deformation.
Adapted from [39].

the metamaterial with exceptional mechanical properties. For example, a
block of rubber perforated with multiple holes placed in a square pattern
displays an auxetic response when compressed from the top—the metama-
terial contracts horizontally under vertical compression [Fig. 1.2(a)]. To
understand this auxetic deformation, we neglect the complex nonlinear
elasticity of this highly heterogeneous material and instead consider a
simpler bars-and-hinges framework. This framework consists of rigid bars
connected by hinges that freely rotate. The metamaterial’s deformation can
then be emulated in a frame of connected rigid squares that feature a de-
formation that costs zero energy, i.e., does not stretch any of the bars. This
so-called zero mode effectively rotates the squares in an alternating pat-
tern [Fig. 1.2(b)], closely resembling the deformation of the metamaterial.
This particular deformation is termed the counter-rotating squares (CRS)
mode [2, 38, 39] and provides an effective description of the mechanics
underpinning the metamaterial’s auxetic response. Thus, this bars-and-
hinges framework is an attractive, mechanism-based approach to describe
mechanical metamaterials. Below, we discuss how we use this framework
to calculate zero modes, classify the structural integrity of frames, and
how we can use this to design metamaterials with desired mechanical
properties.

3

1

1. Introduction

1.1.1. Calculating zero modes

To calculate the zero modes of a frame [Fig. 1.3(a)], we determine the
frame’s compatibility matrix C. This matrix maps small displacements of
the hinges u to elongations of the bars ϵ to first order in u. Zero modes, i.e.,
deformations that do not stretch any of the bars, span the null space, or
kernel, of C. In other words, uZM is a zero mode if CuZM = 0 [Fig. 1.3(b)].
Inversely, the equilibrium matrix Q maps stresses on the bars σ to loads
on the hinges l and is equal to the transpose of the compatibility matrix
CT . This equivalence follows from requiring the virtual work done by the
hinges and bars to be equal [40]. Stresses that do not induce any load (net
forces) are states of self-stress and span the null space of Q, i.e., σS is a
state of self-stress if QσS = 0 [Fig. 1.3(c)].

For a given frame with N hinges and NB bars in d dimensions, the
NB × dN compatibility matrix C can be composed and a set of basis vectors
that span the null space N (C) can be determined. In other words, this set of
vectors span all the zero modes of the frame. The dimensionality of this set,
dimN (C), corresponds to the total number of distinct zero modes of the
frame. In practice, we neglect the trivial zero modes: rigid translations and
rotations of the entire frame. Thus, we find that the number of nontrivial
zero modes NZM = dimN (C) − f(d), where f(d) = d(d + 1)/2 is the
number of rigid body motions in d dimensions. Similarly, the number of
states of self-stress NS is equal to the dimensionality of the null space of
the dN ×NB equilibrium matrix Q, i.e., NS = dimN (Q). For example, for
the metamaterial in Fig. 1.3(a) we find that NZM = 1 [Fig. 1.3(b)], f(2) = 3
and NS = 2 [Fig. 1.3(c)]. For large frames it is cumbersome to calculate the
zero modes and states of self-stress by hand. Instead, the null space can be
computed numerically by singular value decomposition (SVD) algorithms.

1.1.2. Classification of structural integrity

In practice, a simpler structural integrity classification of a frame may
be used that does not require explicit calculation of C. This classification
follows from a counting rule that can be derived directly from the defini-
tions of the compatibility and equilibrium matrices, C and Q, using the

4

1

1.1. Mechanical metamaterial design

frame zero mode states of self-stress(a) (b) (c)

Figure 1.3: Bars-and-hinges framework. (a) Example of a frame consisting of
rigid bars (black lines) and hinges (white circles). (b) The frame of (a) deformed
by its single zero mode: a small deformation of the hinges (blue arrows) with
respect to the rest frame (gray) that does not stretch any of the rigid bars. We note
that this deformation is equivalent to the counter-rotating squares deformation
of Fig. 1.2(b). (c) The two states of self-stress supported by the frame of (a).
Compressive (tensile) stress on the bar is indicated by the ingoing (outgoing)
arrows and green (red) color. A bar under stress induces a force on its connected
hinges. In a state of self-stress the net force on each hinge is zero.

rank-nullity theorem:

NZM −NS = dimN (C)− dimN (Q)− f(d)

= dimN (C)− dimN (CT)− f(d)

= dN − nr − (NB − nr)− f(d)

= dN −NB − f(d) ≡ P,

(1.1)

where nr is the rank of the compatibility matrix C. P is commonly referred
to as the Maxwell-Calladine count [41, 42].

This count P can be used to classify the structural integrity of a frame
into three distinct cases:

i P < 0: hyperstatic, the frame necessarily supports states of self-stress

ii P = 0: isostatic, equal number of modes and states of self-stress,

iii P > 0: hypostatic, the frame necessarily supports zero modes.

We note that this classification does not provide the number of modes NZM

of a frame. Instead, it gives a lower bound: NZM ≥ P as both NZM and
NS are non-negative integers. The NZM exceeds this lower bound if there
are degenerate rigid bars that result in additional states of self-stress. As
we will show, this structural integrity classification is useful to design for
spatially extended zero modes.

5

1

1. Introduction

metamaterial

unit cell

unit cell

metamaterial(a)

(b)

(c)

1 2 3 4 5
n

-20

0

20

40

60

N
Z
M

n
n

n

n

Figure 1.4: Mode-scaling of hypostatic and hyperstatic frames. (a) Example of a
hypostatic metamaterial. The unit cell (left) is tiled on a n × n square lattice to
form a larger metamaterial (right shows n = 3 tiling). (b) Example of a hyperstatic
metamaterial. (c) The number of modes NZM of the hypostatic (blue circles)
and hyperstatic (red squares) metamaterials and their lower bounds P [Eq. (1.1)]
(dashed lines) as a function of the tiling parameter n. The hypostatic metamaterial
necessarily contains many spatially localized zero modes, because NZM follows
P and thus scales quadratically with n. The hyperstatic metamaterial features
only a single intensive mode, which corresponds to the spatially extensive counter-
rotating squares mode [Fig. 1.3(b)].

1.1.3. Towards mechanism-based design

To show how the Maxwell-Calladine count [Eq (1.1)] can be used for meta-
material design, we consider two different metamaterial designs: a hypo-
static design [Fig. 1.4(a)] and a hyperstatic design [Fig. 1.4(b)]. Like most
metamaterial designs, these metamaterials are composed of a unit cell that
can be repeated to create a larger n× n tiling of unit cells. Generally, the
goal of mechanism-based metamaterial design is to create a frame that
supports spatially extended zero modes. Thus, at first glance, you might
expect that the design should be hypostatic, as such designs are guaranteed
to support zero modes.

Instead, we find that hypostatic designs are likely to support mostly
spatially localized zero modes. For example, consider the hypostatic meta-

6

1

1.1. Mechanical metamaterial design

material of Fig. 1.4(a). The Maxwell-Calladine count gives P = 2n2+4n−1.
As NZM ≥ P , the number of zero modes NZM must increase quadratically
as well [Fig. 1.4(c)]. We note that spatially localized modes necessarily
contribute to the scaling of the number of modes NZM with the tiling
parameter n, such that this hypostatic metamaterial must contain many
localized modes.

Inversely, hyperstatic designs are less likely to support spatially lo-
calized modes. For example, consider the hyperstatic metamaterial of
Fig. 1.4(b). Note that the frame in Fig. 1.3(a) is a 2× 2 realization of this
metamaterial. The Maxwell-Calladine count gives P = −2n2+4n−1, such
that the frame is hyperstatic for n ≥ 2 and must contain states of self-stress.
In fact, recall that we found two states of self-stress for the n = 2 tiling
in Fig. 1.3(c). Moreover, an analysis of the states of self-stress for larger
tilings reveals that these two states of self-stress are repeated periodically
in the frame, such that the number of states of self-stress proliferates as
NS = 2(n− 1)2. From Eq. (1.1), it then follows that the number of modes
NZM(n) = 1 [Fig. 1.4(c)]. That is, the number of modes is constant and
independent of n. Therefore the frame supports a single, intensive zero
mode regardless of n: the spatially extended CRS mode shown before in
Fig. 1.2(b) and Fig. 1.3(b). Such intensive modes do not result in a new
zero mode under spatial translation, because that would constitute a de-
pendence on n. Consequently, intensive modes are likely to span the entire
structure or localize on the edge(s) of the material. Thus, the scaling of
P(n) with n is important to the presence of localized zero modes in the
frame.

Generally, the scaling of P is a polynomial of, at most, degree d in n.
Surprisingly, this is not true for states of self-stress. We note that states of
self-stress are always localized in frames with open boundary conditions,
such that either there are no states of self-stress NS = 0 or the number
must be proportional to NS ∝ nd. In other words, NS(n) is either zero
or a polynomial of degree d with a positive d-th degree coefficient. This
localization follows from the observation that a state of self-stress is always
self-contained, i.e., adding extra bars and hinges to the frame does not
alter existing states of self-stress. For example, the state of self-stress in
Fig. 1.5(a) does not change under an increase of the lattice size. Conversely,
this localization argument does not hold for zero modes. For zero modes,
any new bars and hinges that are added to the frame can alter the zero
modes. For example, the CRS mode in Fig. 1.5(b) expands to newly added
hinges under an increase of the lattice size. Thus, for a frame to feature

7

1

1. Introduction

(a)

(b)

Figure 1.5: Localization of states of self-stress and zero modes. (a) A state of
self-stress (left) is always localized, because it does not change under growth of
the lattice (right). (b) A zero mode does not have to be localized, in this example
the zero mode of the 2× 2 lattice (left) extends under growth of the lattice (right).

no localized modes we require either a constant positive P and NS = 0, or
P ∝ −nd and NS ∝ nd such that all n-dependent terms cancel.

To summarize, to design metamaterials composed of a n× n tiling of
unit cells with spatially extended zero modes and few localized modes, the
Maxwell-Calladine counting P [Eq. (1.1)] should scale as P ∝ −nd. For
such frames, the number of states of self-stress NS can cancel the higher
order terms of the polynomial P and result in a positive, constant number
of modes NZM. However, a central challenge remains: how do we design
unit cells that feature desired, spatially extensive zero modes?

1.2. Combinatorial design

The space of possible frame geometries is limitless. How to effectively
explore this space to designs frames with desired mechanical properties
is an open problem. Here, we take a combinatorial approach: we limit
ourselves to a discrete set of building blocks that we combine to form larger
structures. This approach renders the design space finite and turns the
design problem into a combinatorial tiling problem: how do we find the
right tilings of building blocks that yield desired properties? We illustrate

8

1

1.2. Combinatorial design

the appeal and challenges of this combinatorial approach by example
below.

1.2.1. Unimodal design

Consider the building block in Fig. 1.6(a). This building block consists of
two two-dimensional cells. In turn, each cell consists of four rigid triangles
connected by four two-dimensional hinges, resulting in a single zero mode.
Requiring the two cells to be connected and perpendicular constrains the
cells’ zero modes, yielding one zero mode for the entire building block
[Fig. 1.6(a)].

Larger metamaterials can be constructed by tiling this building block
in a cubic n× n× n lattice. A simple count of the deformational degrees
of freedom and kinematic constraints yields P = −2n3 + 3n2, such that
the resulting frame is hyperstatic for n > 2. As P ∝ −n3, tilings of this
building block likely support few extensive, spatially localized zero modes.
Moreover, the building blocks have fewer symmetries than the cubic lattice
they live on. This allows for orientation of the building block in three
distinct ways [Fig. 1.6(b)] and 3n

3
possible cube configurations. However,

most random configurations are kinematically frustrated, i.e., they do not
support a zero mode [11].

Crucially, design rules can be derived for this metamaterial, enabling
rational design for target deformations. To derive these rules, in- and
outgoing angular deformations are mapped to “spins” that live on edges
in a graph-like framework where vertices correspond to building blocks
[Fig. 1.6(b)]. Note that there is a parity symmetry: flipping all spins results
in the same zero mode modulo the sign. A set of spins is compatible,
i.e., corresponds to a zero mode, if for all edges connected to a vertex the
spins satisfy one of the distinct patterns, similar to ice rules in spin ice
systems [43]. These patterns correspond to building block orientations
and parity of the zero mode. Thus, a simple check of these patterns gives
the set of building block orientation that support the given zero mode
[Fig. 1.6(c)-i]. We note that configurations of this building block cannot
support more than one mode. This stems from the coupling between
building block deformations: all hinges deform and thus couple to all
neighboring building blocks. As each block supports only a single zero
mode, there is at most only one compatible deformation of the building
blocks.

Moreover, these rules can be used to design spatially-textured deforma-
tions on the faces of a cubic configuration. In this case, there are simple

9

1

1. Introduction

(a)

or
ie

nt
at

io
n

iii

(b)

(c) (d)
i

ii

Figure 1.6: Combinatorial metamaterial design. (a) Schematic (left) and 3D
printed (right) building block (top) supports one zero mode (bottom). (b) The zero
modes for the different orientations (colors) can be represented in a graph, where
ingoing (outgoing) arrows on the edges represent increasing (decreasing) angular
deformations. The vertex of the edges represents the building block orientation.
Note that there is a parity symmetry—flipping all arrows yields the same zero
mode modulo the sign. (c) Collections of deformations (left) correspond to a
zero mode if the arrows on the edges of each vertex correspond to one of the
configurations in (b). On the surface of the configuration (right), a zero mode
results in a pattern of ingoing (black) and outgoing (white) deformations. This
pattern can be designed by inverting the checkerboard pattern of red and green
building blocks (ii). (d) A 10× 10× 10 cube that compresses to show a smiley on
the cube’s face. The inset shows the cube before compression. Adapted from [11].

rules to yield any desired spatial pattern on one of the faces. First, only
a single slice across the cube parallel to the face of choice needs to be
defined. The rest of the cube are simply copies of this slice due to the parity
symmetry. In this slice, sections that all move inward or outward should
follow a checkerboard pattern of blue and red/green blocks [Fig. 1.6(c)-ii].
By inverting this pattern, sections switch from all inward to all outward
and vice versa. These rules were used to design a metamaterial that, when
compressed, deforms to show a smiley face [Fig. 1.6(d)].

10

1

1.2. Combinatorial design

In conclusion, this combinatorial approach to metamaterial design
allows for design of complex aperiodic metamaterials with desired textured
shape-changes. However, several open questions remain. How do we
extend this framework to building blocks beyond simple ingoing and
outgoing deformations? How do we design a metamaterial that features
multiple shape-changes, e.g., that can change into a smiley and a frowny?

1.2.2. Multimodal metamaterial

To answer these questions, we extend the combinatorial design approach to
multimodal metamaterials that feature multiple zero-energy deformation
modes. Generally, metamaterials can be categorized into one of three
classes based on the scaling of the number of zero modes with the system
size: [19]

(i) unimodal: a single zero mode,

(ii) plurimodal: many extensive zero modes,

(iii) oligomodal: multiple intensive modes.

On the one hand, unimodal metamaterials feature a single mechanical re-
sponse which is straightforward to actuate. For example, the metamaterial
of Fig. 1.2 is unimodal and the auxetic deformation is actuated by uniaxial
compression. On the other hand, plurimodal metamaterials support many
different mechanical responses which are hard to actuate in practice. For
example, the metamaterial of Fig. 1.4(a) has a lot of deformational freedom,
but actuating a specific desired deformation is difficult. Oligomodal meta-
materials are a middle ground between these two, allowing for multiple
mechanical responses while maintaining ease of actuation.

We focus on a family of combinatorial metamaterials composed out
of bimodal building blocks [Fig. 1.7(a)] that were shown, for the right
tilings, to be oligomodal [19]. Moreover, specific tilings have been realized
experimentally with exceptional functionalities, such as a selectable auxetic
response [19][Fig. 1.7(b)] and sequential buckling [18] [Fig. 1.7(c)-(d)].
However, for tilings larger than 3× 3, the design space is too large to fully
explore. We believe that this metamaterial is sufficiently rich and complex
to warrant further exploration of the design space. We provide a brief
introduction to this metamaterial below.

The fundamental building block is shown schematically in Fig. 1.7(a).
Each black line represents a rigid bar, while vertices can be thought of as

11

1

1. Introduction

(a)

(c)

(b)

(d)

B
A

E D

C

Figure 1.7: Multimodal combinatorial metamaterial. (a) The undeformed build-
ing block (gray) supports two zero modes (blue and pink). A, B, C, D, and E label
the five interior angles that can change under zero-energy deformations. (b) 3D
printed flexible tiling (left) of the building block in (a) that deforms in an auxetic
pattern (middle) or not (right) depending on how the metamaterial is actuated
(arrows indicate textured boundary conditions). The colored ellipses indicate the
polarity orientation of each building block in a checkerboard pattern and serves
as a guide to the eye. Adapted from [19]. (c) A 3× 2 tiling of building blocks (left)
deforms along a strip (right). Note that the hinges at the top and bottom edges of
the tiling do not deform. (d) 3D printed metal tiling (left) of the building block
in (a) in a cylindrical shape sequentially buckles upon compression, numbers
indicate order of buckling. This buckling follows the deformation of shown in (c).
Adapted from [18].

hinges; the 11 bars are free to rotate about the 8 hinges in 2 dimensions.
The colored triangles form rigid structures, i.e., they will not deform. From
the Maxwell-Calladine counting [Eq. (1.1)] we obtain P = 2 · 8− 11− 3 = 2.
The building block contains no states of self-stress, such that NZM = 2.
The precise deformation of these two zero modes can be derived from the
geometric constraints of the building block.

To derive the zero modes to linear order, we note that they preserve the
length of all bars, such that the modes can be characterized by the hinging
angles of the bar. Let A,B,C,D, and E denote these angles, see Fig. 1.7(a).
Going around the loop ABCDE, the angles add up to 3π:

A+B + C +D + E = 3π. (1.2)

Next, we expand the angles from their rest position to linear order:

A = π
2 + α, B = π

2 + β, C = 3π
4 + γ,

D = π
2 + δ, E = 3π

4 + ε.
(1.3)

12

1

1.2. Combinatorial design

Then, from the condition that the bars cannot change length, we obtain

1− cos (D) = 3− 2 cos (A)− 2 cos (B) + 2 cos (A+B), (1.4)

and

sin (B)− sin (B + C)√
2

= sin (A)− sin (A+ E)√
2

. (1.5)

Up to first order in α, β, γ, δ, ϵ, equations (1.4) and (1.5) can be rewritten
as:

δ = 2α+ 2β, (1.6)

β + γ = ϵ+ α. (1.7)

Together with the loop condition (1.2), we obtain a set of three equations
which express β, γ and δ in α and ϵ:β

γ
δ

 =

−2 −1
3 2
−2 −2

(
α
ϵ

)
. (1.8)

This demonstrates that we can choose the two parameters α and ϵ arbitrarily,
while still satisfying Eqs. (1.2), (1.6) and (1.7), consistent with the presence
of two zero modes.

By tiling together the building block in different orientations, we can
create 4k

2
size k×k unit cells that we in turn tile to form n×n metamaterials.

These unit cells—and metamaterials built from them—may have more or
less zero modes than the constituent building blocks, depending on the
number of states of self-stress. Previous work on 2×2 unit cells showed that
each unit cell could be classified based on the number of zero modes [19].
In this thesis, we consider the previously unexplored cases of 3× 3 up to
8× 8 square unit cells.

To explore this design space, we first generate all 3 × 3 unit cell de-
signs, a million random k × k unit cell designs for k ∈ {4, 5, 6}, and two
million random designs for k ∈ {7, 8}. For unit cells up to size k = 6, we
determine the number of modes NZM for a n × n tiling of this unit cell
for n ∈ {1, 2, 3, 4} by composing the compatibility matrix and computing
the dimensionality of its null space using rank-revealing QR decomposi-
tion [44]. For the larger unit cells of size k ∈ {7, 8}, we generate nx × 2 and
2× ny tilings instead. This significantly decreases the size of the compati-
bility matrix and thus the time it takes to calculate the number of modes.

13

1

1. Introduction

4 6 8
k

10-5

10-3

10-1

pd
f

4 6 8
k

10-5

10-4

10-3

10-2

10-1

100

pd
f

1

2

3

4

5

a

2

3

4

5

6

7

b(a) (b)

Figure 1.8: Distribution of extensive and intensive modes. (a) Stacked bar plot
of the probability density function (pdf) for the number of extensive modes a for
randomly sampled k × k unit cells. (b) Stacked bar plot of the pdf for the number
of intensive modes b for randomly sampled k × k unit cells.

Surprisingly, we find that all tilings follow a linear mode scaling relation
for sufficiently large n, such that:

NZM = an+ b, (1.9)

where a and b correspond to the number of extensive and intensive modes,
respectively. We note that any unit cell tiling supports the CRS mode, an
intensive mode, such that b ≥ 1. From the Maxwell-Calladine count we
expect P = −k2n2 + 4kn− 1, thus our metamaterial designs must contain
NS ∝ k2n2 states of self-stress. The exact scaling depends on the tiling of
the building blocks.

We show the distribution of the number of extensive and intensive
modes of these randomly generated unit cells in Fig. 1.8. We find that
unit cell designs with a higher number of modes become exponentially
more rare with increasing unit cell size k. Moreover, the size of the design
space increases exponentially with k and the majority of generated designs
feature only a single CRS mode. This is typical of combinatorial meta-
material design—designs with non-trivial properties become increasingly
challenging to find in a design space that mushrooms with size. Without
design rules, finding designs with desired properties is intractable.

In this thesis, we use this metamaterial to tackle the challenge of mul-
timodal metamaterial design. Specifically, we derive design rules for this
metamaterial in chapter 2, show that a neural network can learn such rules

14

1

1.3. Machine learning for metamaterials

from examples in chapter 3, and combine computational and rational de-
sign to design metamaterials with desired spatially aperiodic deformations
in chapter 4.

1.3. Machine learning for metamaterials

Machine learning (ML) forms an essential part of our strategy to design
multimodal metamaterials. Below, we briefly discuss the basics of neural
networks.

Machine learning is an umbrella term that encapsulates a wide range
of general computational techniques to perform desired tasks. In general,
such a technique consists of a machine: an algorithm that can be tuned
to do a specific task in a process termed learning. For example, a neural
network is a ML algorithm typically represented in a directed graph struc-
ture, where each node represents a (usually) real value and edges represent
mathematical operations to transform values from a start node to a new
value in an end node. Such networks have a graph topology, or architecture,
that specifies a clear flow of information; there is an input and an output.
Then, the inner machinations of this network can be tuned by altering
the mathematical operations—typically affine transformations followed
by a non-linear activation function—between nodes such that the network
improves at its intended task. This tuning, or learning, transpires through
minimization of some loss function that dictates how well the network is
doing. To do so, the network requires examples: either pairs of desired
input and output (supervised learning), or just inputs (unsupervised learn-
ing). This set of data that the network uses to learn is called the training
set. After learning, the network is trained and can do its intended task.
The trained network’s performance is typically measured over another set
of data that is not used to learn: the test set. A good performance over this
test set is typically the goal, such a network is said to generalize well. The
type of performance measure—accuracy, mean squared error, area under
ROC curve—that is measured depends on the intended task. In short, the
machine is a general-purpose algorithm that is tuned to perform a specific,
desired task through minimization of a loss function.

Such ML techniques are broadly applicable. Any task that can be
framed in terms of input-to-output can, in principle, be learned by such an
algorithm [45], ranging from learning simple mathematical functions to
abstract tasks such as object identification. Provided there are sufficiently
many examples available, a machine can be trained and perform the de-

15

1

1. Introduction

sired task. The immense increase in computational power and available
data over the past decade significantly fueled this approach, resulting in
machines that can perform tasks that were previously thought impossible
for computers.

Materials science is no exception to this trend. Over the past decade, ML
has found tremendous success in classification, prediction and design of
materials [46, 47], including mechanical metamaterials [48]. Most notably,
to design supercompressible structures [49], soft materials [50], truss meta-
materials [51], and auxetic structures [52]. However, in all these examples
both the structure and property are continuously varying functions.

In contrast, we aim to classify and predict mechanical properties of
combinatorial metamaterials. Such materials present unique challenges:
the design space is large and intractable, compatible designs are rare, and
mechanical responses are sensitive to minute changes in the design. This
stands in stark contrast to smooth, continuously varying input-output re-
lations that ML algorithms are usually trained for. Several questions thus
arise: to what extend can ML algorithms learn combinatorial design rules?
How does a strong imbalance of the output values influence the perfor-
mance? Can a ML algorithm design metamaterials with properties outside
the range of the training set? To answer these questions, we train a neural
network for classification of a multimodal metamaterial in chapter 3, and
combine a neural network trained for regression with a genetic algorithm
to design multimodal metamaterials in chapter 4.

1.4. Thesis outlook

In this thesis, we show how, using rational design and machine learning,
we can classify and design multimodal combinatorial metamaterials. Our
work opens up a new route for rational and data-driven design of spatially
textured soft modes in multimodal metamaterials, with potential applica-
tions in programmable materials, soft robotics, and computing in materia.
Moreover, we foresee applications beyond the field of metamaterial de-
sign to other fields that encounter similar combinatorial problems. Below
follows a detailed description of each chapter’s content.

In chapter 2, we devise a theoretical framework to keep track of kine-
matic constraints in a given metamaterial design. First, we provide a
mathematical framework that describes the deformations of our building
blocks and tilings thereof. We show that, through enforcing kinematic
constraints between neighboring building blocks, we obtain a transfer

16

1

1.4. Thesis outlook

matrix-like procedure that maps deformations across a design. However,
there are additional local kinematic constraints that should be satisfied.
Surprisingly, we show that mapping these constraints yields emergent non-
local constraints on the tiling. Such constraints are unique to multimodal
metamaterials. We derive these constraints explicitly for a specific type
of zero mode we term strip modes. Using the results of these examples,
we conjecture a set of general design rules that we verify numerically with
complete agreement.
In chapter 3, we show that convolutional neural networks (CNNs) are able
to classify with great accuracy two types of combinatorial metamaterials
in rare compatible (C) and abundant incompatible (I) classes. However,
due to the rarity of the C class, we cannot discern from the test set alone if
the trained CNN is merely interpolating the training set or whether it has
actually learned the (unknown) design rules. To answer this question, we
quantify the CNN’s performance over a set of random walks and compare
the response of the network to the true classification. Surprisingly, we
find a good agreement between the two, suggesting that the network has
learned the design rules.
In chapter 4, we present a hybrid design strategy that combines machine
learning and rational design to find designs that feature multiple desired
deformations. First, we focus on designs with a high pluripotency, which we
define to be designs that are likely to have the desired property. We use a
CNN to predict the number of intensive modes—a proxy for pluripotency—
and efficiently guide a genetic algorithm (GA) towards high pluripotency
designs. Surprisingly, the trained CNN is able to correctly predict this
number of intensive modes outside the range of the training set, which
allows the GA to find ultra-rare high pluripotency designs. Subsequently,
we use those designs to make a library, which we search to find a design
that features the desired deformation modes. In a final step, we refine our
designs to remove superfluous modes by strategically adding defects to
the design. This two-step approach allows us to design 10× 10 metamate-
rials with multiple desired spatially-textured deformations, for example,
one with modes that resemble a smiley and frowny face and another with
modes that resemble the letters A and U.

17

18

22

2 Combinatorial Design Rules
Adapted from “Emergent Nonlocal Combinatorial Design Rules for Multimodal

Metamaterials” published in Physical Review E, December 2023

Combinatorial mechanical metamaterials feature spatially tex-
tured soft modes that yield exotic and useful mechanical proper-
ties. While a single soft mode often can be rationally designed
by following a set of tiling rules for the building blocks of
the metamaterial, it is an open question what design rules are
required to realize multiple soft modes. Multimodal metamate-
rials would allow for advanced mechanical functionalities that
can be selected on-the-fly. Here we introduce a transfer matrix-
like framework to design multiple soft modes in combinatorial
metamaterials composed of aperiodic tilings of building blocks.
We use this framework to derive rules for multimodal designs
for a specific family of building blocks. We show that such
designs require a large number of degeneracies between con-
straints, and find precise rules on the real space configuration
that allow such degeneracies. These rules are significantly more
complex than the simple tiling rules that emerge for single-
mode metamaterials. For the specific example studied here,
they can be expressed as local rules for tiles composed of pairs
of building blocks in combination with a nonlocal rule in the
form of a global constraint on the type of tiles that are allowed
to appear together anywhere in the configuration. This nonlocal
rule is exclusive to multimodal metamaterials and exemplifies
the complexity of rational design of multimode metamaterials.
Our framework is a first step towards a systematic design strat-
egy of multimodal metamaterials with spatially textured soft
modes.

19

22

2. Combinatorial Design Rules

2.1. Introduction

The structure and proliferation of soft modes is paramount for under-
standing the mechanical properties of a wide variety of soft and flexible
materials [2, 53–56]. Recently, computational and rational design of soft
modes in designer matter has given rise to the field of mechanical meta-
materials [1, 2, 39, 57–62]. Typically, such materials are structured such
that a single soft mode controls the low energy deformations. Their ge-
ometric design is often based on that of a single zero-energy mode in a
collection of freely hinging rigid elements [63]. Such metamaterials display
a plethora of exotic properties, such as tunable energy absorption [64],
programmability [3–6], self-folding [17, 65], nontrivial topology [10, 66–
68] and shape-morphing [15, 69–77]. For shape-morphing in particular,
a combinatorial framework was developed, where a small set of building
blocks are tiled to form a metamaterial [11]. In all these examples, both
the building blocks and the underlying mechanism exhibit a single zero
mode, so that the metamaterial’s response is dominated by a single soft
mode leading to a single mechanical functionality. Often, by fixing the
overall amplitude of deformation, the combinatorial design problem can
be mapped to a spin-ice model [10, 11, 37] or, similarly, to Wang tilings [17,
70, 77].

In contrast, multimodal metamaterials can potentially exhibit multiple
functionalities [19]. Such metamaterials host multiple complex soft modes
with potentially distinct functionalities. By controlling which mode is
actuated, one can tune the metamaterial’s response at will. To engineer such
multimodal materials, one requires precise control over the structure and
enumeration of zero modes. However, as opposed to metamaterials based
on building blocks with a single zero mode, the kinematics of multimodal
metamaterials can no longer be captured by spin-ice or tiling problems.
This is because linear combinations of zero modes are also valid zero modes
such that the amplitudes of different deformation modes can take arbitrary
values—such a problem can no longer be trivially mapped to a discrete
tiling or spin-ice model. As a consequence, designing multimodal materials
is hard. Current examples of multimodal metamaterials include those
with tunable elasticity tensor and wave-function programmability [78],
and tunable nonlocal elastic resonances [14]. In both works, the authors
consider periodic lattices that limit the kinematic constraints between
bimodal unit cells to (appropriate) boundary conditions, thereby allowing
for straightforward optimization. In contrast, we aim to construct design
rules for aperiodic multimode structures that contain a large number of

20

22

2.1. Introduction

simpler bimodal building blocks and that exhibit a large, but controllable
number of spatially aperiodic zero modes. Such aperiodic modes allow for
complex mechanical functionalities such as a strain-rate selectable auxetic
response [19] and sequential energy-absorption while retaining the original
stiffness [18]. For aperiodic multimode structures, the number of kinematic
constraints grows with the size of the structure, so that successful designs
require a large number of degeneracies between constraints. A general
framework to design such zero modes is lacking.

Here, we set a first step towards such a general framework for multi-
modal combinatorial metamaterials. We use this framework to find emer-
gent combinatorial tiling rules for a multimodal metamaterial based on
symmetries and degenerate kinematic constraints. Strikingly, we find non-
local rules that restrict the type of tiles that are allowed to appear together
anywhere in the configuration. This is distinct from local tiling rules found
in single-modal metamaterials which consist only of local constraints on
pairs of tiles. Our work thus provides a new avenue for systematic design
of spatial complexity, kinematic compatibility and multi-functionality in
multimodal mechanical metamaterials.

To develop our framework, we focus on a recently introduced mul-
timodal combinatorial metamaterial [19]. This metamaterial can host
multiple complex zero modes that can be utilized to engineer functional
materials. For example, a configuration of this metamaterial dressed with
viscoelastic hinges allows for a strain-rate selectable auxetic response un-
der uniaxial compression [19]. Another recent example utilizes so-called
strip modes to efficiently absorb energy through buckling while retaining
the original stiffness under sequential uniaxial compression [18]. How-
ever, the design space remains relatively unexplored and is sufficiently
rich and complex that further study of this combinatorial metamaterial is
warranted.

More concretely, this combinatorial metamaterial is composed of build-
ing blocks consisting of rigid bars and hinges that feature two zero modes:
deformations that do not stretch any of the bars to second order of de-
formation [19] [Fig. 2.1(a)]. These degrees of freedom are restricted by
kinematic constraints between neighboring building blocks, which in turn
depend on how the blocks are tiled together. We stack these building
blocks to form square k × k unit cells, and tile these periodically to form
metamaterials of n× n unit cells. These metamaterials can be classified in
three distinct classes based on the number of zero modes NZM as function
of n: most random configurations are monomodal, due to the presence

21

22

2. Combinatorial Design Rules

building blocks unit cell metamaterial(a)

n

n

(b) (c)
NZM(n) = a n + b

2 3 4 5
n

1

3

5

7

(
)

N
Z
M

n

(i):

(ii):

(iii):

NE SE SW NW

θA

θDθE

θB

θC

3 5 7
k

10-3

10-2

10-1

100

pd
f

(iii)
(ii)
(i)

k

k

Figure 2.1: (a) Four differently oriented two-dimensional building blocks (left),
combine into a square k = 5 unit cell (middle) which is tiled in a n = 3 grid to form
a combinatorial metamaterial (right). The four orientations of the building block
each have a unique color to guide the eye. The black lines represent rigid bars
that hinge freely at intersections with other rigid bars. Colored regions are rigid
polygons. We note that rigid pentagons with a reentrant edge are kinematically
equivalent to rigid diamonds (rotated squares). (b) The number of zero modes
NZM(n) as a function n. We distinguish between three design classes, exemplified
by the three unit cells designs shown in the legend. Note that the unit cells differ
only by the rotation of a single building block, yet each belongs to another class.
(c) Probability density function (pdf) to find each design class through Monte
Carlo sampling of the design space. Class (ii) (blue triangles) and (iii) (red circles)
become exponentially more rare with increasing unit cell size k, while class (i)
(green squares) becomes abundant [80]. The rate of exponential decline for class
(ii) and (iii) depends on if k is odd (filled) or even (open).

of a trivial global (counter-rotating) single zero mode (Fig. 1.8) [19, 79].
However, rarer configurations can be oligomodal (constant number > 1
of zero modes) or plurimodal (number of zero modes proportional to n)
[Fig. 2.1(b)].

The design space of this metamaterial was fully explored for 2× 2 unit
cell tilings of such building blocks [19]. For larger tilings, a brute-force
calculation of the zero modes up to 8 × 8 reveals that this classification
holds for larger unit cells (see Sec. 1.2.2). However, it is an open question

22

22

2.1. Introduction

how to construct design rules to determine this classification directly from
the unit cell tiling without requiring costly matrix diagonalizations.

In this chapter, we focus on the specific question of obtaining tiling
rules for plurimodal designs for the aforementioned building blocks. Such
plurimodes drive the mechanism behind the sequential energy-absorption
metamaterial [Fig. 1.7(d)] [18]. A crucial role is played by degeneracies
of the kinematic constraints. These kinematic constraints follow trivially
from the tiling geometry and take the form of constraints between the
deformation amplitudes of adjacent building blocks. For random tilings,
the kinematic constraints rapidly proliferate, leading to the single trivial
mode. Checking for degeneracies between these constraints is nontrivial,
as they are expressed as relations between the deformation amplitudes of
different groups of building blocks. To check for degeneracies, we use a
transfer matrix-like approach to map all these constraints to constraints
on a small, pre-selected set, of deformation amplitudes. This allows us to
establish a set of combinatorial rules. Strikingly, these combine local tiling
constraints on pairs of building blocks with global constraints on the types
of tiles that are allowed to appear together; hence, local information is not
sufficient to identify a valid plurimodal tiling.

The structure of this paper is as follows. In Sec. 2.2 we investigate
the phenomenology of this metamaterial, focusing on the number of zero
modes NZM(n) for unit cell sizes 3 ≤ k ≤ 8. We show that random configu-
rations are exponentially less likely to be oligomodal or plurimodal with
increasing unit cell size k. Additionally, we define a mathematical repre-
sentation of the building blocks’ deformations that allows us to compare
deformations in collections of building blocks. In Sec. 2.3 we derive a set
of compatibility constraints on building block deformations that capture
kinematic constraints between blocks. In Sec. 2.4 we use these constraints
to formulate an exclusion rule that prohibits the structure of zero modes in
collections of building blocks. Subsequently, we categorize the “allowed”
mode-structures in three categories. In Sec. 2.5 we devise a mode-structure
that, if supported in a unit cell, should result in a linearly growing number
of zero modes, i.e., the unit cell will be plurimodal. We define a set of
additional constraints on deformations localized in a strip in the unit cell
that should be satisfied to support a mode with such a mode-structure. We
refer to such modes as ‘strip’-modes. In section 2.6 we define a transfer
matrix-like formalism that maps deformation amplitudes from a column
of building blocks to adjacent columns. In Sec. 2.7 we define a general
framework using the transfer mappings defined in the previous section to

23

22

2. Combinatorial Design Rules

determine if a strip of building blocks supports a strip mode of a given
width W . In Sec. 2.8 we apply this framework explicitly on strips of width
1 ≤ W ≤ 3 and derive a set of tiling rules for strips of each width W .
Surprisingly, we find that strips of width W = 3 require a global constraint
on the types of tiles that are allowed to appear together in the strip. Finally,
we conjecture that there is a set of general design rules for strips of arbi-
trary width W , provide numerical proof of their validity and use them to
construct a strip mode of width W = 10.

2.2. Phenomenology

Configuration.—We consider a family of hierarchically constructed combi-
natorial metamaterials [Fig. 2.1(a)] [19]. A single building block consist
of three rigid triangles and two rigid bars that are flexibly linked, and its
deformations can be specified by the five interior angles θA, θB, . . . , θE that
characterize the five hinges [Fig. 2.1(a)]. Each building blocks features two,
linearly independent, zero energy deformations (see Sec. 1.2.2) [19]. As the
undeformed building block has an outer square shape and inner pentagon
shape, each building block can be oriented in four different orientations:
c = {NE,SE, SW,NW} [Fig. 2.1(a)]. We stack these building blocks to
form square k × k unit cells. Identical unit cells are then periodically tiled
to form metamaterials consisting of n× n unit cells; we use open boundary
conditions. Each metamaterial is thus specified by the value of n and the
design of the unit cell, given by the k × k set of orientations C.

Three classes.—We focus on the number of zero modes NZM(n) (defor-
mations that do not cost energy up to quadratic order) for a given design.
In Sec. 1.2.2, we showed that the number of zero modes is a linear function
of n: NZM = an+ b, where a ≥ 0 and b ≥ 1 (see Fig. 2.1(b)) [79]. Based on
the values of a and b, we define three design classes: Class (i): a = 0 and
b = 1. For these designs, which become overwhelmingly likely for large k
random unit cells [Fig. 2.1(c)], there is a single global zero mode, which we
will show to be the well known counter-rotating squares (CRS) mode [2, 38,
63, 65, 69, 71, 81–84]; Class (ii): a = 0 and b ≥ 2. For these rare designs,
the metamaterial hosts additional zero modes that typically span the full
structure, but NZM(n) does not grow with n; Class (iii): a ≥ 1. For these
designs the number of zero modes grows linearly with system size n, and
we will show that these rare zero modes are organized along strips. Designs
in class (ii) and (iii) become increasingly rare with increasing unit cell
size k (see Fig. 2.1(c)). Yet, multi-functional behavior of the metamaterial

24

22

2.2. Phenomenology

requires the unit cell design to belong to class (ii) or (iii). Hence we aim to
find design rules that allow to establish the class of a unit cell based on its
real space configuration C and that do not require costly diagonalizations
to determine NZM(n). Such rules will also play a role for the designs of the
rare configurations in class (ii) and (iii).

As we will show, deriving such rules requires a different analytical
approach than previously used to derive design rules in mechanical meta-
materials [10, 11, 17, 37] The reason is for this is that each building block
has two degrees of freedom yet potentially more than two nondegener-
ate constraints to satisfy. The problem can therefore not be mapped to a
tiling problem [17, 72]. In what follows, we will define an analytic frame-
work based on transfer-mappings and constraint-counting and use this
framework to derive design rules for unit cells of class (iii).

Zero modes of building blocks.—To understand the spatial structure of
zero modes, we first consider the zero energy deformations of an individual
building block, irrespective of its orientation [Fig. 2.2(a)]. We can specify a
zero mode mz of a single building block in terms of the infinitesimal defor-
mations of the angles θA, θB, . . . , θE , which we denote as dθA,dθB, . . . ,dθE ,
with respect to the undeformed, square configuration [Fig. 2.2(a)]. As the
unit cell can be seen as a dressed five-bar linkage, it has two independent
zero modes (see Sec. 1.2.2) [19, 79]. We choose a basis where one of the
basis vectors correspond to the Counter-Rotating Squares (CRS) mode,
where
(dθA, dθB,dθC ,dθD,dθE) ∝ (1,−1, 1, 0,−1),
and the other basis vector corresponds to what we call a ‘diagonal’ (D)
mode, where
(dθA, dθB,dθC ,dθD,dθE) ∝ (−1,−1, 3,−4, 3) [Fig. 2.2(a)].
A general deformation can then be written as
(dθA, dθB,dθC ,dθD,dθE) = α(1,−1, 1, 0,−1) + β(−1,−1, 3,−4, 3),
where α and β are the amplitudes of the CRS-mode and D-mode, respec-
tively.

Zero modes of unit cells.—We now consider the deformations of a single
building block in a fixed orientation. Hence, we can express a zero mode of
an individual building block mz as mz(αz, βz, cz) = αzmCRS + βzmD(cz).
The deformation of each building block is completely determined by three
degrees of freedom: the orientation cz and the amplitudes αz and βz of the
CRS and D mode. To compare these deformations for groups of building
blocks, we now define additional notation. We use a vertex representa-
tion [19] where we map the changes in angles of the faces of the building

25

22

2. Combinatorial Design Rules

u

(a)

v

l r

dNE

i i+1

j
j+

1

(b)

(c)

undeformed CRS D

dNW

dSW dSE

θA

θDθE

θB

θC

u

v

l r

dNEdNW

dSW dSE

i i+1

j
j+

1

(d)

Figure 2.2: (a) Zero modes of the building block in orientation NE are infinitesimal
deformations of the undeformed building block (left) expressed in the two basis
zero modes CRS (middle) and D (right). These deformations are characterized
by changes in the four angles on the faces of the block (cyan circles) and the four
angles on the corners of the block (pink squares). (b) The five interior angles
of the building block in orientation NE are represented by edges in the bond
representation (left). We express deformations of the building block as values on
these edges, which we represented as arrows. The number of arrows corresponds
to the magnitude of deformation, and the direction of the arrows (incoming,
outgoing) to the sign. Note that the CRS mode (middle) deforms only the angles
on the faces of the building block and thus does not depend on the orientation
of the building block. However, the D mode (right) does deform a diagonal edge
and the mode thus depends on the orientation of the building block. (c) Building
blocks are tiled together on a grid to form unit cells (left, for a 2 × 2 example),
where the row index j increases from top to bottom and the column index i from
left to right. The bond representation (right) forms the static background. (d) The
static background is dressed with arrows on its bonds that represent deformations
of the unit cell (left) in the vertex representation (right).

block, dθA,dθB, dθC and dθE to values on horizontal (l, r) and vertical (u, v)
edges, and the change in angle of the corner of the building block, dθD,
to the value dc on a diagonal edge—note that the location of the diagonal
edge represents the orientation, c, of each building block [Fig. 2.2(b)]. Irre-
spective of the orientation, we then find that a CRS mode corresponds to

26

22

2.3. Compatibility constraints

[Fig. 2.2(b)]
(u, v, l, r, dNE, dSE, dSW, dNW) ∝ (−1,−1, 1, 1, 0, 0, 0, 0) = mCRS .
For a D mode, the deformation depends on the orientation; for a NE block
we have [Fig. 2.2(b)]
(u, v, l, r, dNE, dSE, dSW, dNW) ∝ (3,−1,−1, 3,−4, 0, 0, 0) = mD(NE).
We note that for a D mode in a building block with orientation c, only a
single diagonal edge is nonzero. For ease of notation, we express the de-
formation of a building block with orientation c in shorthand (u, v, l, r, dc),
where the excluded diagonals are implied to be zero. In this notation, the
D mode for a SE block is
(u, v, l, r, dSE) ∝ (−1, 3,−1, 3,−4) = mD(SE),
for a SW block it is
(u, v, l, r, dSW) ∝ (−1, 3, 3,−1,−4) = mD(SW),
and for a NW block it is
(u, v, l, r, dNW) ∝ (3,−1, 3,−1,−4) = mD(NW).
In addition, throughout this paper we will occasionally switch to a more
convenient mode basis for calculation, where the degrees of freedom of mz

are the orientation cz and the deformations uz and vz.
To describe the spatial structure of zero mode deformations in a k × k

unit cell, we place the building blocks on a grid and label their location
as (i, j), where the column index i increases from left to right and the row
index j increases from top to bottom [Fig. 2.2(c)]. We label collections
of the building block zero modes mi,j(αi,j , βi,j , ci,j) as M(A,B,C), where
A, B, and C are the collections of αi,j , βi,j and ci,j . Such a collection
M(A,B,C) describes a valid zero mode of the collection of building blocks
C if M ’s elements, building block zero modes mi,j , deform compatibly
with its neighbors.

2.3. Compatibility constraints

Here, we aim to derive compatibility constraints on the deformations of
individual building blocks in a collection of building block C to yield a
valid zero mode M (Sec. 2.2). We find three local constraints that restrict
the spatial structure of such valid zero modes. First, we require compatible
deformations along the faces between adjacent building blocks, and thus
consider horizontal pairs (e.g., a building block at site (i, j) with neighbor-
ing building block to its right at site (i + 1, j)) and vertical pairs (e.g., a
building block at site (i, j) with neighboring building block below at site
(i, j + 1))[Fig. 2.2(c)]. To be geometrically compatible, the deformations of

27

22

2. Combinatorial Design Rules

the joint face needs to be equal, yielding

ri,j = −li+1,j , and vi,j = −ui,j+1 (2.1)

for the ‘horizontal’ and ‘vertical’ compatibility constraints respectively.
Due to the periodic tiling of the unit cells, we need to take appropriate pe-
riodic boundary conditions into account; the deformations at faces located
on the open boundary of the metamaterial are unconstrained.

Second, we require the deformations at the shared corners of four
building blocks to be compatible. This yields the diagonal compatibility
constraint [Fig. 2.2(c)]:

dSEi,j + dNE
i,j+1 + dSWi+1,j + dNW

i+1,j+1 = 0. (2.2)

We note that we again need to take appropriate periodic boundary condi-
tions into account, and note that the deformations at corners located on the
open boundary of the metamaterial are unconstrained (see App. A2.1). For
compatible collective deformations in a configuration of building blocks,
we require these constraints to be satisfied for all sites, with appropriate
boundary conditions: either periodic or open.

2.4. Mode structure

In this section we determine an important constraint on the spatial struc-
ture of the zero modes that follows from the compatibility constraints
[Eqs. (2.1) and (2.2)]. We use the compatibility constraints to derive a
constraint on the mode-structure of 2 × 2 configurations, which in turn
restricts the “allowed” spatial structures of valid zero modes M in any
configuration C. To derive this constraint, we label the deformations of
each building block as either CRS or D, depending on the magnitude of the
D mode, βi,j . We refer to building blocks with βi,j = 0 as CRS blocks that
deform as mi,j ∝ mCRS , and to building blocks with βi,j ̸= 0 as D blocks.
We will find that the compatibility constraints restrict the location of D
and CRS blocks in zero modes.

Regardless of the unit cell configuration C, there is always a global
CRS mode where all building blocks are of type CRS [19, 79]. To see this
from our constraints, note that CRS blocks trivially satisfy the diagonal
compatibility constraint [Eq. (2.2)], and when we take αi,j = (−1)i+jα,
also the horizontal and vertical compatibility constraints [Eq. (2.1)]. We
refer to a deformation of CRS blocks that satisfies these constraints as an

28

22

2.4. Mode structure

area of CRS with amplitude α. Any configuration of building blocks with
open boundaries supports a global area of CRS with arbitrary amplitude.
Another way to see this is to note that locally, the CRS mode mCRS does
not depend on the building block’s orientation c.

To find additional modes in a given configuration, at least one of the
building blocks has to deform as type D. We now show that any valid zero
mode in a 2× 2 plaquette cannot contain a single D block. Consider a 2× 2
configuration of building blocks with an open boundary and assume that
three of the building blocks deform as CRS blocks (β1,2 = β2,1 = β2,2 = 0)
[Fig. 2.3(a)]. These three blocks deform such that

u2,1 = −l1,2. (2.3)

However, this is incompatible with a D block at site (1, 1)—irrespective of
its orientation, for a D block v1,1 ̸= −r1,1, so a D block is not compatible
with three of such CRS blocks. Clearly, this argument does not depend on
the specific location of the D blocks, since we are free to rotate the 2 × 2
configuration and did not make any assumptions about the orientations of
any of the building blocks. Hence, valid zero modes in any 2× 2 plaquette
cannot feature a single D building block [Fig. 2.3(b)].

This implies that, first, in tilings that are at least of size 2× 2, D blocks
cannot occur in isolation. Second, this implies that areas of CRS must
always form a rectangular shape. To see this, consider zero modes with
arbitrarily shaped CRS areas and consider 2× 2 plaquettes near its edge
[Fig. 2.3(c)]. Any concave corner would locally feature a 2 × 2 plaquette
with a single D block, and is thus forbidden; only straight edges and convex
corners are allowed. Hence, each area of CRS must be rectangular. In
general, this means that in a valid zero mode the D and CRS blocks form a
pattern of rectangular patches of CRS in a background of D [Fig. 2.3(d)].

Note that our considerations above only indicate which mode structures
are forbidden. However, we have found that modes can take most “allowed”
shapes, including ‘edge’-modes where the D blocks form a strip near the
boundary, ‘stripe’-modes where the D blocks form system spanning strips,
and ‘Swiss cheese’-modes, where a background of D blocks is speckled
with rectangular areas of CRS [Fig. 2.3(d)].

We associate such modes with class (ii) or (iii) mode-scaling in unit
cells. We observe that most edge-modes in a unit cell persist upon tiling
of the unit cell by extending in the direction of the edge, resulting in a
single larger edge-mode [Fig. 2.3(e)-left]. Swiss cheese-modes can also
persist upon tiling of the unit cell by deforming compatibly with itself or

29

22

2. Combinatorial Design Rules

(a) forbidden

(1, 1) (1, 2)

(2, 1) (2, 2)

(b)

(c)

(d)

(e)

Figure 2.3: (a) 2 × 2 configuration of building blocks with open boundaries.
Three building blocks deform compatibly as CRS blocks (cyan solid squares)
with amplitude α = 1, while the top left building block is undetermined (gray
dash-dotted square). (b) Left: example of an invalid zero mode. The top-left
building block deforms incompatibly as a D block (pink dashed square) with
its CRS block neighbors (frustrated deformation is circled by thick red square).
Right: we describe the structure of a mode M in CRS blocks (cyan and solid) and
D blocks (pink and striped). In general, a valid zero mode cannot contain any
2× 2 configurations that deform with a single D block surrounded by CRS blocks.
Thus 2× 2 configurations with a single D block are forbidden, which we label by
a thick red square. (c) Forbidden zero mode structures for a 6× 6 configuration
with open boundaries. (d) Allowed zero mode structures for a 6× 6 configuration
with open boundaries. In App. A2.2 we show specific realizations of ’edge’-modes
(left), ’stripe’-modes (middle), and ’Swiss cheese’-modes (right). (e) Zero mode
structures for a 2× 2 tiling of a 6× 6 unit cell (thick black squares). Note that the
strip of D blocks in the stripe-mode (middle) can be located in both the top and
bottom row of the tiling, and therefore leads to two valid zero modes in the tiling.

30

22

2.5. strip modes

another Swiss cheese-mode, creating a single larger Swiss cheese-mode
[Fig. 2.3(e)-right]. Thus unit cells that support only edge-modes and Swiss
cheese-modes have class (ii) mode-scaling. Moreover, we will show that
a special type of stripe-mode, ‘strip’-modes, extend only along a single
tiling direction, and allow for more strip modes by a translation symmetry
[Fig. 2.3(e)-middle]. Here, we have found a rule on the deformations of
2× 2 plaquettes of building blocks that restricts the structure of valid zero
modes in larger tilings.

2.5. strip modes

We now focus on unit cells that are specifically of class (iii). We argue
that a unit cell that can deform with the structure of a ‘strip’-mode is a
sufficient condition for the number of modes NZM(n) to grow linearly with
a ≥ 1 for increasingly large n × n tilings. Here, we distinguish between
stripe-modes and strip modes. We consider any zero mode that contains a
deformation of non-CRS sites located in a strip enclosed by two areas of
CRS a stripe-mode [Fig. 2.3(d)]. strip modes are a special case of stripe-
modes: in addition to the aforementioned mode structure, we require
the strip mode to deform compatibly (anti-)periodically across its lateral
boundaries [Fig. 2.4(a)]. As we will show, this requirement ensures that the
strip mode persists in the metamaterial upon tiling of the unit cell and in
turn leads to a growing number of zero modes with n. To find rules for unit
cell configuration C to support strip modes, we first in detail determine
the required properties of strip modes for class (iii) mode-scaling. We then
use these properties to impose additional conditions on the zero mode
inside the strip of the configuration, strip conditions, and introduce a
transfer matrix-based framework to find requirements on the configuration
to support a strip mode.

We now consider the required properties of a strip mode for a k × k
unit cell. We consider a unit cell in the center of a larger metamaterial
that features a horizontal strip mode of width W [Fig. 2.4(a)]. In the strip
mode, we take the areas outside the strip to deform as areas of CRS with
amplitudes α = αu and α = αv for the areas above and below the strip
respectively. We denote the deformation of the area inside the strip as
MSM and require the strip to contain at least one D block. Compatibility
between our central unit cell and its neighbors requires neighboring areas
of CRS to be compatible. This is easy to do, as every unit cell is free to
deform with a unit cell-spanning area of CRS. Thus the unit cells above and

31

22

2. Combinatorial Design Rules

MSM

αv

αu

αv

(a)

z z

z z

strip-mode 2 strip-mode 3(c) strip-mode 1

αu

αu

-αv

W

(b)

MSM

Figure 2.4: (a) Mode-structure of a strip mode in a 6 × 6 unit cell. The strip of
width W deforms with strip deformation MSM (pink and striped blocks) enclosed
by two areas of CRS (cyan and solid blocks) above and below the strip with CRS
amplitudes αu and αv. (b) Unit cells above and below the central unit cell deform
compatibly with the strip mode as global areas of CRS. The sign of the CRS
amplitudes depends on the parity of k and the size of the area of CRS above and
below the strip. Unit cells to the left and right of the central unit cell deform
compatibly with the strip mode as strip modes. (c) A 6 × 6 unit cell with a
W = 3 strip that supports a strip mode is tiled to form a 3× 3 metamaterial. This
metamaterial supports a strip mode in the bottom (left), middle (middle) and top
(right) rows.

below the central unit cell deform compatibly with the strip mode if they
deform completely as areas of CRS with equal or staggered CRS amplitude
αu and αv [Fig. 2.4(b)]. In addition, we require compatibility between the
central unit cell and its left and right neighbors. Because the deformation
in the strip MSM deforms compatibly with (anti-)periodic strip conditions
across its lateral boundaries, unit cells to the right and left of the central
unit cell deform compatibly with the strip mode if they deform as strip
modes themselves [Fig. 2.4(b)]. In an n × n tiling, all unit cells in any of
the n rows deforming as strip modes is a valid zero mode in the larger
metamaterial [Fig. 2.4(c)]. Therefore, we find a linearly increasing number
of zero modes NZM(n) for unit cells that support a strip mode.

To find conditions on unit cell configurations C to support a strip
mode, we derive strip conditions from the structure of the strip mode

32

22

2.5. strip modes

on the strip deformation MSM . Because areas of CRS are independent
of the orientations of the building blocks in the area, we need only to
find conditions on the configuration of building blocks in the strip CSM .
Without loss of generality, we focus on horizontal strip modes only. We
consider a strip of building blocks CSM of length k and width W and
relabel the indices of our lattice such that (i, j) = (1, 1) corresponds to
the upper-left building block in the strip: the row index is constrained to
1 ≤ i ≤ k and the column index is constrained to 1 ≤ j ≤ W . For building
blocks at the top of the strip to deform compatibly with an upper CRS area
we require

ui,1 = −ui+1,1, (2.4)

to hold along the entire strip. We refer to this constraint as the upper strip
condition. Without loss of generality we can set ui,1 = 0 everywhere along
the strip to ease computation, because we are free to add the global CRS
mode with amplitude −αu to the full strip mode so as to ensure that the
upper deformation ui,1 = 0 for all i. Similarly, we require the building
blocks at the bottom of the strip to satisfy

vi,W = −vi+1,W (2.5)

along the entire strip. This constraint is referred to as the lower strip condi-
tion. Finally, we require the strip deformation to deform (anti-)periodically:

v1 =

{
(−1)kvk+1, if v1,W ̸= 0

|vk+1|, if v1,W = 0
(2.6)

where the vector vi = (vi,1, vi,2, ..., vi,W) fully describes the deformation of
the building blocks in column i, if all deformations in the column satisfy
the vertical compatibility constraints Eq. (2.1). We refer to this condition
as the periodic strip condition (PSC). We note that if the building blocks at
the bottom of the strip deform as vi,W = 0, both anti-periodic and periodic
strip conditions result in a valid strip deformation.

Together with the horizontal and vertical compatibility constraints
Eq. (2.1) and diagonal compatibility constraints Eq. (2.2), the strip condi-
tions Eq. (2.4) and Eq. (2.5) allow us to check if a configuration of building
blocks in strip SM can satisfy all constraints and thus allow for a strip
mode.

33

22

2. Combinatorial Design Rules

2.6. Transfer mapping formalism

Now, we aim to derive necessary and sufficient requirements for configura-
tions of building blocks in a strip of width W , CSM , such that they allow
for a valid strip deformation MSM . To find such conditions, we introduce
here transfer mappings that relate deformations in a column of building
blocks to deformations in its neighboring columns. We will show later that
these transfer mappings allow us to relate constraints and conditions on
zero modes to requirements on the strip configuration.

To derive such transfer mappings, we first derive linear mappings
between the pairs of degrees of freedom that characterize the zero mode mz :
the amplitudes of the CRS and D mode (αz, βz), the vertical edges (uz, vz)
and horizontal edges (lz, rz). Subsequently, we derive a framework to
construct strip modes: we fix the orientations cz throughout the strip (CSM).
We first fix the (uz, vz) deformations for the left-most blocks in the strip
[Fig. 2.5(a)]. Then, using our linear maps, we determine (lz, rz) for these
blocks [Fig. 2.5(b)]. We use the upper strip condition [Eq. 2.4] to determine
uz of the top block in the second column, and the horizontal compatibility
constraint [Eq. 2.1] to determine lz of the second column [Fig. 2.5(c)].
Then we use a linear map to determine (vz) of the first block in the second
column, and use vertical compatibility constraint [Eq. 2.1] to determine
(uz) of the second block in the second column [Fig. 2.5(d)]. Repeating this
last step, we obtain (uz, vz) of the second column [Figs. 2.5(e) and 2.5(f)],
after which we can iterate this process to obtain (uz, vz, lz, rz) throughout
the strip. While above we have worked with upper and lower vertical
edges (uz, vz), we note that the deformations in a column follow from
only the lower vertical edges vz in a column of building blocks vi, where
uz follows from applying the vertical compatibility constraint [Eq. (2.1)].
Thus, the deformation of building blocks in column i+1 is fully determined
by the deformation in column i by satisfying the vertical and horizontal
compatibility constraints and the upper strip condition.

We refer to the linear mappings relating the deformations of column i,
vi, to the deformations in adjacent column i+ 1, vi+1, as a linear transfer
mapping T (ci, ci+1) which depends on the orientations of the building
blocks in the two columns. Thus, by iterating this relation, the strip
deformation is determined entirely by the deformations v1 of the left-most
column.

34

22

2.6. Transfer mapping formalism

(a) (b) (c) (d) (e) (f)

1 k2

(g) (h) (i)

k+1

Figure 2.5: (a-f) Step-wise schematic illustration of our transfer mapping of
deformations in a column of building blocks in the strip (white squares) to the
next column in the strip, see main text. Yellow circles (light gray) indicate known
deformations of the building blocks, the upper white half-circles represent the
upper strip condition [Eq. 2.4]. (g-i) Schematic illustration of the constraints
and conditions on the strip deformation, see main text. Red squares (dark gray)
indicate known diagonal deformation dz of the building blocks, the lower white
half-circles represent the lower strip condition [Eq. (2.5)], and the lower numbers
enumerate the columns for a strip of length k.

2.6.1. Linear degree of freedom transformations

To derive these transfer mappings, we require linear mappings between
the pairs of degrees of freedom that characterize the zero mode mz. For
given set of orientations {cz}, we derive linear mappings from the mode-
amplitudes (αz, βz) to vertical edges (uz, vz) to horizontal edges (lz, rz) and
find that they all are nonsingular—this implies that any of these pairs fully
characterizes the local soft mode mz.

First, we define Λ as

(
uz
vz

)
= Λ(cz)

(
αz

βz

)
. (2.7)

Subsequently, we express (lz, rz) in terms of (uz, vz) as

(
lz
rz

)
= Γ(cz)

(
αz

βz

)
= Γ(cz)Λ

−1(cz)

(
uz
vz

)
. (2.8)

35

22

2. Combinatorial Design Rules

Explicit expressions for the 2× 2 matrices Λ and Γ are given in App. A2.3.
Finally, we rewrite this equation as (see Table. 2.1):(

lz
rz

)
=

(
Lu(cz) Lv(cz)
Ru(cz) Rv(cz)

)(
uz
vz

)
. (2.9)

Similarly, we can express the diagonal edge doz at orientation o in terms of
(uz, vz) as (see App. A2.3)

doz = Do(cz)(−uz + vz) , (2.10)

where the coefficients Do(cz) are given in Table 2.1 for all orientations
o = {NE,SE,SW,NW}. We note that for CRS blocks where uz = vz
this equation immediately gives doz = 0 for all orientations o. Together,
Eqs. (2.9) and (2.10) allow to express all building block deformations as
linear combinations of the vertical deformations (uz, vz).

2.7. Constraints and Symmetries

Here, we define a general framework based on transfer-mappings and
constraint-counting to determine if a given (strip) configuration CSM sup-
ports a valid strip mode MSM . The strip deformation v1 describes a valid
strip mode only if it leads to a deformation which satisfies the diagonal
compatibility constraints [Eq. 2.2] [Fig. 2.5(g)], the lower strip conditions
[Eq. 2.5] [Fig. 2.5(h)] and the periodic strip condition [Eq. 2.6] [Fig. 2.5(i)]
everywhere along the strip. To determine if these constraints are satisfied

Table 2.1: Values for the coefficients Lu, Lv, Ru, Rv for the (uz, vz) to (lz, rz)
mapping [Eq. (2.9)] and the coefficient Do for the (uz, vz) mapping to doz for a
building block of orientation cz = {NE,SE,SW,NW} [Eq. (2.10)].

NE SE SW NW
Lu -1/2 -1/2 -3/2 1/2
Lv -1/2 -1/2 1/2 -3/2
Ru 1/2 -3/2 -1/2 -1/2
Rv -3/2 1/2 -1/2 -1/2
DNE 1 0 0 0
DSE 0 -1 0 0
DSW 0 0 -1 0
DNW 0 0 0 1

36

22

2.7. Constraints and Symmetries

(a)

W

(b)

Figure 2.6: (a) A seemingly valid strip deformation of width W = 4 (thick black
solid line) can be decomposed into two strips of smaller widths (thick, red dashed
and yellow dash-dotted lines) if it does not satisfy the CC and NT conditions. (b)
Realization of a W = 4 strip deformation (thick black solid line) that does not
satisfy the CC and NT conditions: it can be decomposed into W ′ = 2 (enclosed
in thick red dashed line) and W ′ = 1 (thick yellow dash-dotted line) strips that
individually satisfy the NT and CC conditions.

by the deformation v1, we use the transfer mapping to map all the con-
straints throughout the strip to constraints on v1. Since each additional
column yields additional constraints, we obtain a large set of constraints on
v1, and without symmetries and degeneracies, one does not expect to find
nontrivial deformations which satisfy all these constraints. However, for
appropriately chosen orientations of the building blocks, many constraints
are degenerate, due to the underlying symmetries. Hence, we can now
formulate two conditions for obtaining a nontrivial strip mode of width W .

First, after mapping all the constraints in the strip to constraints on v1,
and after removing redundant constraints, the number of nondegenerate
constraints should equal W − 1 so that the strip configuration contains a
single non-CRS floppy mode. We refer to this condition as the constraint
counting (CC) condition. Second, we focus on irreducible strip modes
of width W , and exclude strip deformations composed of strip modes of
smaller width or rows of CRS blocks [Fig. 2.6(a)]. Such reducible strip
deformations not only satisfy all constraints in a strip of width W , but
also in an encompassing strip of width W ′ < W [Fig. 2.6(b)]. Irreducible
strip modes of width W do not satisfy all constraints for any encompassing
strips of width W ′ < W . We refer to this condition as the nontrivial (NT)
condition as it excludes rows of CRS from the strip mode, which are trivial
solutions to the imposed constraints. Valid strip modes are those that
satisfy both CC and NT conditions.

To map all constraints to v1, we use the linear mapping between the di-
agonal edge dz and (uz, vz) [Eq. (2.10)] such that the diagonal compatibility

37

22

2. Combinatorial Design Rules

constraints [Eq. (2.2)] can be expressed in vz. The diagonal compatibility
constraints, lower strip conditions [Eq. (2.5)] and periodic strip condition
[Eq. (2.6)] can all be expressed in vz and then be mapped to v1 by iteratively
applying the set of transfer mappings {T (ci, ci+1)}.

This constraint mapping method allows us to systematically determine
if a given strip configuration CSM supports a valid strip mode MSM :

1. Determine the set of transfer matrices {T (ci, ci+1))}.

2. Express the diagonal compatibility constraints [Eq. (2.2)], lower strip
conditions [Eq. (2.5)] and periodic strip condition [Eq. (2.6)] in terms
of {vi}.

3. Map the set of all constraints to constraints on v1 using the transfer
matrices.

4. Check if the CC and NT conditions are satisfied on v1.

In what follows, we consider the transfer mappings and constraints
explicitly for strips of widths up to W = 3 and derive geometric necessary
and sufficient rules for the orientations cz of the building blocks to satisfy
the CC and NT conditions. Finally, we consider strips of even larger width
W and construct sufficient requirements on strip configurations.

2.8. Deriving rules for strip modes

Here we aim to derive design rules for strip modes. We first derive neces-
sary and sufficient conditions on strip configurations CSM of widths up to
W = 3. Then, we use those requirements to conjecture a set of general rules
for strips of arbitrary widths. We provide numerical proof that these rules
are correct and use them to generate a W = 10 example that we would not
have been able to find through Monte Carlo sampling of the design space.

2.8.1. Case 1: W = 1

We now derive necessary and sufficient conditions on the orientations of the
building blocks for strip modes of width W = 1 to appear [Fig. 2.7(a)]. We
show that a simple pairing rule for the orientations of neighboring building
blocks gives necessary and sufficient conditions for such a configuration
to support a valid strip mode, i.e., a strip deformation that satisfies the
horizontal compatibility constraints [Eq. (2.1)], the diagonal compatibility

38

22

2.8. Deriving rules for strip modes

∑=0 ∑=0

∑=0 ∑=0
v2,1=-v3,1 v3,1=-v4,1 v4,1=-v5,1v1,1=-v2,1

∑=0 ∑=0

∑=0∑=0
v1,1=v5,1

0 0 0 0 0

(b) (c)

(a)

(d)

Figure 2.7: (a) Schematic representation of the degrees of freedom, constraints,
and mapping for a W = 1 strip mode of length k = 4 in the vertex representation.
The building blocks in the strip and lower CRS area are highlighted with pink
(dashed) and blue (solid) boxes; the upper CRS area has amplitude zero. Applying
the horizontal compatibility constraint and upper strip condition leads to a map-
ping from vi,1 to vi+1,1. We show the deformation of each building block in the
strip for such a mapping with v1,1 = 2. The diagonal compatibility constraints are
indicated by

∑
= 0 in thick red dashed boxes and are all satisfied by the mapping.

The lower strip condition (vi,1 = −vi+1,1, arrows) and periodic strip condition
(v1,1 = v5,1, long arrow) are also satisfied by the mapping. The strip therefore
deforms compatibly with the lower CRS area with amplitude two. (b) The six
h-pairs of horizontally adjacent building blocks (ci,1, ci+1,1) that satisfy Eq. (2.12)
and examples of their deformations in vertex representation obtained from the
map [Eq. (2.11)] with vi,1 = 2. Note that dNE

i,1 = −dNW
i+1,1 and dSE

i,1 = −dSW
i+1,1 are

satisfied either trivially or by the transfer mapping [Eq. (2.11)] (corner nodes
highlighted with thick red squares) for all h-pairs. (c) Example of a k = 4 strip
configuration (top) deformed as a valid strip mode MSM (bottom, vertex rep-
resentation) that satisfies all compatibility constraints and strip conditions. (d)
Example of a k = 4 strip configuration (top) that can only satisfy all compatibility
constraints and strip conditions by not deforming (bottom, vertex representation).

constraints [Eq. (2.2)], the upper strip conditions [Eq. (2.4)], the lower
strip conditions [Eq. (2.5)], and the periodic strip condition [Eq. (2.6)[] (see
Fig. 2.7(a)) in addition to the constraint counting (CC) and nontrivial (NT)
conditions.

39

22

2. Combinatorial Design Rules

First, we derive the transfer mapping that maps the deformations of
building block (i, 1) to block (i+ 1, 1) for general orientations (ci,1, ci+1,1).
Without loss of generality, we set the amplitude αu = 0 such that ui,1 = 0
everywhere along the strip—this trivially satisfies the upper strip condi-
tion [Eq. (2.4)] (recall that we can always do this by adding a global CRS
deformation of appropriate amplitude to a given mode). The deformations
of each building block are now completely determined by choosing vi,1.
However, these cannot be chosen independently due to the various con-
straints. Implementing the horizontal compatibility constraints and upper
strip condition, we find that the vi,1 in adjacent blocks are related via a
linear mapping (see App. A2.4):

vi+1,1 = − Rv(ci,1)

Lv(ci+1,1)
vi,1 , (2.11)

where the values of Rv(c) and Lv(c) are given in Table 2.1. We interpret this
mapping as a simple (scalar) version of a transfer mapping (see Fig. 2.7(a)).
The idea is then that, by choosing v1,1 and iterating the map [Eq. (2.11)],
we determine a strip deformation which satisfies both the upper strip con-
ditions and horizontal compatibility constraints. The goal is to find values
for the orientations ci,1 that produce a valid strip mode, i.e., a deforma-
tion which also satisfies the diagonal compatibility constraints [Eq. (2.2),
red dashed boxes in Fig. 2.7(a)], lower strip conditions [Eq. (2.5), black
arrows in Fig. 2.7(a)], periodic strip condition [Eq. (2.6), long black arrow
in Fig. 2.7(a)], and CC and NT conditions—note that if we take v1,1 = 0,
all deformations throughout the unit cell are zero and we have simply
obtained a zero amplitude CRS mode, which is not a valid strip mode [see
example in Fig. 2.7(d)].

To construct configurations that produce a valid strip mode, we first con-
sider an example. In this example, we only consider orientations (ci,1, ci+1,1)
that satisfy

Rv(ci,1) = Lv(ci+1,1) , (2.12)

and show that this is a sufficient condition to produce a valid strip mode.
We refer to the six pairs (ci,1, ci+1,1) that satisfy condition Eq. (2.12) as
h-pairs (for horizontal) [Fig. 2.7(b)].

We find that configurations consisting only of h-pairs satisfy the
lower and periodic strip conditions and diagonal compatibility constraints.
Specifically, we find the following for h-pairs

(1) the map Eq. (2.11) simplifies to vi+1,1 = −vi,1 and thus directly satis-
fies the lower strip condition [Eq. (2.5)] and periodic strip condition

40

22

2.8. Deriving rules for strip modes

[Eq. (2.6)] by iterating the map, see deformations in Fig. 2.7(b).

(2) the diagonal compatibility constraints are either trivially satisfied or
the same as the map Eq. (2.11) and thus impose no constraints on vi,1.
To see this, note that the diagonal compatibility constraint [Eq. (2.2)] is
required to be satisfied at all corner nodes in the strip (pink squares in
Fig. 2.7(a)). Note that away from the strip, all diagonals are zero (recall
that a CRS block always has dc = 0). Thus, the diagonal compatibility
constraint at the corner nodes shared between two building blocks
in a pair simplifies to dNE

i,1 = dNW
i+1,1 and dSEi,1 = dSWi+1,1 (see Fig. 2.7(a)).

For the six h-pairs, there are four pairs where all diagonals in the
constraints are zero, i.e., trivially satisfied, and two pairs where the
diagonals are nonzero (highlighted in red in Fig. 2.7(b)). For the latter
case, the diagonal compatibility constraint implies that vi,1 = −vi+1,1—
this follows from ui,1 = 0 and the mapping [Eq. (2.10)]—which is the
same as the map Eq. (2.11).

Thus, all conditions and constraints are trivially satisfied for strip configu-
rations consisting only of h-pairs, see Fig. 2.7(c) for an example.

Such strip configurations thus impose no constraints on v1, thereby
satisfying the constraint counting (CC) condition. Additionally, such con-
figurations satisfy the nontrivial (NT) condition as well so long as v1,1 ̸= 0.
Hence, the pairing rule

(i) Every pair of horizontally adjacent building blocks in the strip must
be an h-pair.

is a sufficient condition to obtain valid W = 1 strip modes, and thus class
(iii) mode scaling. It is also a necessary condition, because any pair that
does not satisfy condition Eq. (2.12) does not trivially satisfy the lower strip
condition [Eq. (2.5)], breaking the CC condition, and thus only satisfies all
compatibility constraints and strip conditions of a strip mode for v1,1 = 0,
breaking the NT condition, see Fig. 2.7(d) for an example. Concretely,
when u1,1 and v1,1 are both zero, the whole deformation is zero which is
not a valid strip mode but rather a zero amplitude CRS mode. Hence, the
pairing rule (i) is a necessary and sufficient condition to obtain W = 1 strip
modes.

2.8.2. Case 2: W = 2

Now, we consider strips of width W = 2. strip deformations in such strips
have an additional degree of freedom, vi,2, compared to strips of width

41

22

2. Combinatorial Design Rules

W = 1. To result in a valid strip mode there must be one constraint on the
strip deformation v1 to satisfy the constraint counting (CC) condition. We
show that a simple adjustment and addition to the pairing rule results in a
sufficient and necessary condition to obtain W = 2 strip modes.

First, we extend our transfer mapping to account for the extra row
of building blocks in the strip. We again set the amplitude αu = 0, so
that the deformations of column i are completely determined by fixing
vector vi = (vi,1, vi,2) [Fig. 2.5]. We now aim to obtain a complete map
from vi to vi+1. Note that the map for vi+1,1 does not depend on the extra
row of building blocks and therefore follows the map [Eq. (2.11)] derived
for W = 1 strip modes. To obtain a map for vi+1,2, we note that for the
building blocks in column i + 1 to deform compatibly, we require the
vertical compatibility constraint [Eq. (2.1)] to be satisfied [Fig. 2.5]. Then,
by implementing the horizontal and vertical compatibility constraints, we
find a linear mapping for vi+1,2 which depends on both vi,1 and vi,2 (see
App. A2.4):

vi+1,2 =
Lu(ci+1,2)
Lv(ci+1,2)

(
Ru(ci,2)

Lu(ci+1,2)
− Rv(ci,1)

Lv(ci+1,1)

)
vi,1

− Rv(ci,2)
Lv(ci+1,2)

vi,2 . (2.13)

Together, Eq. (2.11) and Eq. (2.13) form the transfer mapping from vi to
vi+1, which we capture compactly as vi+1 = T (ci, ci+1)vi (see Fig. 2.8(a)
for a schematic representation), where :

T (ci, ci+1) = − Rv(ci,1)
Lv(ci+1,1)

0
Lu(ci+1,2)
Lv(ci+1,2)

(
Ru(ci,2)

Lu(ci+1,2)
− Rv(ci,1)

Lv(ci+1,1)

)
− Rv(ci,2)

Lv(ci+1,2)

 . (2.14)

Note that T (ci, ci+1) is a lower-triangular transfer matrix which depends
only on the orientations ci = (ci,1, ci,2) of column i and column i+ 1.

Now, we want to find values for the orientations ci that produce a valid
strip mode, i.e., a deformation which satisfies all constraints: the diagonal
compatibility constraints [Eq. (2.2)], the lower strip condition [Eq. (2.5)]
and periodic strip condition [Eq. (2.6)]. Additionally, the strip deformation
v1 should satisfy the CC and NT conditions. We note that v1 = 0 corre-
sponds to the strip deforming as an area of CRS [Fig. 2.8(b)-i]. Additionally,
v1,1 = 0 while v1,2 ̸= 0 corresponds to the top row deforming as an area
of CRS with zero amplitude [Fig. 2.8(b)-ii] and v1,1 = −v1,2 corresponds
to the bottom row deforming as an area of CRS with arbitrary amplitude

42

22

2.8. Deriving rules for strip modes

h d u

s s

(a
)

(c
)

(b
)

(a
)

T

v i,1 v i,2
v i+

1,
2

v i+
1,

1

0
0

000

000

-200

200

-220

2-20

(b
)

i
v i=

0
ii

v i,1
=0

iii
v i,1

=-
v i,2

Tr
an

sf
er

 m
ap

pi
ng

v i+
1 =

 T
v i

(c
)

(d
)

!
!

!
!

F
i
g
u
r
e
2
.
8
:

(a
)T

he
tr

an
sf

er
m

at
ri

x
T
(c

i,
c
i+

1
)

m
ap

s
th

e
di

sp
la

ce
m

en
ts

v
i
=

(v
i,
1
,v

i,
2
)

of
th

e
bu

il
di

ng
bl

oc
ks

in
co

lu
m

n
i,
c
i,

to
th

e
d

is
p

la
ce

m
en

ts
v
i+

1
of

th
e

bu
il

d
in

g
bl

oc
ks

in
co

lu
m

n
i
+

1,
c
i+

1
,i

n
d

ic
at

ed
by

→
.

(b
)

T
h

re
e

co
n

st
ra

in
ts

on
th

e
st

ri
p

d
ef

or
m

at
io

n
v
i

th
at

br
ea

k
th

e
n

on
tr

iv
ia

l(
N

T
)

co
n

d
it

io
n

in
an

y
2
×

2
st

ri
p

co
n

fi
gu

ra
ti

on
.

T
h

e
st

ri
p

d
ef

or
m

at
io

n
ca

n
on

ly
sa

ti
sf

y
th

e
co

n
st

ra
in

t
by

d
ef

or
m

in
g

ro
w

s
of

th
e

st
ri

p
as

bl
oc

ks
of

C
R

S
(s

ol
id

cy
an

);
ei

th
er

bo
th

ro
w

s
(i

),
th

e
to

p
ro

w
(i

i)
or

th
e

bo
tt

om
ro

w
(i

ii
).

(c
)

T
h

e
16

p
os

si
bl

e
p

ai
rs

of
h

or
iz

on
ta

ll
y

ad
ja

ce
n

t
bu

il
d

in
g

bl
oc

ks
ca

n
be

d
iv

id
ed

in
fo

u
r

ca
te

go
ri

es
:

ho
ri

zo
nt

al
(h

,g
re

en
),

d
ow

n
(d

,b
lu

e)
,u

p
(u

,o
ra

ng
e)

,a
nd

ve
rt

ic
al

(s
or

s,r
ed

).

43

22

2. Combinatorial Design Rules

[Fig. 2.8(b)-iii, see App. A2.5]. All these cases break the nontrivial (NT)
condition as they describe strip deformations completely or in-part com-
posed of rows of CRS blocks and thus do not represent valid W = 2 strip
modes. We exclude these configurations.

To construct valid strip configurations, we consider 2×2 configurations
of building blocks (ci, ci+1). We compose such 2 × 2 configurations by
vertically stacking pairs of horizontally adjacent building blocks (ci,1, ci+1,1)
and (ci,2, ci+1,2) for the top row and bottom row. There are 16 different
pairs, and we note these can be grouped in four categories, depending on
the corresponding values of Ru, Rv, Lu and Lv (Table 2.1):

h− pairs :
Ru(ci,j)

Lu(ci+1,j)
=

Rv(ci,j)
Lv(ci+1,j)

= 1 , (2.15)

u− pairs :
Ru(ci,j)

Lu(ci+1,j)
= −1 , (2.16)

d− pairs :
Rv(ci,j)

Lv(ci+1,j)
= −1 , (2.17)

s− pairs :
Ru(ci,j)

Lv(ci+1,j)
=

Rv(ci,j)
Lu(ci+1,j)

= 1 . (2.18)

Each of the sixteen possible pairs satisfy only one of these conditions
[Fig. 2.8(c)]. We denote groups of 2× 2 configurations as vertical stacks of
such pairs, e.g., a (d, u)-pair obeys the condition for d-pairs [Eq. (2.17)] for
(ci,1, ci+1,1) and the condition for u-pairs [Eq. (2.16)] for (ci,2, ci+1,2); see
Figs. 2.9(a) and 2.9(c) for examples of (d, u)-pairs.

By stacking pairs, there are 162 possible 2× 2 configurations. We now
show that (d, u)-pairs and (h, h)-pairs are the only 2× 2 configurations that
make up strip configurations that support valid W = 2 strip modes. First,
we will show that a strip composed only of (d, u)-pairs results in a valid
strip mode. Second, we show that a strip composed only of (h, h)-pairs
does not result in a single W = 2 strip mode, but in two W = 1 strip modes,
breaking the CC condition. Finally, we show that combining (h, h)-pairs
and (d, u)-pairs in a strip configuration results in a valid W = 2 strip mode.

First, we consider (d, u)-pairs and show that these satisfy all conditions
for a valid strip mode, provided that a single constraint on vi is satisfied.
First, from Eq. (2.16) and Eq. (2.17) we see that such pairs satisfy the
condition

Ru(ci,2)

Lu(ci+1,2)
=

Rv(ci,1)

Lv(ci+1,1)
, (2.19)

which implies that the transfer matrix T ((d,u)) [Eq. (2.14)] is purely diag-
onal. The map [Eq. (2.13)] from vi,2 to vi+1,2 is thus independent of vi,1.
We now show that the choice v1 = (v1,1, 0), which satisfies the constraint

44

22

2.8. Deriving rules for strip modes

!
!

!
!

s

(b
)

(a
)

v i,2
v i+

1,
2

1
2

3

(d
,u

)
v 1,

2=
0

(d
,u

)
v 2,

2=
0

1
2

3

(h
,h

)

(h
,h

)

1
2

3

(d
,u

)
v 1,

2=
0

(h
,h

)

1
2

3

(d
,h

)
v 1,

1=
0

(h
,u

)
v 2,

1=
-v

2,
2

(c
)

(d
)

!
!

!
!

!
!

W
=

1
st

rip
-m

od
e

1

W
=

1
st

rip
-m

od
e

2

2

1

F
i
g
u
r
e
2
.
9
:

(d
)

A
st

ri
p

co
n

fi
gu

ra
ti

on
(t

op
)

co
n

si
st

in
g

so
le

ly
of

(d
,

u
)-

p
ai

rs
ca

n
d

ef
or

m
as

a
va

li
d
W

=
2

st
ri

p
m

od
e.

A
re

al
iz

at
io

n
of

va
li

d
st

ri
p

m
od

e
w

it
h
v
1
=

(−
2,
0)

is
sh

ow
n

in
ve

rt
ex

re
p

re
se

nt
at

io
n

(m
id

d
le

)a
n

d
sc

he
m

at
ic

re
p

re
se

nt
at

io
n

(b
ot

to
m

).
(e

)A
st

ri
p

co
n

fi
gu

ra
ti

on
(t

op
)c

on
si

st
in

g
so

le
ly

of
(h

,h
)-

p
ai

rs
su

p
p

or
ts

tw
o
W

=
1

st
ri

p
m

od
es

(m
id

d
le

:v
er

te
x

re
p

re
se

n
ta

ti
on

,b
ot

to
m

:
sc

h
em

at
ic

re
p

re
se

n
ta

ti
on

),
as

(h
,h

)-
p

ai
rs

im
p

os
e

n
o

co
n

st
ra

in
t

on
th

e
st

ri
p

d
ef

or
m

at
io

n
th

er
eb

y
br

ea
ki

n
g

th
e

co
n

st
ra

in
t

co
u

n
ti

n
g

(C
C

)
co

n
d

it
io

n
.

N
ot

e
th

at
on

ly
p

ar
t

of
th

e
st

ri
p

is
sh

ow
n

;a
st

ri
p

co
n

si
st

in
g

on
ly

of
(h

,
h)

-p
ai

rs
m

us
ta

lw
ay

s
ha

ve
an

ev
en

st
ri

p
le

ng
th

k
.(

f)
A

st
ri

p
co

nfi
gu

ra
ti

on
(t

op
)c

on
si

st
in

g
of

a
(d

,u
)-

pa
ir

an
d

(h
,h

)-
pa

ir
.T

he
(d

,u
)-

p
ai

r
im

p
os

es
th

e
co

ns
tr

ai
nt

v 1
,2
=

0
on

th
e

st
ri

p
de

fo
rm

at
io

n
v
1
.A

re
al

iz
at

io
n

of
a

va
li

d
st

ri
p

m
od

e
w

it
h
v
1
=

(−
2
,0
)

is
sh

ow
n

in
ve

rt
ex

re
p

re
se

nt
at

io
n

(m
id

d
le

)a
nd

sc
he

m
at

ic
re

p
re

se
nt

at
io

n
(b

ot
to

m
).

(g
)A

n
in

va
li

d
st

ri
p

co
nfi

gu
ra

ti
on

(t
op

),
co

ns
is

ti
ng

of
a

(d
,h

)-
an

d
(h

,u
)-

p
ai

r.
T

he
co

ns
tr

ai
nt

s
im

p
os

ed
on

th
e

st
ri

p
d

ef
or

m
at

io
n,

v 1
,1
=

0
an

d
v 2

,1
=

−
v 2

,2
,r

es
u

lt
in

th
e

st
ri

p
be

in
g

u
na

bl
e

to
d

ef
or

m
,i

.e
.,
v
1
=

(0
,0
)

(m
id

d
le

:v
er

te
x

re
p

re
se

nt
at

io
n,

bo
tt

om
:s

ch
em

at
ic

re
p

re
se

nt
at

io
n)

.

45

22

2. Combinatorial Design Rules

v1,2 = 0, produces a valid strip mode for v1,1 ̸= 0, see Fig. 2.9(a) for an
example strip deformation. This choice clearly satisfies the lower strip
condition [Eq. (2.5)]. Moreover, the diagonal compatibility constraints
[Eq. (2.2)] on corner nodes between the two columns i and i + 1 are also
satisfied by the constraint vi,2 = 0, regardless of the precise orientations
of the building blocks as can be shown (see App. A2.6.1). Finally, by it-
erating the transfer map [Eq. (2.14)] for a strip that consists only of (d,
u)-pairs, we find that v1,1 = vk+1,1 and v1,2 = vk+1,2 = 0, i.e., the periodic
strip condition [Eq. (2.6)] is satisfied. Thus, a strip consisting only of (d,
u)-pairs satisfies all constraints in the strip by imposing a single constraint
on v1, satisfying the CC condition, and satisfies the NT condition so long
as v1,1 ̸= 0. The resulting strip deformation is characterized by the choices
of ci,j and v1 = (v1,1, 0).

Second, we consider (h, h)-pairs and show that, while satisfying the diag-
onal compatibility constraints [Eq. (2.2)], lower strip conditions [Eq. (2.5)]
and periodic strip conditions [Eq. (2.6)], they in fact lead to two adjacent
W = 1 strip modes, breaking the CC condition. Using Eq. (2.15) and the
definition of the transfer matrix, we find that T ((h,h)) = −I , where I is the
identity matrix. Thus, (h, h)-pairs trivially satisfy the lower strip condition
and diagonal compatibility constraints (see App. A2.7, see Fig. 2.9(b) for
examples of strip deformations). Additionally, a strip that consists only
of (h, h)-pairs maps v1,j = (−1)kvk+1,j by iterating the transfer mapping
[Eq. (2.14)] and thus satisfies the periodic strip condition. However, a strip
which consists only of (h, h)-pairs does not place any constraints on v1 and
retains the two degrees of freedom that each can describe valid W = 1 strip
modes [Fig. 2.9(b)], breaking the CC condition. Thus, a strip composed
only of (h, h)-pairs does not support one W = 2 strip mode, but two W = 1
strip modes.

We now consider combining (h, h)-pairs and (d, u)-pairs in a single
strip and show that such a strip supports a valid W = 2 strip mode. We
note that for both pairs, the transfer matrix [Eq. (2.14)] is diagonal. Thus,
the constraint from a (d, u)-pair anywhere in the strip, vi,2 = 0, to satisfy
the diagonal compatibility constraints [Eq. (2.2)] and lower strip condition
[Eq. (2.5)] locally maps to the constraint v1,2 = 0 on v1. Both (h, h)-pairs
and (d, u)-pairs satisfy the diagonal compatibility constraints and lower
strip condition locally with this constraint, see Fig. 2.9(c) for an example
strip deformation. To result in valid strip mode, we also require the periodic
strip condition [Eq. (2.6)] to be satisfied. We find that v1,2 = vk+1,2 = 0 and
v1,1 = (−1)No.(h,h)vk+1,1, where No.(h,h) is the number of (h, h)-pairs in

46

22

2.8. Deriving rules for strip modes

the strip with periodic boundary conditions, thereby satisfying the periodic
strip condition [Eq. (2.6)].

Thus, a strip that consists of any number of (h, h)-pairs and at least
one (d, u)-pair satisfies all constraints as well as the CC and NT conditions
when v1 = (v1,1, 0) with v1,1 ̸= 0, thereby resulting in a valid W = 2 strip
mode. Hence, the pairing rules for configurations that support valid W = 2
strip modes are the following:

(i) Every 2× 2 configuration of building blocks in the strip must be an
(h, h)-pair or (d, u)-pair.

(ii) There must be at least a single (d, u)-pair in the strip.

These are sufficient conditions to obtain W = 2 strip modes. They can
also be shown to be necessary conditions, because any pair that is not a
(h, h)-pair or (d, u)-pair constrains the strip deformation v1 to v1,1 = 0,
or v1,1 = −v1,2, or both (see App. A2.6.1), thereby breaking the nontriv-
ial (NT) condition and therefore does not result in a valid W = 2 strip
mode [Fig. 2.9(d)]. Hence, these pairing rules are necessary and sufficient
conditions on the strip configuration to obtain W = 2 strip modes.

2.8.3. Case 3: W = 3

Finally, we consider strips of width W = 3. We show that in addition
to simple adjustments to the pairing rules, we require an additional rule
restricting the ordering of pairs in the strip configuration. This ordering
rule highlights that the problem of constructing configurations that support
valid strip modes is not reducible to a tiling problem which relies on
nearest-neighbor interactions, but rather requires information of the entire
strip configuration. This is surprising, as these rules emerge from local
compatibility constraints. The new set of rules that we obtain are necessary
and sufficient conditions to obtain W = 3 strip modes.

First, we extend our transfer mapping to account for the extra row
of building blocks in the strip. As in the previous two cases, we set the
amplitude αu = 0 such that the deformations of column i are completely
determined by fixing vector vi = (vi,1, vi,2, vi,3). We again want to obtain
a complete map from vi to vi+1. The maps for vi+1,1 and vi+1,2 do not
depend on the extra row of building blocks and therefore follow Eq. (2.11)
and Eq. (2.13) respectively. To obtain a map for vi,3, we implement the
horizontal and vertical compatibility constraints [Eq. (2.1)] and find a linear

47

22

2. Combinatorial Design Rules

mapping for vi+1,3 (see App. A2.4):

vi+1,3 =
Lu(ci+1,2)
Lv(ci+1,2)

Lu(ci+1,3)
Lv(ci+1,3)

(
Ru(ci,2)

Lu(ci+1,2)
− Rv(ci,1)

Lv(ci+1,1)

)
vi,1

+
Lu(ci+1,3)
Lv(ci+1,3)

(
Ru(ci,3)

Lu(ci+1,3)
− Rv(ci,2)

Lv(ci+1,2)

)
vi,2

− Rv(ci,3)
Lv(ci+1,3)

vi,3 . (2.20)

Together, Eq. (2.11), Eq. (2.13) and Eq. (2.20) form the transfer mapping
from vi to vi+1, which we capture compactly as vi+1 = T (ci, ci+1)vi. Note
that the transfer matrix T (ci, ci+1) is now a 3× 3 lower-triangular matrix
that depends on the orientations ci = (ci,1, ci,2, ci,3) of the building blocks
in column i and column i+ 1.

Now, we want to find values for the orientations ci that produce a
valid strip mode, i.e., a deformation v1 which satisfies all constraints:
the diagonal compatibility constraints [Eq. (2.2)], lower strip condition
[Eq. (2.5)] and periodic strip condition [Eq. (2.6)]. Additionally, the strip
deformation v1 should satisfy the CC and NT conditions. We note that v1 =
0 corresponds to the strip deforming as an area of CRS with zero amplitude,
i.e., not deforming at all. Additionally, v1,1 = 0 with v1,2 ̸= 0 and v1,3 ̸= 0
corresponds to the top row not deforming at all and v1,2 = −v1,3 with
v1,1 ̸= 0 corresponds to the bottom row deforming as an area of CRS with
arbitrary amplitude. All these cases break the nontrivial (NT) condition as
they describe strip deformations completely or in-part composed of rows of
CRS blocks and thus do not describe valid W = 3 strip modes. We exclude
these configurations.

To construct valid strip configurations, we consider 2×3 configurations
of building blocks (ci, ci+1). Again, we compose such configurations by ver-
tically stacking pairs of horizontally adjacent building blocks (ci,j , ci+1,j)
for the top row j = 1, middle row j = 2 and bottom row j = 3, e.g., a triplet
of d-, u-, and h-pairs, which we denote as a (d, u, h)-pair, satisfies condition
[Eq. (2.17)] for (ci,1, ci+1,1), satisfies condition [Eq. (2.16)] for (ci,2, ci+1,2)
and satisfies condition [Eq. (2.15)] for (ci,3, ci+1,3), see Fig. 2.10(a) for an
example of a (d, u, h)-pair. Additionally, we now distinguish between
the s-pair (ci,j , ci+1,j) = (NE, SW) and the s-pair (ci,j , ci+1,j) = (SE,NW)
[Fig. 2.8(c)] despite both pairs satisfying condition [Eq. (2.18)] as config-
urations composed of such pairs impose distinct constraints on the local
strip deformation vi.

In what follows, we will show that a valid strip configuration consists
only of (h, h, h), (d, u, h), (h, d, u), (d, s, u) and (d, s, u)-pairs. Specifically,
we will show the following for strip configurations composed of such pairs:

48

22

2.8. Deriving rules for strip modes

2vi,1=-vi,2

2
vi,1=vi,3

3
vi,1=-vi,3

4

(a)

(b) (c)

vi,2=0
1

(d,u,h) (d,s,u) (h,d,u)

Ex.

impose

i i+1 i i+1 i i+1 i i+1

configurations

constraints

NT (d,u,h)
(d,s,u)

(h,d,u)
(d,s,u)

(d,s,u)

(d,u,h)

(h,h,h) (h,h,h), (h,d,u)

(h,h,h)(h,h,h), (d,u,h)

1

2 3

4(h,d,u)

(h,d,u)

(d,u,h)

13

2

i-1 i i+1

T((h,d,u))

Figure 2.10: (a) 2 × 3 configurations (ci, ci+1) consisting of triplets of (d, u, h)-
pairs, (d, s, u)-pairs, (d, s, u)-pairs and (h, d, u)-pairs, impose one or two of
four constraints (Eqs. (2.21)-(2.24), labeled 1 to 4 respectively) on the local strip
deformation vi. We indicate this by black solid arrows. Note that the shown
configurations are examples of the indicated pair type; other configurations that
belong to the same type are possible. (b) A tiling of a (h, d, u)-pair and (d, u,
h)-pair. Both pairs impose a constraint on their local strip deformation, vi−1 and
vi respectively, indicated by solid black arrows pointing to squares with numbers
corresponding to the constraints as indicated in (a). Additionally, the constraint
on vi can be mapped using the transfer matrix T ((h,d,u)) to a constraint on
vi−1. This imposes constraint 2 with i 7→ i − 1 on vi−1, the transfer mapping is
indicated by the dashed arrow. (c) The constraints map from a constraint on strip
deformation vi to a constraint on vi−1 under application of the transfer mapping
T (ci−1, ci) (dashed arrows) for the configurations (ci−1, ci) as indicated next to
the arrows. Note that here we only consider (h, h, h)-pairs, (d, u, h)-pairs, (h, d,
u)-pairs, (d, s, u)-pairs and (d, s, u)-pairs. A constraint maps to the indicated
constraint with i 7→ i− 1. Constraints are labeled by number as indicated in (a).
Every constraint can map to a constraint that breaks the NT condition.

(1) each of these configurations except (h, h, h)-pairs imposes one or two
constraints out of a set of four possible constraints on the deformation
vi to satisfy the diagonal compatibility constraints [Eq. (2.2)] and lower

49

22

2. Combinatorial Design Rules

strip condition [Eq. (2.5)] locally.

(2) upon applying the transfer mapping T (ci−1, ci), each of the four possi-
ble constraints on vi map to constraints on vi−1 that are degenerate to
the four possible constraints that can be imposed by the (ci−1, ci)-pair
locally on vi−1 for most valid 2× 3 configurations. For the other valid
configurations, the mapped constraints and local constraints imposed
by the (ci−1, ci)-pair on vi−1 together break the CC or NT conditions
and do not result in a valid W = 3 strip mode. We exclude such
combinations.

(3) constraints on the configurational ordering of (ci, ci+1)-pairs are cap-
tured with a simple additional rule.

We now consider these points one-by-one.
First, we find that for (d,u,h)-pairs, (h, d, u)-pairs, (d, s, u)-pairs, and

(d, s, u)-pairs the diagonal compatibility constraints [Eq. (2.2)] and lower
strip condition [Eq. (2.5)] are satisfied locally by satisfying one or two of
four different constraints on vi. These four different constraints are (see
App. A2.6.2):

vi,2 = 0 , (2.21)

2vi,1 = −vi,2 , (2.22)

vi,1 = vi,3 , and (2.23)

vi,1 = −vi,3 . (2.24)

We find that a (d, u, h)-pair imposes constraint [Eq. (2.21)], a (h, d, u)-
pair imposes constraint [Eq. (2.23)], a (d, s, u)-pair imposes constraints
[Eq. (2.21)] and [Eq. (2.24)], and a (d, s, u)-pair imposes constraints
[Eq. (2.22)] and [Eq. (2.23)] on vi [Fig. 2.10(a)]. An (h, h, h)-pair trivially
satisfies the diagonal compatibility constraints and lower strip condition
and does not place any constraints on vi.

Now, we combine the valid 2× 3 configurations (h, h, h)-pairs, (h, d, u)-
pairs, (d, u, h)-pairs, (d, s, u)-pairs and (d, s, u)-pairs in a strip configuration,
see Fig. 2.10(b) for an example. We find that most combinations of these
configurations result in a valid strip mode, but there are exceptions for
which we devise a rule. First, we consider each of the four constraints [Eqs.
(2.21)-(2.24)] on vi and use the transfer mapping T (ci−1, ci) to transform
each constraint to a constraint on vi−1 for each valid 2× 3 configuration
(ci, ci+1) (see App. A2.8). The total set of constraints on vi−1 then consists

50

22

2.8. Deriving rules for strip modes

4

1

13

2

(d,s,u) (d,u,h)

(h,d,u) (h,h,h)

4 2

3

4

31

NT

(d,u,h) (d,u,h)

(h,d,u) (h,d,u)

NT

13IMIM

(h,d,u) (h,d,u)

(h,h,h) (h,h,h)

33

(a) (b) (c)

Figure 2.11: (a) Example of a valid k = 4 strip configuration supporting a W = 3
strip mode. Notice that we take periodic boundary conditions. There are two
mapped and local constraints on v1, thereby satisfying the CC condition, and both
results do not break the NT condition, resulting in a valid W = 3 strip mode. (b)
Example of an invalid strip configuration that does not support a valid W = 3
strip mode. There is only one mapped and local constraint on v1, breaking the
CC condition. The strip deformation can be decomposed into a W = 1 strip mode
and W = 2 strip mode. (c) Example of an invalid strip configuration that does
not support a valid W = 3 strip mode. Some constraints map to a constraint that
breaks the NT condition, resulting in an invalid strip deformation.

of the mapped constraint(s) and local constraints imposed by the configura-
tion (ci−1, ci) [Fig. 2.10(b)]. To have a valid strip mode, the total number of
constraints must equal two to satisfy the CC condition. Additionally, none
of the constraints may result in a strip deformation that does not satisfy
the NT condition.

We find that the four constraints on vi [Eqs. (2.21)-(2.24)] map within
the set of these same four constraints with index i 7→ i − 1 on vi−1 for
most configurations (ci−1, ci) (see App. A2.9, Fig. 2.10(c)). However, for
some configurations, the mapped constraints, when taken together with
the local constraints imposed by the configuration on vi, result in a strip
deformation vi that breaks the NT condition [Fig. 2.11(c)]. To construct
strip configurations that result in a valid W = 3 strip mode we exclude
combinations of valid configurations that result in such constraints.

We now aim to find what combinations of valid configurations do not
result in a valid W = 3 strip mode. The constraint mapping [Fig. 2.10(c)]
prohibits certain combinations of valid configurations. In general, for a
given strip configuration CSM each (ci, ci+1)-pair imposes one or two con-
straints [Eqs. (2.21)-(2.24)] on the local deformation vi. These constraints
then need to be iteratively mapped to v1, starting from vk (Fig. 2.11). If
at any point in the strip configuration the CC or NT conditions on vi are

51

22

2. Combinatorial Design Rules

not satisfied, the strip configuration does not support a valid W = 3 strip
mode [Fig. 2.11(c)]. To find which sets of pairs result in invalid strip modes,
we look for combinations of pairs that lead to a constraint on vi+1 that will
get mapped to a constraint that breaks the NT condition on vi using the
constraint map [Fig. 2.10(c)]. We find that there are sets of pairs in either
the top two rows or bottom two rows of the strip that are not allowed to
occur in order anywhere in the strip (see App. A2.10). Moreover, this set of
pairs can be freely padded with (h, h, h)-pairs as such pairs do not add any
constraints of their own and act as an identity mapping for the constraints
[Fig. 2.10(c)]. Thus, to determine if a strip configuration supports a valid
strip mode requires knowledge of the entire strip configuration.

We observe that the combinations of valid configurations that result in
an invalid strip mode all follow a simple configurational rule. To formulate
this rule, we note that the nontrivial diagonal edge dc of each building
block in a strip composed of valid configurations meets at a vertex with a
single other nontrivial diagonal edge of a building block in the strip. We
refer to such pairs of building blocks as linked. Linked building blocks can
be oriented either horizontally, vertically or diagonally with respect to each
other [Fig. 2.12(a)]. We observe that sequences of valid configurations that
result in an invalid strip mode always contain both vertically linked and
diagonally linked building blocks. Thus we can formulate a simple rule
to exclude invalid sequences: all building blocks linked together in two
adjacent rows can only be linked vertically or diagonally, never both.

We capture these necessary requirements in a compact set of design
rules:

(i) Every 2× 3 configuration of building blocks in the strip must be a (h,
h, h)-pair, (d, u, h)-pair, (h, d, u)-pair, (d, s, u)-pair or (d, s, u)-pair.

(ii) There must be at least a single d-pair in the top row and at least a
single u-pair in the bottom row.

(iii) All linked building blocks in two adjacent rows can only be linked
vertically and horizontally or diagonally and horizontally.

Rule (ii) is required to satisfy the constraint counting (CC) condition and
result in a single W = 3 strip mode, rather than multiple smaller strip
modes [Fig. 2.11(b)]. Rule (iii) is added to exclude invalid sequences of
configurations that do not result in a valid W = 3 strip mode [Fig. 2.11(c)].
Note that this rule is global—checking it requires knowledge of the entire
strip. This is because the CC condition now permits two constraints, both

52

22

2.8. Deriving rules for strip modes

invalid

validvertical

horizontal diagonal(a) (b)

Figure 2.12: (a) Linked pairs of building blocks are marked by a white circle in
the center of each building block and a red solid line that connects the circles.
Linked building blocks are labeled by orientation. (b) k = 6 strip configurations
are represented as collections of linked building blocks. The invalid configuration
(top) breaks rule (ii) as it contains both vertically and diagonally linked building
blocks in both pairs of adjacent rows (thick red solid lines). The valid configuration
(bottom) describes a strip configuration that supports a W = 3 strip mode.

of which can potentially map to a constraint that breaks the nontrivial
(NT) condition. A constraint introduced at the very end of the strip can be
mapped throughout the entire strip and only encounter an incompatible
configuration at the beginning of the strip. These are sufficient conditions
to obtain W = 3 strip modes. They can also be shown to be necessary con-
ditions, because other 2× 3 configurations constrain the strip deformation
to v1,1 = 0, v1,1 = −v1,2 or v1,2 = −vi,3 or combinations, thereby breaking
the NT condition and therefore do not result in a valid W = 3 strip mode
(see App. A2.6.2). Hence, these pairing rules are necessary and sufficient
conditions on the strip configuration to support a W = 3 strip mode.

2.8.4. Towards general design rules

Now we discuss how these design rules generalize to larger width W strip
configurations. We have proven that the rules we found for strip modes of
width W = 1, W = 2 and W = 3 are necessary and sufficient requirements
on a strip configuration to support a valid strip mode. Based on these
rules, we formulate a general set of rules that we conjecture are, at the least,
also sufficient requirements for larger width W strip modes. We formulate
these rules completely in terms of linked building blocks [Fig. 2.12(a)]:

(i) Every building block in the strip must be linked with a single other
building block in the strip

53

22

2. Combinatorial Design Rules

(ii) All linked building blocks in two adjacent rows must only be linked
vertically and horizontally or diagonally and horizontally, never verti-
cally and diagonally.

The smallest width W and irreducible strip in the unit cell for which these
rules hold supports a strip mode of width W . Rule (ii) is a global rule;
checking it requires knowledge of the entire strip [Fig. 2.12(b)]. We find
a perfect agreement of our rules for ∼ 106 randomly generated k × k unit
cell designs to be of class (iii) or not (see App. A2.11). We therefore have
strong numerical evidence that our rules are not only necessary to have a
strip mode, but also that strip modes are the only type of zero mode that
result in class (iii) mode-scaling. As a final indication that these rules are
sufficient for a strip configuration to support a strip mode, we use the rules
to design a strip mode of width W = 10 [Fig. 2.13].

2.9. Discussion

The rational design of multiple soft modes in aperiodic metamaterials
is intrinsically different from tiling- or spin-ice based design strategies
for a single soft mode [10, 11, 17, 19, 77, 79]. The key challenge is to
precisely control the balance between the kinematic degrees of freedom
with the kinematic constraints. For increasing sizes, these constraints
proliferate though the sample, and to obtain multiple soft modes, the
spatial design must be such that many of these constraints are degenerate.
What is particularly vexing is that these constraints act on a growing set
of local kinematic degrees of freedom, so that checking for degenerate
constraints is cumbersome. As a consequence, current design strategies
for multimodal metamaterials rely on computational methods, in either
continuous systems [85–87] or discrete systems [88].

Here, we introduced a general transfer matrix-like framework for map-
ping the local constraints to a small, pre-defined subset of kinematic de-
grees of freedom, and use this framework to obtain effective tiling rules
for a combinatorial multimodal metamaterial. Strikingly, beside the usual
local rules which express constraints on pairs of adjacent building blocks,
we find nonlocal rules that restrict the types of tiles that are allowed to
appear together anywhere in the metamaterial. These kind of nonlocal rules
are unique to multimodal metamaterials.

More broadly, our work is a first example where metamaterial design
leads to complex combinatorial tiling problems that are beyond the limita-
tions of Wang tilings. It is complementary to combinatorial computational

54

22

2.9. Discussion

(a) (b)

(c) (d)

Figure 2.13: Realization of a 12× 12 unit cell that supports a W = 10 strip mode.
To better illustrate the kinematics of the strip mode, we have restrained the top
and bottom layers of building blocks to deform solely with the CRS mode. (a)
Schematic representation of the unit cell. (b) Linked pairs of the configuration.
Note that the horizontal strip between rows 2 and 11 satisfies the general design
rules. (c) Vertex representation of the strip mode. The number of arrows on
horizontal and vertical edges connecting two building blocks is reduced by half
for clearer visualization. (d) Schematic representation of the unit cell deforming
as the strip mode.

methods used in design of irregular architectured materials [89] or com-
puter graphics [90] that use local tiling rules to fabricate complicated
spatial patterns.

Conversely, instead of clear-cut local rules that state which tiles fit
together, our method requires careful bookkeeping of local constraints
imposed by placed tiles and propagation of these constraints through all
previously placed tiles to a single set of degrees of freedom. As a result,
knowledge of a tile’s neighbors is no longer sufficient information to deter-
mine if that tile can be placed. Instead, one requires knowledge of most,
if not all, previously placed tiles. We believe our method is well-suited to
tackle tiling problems beyond Wang tiles. Several open questions remain:

55

22

2. Combinatorial Design Rules

are nonlocal rule generically emerging in multimodal metamaterials? How
does our method relate to other emergent nonlocal tiling constraints that
arise, for example, in the fields of computer graphics [32–34] and chip de-
sign [35, 36]? Additionally, our method is limited to design of zero modes
and thus may be insufficient when designing for larger deformations. How
to adjust our method to include nonlinear kinematic constraints is an open
question.

Our framework opens up a new route for rational design of spatially
textured soft modes in multimodal metamaterials, which we demonstrate
by designing metamaterials with strip modes of targeted width and lo-
cation. Such strip modes can be utilized to control buckling and energy-
absorption under uniaxial compression perpendicular to the orientation
of the strip [18]. Our method can readily be extended to edge-modes, by
considering, e.g., horizontal edge strips, imposing the upper strip condi-
tion and periodic strip condition and taking into account open boundary
conditions at the bottom of the strip. Similarly, Swiss cheese-modes can
be modeled by imposing upper and lower strip conditions horizontally
and vertically at appropriate locations in the metamaterial. Additionally,
our method can be extended to design three dimensional metamaterials by
constructing an additional transfer matrix that propagates local degrees of
freedom (dof) along the newly added spatial dimension. To ensure kine-
matic compatibility, additional constraints may need to be introduced to
ensure different dof propagation paths result in the same final deformation.
We hope our work will push the interest in multimodal metamaterials
whose mechanical functionality is selectable through actuation, with poten-
tial applications in programmable materials, soft robotics, and computing
in materia.

Data availability statement.—The code supporting the findings reported
in this chapter is publicly available on GitLab 1—the data on Zenodo [91].

Acknowledgments.—We thank David Dykstra and Marjolein Dijkstra
for discussions. C.C. acknowledges funding from the European Research
Council under Grant Agreement No. 852587.

1See https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial for
code to calculate zero modes and numerically check design rules.

56

https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial

22

Appendix

In this appendix, we provide more details on deformations in our metama-
terial, explicit derivations of transfer matrices and kinematic constraints,
and numerical proof of our conjectured general strip mode rules.

A2.1. Open boundary conditions

Here, we show that angles located at an open boundary can deform un-
constrained, both at the faces of the building blocks (u, v, l, r) and corners
(dc). First, we consider angles at the face of each building block. If the
face of the building block is located at an open boundary, the angle can
deform freely as there is no competing adjacent angle. For example, if the
top face of a building block z is located at an open boundary, there are no
constraints placed upon deformation uz.

Second, we consider the nontrivial corner angle dc of a building block
with orientation c where the corner is located at an open boundary. Here,
there can be an adjacent diagonal angle of a neighboring building block.
However, the diagonal angle is still unconstrained in its deformation at the
open boundary, regardless if it is adjacent to a diagonal angle of another
building block. To see this, note that for the two neighboring building
blocks at an open boundary to be kinematically compatible, only the an-
gles at the shared face between the two building blocks are constrained
with the horizontal or vertical compatibility constraint. For example, two
horizontally neighboring building blocks at locations z and z + 1 with
their top face at the open boundary deform compatibly only if the right
and left angles satisfy rz = −lz+1. More formally, this can be shown by
composing the compatibility matrix for these two building blocks in all
possible orientations and determining the dimension of the matrix’ null
space [40, 42]. This dimension is always equal to six, which corresponds to
three floppy modes and three trivial modes: rotation and translation. As
each building block has two zero modes, there must only be one constraint
placed on their deformations: the horizontal compatibility constraint. As
there are no states of self-stress in this structure, the number of floppy
modes also follows from a simple Maxwell counting argument [41]. Thus,
nontrivial diagonal corners dc located at the open boundary can deform
unconstrained.

57

22

2. Combinatorial Design Rules

(a) (b) (c)

Figure A2.1: Vertex (top) and schematic (bottom) representations of an edge-
mode (a), strip mode (b) and Swiss cheese-mode (c). Note that we replaced rigid
pentagons with a reentrant edge with rigid diamonds (rotated squares) that are
kinematically equivalent in the schematic representation for ease of interpretation.

A2.2. Realizations mode structure

Here we show explicit realizations of unit cells that support an edge-
mode [Fig. A2.1(a)], a strip mode [Fig. A2.1(b)] and a Swiss cheese-mode
[Fig. A2.1(c)] as described in Sec. 2.4 and Fig. 2.3.

A2.3. Linear coordinate transformations

To find conditions on the strip configuration CSM , we change to a more
convenient basis where instead of mode amplitudes αz and βz, deforma-
tions uz and vz are the two degrees of freedom for each building block. We
find (

uz
vz

)
=

[
1 uD(cz)
1 vD(cz)

](
αz

βz

)
= Λ(cz)

(
αz

βz

)
, (A2.1)

where uD(cz) and vD(cz) are the u- and v-components of the basis zero
mode mD(cz). Subsequently, we invert Λ(cz) to find the change of basis
matrix

Λ−1(cz) =
1

vD(cz)− uD(cz)

[
vD(cz) −uD(cz)
−1 1

]
, (A2.2)

which is well-defined since uD(cz) ̸= vD(cz) for all orientations cz. We can
express deformations lz, rz, and doz in terms of (uz, vz) using the change of

58

22

A2.4. Deriving the transfer mapping

basis matrix: (
lz
rz

)
= Γ(cz)Λ

−1(cz)

(
uz
vz

)
(A2.3)

and

doz = ζo(cz)Λ
−1(cz) ·

(
uz
vz

)
, (A2.4)

where

Γ(cz) =

(
−1 lD(cz)
−1 rD(cz)

)
and (A2.5)

ζo(cz) = (0, doD(cz)) (A2.6)

depend on the orientation cz of the building block. Note that o denotes
the orientation of diagonal deformation doz, which is independent from
the building block orientation cz. The equation for lz, rz and doz further
simplify to

lz = Lu(cz)uz + Lv(cz) vz, (A2.7)

rz = Ru(cz)uz +Rv(cz) vz (A2.8)

and

doz = Do(cz)(−uz + vz). (A2.9)

Values of the coefficients Lu, Lv, Ru, Rv, D
o for the four orientations cz are

given in Table 2.1.

A2.4. Deriving the transfer mapping

Here we derive the linear transfer mapping that maps the vertical defor-
mations vi = (vi,1, vi,2, ..., vi,W) of row i in a strip configuration of width
W to the vertical deformations vi+1 of the neighboring row i + 1 such
that vi+1 = T (ci, ci+1)vi. We consider a 2×W strip configuration of un-
specified orientations (ci, ci+1). To derive this transfer matrix, we solve
the horizontal and vertical compatibility constraints [Eq. (2.1)] and upper
boundary condition [Eq. (2.4)] iteratively for the vertical deformations vi

[Fig. 2.5(a)-(f)]. We first consider the first row in the strip such that j = 1.
From the upper boundary conditions and setting ui,1 = 0 without loss of

59

22

2. Combinatorial Design Rules

generality, we find ui,1 = −ui+1,1 = 0 such that the horizontal compatibility
constraint reduces to

vi+1,1 = − Rv(ci,1)

Lv(ci+1,1)
vi,1. (A2.10)

We now consider a general row j and find that the horizontal compatibility
condition reduces to

vi+1,j =
Ru(ci,j)

Lv(ci+1,j)
vi,j−1 −

Rv(ci,j)

Lv(ci+1,j)
vi,j

+
Lu(ci+1,j)

Lv(ci+1,j)
vi+1,j−1. (A2.11)

Thus we can solve for vi+1,j in terms of vi by recursively applying this
equation. We find

vi+1,j =

j−1∑
a=1

(
Ru(ci,a+1)

Lu(ci+1,a+1)
− Rv(ci,a)

Lv(ci+1,a)

)

×
j∏

b=a+1

Lu(ci+1,b)

Lv(ci+1,b)
vi,a −

Rv(ci,j)

Lv(ci+1,j)
vi,j , (A2.12)

for j ≥ 2. The linear map from vi to vi+1 is captured in the transfer matrix
T (ci, ci+1), which we can now define explicitly:

T (ci, ci+1)a,b =


(

Ru(ci,b+1)
Lu(ci+1,b+1)

− Rv(ci,b)
Lv(ci+1,b)

)∏a
j=b+1

Lu(ci+1,j)
Lv(ci+1,j)

, if b < a

− Rv(ci,b)
Lv(ci+1,b)

, if b = a

0, if b > a.

(A2.13)

A2.5. nontrivial conditions

Here we show that a CRS site, which has deformations ui,j = vi,j , in the
top row of the strip SM or bottom row of the strip leads to that entire strip
deforming with the CRS mode, breaking the nontrivial (NT) condition.
This already follows from the restriction on the mode structure described
in Sec. 2.4, but for completeness we derive it here using the transfer-matrix
formalism. Moreover, we show that a CRS block in the second row of
the strip in a W = 3 strip breaks the NT condition. We first consider a

60

22

A2.5. nontrivial conditions

CRS site in the top row, such that j = 1, and use the upper boundary
conditions [Eq. (2.4)] and transfer matrix [Eq. (A2.13)] to show that the
left-most vertical deformation v1,1 = 0. Second, we consider a CRS site
in the bottom row, such that j = W , and use lower boundary conditions
[Eq. (2.5)] and transfer matrix [Eq. (A2.13)] to show that the left-most
vertical deformations vi,W−1 = −vi,W . Finally, we consider a CRS site in
the second row, such that j = 2, and use the transfer matrix [Eq. (A2.13)]
to show that such a block results in a constraint on v1 that is incompatible
with the four W = 3 constraints [Eqs. (2.21)-(2.24)] and breaks the NT
condition.

First, we consider a general strip configuration CSM . Suppose the
building block at site (i, 1) can only deform with the CRS mode, such that
deformations ui,1 = vi,1. Without loss of generality, we set the left-most
upper deformation u1,1 = 0. From the upper boundary condition [Eq. (2.4)]
we find that upper deformation ui,1 = 0, such that the vertical deformation
becomes vi,1 = 0. The transfer matrix [Eq. (A2.13)] is lower triangular,
thus vi,1 only depends on the upper left-most vertical deformation v1,1 by a
factor consisting of the product of the diagonal transfer matrix components
T (ci, ci+1)1,1 of the building block pairs between (1, 1) and (i, 1). Therefore,
if vi,j = 0, v1,1 = 0 must be true as well. Moreover, va,1 = 0 for all columns
a in the strip. Thus all building blocks in the strip are CRS sites and deform
with ui,1 = vi,1 = 0, resulting in the entire top row of the strip deforming
as a CRS mode compatibly with area of CRS with amplitude αu = 0.

Second, we consider a general strip configuration CSM where the
building block at site (i,W) deforms with the CRS mode, such that
ui,W = vi,W . From the vertical compatibility constraint [Eq. (2.1)] we
know that ui,W = −vi,W−1, such that vi,W−1 = −vi,W . To find the deforma-
tions of the left neighbor at site (i+ 1,W), we plug the map [Eq. (A2.12)]
into the lower boundary condition [Eq. (2.5)] to find

vi+1,W
Lv(ci+1,W)−Ru(ci,W)−Rv(ci,W)

Lu(ci+1,W)
= −vi+1,W−1. (A2.14)

The fraction reduces to 1 for all possible configuration pairs (ci,W , ci+1,W)
(see Table 2.1), such that the vertical deformations of the neighboring
building block deform as vi+1,W = −vi+1,W−1 and the block is a CRS site.
Similarly, we can do the same calculation for the right neighbor at site
(i− 1,W) to find

vi−1,W−1 = vi−1,W
Rv(ci−1,W)− Lu(ci,W)− Lv(ci,W)

Ru(ci−1,W)
(A2.15)

61

22

2. Combinatorial Design Rules

which also reduces to vi−1,W−1 = −vi−1,W for all possible configuration
pairs (ci−1,W , ci,W). Thus we find that a CRS site in the bottom of the strip
results in CRS sites to its left and right neighbor upon requiring the lower
boundary condition [Eq. (2.5)] to be satisfied. In conclusion, we find that
a single CRS site in the top or bottom row of the strip SM results in that
entire row deforming as an area of CRS, breaking the NT condition.

Next, we consider how a CRS site in row j = 2, where vi,1 = −vi,2, maps
to a constraint on vi−1. This mapping depends on the configuration of
columns (ci, ci+1). In general, we find it maps to

vi−1,1 = − T2,2

T1,1 + T2,1
vi−1,2, (A2.16)

where Ta,b is the (a, b)-th component of the transfer matrix T (ci, ci+1). This
mapping depends only on the first two rows of the 2 ×W configuration.
If the first two rows are (h, h)-pairs, the constraint maps to itself. If the
column configuration has any other type, the constraint maps to a new
constraint. For W = 3 configurations, this new constraint is not one of the
four constraints [Eqs. (2.21)-(2.24)] we find in the main text. When this
mapped constraint is taken together with one of the four constraints, the
mapped constraint results in either the top two rows, or bottom two rows
to deform as an area of CRS, breaking the NT condition. This is not a valid
W = 3 strip mode. Thus the constraint vi,1 = −vi,2 is incompatible with a
valid strip deformation for W = 3 strip modes.

A2.6. Diagonal compatibility constraints

Here we derive the diagonal compatibility constraint [Eq. (2.2)] for all 2× 2
configurations (ci,j , ci,j+1, ci+1,j , ci+1,j+1). We consider all configurations
one-by-one. We first consider the configurations for which every diagonal
edge d in the diagonal compatibility constraint [Eq. (2.2)] is trivially zero.
The diagonal compatibility constraint is then trivially satisfied and imposes
no condition on vi.

Subsequently, we consider the case where dSEi,j is the only nontrivial
diagonal edge in the diagonal compatibility constraint. To satisfy this
constraint, we require dSEi,j = 0 to hold. From Eq. (2.10) we find that this
constraint only holds if (i, j) is a CRS site, such that ui,j = vi,j . Similarly, if
dSWi+1,j is the only nontrivial diagonal edge, we find ui+1,j = vi+1,j , if dNE

i,j+1

is the only nontrivial diagonal edge, we find ui,j+1 = vi,j+1, and if dNW
i+1,j+1

is the only nontrivial diagonal edge, we find ui+1,j+1 = vi+1,j+1. Thus a

62

22

A2.6. Diagonal compatibility constraints

2× 2 configuration where a single building block is oriented such that its
nontrivial diagonal edge dc is part of the diagonal compatibility constraint
[Eq. (2.2)] must deform that single building block as a CRS site to satisfy
the diagonal compatibility constraint.

Now we consider configurations that contain horizontally paired build-
ing blocks which have nontrivial diagonal edges dc that are both part of
the diagonal compatibility constraint [Eq. (2.2)]. The two other building
blocks’ diagonal edges in the diagonal compatibility constraint are trivial.
We first consider configurations where such a pair of building blocks is in
the top row, such that (ci,j , ci+1,j) = (SE, SW). The diagonal compatibility
constraint reduces to

dSEi,j + dSWi+1,j = 0

ui,j − vi,j + ui+1,j − vi+1,j = 0, (A2.17)

where we used Eq. (2.10) to replace dc. We can simplify this further by
replacing vi+1,j using the map Eq. (A2.12):(

1 +
Ru(ci,j)

Lv(ci+1,j)

)
vi,j−1 +

(
1− Rv(ci,j)

Lv(ci+1,j)

)
vi,j

+

(
1 +

Lu(ci+1,j)

Lv(ci+1,j)

)
vi+1,j−1 = 0, (A2.18)

where we have also used the horizontal compatibility constraint to replace
u with v. Replacing the components Ru, Lu, Lv by their explicit values for
(ci,j , ci+1,j) = (SE, SW) (Table 2.1) we finally find the constraint

vi,j−1 = −vi+1,j−1. (A2.19)

Similarly, we can derive the constraint for when the horizontally paired
building are located in the bottom row, such that (ci,j+1, ci+1,j+1) =
(NE,NW). We find the constraint

vi,j = −vi+1,j . (A2.20)

Thus we find that such horizontally paired building blocks must deform
their upper edges anti-symmetrically to satisfy the diagonal compatibility
constraint. We can write Eq. (A2.20) as a constraint on vi,j−1 by replacing
vi+1,j using map [Eq. (A2.12)] and find

vi,j−1 + vi+1,j−1 = 0, (A2.21)

2vi,j + vi,j−1 − vi+1,j−1 = 0, (A2.22)
2

3
vi,j − vi,j−1 + vi+1,j−1 = 0 (A2.23)

63

22

2. Combinatorial Design Rules

for (h, h)-pairs and (u, h)-pairs with ci+1,j = NW or ci,j = NE respectively.
Now we consider configurations which contain vertically paired build-

ing blocks which have nontrivial diagonal edges that both are part of the
same diagonal compatibility constraint [Eq. (2.2)]. The other two building
blocks’ diagonal edges in the diagonal compatibility constraint are trivial.
We first consider configurations where this vertical pair of building blocks
is located on the left, such that (ci,j , ci,j+1) = (SE,NE). The diagonal
compatibility constraint reduces to

dSEi,j + dNE
i,j+1 = 0

ui,j − vi,j − ui,j+1 + vi,j+1 = 0

−vi,j−1 + vi,j+1 = 0, (A2.24)

where we used the horizontal compatibility constraint [Eq. (2.1)] to replace
u with v. Now we consider configurations where this vertical pair is lo-
cated on the right, such that (ci+1,j , ci+1,j+1) = (SW,NW). The diagonal
compatibility constraint reduces to

−vi+1,j−1 + vi+1,j+1 = 0 (A2.25)

We now try to map this constraint on vi+1 to a constraint on vi using map
[Eq. (A2.12)]. We find that the constraint maps to(

Lu(ci+1,j+1)Lu(ci+1,j)

Lv(ci+1,j+1)Lv(ci+1,j)
− 1

)
vi+1,j−1

+

(
Ru(ci,j+1)

Lv(ci+1,j+1)
− Lu(ci+1,j+1)Rv(ci,j)

Lv(ci+1,j+1)Lv(ci+1,j)

)
vi,j

− Rv(ci,j+1)

Lv(ci+1,j+1)
vi,j+1

+
Lu(ci+1,j+1)Ru(ci,j)

Lv(ci+1,j+1)Lv(ci+1,j)
vi,j−1 = 0 (A2.26)

Depending on the precise orientations of the building blocks in the 2×2 con-
figuration, this constraint reduces to two different constraints (Table 2.1)

vi,j+1 − vi,j−1 = 0 (A2.27)
2

3
vi,j +

1

3
vi,j+1 +

1

3
vi,j−1 = 0. (A2.28)

The first constraint [Eq. (A2.27)] must hold to satisfy the diagonal compat-
ibility constraint for (d, u)-pairs and (s, s)-pairs. The second constraint

64

22

A2.6. Diagonal compatibility constraints

[Eq. (A2.28)] must hold to satisfy the diagonal compatibility constraint for
(d, s)-pairs and (s, u)-pairs.

Next we consider configurations which contain diagonally paired build-
ing blocks which have nontrivial diagonal edges that are part of the same
diagonal compatibility constraint. The other two building block’s diagonal
edges in the diagonal compatibility constraint are trivial. We first consider
the case where (ci,j , ci+1,j+1) = (SE,NW). The diagonal compatibility
constraint [Eq. (2.2)] reduces to

dSEi,j + dNW
i+1,j+1 = 0 (A2.29)

−vi,j−1 + vi,j + vi+1,j + vi+1,j+1 = 0, (A2.30)

where we used Eq. (2.10) and the horizontal compatibility constraint to
simplify the constraint. We use the map [Eq. (A2.12)] to replace vi+1 by
vi. We find four different constraints depending on the orientations of the
building blocks in the 2× 2 configuration:

vi,j−1 −
1

3
vi,j+1 +

2

3
vi+1,j−1 = 0, (A2.31)

1

3
vi,j−1 +

4

9
vi,j +

1

3
vi,j+1 +

2

9
vi+1,j−1 = 0, (A2.32)

vi,j−1 +
2

3
vi,j +

1

3
vi,j+1 +

2

3
vi+1,j−1 = 0, (A2.33)

−1

3
vi,j−1 +

2

9
vi,j +

1

3
vi,j+1 −

2

9
vi+1,j−1 = 0, (A2.34)

for (d, u)-pairs, (s, u)-pairs, (d, s)-pairs, and (s, s)-pairs respectively. Second,
we consider the case where (ci+1,j , ci,j+1) = (SW,NE). The diagonal
compatibility constraint reduces to(

1 +
Rv(ci,j)

Lv(ci+1,j)

)
vi,j + vi,j+1 −

Ru(ci,j)

Lv(ci+1,j)
vi,j−1

−
(
1 +

Lu(ci+1,j)

Lv(ci+1,j)

)
vi+1,j−1 = 0. (A2.35)

Depending on the orientations of the 2 × 2 configuration, we find two
different constraints:

vi,j+1 + vi,j−1 + 2vi+1,j−1 = 0 (A2.36)

−2vi,j + vi,j+1 − vi,j−1 + 2vi+1,j−1 = 0 (A2.37)

for (d, u)-pairs and (d, s)-pairs, and (s, u)-pairs and (s, s)-pairs respectively.

65

22

2. Combinatorial Design Rules

Next, we consider configurations where three building blocks have a
nontrivial diagonal edge that is part of the diagonal compatibility con-
straint [Eq. (2.2)]. We first consider (ci,j , ci+1,j , ci,j+1) = (SE,SW,NE). The
diagonal compatibility constraint reduces to

vi,j−1 − vi,j+1 + vi+1,j−1 + vi+1,j = 0. (A2.38)

We replace vi+1,j using map [Eq. (A2.12)] for (ci,j , ci+1,j) = (SE, SW) to
find the constraint

−2vi,j−1 − vi,j+1 − vi,j − 2vi+1,j−1 = 0, (A2.39)

regardless of the orientation ci+1,j+1. Next we consider
(ci,j , ci+1,j , ci+1,j+1) = (SE, SW,NW). The diagonal compatibility
constraint reduces to

vi,j−1 + vi,j + vi+1,j−1 − vi+1,j+1 = 0. (A2.40)

We replace vi+1,j+1 using the map [Eq. (A2.12)] and find

vi,j−1 +

(
1− Ru(ci,j+1)

Lv(ci+1,j+1)

)
vi,j

+
Rv(ci,j+1)

Lv(ci+1,j+1)
vi,j+1 + vi+1,j−1

+
Lu(ci+1,j+1)

Lv(ci+1,j+1)
vi+1,j = 0 (A2.41)

We again apply map [Eq. (A2.12)] to replace vi+1,j and find the same
constraint regardless of the orientation ci,j+1:

vi,j + vi,j+1 = 0. (A2.42)

This constraint requires the building block at site (i, j + 1) to deform as
a CRS block to satisfy the diagonal compatibility constraint. Next we
consider (ci,j , ci,j+1, ci+1,j+1) = (SE,NE,NW). The diagonal compatibility
constraint reduces to

vi,j−1 − vi,kj+1 − vi+1,j − vi+1,j+1 = 0. (A2.43)

We replace vi+1 using the map [Eq. (A2.12)] and find one of two constraints

−vi,j−1 +
1

3
vi,j −

2

3
vi+1,j−1 = 0 (A2.44)

vi,j−1 +
1

3
vi,j +

2

3
vi+1,j−1 = 0, (A2.45)

66

22

A2.6. Diagonal compatibility constraints

for a (d, h)-pair or (s, h)-pair respectively. Finally, we consider the configu-
ration (ci+1,j , ci,j+1, ci+1,j+1) = (SW,NE,NW). The diagonal compatibility
constraint reduces to

−vi,j − vi,j+1 + vi+1,j−1 − vi+1,j+1 = 0. (A2.46)

We replace vi+1 using map [Eq. (A2.12)] and find the constraint

vi,j−1 + vi,j = 0 (A2.47)

regardless of the orientation of ci,j . This constraint corresponds to site (i, j)
deforming as a CRS site to satisfy the diagonal compatibility constraint.

Finally, we consider the last 2× 2 configuration:
(ci,j , ci+1,j , ci,j+1, ci+1,j+1) = (SE, SW,NE,NW). The diagonal compatibil-
ity constraint reduces to

vi,j−1 − vi,j+1 + vi+1,j−1 − vi+1,j+1 = 0. (A2.48)

We replace vi+1 using map [Eq. (A2.12)] to find

vi,j−1 + vi+1,j−1 − vi,j−1 − vi+1,j−1 = 0, (A2.49)

which is trivially true. Thus this 2× 2 configuration does not impose any
additional constraints on vi to satisfy the diagonal compatibility constraint.

A2.6.1. Diagonal constraints for W = 2 configurations

These equations simplify further for specific cases. We first consider W = 2
valid configurations and then W = 3 valid configurations. For W = 2
strip configurations, 1 ≤ j ≤ 2 and vi,0 = −vi+1,0 = 0. Moreover, the
lower boundary condition dictates vi,2 = −vi+1,2. We further simplify the
diagonal compatibility constraint [Eq. (2.2)] by assuming the lower and
upper boundary conditions are satisfied.

We find for (h, h)-pairs that constraint [Eq. (A2.20)] is trivially satisfied
by the top boundary condition. Thus (h, h)-pairs do not impose any addi-
tional constraints on the strip deformation. Additionally, (d, u)-pairs can
impose the constraints [Eqs. (A2.27), (A2.31), and (A2.36)], which simplify
to

vi,2 = 0 (A2.50)

for all cases.

67

22

2. Combinatorial Design Rules

Now, we consider (h, u)-pairs and (d, h)-pairs. The constraints
[Eqs. (A2.39), (A2.42), (A2.44), and (A2.47)] reduce to

vi,1 + vi,2 = 0, or (A2.51)

vi,1 = 0 (A2.52)

for (h, u)-pairs and (d, h)-pairs respectively. Both of these constraints are
not compatible with a strip deformation as they break the nontrivial (NT)
condition.

A2.6.2. Diagonal constraints for W = 3 configurations

Here, we consider the diagonal constraints for W = 3 configurations.
Valid 3 × 2 configurations are (h, h, h)-pairs, (d, u, h)-pairs, (h, d, u)-
pairs, (h, s, u)-pairs and (h, s, u)-pairs. The upper boundary condition
implies vi,0 = −vi+1,0 = 0 and the bottom boundary condition implies
vi,3 = −vi+1,3 = 0. We consider each configuration one-by-one.

We first consider (h, h, h)-pairs, which can only impose constraint
[Eq. (A2.19)] for all j. It is straightforward to check that the map
[Eq. (A2.12)] for (h, h, h)-pairs trivially satisfies all possible diagonal com-
patibility constraints.

Second, we consider (d, u, h)-pairs, which can impose the constraints
[Eqs. (A2.23), (A2.22), (A2.36), and (A2.31)]. Combining the possible con-
straints together with the upper and bottom boundary conditions and map
[Eq. (A2.12)] impose the constraint

vi,2 = 0. (A2.53)

Thus (d, u, h)-pairs impose constraint [Eq. (2.21)] on vi to satisfy the
diagonal compatibility constraints.

Third, we consider (h, d, u)-pairs. Such pairs can impose the constraints
[Eqs. (A2.19), (A2.36), and (A2.31)], which simplify to

vi,1 = vi,3 (A2.54)

using the upper and lower boundary conditions. Thus (h, d, u)-pairs impose
constraint [Eq. (2.23)] to satisfy the diagonal compatibility constraints.

Fourth, we consider (d, s, u)-pairs. Such pairs impose the constraints
[Eqs. (A2.28), (A2.36), and (A2.37)], which simplify to the constraints

vi,2 = 0, and (A2.55)

vi,1 = −vi,3. (A2.56)

68

22

A2.6. Diagonal compatibility constraints

Thus (d, s, u)-pairs impose constraints [Eqs. (2.21) and (2.24)] to satisfy the
diagonal compatibility constraints.

Finally, we consider (d, s, u)-pairs. Such pairs impose the constraints
[Eqs. (A2.28), (A2.33), and (A2.32)], which simplify to the constraints

2vi,1 = −vi,2, and (A2.57)

vi,1 = vi,3. (A2.58)

Thus (d, s, u)-pairs impose constraints [Eqs. (2.22) and (2.23)] to satisfy the
diagonal compatibility constraints.

In summary, we find that (h, h, h)-pairs do not impose any constraints
on the strip deformation vi, (d, u, h)-pairs impose constraint [Eq. (2.21)], (h,
d, u)-pairs impose constraint [Eq. (2.23)], (d, s, u)-pairs impose constraints
[Eqs. (2.21) and (2.24)], and (s, s, u)-pairs impose constraints
[Eqs. (2.22) and (2.23)].

Now we consider invalid configurations that contain diagonal compati-
bility constraints with three nontrivial diagonal edges. First, we consider (h,
u, h)-pairs. Such pairs impose the constraints [Eqs. (A2.42) and (A2.39)],
which simplify to

vi,1 = −vi,2. (A2.59)

This corresponds to the block at site (i, 1) deforming as a CRS block, which
is incompatible with a W = 3 strip deformation. Second, we consider (d,
h, h)-pairs. Such pairs impose the constraints [Eqs. (A2.47) and (A2.44)],
which simplify to

vi,1 = 0, (A2.60)

which is incompatible with a valid strip deformation. Third we consider (h,
s, h)-pairs. Such pairs impose the constraints [Eqs. (A2.39) and (A2.47)],
which simplify to

vi,2 = −vi,1, (A2.61)

which is incompatible with a valid strip deformation. Fourth, we consider
(h, s, h)-pairs. Such pairs impose the constraints [Eqs. (A2.42) and (A2.45)],
which simplify to

vi,1 = −vi,2, (A2.62)

which is incompatible with a valid strip deformation. (h, s, u)-pairs, (h, s,
u)-pairs, (d, s, h)-pairs and (d, s, h)-pairs all impose the same constraint
on the strip deformation. Finally, we consider (h, h, u)-pairs. Such pairs
impose the constraints [Eqs. (A2.42) and (A2.39)], which simplify to

vi,2 = −vi,3. (A2.63)

This is incompatible with a valid strip deformation.

69

22

2. Combinatorial Design Rules

A2.7. lower strip condition

In this appendix we find constraints that need to be satisfied in order to
satisfy the lower boundary condition [Eq. (2.5)]. We first consider W = 2
configurations and then W = 3 configurations. We find that for valid
configurations the lower boundary condition is satisfied by the same con-
straints that arise from the diagonal compatibility constraints [Eq. (2.2)].

First, we consider W = 2 configurations. In general, the map
[Eq. (2.13)] does not satisfy the lower boundary condition vi+1,2 = −vi,2.
We first consider (h, h)-pairs. Here the map [Eq. (2.13)] reduces to
vi+1,2 = −vi,2, and the lower boundary condition is trivially satisfied.
Next, we consider (d, u)-pairs. The map [Eq. (2.13)] together with the lower
boundary condition reduces to the constraint(

1− Rv(ci,2)

Lv(ci+1,2)

)
vi,2 = 0. (A2.64)

For (d, u)-pairs, Rv(ci,2)/Lv(ci+1,2) is either equal to 3 or 1/3. This con-
straint is thus satisfied if vi,2 = 0, which is the same as the constraint
[Eq. (A2.50)] needed to satisfy the diagonal compatibility constraint. Thus
the lower boundary condition and diagonal compatibility constraint for (d,
u)-pairs both are satisfied if constraint vi,2 = 0 is satisfied.

Now, we consider W = 3 configurations. First, we consider (h, h,
h)-pairs. The map [Eq. (2.20)] reduces to vi+1,3 = −vi,3, thus trivially
satisfying the lower boundary condition [Eq. (2.2)]. Second, we consider
(d, u, h)-pairs. The map [Eq. (2.20)] together with the lower boundary
condition [Eq. (2.2)] reduces to the constraint

Lu(ci+1,3)

Lv(ci+1,3)

(
1− Rv(ci,2)

Lv(ci+1,2)

)
vi,2 = 0, (A2.65)

which is satisfied by the constraint [Eq. (2.21)], just like the diagonal com-
patibility constraint for (d, u, h)-pairs. Third, we consider (h, d, u)-pairs.
The map [Eq. (2.20)] together with the lower boundary condition reduces
to the constraint

Lu(ci+1,2)Lu(ci+1,3)

Lv(ci+1,2)Lv(ci+1,3)

(
Ru(ci,2)

Lv(ci+1,2)
− 1

)
vi,1

+

(
1− Rv(ci,3)

Lv(ci+1,3)
vi,3

)
vi,3 = 0. (A2.66)

This constraint reduces to vi,1 = vi,3 by filling in the possible explicit values
of (ci,2, ci+1,2, ci,3, ci+1,3). Thus the lower boundary condition and diagonal

70

22

A2.8. Constraint mapping

compatibility constraint are satisfied by satisfying constraint
[Eq. (2.23)] for (h, d, u)-pairs.

Now, we consider (d, s, u)-pairs. The map [Eq. (2.20)] together with the
lower boundary condition [Eq. (2.5)] reduces to

−vi,1 + vi,2 − vi,3 = 0. (A2.67)

This equation is satisfied by constraints [Eqs. (2.21) and (2.24)], just like
the diagonal compatibility constraints [Eq. (2.2)] for (d, s, u)-pairs.

Finally, we consider (d, s, u)-pairs. The map [Eq. (2.20)] together with
the lower boundary condition [Eq. (2.5)] reduces to the constraint

vi,1 − vi,2 − 3vi,3 = 0. (A2.68)

This constraint is satisfied by constraints [Eqs. (2.22) and (2.23)]. Thus the
lower boundary condition and diagonal compatibility constraints for (d, s,
u)-pairs are satisfied by constraints [Eqs. (2.22) and (2.23)]. In conclusion,
we find that satisfying the lower boundary constraints does not require any
additional constraints than required to satisfy the diagonal compatibility
constraints for valid W = 3 configurations: (h, h, h)-pairs, (d, u, h)-pairs,
(h, d, u)-pairs, (d, s, u)-pairs and (d, s, u)-pairs.

A2.8. Constraint mapping

In general, a linear constraint f(vi,vi+1) = g(vi) + h(vi+1) = 0 depends
on the deformations of two adjacent columns: vi and vi+1. To map this
constraint to a constraint on v1, we iteratively apply the transfer matrix to
obtain a constraint on v1

i−1∏
a=1

T (ci−a, ci+1−a)g(v1)

+

i∏
a=1

T (ci+1−a, ci+2−a)h(v1) = 0 (A2.69)

A2.9. W = 3 constraint mapping

To find which combinations of valid 2 × 3 configurations lead to W = 3
strip modes, we consider how the four constraints [Eqs. (2.21)-(2.24)] on
vi map to vi+1 upon application of the transfer matrix T (ci−1, ci) for all

71

22

2. Combinatorial Design Rules

possible valid 2 × 3 configurations (ci−1, ci). We first derive the transfer
matrices for each valid configuration, which we subsequently apply tot the
four constraints to see how they map.

First, we consider the transfer matrix for (h, h, h)-pairs: T ((h, h, h)). We
find that T ((h, h, h)) = −I, where I is the 3× 3 identity matrix. Thus the
four constraints on vi map to the same constraints on vi−1.

Second, we consider the transfer matrix for (d, u, h)-pairs. We find

T ((d, u, h)) =


1 0 0

0 −Rv(ci−1,2)
Lv(ci,2)

0

0
Lu(ci,3)
Lv(ci,3)

(
1− Rv(ci−1,2)

Lv(ci,2)

)
−1

 , (A2.70)

where the precise orientations of (ci−1,2, ci,2) determine the explicit form
of the matrix. Now we apply this transfer matrix on the four constraints
and rewrite the constraints together with constraint [Eq. (2.21)] on vi−1

imposed by the (d, u, h)-pair itself. We find that constraint [Eq. (2.21)]
maps to itself with i 7→ i − 1. Constraint [Eq. (2.22)] maps to vi−1,1 = 0,
which is incompatible with a W = 3 strip deformation as it breaks the
nontrivial (NT) condition. Finally, constraint [Eq. (2.23)] maps to constraint
[Eq. (2.24)] with i 7→ i − 1 and similarly constraint [Eq. (2.23)] maps to
constraint [Eq. (2.24)] with i 7→ i− 1.

Third, we consider the transfer matrix for (h, d, u)-pairs:

T ((h, d, u)) =

 −1 0 0
2 1 0

Lu(ci,3)
Lv(ci,3)

2 0 −Rv(ci−1,3)
Lv(ci,3)

 , (A2.71)

which depends on the precise orientations of (ci−1,3, ci,3). If we apply this
transfer matrix on the four constraints and take the mapped constraint
together with the constraint [Eq. (2.23)[] imposed by the (h, d, u)-pair on
vi−1 we find that constraint [Eq. (2.21)] maps to constraint [Eq. (2.22)]
with i 7→ i − 1. Constraint [Eq. (2.22)] maps to constraint [Eq. (2.21)]
with i 7→ i − 1. Constraint [Eq. (2.23)] maps to itself with i 7→ i − 1.
Constraint [Eq. (2.24)] maps to vi−1,1 = vi−1,3 = 0 when taken together
with constraint [Eq. (2.23)] with i 7→ i − 1 imposed by the (h, d, u)-pair,
which is incompatible with a W = 3 strip deformation as it breaks the NT
condition.

72

22

A2.10. Invalid W=3 sequences

Fourth, we consider the transfer matrix for (d, s, u)-pairs:

T ((d, s, u)) = 1 0 0
−2 3 0

−2
Lu(ci,3)
Lv(ci,3)

2
Lu(ci,3)
Lv(ci,3)

−Rv(ci−1,3)
Lv(ci,3)

 , (A2.72)

which depends on the orientations of (ci−1,3, ci,3). We find that constraint
[Eq. (2.21)] maps to the constraint vi−1,1 = 0 when taken together with
constraint [Eq. (2.21)] with i 7→ i − 1 imposed by the (d, s, u)-pair itself.
This constraint vi−1,1 = 0 is incompatible with a valid strip deformation.
Constraint [Eq. (2.22)] maps to constraint [Eq. (2.22)] with i 7→ i − 1.
Constraint [Eq. (2.23)] maps to constraint [Eq. (2.24)] with i 7→ i− 1 when
considered together with constraint [Eq. (2.21)] with i 7→ i− 1 imposed by
the (d, s, u)-pair. Finally, constraint [Eq. (2.24)] maps to vi−1,1 = vi−1,3 = 0
when taken together with constraints [Eqs. (2.21) and (2.24)] with i 7→ i− 1
imposed by the (d, s, u)-pair. This mapped constraint is not compatible
with a valid strip deformation.

Finally, we consider the transfer matrix for (d, s, u)-pairs:

T ((d, s, u)) = 1 0 0
2
3

1
3 0

2
3
Lu(ci,3)
Lv(ci,3)

−2
3
Lu(ci+1,3)
Lv(ci+1,3)

−Rv(ci−1,3)
Lv(ci,3)

 , (A2.73)

which depends on the orientations of (ci−1,3, ci,3). We find that constraint
[Eq. (2.21)] maps to constraint [Eq. (2.22)] with i 7→ i − 1. Constraint
[Eq. (2.22)] maps to vi−1,1 = 0 when taken together with constraint
[Eq. (2.22)] with i 7→ i− 1 imposed by the (d, s, u)-pair itself. This mapped
constraint is incompatible with a valid strip deformation. Constraint
[Eq. (2.23)] maps to vi−1,1 = vi−1,3 = 0 when taken together with con-
straints [Eqs. (2.22) and (2.23)] with i 7→ i− 1 imposed by the (d, s, u)-pair.
This mapped constraint is incompatible with a valid strip deformation.
Finally, constraint [Eq. (2.24)] maps to constraint [Eq. (2.23)] with i 7→ i− 1
using constraint [Eq. (2.22)] with i 7→ i− 1.

A2.10. Invalid W = 3 sequences

We now explicitly state the combinations of valid (ci, ci+1) configurations
that do not result in a valid W = 3 strip mode. The constraint mapping

73

22

2. Combinatorial Design Rules

[Fig. 2.10(c)] and constraints imposed by the valid configurations prohibit
certain combinations of valid configurations. In particular, we find for the
top two rows in the strip that (d, u)-pairs or (d, s)-pairs cannot be preceded
by a (d, s)-pair. Similarly, (d, s)-pairs cannot be preceded by a (d, s)-pair
or (d, u)-pair. Additionally, a (d, u)-pair or (d, s)-pair preceded by a (h,
d)-pair cannot be preceded by a (d, s)-pair. Finally, a (d, s)-pair preceded
by a (h, d)-pair cannot be preceded by a (d, s)-pair. In the bottom two rows
similar rules apply. There, we find that a (d, u)-pair or (s, u)-pair cannot be
preceded by a (s, u)-pair. Similarly, a (s, u)-pair cannot be preceded by a
(d, u)-pair or (s, u)-pair. Additionally, a (d, u)-pair or (d, s)-pair preceded
by a (u, h)-pair cannot be preceded by a (d, u)-pair or (s, u)-pair. Finally,
a (s, u)-pair preceded by a (u, h)-pair cannot be preceded by a (s, u)-pair.
Sequences of such pairs in either the top or bottom two rows of the strip
will not result in a valid strip mode. Note that such invalid sequences
can be freely padded with (h, h)-pairs, as these map all the constraints
to themselves and do not place any additional constraints on the strip
deformation themselves.

We now translate the invalid sequences of pairs to conditions on se-
quences of linked building blocks [Fig. 2.12(a)]. First, we consider all
invalid sequences of pairs in the top two rows. We note that all realizations
of invalid sequences must feature a vertical and diagonal linked pair in the
top two rows. To see this, note that (d, u)-pairs have one building block
unlinked in the top row and one building block unlinked in the middle row,
where these blocks are either both left or right if the two linked building
blocks are linked vertically or the blocks are left and right or right and
left if the two linked building blocks are linked diagonally. Similarly, (d,
s)-pairs or (d, s)-pairs have one building block unlinked within the two
top rows: either to the left or right in the top row depending on if the two
linked building blocks are diagonally or vertically linked ((d, s)-pairs), or
vertically or diagonally linked ((d, s)-pairs) respectively. Additionally, (h,
d)-pairs have one unlinked building block in the top two rows have one
unlinked building block depending on the orientation of the d-pair. To
satisfy the strip rules, every building block needs to be linked. To construct
a linked representation that features vertical and diagonal linked building
blocks necessarily requires an invalid sequence of pairs. Inversely, every
realization of an invalid sequence of pairs necessarily requires vertical and
diagonal linked building blocks. The same holds for the invalid sequences
in the bottom two rows. Thus we capture the exclusion of invalid sequences
of pairs in a simple rule on linked building blocks in rule (iii).

74

22

A2.11. Numerical proof strip mode rules

A2.11. Numerical proof strip mode rules

Here we show numerical proof that to have class (iii) mode-scaling, a unit
cell should support at least one strip mode. To show this, we use publicly
available [91] randomly generated k× k unit cell designs ranging from size
k = 2 to k = 8 generated in earlier work [79]. We check for each generated
unit cell if it obeys the strip mode rules as formulated in Sec. 2.8.4 using
simple matrix operations and checks 2. We denote the number of strips
in a unit cell that satisfy the strip mode rules as arule and compare this to
the slope a we find from the scaling of NZM = an + b . We do this for all
possible k = 3 unit cells and approximately one million k = 4, 5, 6 unit
cells, two million k = 7 unit cells and 1.52 million k = 8 unit cells.

We find that the true slope a and the number of strip modes sup-
ported by the unit cell according to the strip mode rules arule have perfect
agreement [Fig. A2.2]. The numerical results thus strongly suggest that
supporting a strip mode is a necessary requirement for a unit cell to have
class (iii) mode-scaling and that the conjectured general strip mode rules
dictate when a unit cell supports such a strip mode.

2See https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial for
code to check the strip mode rules.

75

https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial

22

2. Combinatorial Design Rules

0 1 2a

242698
0

0

0
17304

0

0
0

1080

3£
3

0
1

2
3

4
5

a
ru
le

0 1 2 3 4 5a

765243
0

0
0

0
0

0
207706

0
0

0
0

0
0

24606
0

0
0

0
0

0
1710

0
0

0
0

0
0

102
0

0
0

0
0

0
8

4£
4

995228
0

0

0
4635

0

0
0

17

5£
5

0
1

2
3

a
ru
le

953482
0

0
0

0
45519

0
0

0
0

990
0

0
0

0
9

6£
6

1999546
0

0
454

7£
7

0
1

2
a
ru
le

1508223
0

0

0
11736

0

0
0

41

8£
8

F
i
g
u
r
e
A
2
.
2
:C

onfusion
m

atrices
com

paring
the

slope
a

based
on

m
ode-scaling

N
Z
M
(n
)

to
the

num
ber

of
strips

that
obey

the
strip

m
od

e
ru

les
a
ru

le
as

form
u

lated
in

Sec.2.8.4.T
he

k
×

k
u

nit
cellsize

is
ind

icated
on

top
of

each
m

atrix.

76

333

3 Machine learning implicit
combinatorial rules
Adapted from “Machine Learning Implicit Combinatorial Rules in Mechanical

Metamaterials” published in Physical Review Letters, November 2022

Combinatorial problems arising in puzzles, origami, and
(meta)material design have rare sets of solutions, which define
complex and sharply delineated boundaries in configuration
space. These boundaries are difficult to capture with conven-
tional statistical and numerical methods. Here we show that
convolutional neural networks can learn to recognize these
boundaries for combinatorial mechanical metamaterials, down
to finest detail, despite using heavily undersampled training
sets, and can successfully generalize. This suggests that the
network infers the underlying combinatorial rules from the
sparse training set, opening up new possibilities for complex
design of (meta)materials.

3.1. Introduction

From proteins and magnets to metamaterials, all around us systems with
emergent properties are made from collections of interacting building
blocks. Classifying such systems—do they fold, are they magnetized, do
they have a target property—normally involves calculating these proper-
ties from their structure. This is often straightforward in principle, yet
computationally expensive in practice, e.g. requiring the diagonalization
of large matrices. Machine learning algorithms such as neural networks
(NNs) forgo the need for such calculations by “learning” the classification
of structures. In particular, machine learning has proven successful to
find patterns in crumpling [92], active matter [93–95] and hydrodynam-
ics [96], photonics [97–99], predict structural defects and plasticity [100,
101], design metamaterials [49, 51, 102–107], determine order param-
eters [108–115], identify phase transitions [50, 116–132] , and predict
protein structure [133]. In these examples, the relevant property typically
varies smoothly and there is no sharp boundary separating classes in con-
figuration space. NNs are thought to be successful because they interpolate
these blurred boundaries, even when the configuration space is heavily
undersampled.

In contrast, combinatorial problems, viz. those where building blocks
have to fit together as in a jigsaw puzzle, feature a sharp boundary between

77

333

3. Machine learning implicit combinatorial rules

(c)(a)

(b)

(d)

Figure 3.1: (a) The building block of [11] can be tiled in two orientations (left) that
have a distinct deformation in two dimensions (right). (b) The building blocks of
(a) combine into larger designs (structures) that are either C (top) or I (bottom). A
change of a single building block can frustrate the deformation (red circle) and
change the structure from one that hosts a zero mode (a deformation that costs
no energy) (C) to one that does not host a zero mode (I). A set of rules can be
formulated for a unit cell design to have a zero mode [11]. (c, d) Conceptual
configuration spaces of a discrete combinatorial metamaterial problem. Class C
(pink lines) exists in a background of class I (blue), is sensitive to perturbations,
and has a complex filamentous structure. Distinguishing between a network with
a “coarse” decision boundary (purple dashed line) (c) versus a network with a
“fine” decision boundary (d) is not possible with the test set (green dots) due to the
undersampled C-I boundary.

compatible (C) and incompatible (I) configurations. Such problems arise in
self-assembly [20, 22], folding [17, 25], tiling problems [134] and combi-
natorial mechanical metamaterials [10, 11, 19, 65]. The latter are created
by tiling different unit cells and are restricted by kinematic compatibil-
ity. A simple example is that of structures that can be either floppy (zero
mode) or frustrated (no zero mode) [Fig. 3.1(a, b)]. The floppy structures
require a specific arrangement of building blocks where all the deforma-
tions fit together compatibly (C), and therefore are rare and very sensitive
to small perturbations. These perturbations are likely to induce frustrated
incompatible (I) configurations [Fig. 3.1(b)]. The space of C designs can be
pictured as needles in a haystack [Fig. 3.1(c, d)] and crucially is determined
by a set of implicit combinatorial rules. Unless we know these rules, these
problems are typically computationally intractable.

Here we show that convolutional neural networks (CNNs) are able to
accurately perform three distinct classifications of combinatorial mechan-

78

333

3.1. Introduction

ical metamaterials and to generalize to never-before-seen configurations.
Crucially, we find that well-trained CNNs can capture the fine structure of
the boundary of C, despite being trained on sparse datasets. These results
suggest that CNNs implicitly learn the underlying rule-based structure
of combinatorial problems. This opens up the possibility for using NNs
for efficient exploration of the design space and inverse design when the
combinatorial rules are unknown.

Coarse vs. fine boundaries— The boundary between C and I configu-
rations has the shape of needles in a haystack. Therefore, in a randomly
sampled training set, this boundary will be typically undersampled, e.g.
the training set will contain few I close to C (see App. A3.2.4 for more
details on the undersampled C-I boundary in the training sets.). We argue
that a NN simply interpolating the training data will misclassify most I
configurations close to C, resulting in a “coarse” decision boundary around
C [Fig. 3.1(c)]. Instead, an ideal NN should approximate the fine structure
of the needles more closely, resulting in a “fine” decision boundary around
C [Fig. 3.1(d)]. While this may sound impossible, let’s recall that this fine
structure ultimately arises from combinatorial rules. These rules are in
principle much simpler than the myriad of compatible configurations C
they can generate. Hence, the question is whether NNs could implicitly
learn these rules and finely approximate the fine boundary with great
precision. Although a NN can classify perfectly the metamaterial M1 of
Fig. 3.1(a, b) (Tab. 3.1), this is not sufficient to address this question because
the data set is too small and the C configurations are too rare to consider
larger configurations (see App. A3.1.1 for more details on the design rules
and rarity of metamaterial M1).

Table 3.1: Confusion matrices of trained CNNs with the lowest validation loss
over the test set for the classification problems of Fig. 3.1(b) (M1), Fig. 3.2(d)
(M2.i), and Fig. 3.2(e) (M2.ii).

M1 predicted M2.i predicted M2.ii predicted

C I C I C I
actual C 19 0 685 1 43418 750

I 0 4896 29 149265 453 105361

79

333

3. Machine learning implicit combinatorial rules

2 3 4 5
n

1

3

5

7

M
(n

)

I C

0.75

0.25
pd

f

I C

100

10¡2

pd
f

building blocks unit cell metamaterial(a)

n

n

(c)

(b)

(d)

rotate
(e)

NZM(n) = a n + b

a=1, b=2

a=0, b=1

a=0 a>0

b=1 b>1

N
ZM

(n
)

Figure 3.2: (a) Four two-dimensional building blocks (left), combined into a
square 5×5 unit cell (middle), which is tiled on a n = 3 grid, form a combinatorial
metamaterial (right). (b) The building blocks feature two zero modes and four
orientations with distinct deformations. (c) The number of zero modes NZM(n)
as function of n for two unit cells. The pink unit cell (circles) differs by a point
mutation from the blue unit cell (squares), yet the pink unit cell has a = 1 and
b = 2 and the blue unit cell has a = 0 and b = 1. Thus the pink unit cell is
classified as class C for both classification problems while the blue unit cell is
classified as class I for both problems. (d) Probability density function (pdf) for
classification problem (ii). Class C is more rare than class I. (e) Probability density
function (pdf) for classification problem (i). Class C is much rarer than class I.

3.2. Metamaterial Classification

Therefore, to see if NNs are still able to learn the structure of C if the C-I
boundary is undersampled, we consider another combinatorial metamate-
rial M2 [19] [for details on how we define it, see Sec. 1.2.2 and Fig. 3.2(a,
b)]. While metamaterial M1 had a unit cell of size k × k with k = 1, meta-
material M2 has larger unit cell size—we focus on k = 5 in the Main Text
and cover the cases k = 3 to 8 in the appendix. For such a metamaterial,
the design space is too large to fully map and class C is rare, yet class C is
abundant enough that we can create sufficiently large training sets to train

80

333

3.2. Metamaterial Classification

NNs.

The number of zero modes NZM(n) of a metamaterial consisting of n×n
unit cells depends on the design of the unit cell: when the linear size n is
increased, the number of zero modes NZM(n) either grows linearly with n or
saturates at a non-zero value [Fig. 3.2(c)] as NZM(n) = an+ b, where a and
b are positive integers. Accordingly, we can now specify two well-defined
binary classification problems, which each feature a rare “compatible” (C)
class and frequent “incompatible” (I) class [Fig. 3.2(d, e)]: (i) a > 0 (C) vs.
a = 0 (I). The metamaterial with a > 0 hosts zero modes that are organized
along strips, for which one can formulate combinatorials rules [see Ch. 2 for
a detailed description of and numerical evidence for combinatorial rules of
classification problem (i)]; (ii) b > 1 (C) vs. b = 1 (I). The metamaterial with
b > 1 hosts additional zero modes—up to 6—that typically span the full
structure and for which the rules still remain unknown despite our best
efforts. In both classification problems, a single rotation of one building
block in the unit cell can be sufficient to change class [Fig. 3.2(c)]. Hence,
the boundary between classes C and I is sharp and sensitive to minimal
perturbations as in the case of metamaterial M1 [Fig. 3.1(c)].

If the rules are unknown, the classification of this metamaterial re-
quires the determination of NZM(n)—via rank-revealing QR factorization
[44]—as function of the number of unit cells n, which is computation-
ally demanding. For k × k unit cells, the time it takes to compute this
brute-force classification scales nearly cubically with input size k2. In con-
trast, classification with NNs scales linearly with input size and is readily
parallelizable. In practice this makes NNs invariant to input size due to
computational overhead (see App. A3.4 for a more detailed description of
the computational time comparison). Hence a trained NN allows for much
more time-efficient exploration of the design space.

To train our NNs, we generate labeled data through Monte Carlo sam-
pling the design space to generate 5 × 5 unit cells designs and explicitly
calculate NZM(n) for n ∈ {2, 3, 4} to determine the classification. We do
this for a range of k× k unit cells with 3 ≤ k ≤ 8. We focus on 5× 5 but the
results hold for other unit cell sizes (see App. A3.3.2 for CNN results of
more unit cell sizes). The generated data is subsequently split into training
(85%) and test (15%) sets. As our designs are spatially structured and local
building block interactions drive compatible deformations, we ask whether
convolutional neural networks (CNNs) are able to distinguish between class
C and I. The input of our CNNs are pixelated representations of our designs.
This approach facilitates the identification of neighboring building blocks

81

333

3. Machine learning implicit combinatorial rules

that are capable of compatible deformations (see App. A3.2.1 for a more
detailed description of the pixel representation). The CNNs are trained
using 10-fold stratified cross-validation. Crucially, we use a balanced train-
ing set, where the proportion of class I has been randomly undersampled
such that classes C and I are equally represented (see App. A3.2.3 for more
details about the training sets for each metamaterial).

Despite the complexity of the classification problems, we find that
the CNNs perform very well (Tab. 3.1). In particular, the CNNs correctly
classify most class C unit cells as class C, and most class I unit cells as class
I. However, the test set is likely to contain few examples of class I close
to the C-I boundary, especially as C becomes more rare [Fig. 3.1(c), see
App. A3.2.4]. Hence, whether our CNNs capture the complex boundary
of C cannot be deduced from the test set alone. In other words, the CNNs
find the needles in the haystack but it remains unclear whether the needles
are approximated finely [Fig. 3.1(c)] or coarsely [Fig. 3.1(d)] 1.

3.3. Combinatorial structure

To probe the shape of both the true set of C configurations and the set
of classified C configurations, we start from a true class C configuration,
perform random walks in configuration space, and at each step probe the
probabilities to be in the set of true class C [Fig. 3.3(a)]. We randomly
change the orientation of a single random building block at each step
s 7→ s+ 1 and average over 1000 realizations (see App. A3.3.4 for a more
detailed description of the random walks) The probability to remain in
true class C, ρC→C(s), decreases with s and saturates to the class C volume
fraction β for classification (i) and (ii) [Fig. 3.3(b)]. We note that we can
fit this decay by a simple model, where we assume that subspace C is
highly complex, so that the probabilities to leave it are uncorrelated. For
every step, there is a chance α to remain C. Once in class I, we assume any
subsequent steps are akin to uniformly probing the design space such that
the probability to become C is equal to the C volume fraction β. Thus the
probability to become C can be modeled as

ρC→C(s) = αs + β
(
1− αs−1

)
. (3.1)

1We have observed from qualitative analysis of the 29 falsely classified C unit cells of
M2.i that these unit cells can be transformed to true class C by changing a single or a few
building blocks, thus they are close to the C-I boundary in design space.

82

333

3.3. Combinatorial structure

0 20
s

0.0

0.5

1.0

½
C
!

C

¹½C!C

½C!C

0 20
s

0.0

0.5

1.0

½
C
!

C

¹½C!C

½C!C

(a) (b) (c)

Figure 3.3: (a) Example of a 6-step random walk through design space (red
dots) and sketch of the decision boundary of trained CNNs that has learned the
combinatorial rules (purple dashed line). (b) Probabilities to remain in true and
predicted class C under random walks of s steps, ρC→C(s) (red crosses) and fold-
averaged 〈ρ̄C→C〉(s) (purple circles) with standard deviation (purple area), for
classification (i) (left) and (ii) (right). The red continuous line is a least-squares fit
to ρC→C(s) using Eq. (3.1).

The uncorrelated nature of the steps are consistent with a random needle
structure [Fig. 3.1(c)], where the coefficient α × 45×5 corresponds to the
average dimensionality of the needles and β corresponds to their volume
fraction. We can interpret α as the probability to not break the combinato-
rial rules when we randomly rotate a building block.

To see whether the CNNs are able to capture these key features of
space C, we repeat our random walk procedure using the CNNs’ classi-
fication instead, starting from true and classified C configurations, and
obtain the probability ρ̄C→C(s). The decay of the fold-averaged 〈ρ̄C→C〉(s)
closely matches that of the true class C for classification problems (i) and
(ii) [Fig. 3.3(b, c)]. By fitting the predicted probability ρ̄C→C(s) for each
fold to Eq. (3.1), using measurements of the CNN’s predicted volume frac-
tion β̄ over the test set to constrain the fit, we obtain the fold-averaged
dimensionality ᾱ. For classification (i) we find ᾱ ≈ 0.632 ± 0.001 closely
matches the true α ≈ 0.612 ± 0.001. In practice, α corresponds to the
fraction of building blocks that are outside the relevant combinatorial
strip. Using a simple counting argument, we find good agreement with
the lower-bound of α � 3/5 (see App. A3.3.4). Similarly, for classification
(ii) we find ᾱ ≈ 0.8514 ± 0.0005 closely matches α ≈ 0.846 ± 0.002. Our
results thus demonstrate that CNNs successfully capture on average the
complex local shape of the combinatorial space C. Even though during
learning the algorithm ’sees’ very few class I unit cells that are close the
C-I boundary, the decision boundary still captures on average the sparsity
and fine structure of the class C subset. Thus we conclude that the CNNs
infer the combinatorial rules [Fig. 3.1(c)], rather than interpolate the shape

83

333

3. Machine learning implicit combinatorial rules

in high dimensional design space [Fig. 3.1(d)]. In other words, CNNs are
able not only to capture accurately the volume fraction of the needles, but
also to finely distinguish between needle and hay.

3.4. Volume before structure

But what happens with smaller CNNs? We focus on classification (i) and
probe how well our CNNs—which consist of a single 20 filters convolution
layer, a single nh neurons hidden layer, and a two neurons output layer—
capture the sparsity and structure of class C. First we compare their true
and predicted volumes β and β̄(nh) as a function of the number of hidden
neurons nh. The CNNs’ predicted class C volume fraction β̄ approaches
the true class C volume fraction β as the number of hidden neurons nh

increases sufficiently, despite their balanced training set [Fig. 3.4(a)]. Next
we compare the true and predicted dimensionality α and ᾱ(nh). While
for small values of nh, ᾱ overestimates α, ᾱ closely matches α for large nh

[Fig. 3.4(b)]. For small number of hidden neurons nh, the CNNs overesti-
mate both the probability to remain in class C and the rarity of class C; in
other words, small CNNs coarsen the complex shape of C [Fig. 3.1(c)]. As
seen above, for larger number of hidden neurons nh both the probability
and rarity of C are closely approximated, thus large CNNs finely capture
the complex shape of C [Fig. 3.1(d)].

Strikingly, we observe that the predicted class C volume β̄ more quickly
reaches its asymptotic value than the dimensionality ᾱ. To see this, we
plot β̄(nh)− β versus ᾱ(nh)− α, which demonstrates that after β̄ closely
approximates β, increasing the number of hidden neurons nh improves
ᾱ(nh) towards its asymptote α [Fig. 3.4(c)]— this observation is also present
for other unit cell sizes, see App. A3.3.5 for measurements of ᾱ and β̄ of
classification problem (i) for more unit cell sizes. Thus, further increasing
the size of the CNN beyond the point of marginal gain of test set perfor-
mance results in a significantly more closely captured fine structure of
C. In other words, to correctly capture the average dimensionality of the
needles requires more neurons than to capture their volume.

3.5. Discussion

NNs are known to be universal approximators [45] and efficient classifiers.
They often generalize well when the training data samples representative
portions of the input space sufficiently, even for non-smooth [135] or noisy

84

333

3.5. Discussion

0 50 100
nh

0.0

0.1

0.2

¹̄
¡
¯

0 50 100
nh

0.0

0.1

0.2

¹ ®
¡
®

0.0 0.1 0.2
¹®¡®

0.0

0.1

0.2

¹̄
¡
¯

0

50

100
nh

Figure 3.4: (a) Difference between predicted class C volume β̄(nh) and true
class C volume β as a function of number of hidden neurons nh shows that β̄(nh)
approaches β for increasing nh. (b) Difference between predicted dimensionality
ᾱ(nh) and true dimensionality α obtained through least-squares fits to Eq. (3.1) as
a function of the number of hidden neurons nh shows that ᾱ(nh) approaches α for
increasing nh. (c) Scatter plots of class volumes β̄(nh)− β versus dimensionality
ᾱ(nh)− α shows that the latter asymptotes later than the former (nh indicated by
colorbar). We use CNNs with a single convolution layer of 20 2× 2 filters, which
are spatially offset with respect to the unit cell and subsequently flattened. The
flattened feature maps are fully-connected to a layer of nh hidden neurons, which
itself is fully-connected to two output neurons that correspond to class C and I.
The CNNs are systematically trained using 10-fold stratified cross-validation for
varying number of hidden neurons nh.

data [136]. As combinatorial problems are sharply delineated and severely
class-imbalanced, one expects that the fine details of an undersampled
complex boundary would be blurred by NNs. Surprisingly, we have shown
that CNNs will closely approximate such a complex combinatorial struc-
ture, despite being trained on a sparse training set. We attribute this to
the underlying set of rules which govern the complex space of compatible
configurations—in simple terms, the CNN learns the combinatorial rules,
rather than the geometry of design space, which is the complex result of
those rules 2.

Recognizing NNs’ ability to learn these rules from a sparse representa-
tion of the design space opens new strategies for design. For instance, our
CNNs could be readily used as surrogate models within a design algorithm
to save computational time. Alternatively, one could instead devise a de-
sign algorithm based on generative adversarial NNs [137] or variational
auto-encoders [138]. It is an open question whether and how such gen-
erative models could successfully leverage the learning of combinatorial

2We expect NNs to work beyond combinatorial metamaterials for a wide range of
combinatorial problems in physics, such as spin-ice. These combinatorial rules in such
problems can typically be translated to matrix operations, NNs naturally capture such
matrix operations, and therefore we expect them to perform well.

85

333

3. Machine learning implicit combinatorial rules

rules [139].
Our work shows that metamaterials provide a compelling avenue for

machine learning combinatorial problems, as they are straightforward to
simulate yet exhibit complex combinatorial structure [Fig. 3.1(c)]. More
broadly, applying neural networks to combinatorial problems opens many
exciting questions. What is the relation between the complexity of the
combinatorial rules and that of the networks? Can unsolved combinatorial
problems be solved by neural networks? Can neural networks learn size-
independent combinatorial rules? Conversely, can these problems help
us understand why neural networks work so well [140]? Can they pro-
vide insight in how to effectively overcome strong data-imbalance [141]?
We believe combinatorial metamaterials are well suited to answer such
questions.

Data availability statement.—The code supporting the findings reported
in this chapter is publicly available on GitLab 34—the data on Zenodo [91,
142].

Acknowledgements.—We thank David Dykstra, Marc Serra-Garcia, Jan-
Willem van de Meent, and Tristan Bereau for discussions. This work was
carried out on the Dutch national e-infrastructure with the support of SURF
Cooperative. C.C. acknowledges funding from the European Research
Council under Grant Agreement 852587.

3See https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial for
code to calculate zero modes and numerically check design rules.

4See https://uva-hva.gitlab.host/published-projects/CNN_MetaCombi for code
to train and evaluate convolutional neural networks.

86

https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial
https://uva-hva.gitlab.host/published-projects/CNN_MetaCombi

333

Appendix

In this appendix, we derive design rules for metamaterial M1, provide
more details on our CNNs, analyze our CNNs’ performances for different
unit cell sizes of metamaterial M2, and show that our CNNs are more com-
putationally efficient than directly calculating the mode scaling NZM(n).

A3.1. Floppy and frustrated structures

In this section, we discuss in more detail the metamaterial M1 of Fig. 3.1.
We first derive the design rules that lead to floppy structures, then we
discuss the rarity of such structures.

A3.1.1. Design rules for floppy structures

Here we provide a brief overview of the rules that lead to floppy structures
for the combinatorial metamaterial M1 of Fig. 3.1. The three-dimensional
building block of this metamaterial can deform in one way that does not
stretch any of the bonds: it has one zero mode (see Sec. 1.2.1 and [11] for
details of the unit cell). In two dimensions, there are two orientations of
the building block that deform differently in-plane. We label these two
orientations as green/red and white [Fig. 3.1(a)].

We can formulate a set of rules for configurations of these building
blocks in two dimensions. Configurations of only green/red building
blocks or white building blocks deform compatibly (C): the configuration
is floppy. A single horizontal or vertical line of white building blocks in a
configuration filled with green/red building blocks also deforms compati-
bly. More lines (horizontal or vertical) of white blocks in a configuration
filled with green/red blocks deform compatibly if the building block at the
intersection of the lines is of type green/red [Fig. 3.1(b)].

In summary, we can formulate a set of rules:

i All white building blocks need to be part of a horizontal or vertical line
of white building blocks.

ii At the intersection of horizontal and vertical lines of white building
blocks there needs to be a green/red building block.

If these rules are met in a configuration, the configuration will be floppy (C).
A single change of building block is sufficient to break the rules, creating
an incompatible (I) frustrated configuration [Fig. 3.1(b)].

87

333

3. Machine learning implicit combinatorial rules

2 3 4 5 6
ky

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

pd
f

kx =2
kx =3
kx =4
kx =5
kx =6

Figure A3.1: Probability density function (pdf) of kx × ky class C configurations.

A3.1.2. Rarity of floppy structures

Here we show how the rarity of class C in combinatorial metamaterial
M1 depends on the size of the kx × ky configuration. To show this, we
simulate configurations with varying kx, ky ∈ {2, 3, 4, 5, 6}. The size of
the design space grows exponentially as 2kxky , yet the fraction of class C
configurations decreases exponentially with unit cell size (Fig. A3.1). Thus
the number of C configuration scale with unit cell size at a much slower
rate than the number of total configurations. For large configuration size,
the number of C configurations is too small to create a sufficiently large
class-balanced training set to train neural networks on.

A3.2. Constructing and Training Convolutional Neural
Networks for metamaterials

In this section, we describe in detail how we construct and train our convo-
lutional neural networks (CNNs) for classifying unit cells into class I and
C. We first transform our unit cells to a CNN input, second we establish

88

333

A3.2. Constructing and Training Convolutional Neural Networks for metamaterials

(a) pixelate

convolve

pixelate

convolve

(b)

Figure A3.2: Unit cell designs of the combinatorial metamaterials in Fig. 3.1(a)-
(b) and Fig. 3.2(a), and their respective pixel representations. The blue squares
indicates how the building blocks are transformed to pixels, the green squares
show which part of the unit cell is convolved by the first convolution layer.

the architecture of our CNNs. Next, we obtain the training set, and finally
we train our CNNs.

A3.2.1. Pixel Representation

To feed our design to a neural network, we need to choose a representation
a neural network can understand. Since we aim to use convolutional neural
networks, this representation needs to be a two-dimensional image. For
our classification problem, the presence or absence of a zero mode ulti-
mately depends on compatible deformations between neighboring building
blocks. As such, the representation we choose should allow for an easy
identification of the interaction between neighbors.

In addition to being translation invariant, the classification is rotation
invariant. While we do not hard code this symmetry in the convolutional
neural network, we do choose a representation where rotating the unit
cell should still yield a correct classification. For example, this excludes a
representation where each building block is simply labeled by a number
corresponding to its orientation. For such a representation, rotating the
design without changing the numbers results in a different interplay be-
tween the numbers than for the original design. Thus, we cannot expect a
network to correctly classify the rotated design.

For both metamaterials, we introduce a pixel representation. We repre-
sent the two building blocks of metamaterial featured in Fig. 3.1 as either a
black pixel (1) or a white pixel (0) [Fig. A3.2(a)]. A kx × ky unit cell thus
turns into a kx × ky black-and-white image.

Likewise, we introduce a pixel representation for the metamaterial
M2 of Fig. 3.2(a) which naturally captures the spatial orientation of the
building blocks, and emphasizes the interaction with neighboring building

89

333

3. Machine learning implicit combinatorial rules

blocks. In this representation, each building block is represented as a 2× 2
matrix, with one black pixel (1) and three white (0) pixels, see Fig. A3.2(b).
The black pixel is located in the quadrant where in the bars-and-hinges rep-
resentation the missing diagonal bar is. Equivalently, this is the quadrant
where in the directed graph representation the diagonal edge is located.
Moreover, in terms of mechanics, this quadrant can be considered floppy,
while the three others are rigid.

This representation naturally divides the building blocks into 2× 2 pla-
quettes in which paired building blocks are easily identified, see Fig. A3.2(b).
Building blocks sharing their black pixel in the same plaquette are neces-
sarily paired, and thus allow for deformations beyond the counter-rotating
squares mode. Note that this includes diagonally paired building blocks as
well. By setting the stride of the first convolution layer to (2, 2), the filters
only convolve over the plaquettes and not the building blocks, which do
not contain any extra information for classification.

A3.2.2. CNN architecture details

To classify the unit cells into class I and C, we use a convolutional neural
network (CNN) architecture. We first discuss the architectures used to
obtain the results of Tab. 3.1. Then we discuss the architecture used to
obtain the results of Fig. 3.4.

For the metamaterial M1 of Fig. 3.1, the CNN consists of a single
convolution layer with 20 2×2 filters with bias and ReLu activation function.
The filters move across the input image with stride (1, 1) such that all
building block interactions are considered. Subsequently the feature maps
are flattened and fully-connected to a hidden layer of 100 neurons with
bias and ReLu activation function. This layer subsequently connected to 2
output neurons corresponding to C and I with bias and softmax activiation
function. The input image is not padded. Since a network of this size was
already able to achieve perfect performance, we saw no reason to go to a
bigger network.

For the metamaterial M2 of Fig. 3.2 and classification problem (i) we
first periodically pad the input image with a pixel-wide layer, such that
a 2k × 2k image becomes a 2k + 2× 2k + 2 image. This image is then fed
to a convolutional layer, consisting of 20 2× 2 filters with bias and ReLu
activation function. The filters move across the input image with stride
(2, 2), such that the filters always look at the parts of the image showing the
interactions between four building blocks [Fig. A3.2(b)]. Subsequently the
20 k+1× k+1 feature maps are flattened and fully-connected to a hidden

90

333

A3.2. Constructing and Training Convolutional Neural Networks for metamaterials

layer of 100 neurons with bias and ReLu activation function. This layer is
then fully-connected to 2 output neurons corresponding to the two classes
with bias and softmax activation function. From the hyperparameter grid
search (see Sec. A3.2.5) we noted that this nf and nh were sufficiently large
for good performance.

For classification (ii) we again pad the input image with a pixel-wide
layer. The CNN now consists of three sequential convolutional layers
of increasing sizes 20, 80, and 160 filters with bias and ReLu activation
function. The first convolution layer moves with stride (2, 2). The feature
maps after the last convolutional layer are flattened and fully-connected to
a hidden layer with 1000 neurons with bias and ReLu activation function.
This layer is fully-connected to two output neurons with bias and softmax
activation function. This network is larger than for classification (i); we
saw noticeable improvements over the validation set when we considered
larger networks. This is most likely a result of the (unknown) rules behind
classification (ii) being more complex.

The networks are trained using a cross-entropy loss function. This
loss function is minimized using the Adam optimization algorithm [143].
This algorithm introduces additional parameters to set before training
compared to stochastic gradient descent. We keep all algorithm-specific
parameters as standard (β1 = 0.9, β2 = 0.999, ϵ = 1e− 07), and only vary
the learning rate η from run to run. The network for the classification
problem of Fig. 3.1 uses a weighted cross-entropy loss function, where
examples of C are weighted by a factor 200 more than examples of I.

To obtain the results of Fig. 3.4, we use the architecture of classification
(i) and vary the number of neurons nh in the hidden layer. We keep the
number of filters the same. To obtain this architecture, we performed a
hyperparameter grid search, where we varied the number of filters nf of the
convolution layer and the learning rate η as well. The details are discussed
in the Sec. A3.2.5. The total number of parameters for this network with
nf filters and nh neurons is

Nparams = (4 + 1)nf + ((k + 1)2nf + 1)nh + (nh + 1)2. (A3.1)

A3.2.3. Training set details

Each classification problem has its own training set. For the classification
problem of Fig. 3.1, the networks are trained on a training set Dt of size
|Dt| = 27853 that is artificially balanced 200-to-1 I-to-C. Classification
problem (i) has a class balanced training set size of |Dt| = 793200. Problem

91

333

3. Machine learning implicit combinatorial rules

(ii) has a training set size of |Dt| = 501850. For the classification problems
(i) and (ii), the class is determined through the total number of modes
NZM(n) as described in Sec. 3.2. For the metamaterial M1 of Fig. 3.1, we
determine the class through the rules as described in Sec. A3.1.

Since there is a strong class-imbalance in the design space, for the
network to learn to distinguish between class I and C, the training set
is class-balanced. If the training set is not class-balanced, the networks
tend to learn to always predict the majority class. The training set is
class-balanced using random undersampling of the class I designs. For
problem (i), with the strongest class-imbalance, the number of class C
designs is artificially increased using translation and rotation of class C
designs. We then use stratified cross-validation over 10 folds, thus for each
fold 90% is used for training and 10% for validation. The division of the
set changes from fold to fold. To pick the best performing networks, we
use performance measures measured over the validation set.

To show that our findings are robust to changes in unit cell size, we also
train CNNs on classification problem (i) for different k × k unit cell sizes.
The size of the training set Dt for each unit cell size k is shown in Tab. A3.1.
Increasing the unit cell size increases the rarity of C and the size of the
design space. This leads a more strongly undersampled C-I boundary as
we will show in the next section.

A3.2.4. Sparsity of the training set

To illustrate how sparse the training set is for classification problem (i),
we divide the number of training unit cells per class, |Dt(Class)| over
the estimated total number of k × k unit cells of that class, |ΩD(Class)|.
We estimate this number for class C through multiplying the volume
fraction of class C β in a uniformly generated set of unit cells with the total

Table A3.1: Details of the hyperparameter grid search.

k size of Dt size of Dtest

3 31180 39321
4 397914 150000
5 793200 149980
6 1620584 150000
7 292432 600000
8 1619240 144000

92

333

A3.2. Constructing and Training Convolutional Neural Networks for metamaterials

3 5 7
k

10-28

10-22

10-16

10-10

10-4

jD
t(

C
la

ss
)j

j­
D
(C

la
ss

)j

I
C

0 20 40 60
j¢Xj

0.0

0.1

0.2

0.3

pd
f

3
4
5
6
7
8

(a) (b)

Figure A3.3: Training set details for classification problem (i) of metamaterial M2.
(a) Fraction of the total unit cells of class C that are in the training set. (b) Average
absolute distance |∆X| in number of building blocks between class C and class I
unit cells in the training set.

number of possible unit cells |ΩD| = 4k
2
: |ΩD(C)| ≈ β|ΩD|. Likewise, we

determine the ratio for class I. The resulting ratio for class C and I is shown
in Fig. A3.3(a). Clearly, for increasing unit cell size k, the class sparsity in
the training set increases exponentially. Consequently, the neural networks
get relatively fewer unit cells to learn the design rules bisecting the design
space for increasing unit cell size.

Moreover, the training set unit cells of different class are, on average,
farther removed from one another for increasing unit cell size k. The dis-
tance between two unit cells |∆X| is defined as the number of building
blocks with a different orientation compared to their corresponding build-
ing block at the same spatial location in the other unit cell. So two k × k
unit cells can at most be k2 building blocks removed from one another,
if every single building block has a different orientation compared to its
corresponding building block at the same spatial location in the other unit
cell. Note that we only consider different orientations in this definition,
we do not define an additional notion of distance between orientations of
building blocks.

By measuring the distance in number of different building block ori-
entations |∆X| between every class C to every class I unit cell, we obtain
the probability density function of distance in number of different build-
ing blocks between two unit cells of different class in the training set, see
Fig. A3.3(b). Consequently, if k increases, the networks are shown fewer
examples of unit cells similar to each other, but of different class. Thus the
boundary between C and I is undersampled in the training set, with few I
designs close to the boundary.

93

333

3. Machine learning implicit combinatorial rules

A3.2.5. CNN hyperparameter grid search details

To see how convolutional neural network (CNN) size impacts classification
performance, a hyperparameter grid search is performed. We focus on
classification problem (i), which features a shallow CNN with a single
convolution layer and single hidden layer as described in Sec. A3.2.2. This
search varied three hyperparameters: the number of filters nf , the number
of hidden neurons nh, and the learning rate η. The number of filters nf

runs from 2 to 20 in steps of 2, the number of hidden neurons nh first runs
from 2 to 20 in steps of 2, then from 20 to 100 in steps of 10. The learning
rate ranges from η ∈ {0.0001, 0.001, 0.002, 0.003, 0.004, 0.005}. For each
possible hyperparameter combination, a 10-fold stratified cross validation
is performed on a class-balanced training set. Early stopping using the
validation loss is used to prevent overfitting.

To create the results of Fig. 3.4, nf has been fixed to 20 since most
of the performance increase seems to come from the number of hidden
neurons nh after reaching a certain treshhold for nf as we will show in
Sec. A3.3. The best η is picked by selecting the networks with the highest
fold-averaged accuracy over the validation set.

A3.3. Assessing the performances of CNNs

In this section, we describe in detail how we assess the performance of
our trained convolutional neural networks (CNNs). We first quantify
performance over the test set, then we define our sensitivity measure.
Finally, we apply this sensitivity measure to the CNNs.

A3.3.1. Test set results

After training the CNNs on the training sets, we test their performance
over the test set. The test set consists of unit cells the networks have not
seen during training, and it is not class-balanced. Instead, it is highly class-
imbalanced, since the set is obtained from uniformly sampling the design
space. In this way, the performance of the network to new, uniformly
generated designs is fairly assessed.

For the classification problem of metamaterial M1, the test set Dtest

has size |Dtest| = 4915. Classification problem (i) for metamaterial M2
has test set size |Dtest| = 149982. Problem (ii) for M2 has test set size
|Dtest| = 149980.

94

333

A3.3. Assessing the performances of CNNs

Precisely because the test set is imbalanced, standard performance
measures, such as the accuracy, may not be good indicators of the actual
performance of the network. There is a wide plethora of measures to choose
from [144]. To give a fair assessment of the performance, we show the
confusion matrices over the test sets for the trained networks with the
lowest loss over the validation set in Tab. 3.1.

A3.3.2. Varying the unit cell size

To see how the size of the unit cell impacts network performance, we
performed a hyperparameter grid search as described in Sec. A3.2.5 for
k× k unit cells ranging from 3 ≤ k ≤ 8. We focus on classification problem
(i). The size of the test set Dtest is shown in Tab. A3.1.

To quantify the performance of our networks in a single measure, we
use the Balanced Accuracy:

BA =

〈
1

2

(
VTC

VTC + VFI
+

VTI

VTI + VFC

)〉
(A3.2)

=

〈
1

2
(TCR + TIR)

〉
, (A3.3)

where VTC, VTI, VFC, and VFI are the volumes of the subspaces true class
C TC, true class I TI, false class C FC, and false class I FI [Fig. 3.1(c, d)].
We do not consider other commonly used performance measures for class-
imbalanced classification, such as the F1 score, since they are sensitive to
the class-balance.

The BA can be understood as the arithmetic mean between the true
class C rate TCR (sensitivity), and true class I rate TIR (specificity). As
such, it considers the performance over all class C designs and all class
I designs separately, giving them equal weight in the final score. Class-
imbalance therefore has no impact on this score.

Despite the complexity of the classification problem, we find that, for
sufficiently large nf and nh, the balanced accuracy BA approaches its max-
imum value 1 for every considered unit cell size k (Fig. A3.4). Strikingly,
the number of filters nf required to achieve large BA does not vary with
k. This is most likely because the plaquettes encode a finite amount of
information—there are only 16 unique 2 × 2 plaquettes. This does not
change with unit cell size k, thus the required number of filters nf is in-
variant to the unit cell size. The number of required hidden neurons nh

increases with k, but not dramatically, despite the combinatorial explo-
sion of the design space. To interpret this result, we note that a high BA

95

333

3. Machine learning implicit combinatorial rules

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0

­
TCR

®

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0
BA

Figure A3.4: Heatmaps of the fold-averaged balanced accuracy BA for CNNs with
nf filters and nh hidden neurons trained on k × k unit cells indicated on top of
each heatmap.

corresponds to correctly classifying most class C unit cells as class C, and
most class I unit cells as class I. Hence, sufficiently large networks yield
decision boundaries such that most needles are enclosed and most hay is
outside [Fig. 3.1(c, d)]. However, whether this decision boundary coarsely
[Fig. 3.1(c)] or finely [Fig. 3.1(d)] approximates the structure close to the
needles cannot be deducted from a coarse measure such as the BA over the
test set.

The usage of BA to show trends between neural network performance
and hyperparameters is warranted, since no significant difference between
the true class C rate TCR and true class I rate TIR appears to exist, see
Fig. A3.5. Evidently TCR and TIR depend similarly on the number of
filters nf and number of hidden neurons nh. This is to be expected, since
the networks are trained on a class-balanced training set.

The effect of class-imbalance on CNN performance can be further illus-
trated through constructing the confusion matrices [Fig. A3.6(b)]. Though
all CNNs show high true C and I rates, the sheer number of falsely classi-
fied C unit cells can overtake the number of correctly classified C unit cells
if the class-imbalance is sufficiently strong, as for the 7× 7 unit cells.

A3.3.3. Increasing the size of the training set

To illustrate how the size of the training set Dt influences the performance
over the test set, we compare CNNs trained on two training sets of different

96

333

A3.3. Assessing the performances of CNNs

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0

­
TCR

®

12

20

60

100

n
h

k= 3

4 10 16
nf

4

12

20

60

100

n
h

k= 4

k= 5

4 10 16
nf

k= 6

k= 7

4 10 16
nf

k= 8

0.0

0.2

0.4

0.6

0.8

1.0

­
TIR

®

(a)

(b)

Figure A3.5: (a) Heatmaps of the fold-averaged true class C rate ⟨TCR⟩. (b)
Heatmaps of the fold-averaged true class I rate ⟨TIR⟩.

size consisting of 7× 7 unit cells—the unit cell size with the strongest class-
imbalance. We use the fold-averaged balanced accuracy BA to quantify the
performance. The training sets are obtained from 1M and 2M uniformly
sampled unit cells respectively, and the number of class C unit cells is
artificially increased using translation and rotation to create class-balanced
training sets. The best BA is more than a factor 2 smaller for CNNs trained
on the larger training set, compared to the smaller training set (Fig. A3.7).
Thus, lack of performance due to a strong data-imbalance can be improved
through increasing the number of training samples.

97

333

3. Machine learning implicit combinatorial rules

I

C

ac
tu

al
15

2794

36334

0

3£ 3

C I
predicted

I

C

ac
tu

al

184

35096

114544

79

4£ 4

29

685

149265

1

5£ 5

C I
predicted

37

6804

143153

6

6£ 6

6554

56

293389

1

7£ 7

C I
predicted

213

1070

142705

12

8£ 8

Figure A3.6: Confusion matrices over the test set for trained CNNs with the
highest accuracy over the class-balanced validation set. The k × k unit cell size is
indicated on top of each matrix.

A3.3.4. Random walk near the class boundary

To better understand the complexity of the classification problem, we probe
the design space near test set unit cell designs. Starting from a test set
design X0 with true class C, we rotate a randomly selected unit cell to
create a new unit cell design X1. We do this iteratively up to a given
number of steps s to create a chain of designs. For each generated design,
we assess the new true class using the design rules for classification (i) and
through calculating NZM(n) for n ∈ {3, 4} for classification (ii).

For each unit cell size k, we take s = k2 steps in design space. The
probability to transition from an initial 5×5 design X0 of class C to another
design Xs of class C as a function of s random walk steps in design space
pC→C(s), is shown in Fig. 3.3(b, c) for classification problems (i) and (ii).

We repeat the random walks for other k × k unit cells for problem (i).
A clear difference between the different unit cell sizes is visible. Both the
rate at which the probability decreases initially, and the value to which it
saturates differs per unit cell size (Fig. A3.8).

For even unit cell size, the dominant strip mode width is W = 1
(Fig. A3.9) and each class C design is most likely to just have a single
strip mode. Thus, the probability to transition from C to I relies on the
probability to rotate a unit cell inside the strip of the strip mode, which is
1/k, so αt ≈ 1/k. For odd unit cell sizes, the dominant strip mode width is

98

333

A3.3. Assessing the performances of CNNs

0 20 40 60 80 100
nh

10-2

10-1
1
¡
B
A

size of Dt = 152488
size of Dt = 292432

Figure A3.7: Balanced accuracy BA for CNNs with nf = 20 trained on a smaller
training set (circles) and larger training set (squares). The size of the training set
is indicated in the legend.

W = 2, such that αt ≈ 2/k.
To understand the asymptotic behavior, we note that for large s the

unit cells are uncorrelated to their original designs. Thus, the set of unit
cells are akin to a uniformly sampled set of unit cells. Consequently, the
probability to transition from C to C for large s is approximately equal to
the true class C volume fraction β.

A3.3.5. Random walk near the decision boundary

In addition to the true class, we can assess the predicted class by a given
network for each unit cell in the random walk. This allows us to probe the
decision boundary, which is the boundary between unit cells that a given
network will classify as C and those it will classify as I. By comparing the
transition probabilities for given networks to the true transition probability
we get an indication of how close the decision boundary is to the true class
boundary.

To quantitatively compare the true class boundary with the decision

99

333

3. Machine learning implicit combinatorial rules

100 101
s

0.0

0.2

0.4

0.6

0.8
½
C
!
C

3
4
5
6
7
8

Figure A3.8: Probability ρC→C (polygons) to transition from initial design X0 of
class C to another design Xs of class C as a function of s random walk steps in
design space starting from the initial design. The legend indicates the polygon
and color for each unit cell size k. The continuous lines are obtained from a
least-squares fit using Eq. (3.1).

boundaries, we fit the measured transition probability for each network
to Eq. (3.1) with ᾱ as fitting parameter. We start from designs with true
and predicted class C, and track the predicted class for the random walk
designs. We set the asymptotic value to the predicted class C volume
fraction β̄ [Fig. A3.10(a)] for each network. From this we obtain a 10-fold
averaged estimate of ᾱ.

Additionally, we do this for varying unit cell size k for classification
problem (i) using the hyper parameter grid search networks. We use CNNs
with fixed number of filters nf = 20 and varying number of hidden neurons
nh. We select the networks with the best-performing learning rate η over
the validation set, and obtain a 10-fold averaged estimate of ᾱ for each nh

[Fig. A3.10(b)].
Small networks tend to overestimate the class C dimensionality α

[Fig. A3.10(b)]. Larger networks tend to approach the true α for increasing
number of hidden neurons nh. For large data-imbalance, as is the case for

100

333

A3.4. Computational time analysis

(a)

U

V

stripW

(b)

Figure A3.9: Schematic and pixel representation of modes in a 4 × 4 unit cell.
(a) Schematic deformation of counter-rotating squares mode (top unit cell, blue)
and a strip mode (bottom unit cell, pink). The strip mode spans the entire area
of the strip (white) of width W = 2, while the areas U and V do not deform.
(b) Respective pixel representations of the left unit cells. Paired unit cells are
highlighted through red dots connected by orange lines. Note that the top unit
cell does not contain a strip that meets the strip mode rules, while the bottom unit
cell does.

k = 7 and k = 8, even the larger networks overestimate α. This is not a
fundamental limitation, and can most likely be improved by increasing the
size of the training set, see Sec. A3.3.3. We conjecture that this is due to
the higher combinatorial complexity of the C subspace for larger unit cells,
which requires a larger number of training samples to adequately learn the
relevant features describing the subspace. The trend shown in Fig. 3.4(c)
holds across all unit cell sizes [Fig. A3.10(c)].

A3.4. Computational time analysis

In this section we discuss the computational time it takes to classify a
k × k unit cell design by calculating the number of zero modes NZM(n)
for n ∈ {2, 3, 4} using rank-revealing QR (rrQR) decomposition. The first
algorithm takes as input a unit cell design, creates compatibility matrices
C for each n, and calculates the dimension of the null space for each
matrix using rrQR decomposition. The classification then follows from the
determination of a and b in NZM(n) = an+ b as described in Ch. 3.

101

333

3. Machine learning implicit combinatorial rules

3 4 5 6 7 8
k

10-4

10-3

10-2

10-1

100

¯

¹̄

¯

3 4 5 6 7 8
k

0.4

0.6

0.8

1.0

®

¹®
®

0

25

50

75

100
nh(a) (b)

0.0

0.1

0.2

¹̄
¡
¯

k= 3

0.0 0.1 0.2
¹®¡®

0.0

0.1

0.2

¹̄
¡
¯

k= 4

k= 5

0.0 0.1 0.2
¹®¡®

k= 6

k= 7

0.0 0.1 0.2
¹®¡®

k= 8

0

20

40

60

80

100
nh(c)

Figure A3.10: (a) Classification problem (i) Class C volume fraction β (red) as
a function of unit cell size k. The predicted class C volume fraction β̄(nh) (for
nf = 20) approaches β for increasing number of hidden neurons nh (colorbar).
(b) True dimensionality α (red) and predicted dimensionality ᾱ(nh) (colorbar)
obtained through least-squares fits to data as in Fig. 3.3(b) for all k. The estimated
α for both odd (dashed line) and even (dashdotted line) k agree well with α. (c)
Scatter plots of class volume fractions β̄(nh)− β versus dimensionality ᾱ(nh)− α
shows that the latter asymptotes later than the former (nh indicated by a colorbar,
and unit cell size k indicated on top of each graph)

We contrast this brute-force calculation of the class with a trained
neural networks time to compute the classification. We consider a shallow
CNN with a single convolution layer of nf = 20 filters, a single hidden
layer of nh = 100 hidden neurons and an output layer of 2 neurons. The
network takes as input a k × k unit cell design in the pixel representation
(with padding) and outputs the class. The time complexity of a forward
evaluation of the network is of order O(Nparams), since only the number of
parameters changes under an increase of input size (the number of neurons
in subsequent layers remain fixed) and each extra parameter constitutes an
extra multiplication operation. The number of parameters of these CNNs
grows linearly with input size k2, see Eq. (A3.1). We focus on networks

102

333

A3.4. Computational time analysis

trained on classification problem (i).
The brute-force calculation scales nearly cubically with input size k2,

while the neural network’s computational time remains constant with unit
cell size k. This highlights the advantage of using a neural network for
classification: it allows for much quicker classification of new designs. In
addition, the neural network is able to classify designs in parallel extremely
quickly: increasing the number of unit cells to classify from 1 to 1000 only
increased the computational time by a factor ≈ 1.33.

Please note that this analysis does not include the time to train such
neural networks, nor the time it takes to simulate a large enough dataset to
train them. Clearly there is a balance, where one has to weigh the time it
takes to compute a sufficiently large dataset versus the number of samples
that they would like to have classified. For classification problems (i) and
(ii) it did not take an unreasonable time to create large enough datasets, yet
brute-forcing the entire design space would take too much computational
time. Our training sets are large enough to train networks on—of order
105—but are still extremely small in comparison to the total design space,
such that the time gained by using a CNN to classify allows for exploring a
much larger portion of the design space as generating random designs is
computationally cheap.

103

333

3. Machine learning implicit combinatorial rules

3 4 5 6 7 8
k

0

10

20

30

40

50

60

70

t(
s)

Figure A3.11: Computation time t measured in seconds s to classify k × k unit
cells by modescaling (red) versus using neural network (blue).

104

4444

4 Data-driven design
From self-assembly and protein folding to combinatorial meta-
materials, a key challenge in material design is finding the
right combination of interacting building blocks that yield
targeted properties. Such structures are fiendishly difficult
to find—not only are they rare, often the design space is so
rough that direct optimization is hopeless. Here, we design
ultra-rare combinatorial metamaterials capable of multiple de-
sired deformation modes by introducing a two-fold strategy
which avoid the drawbacks of direct optimization. We first
focus on optimizing for pluripotency, which we define as a
statistical measure for potential performance; for our specific
case, pluripotency is determined by the number of spatially
extended deformations of a candidate design. Subsequently, we
select and refine high-potential designs by strategically plac-
ing defects, thus obtaining designs that match the challenging
target properties. Specifically, we use a combination of convo-
lutional neural networks and genetic algorithms to effectively
explore the design space. Our design approach enables us to
obtain designs surpassing those attainable through standard
optimization, thereby facilitating the discovery and design of
pluripotent (meta)materials. In general, our approach repre-
sents a new paradigm for systematic and data-driven design
within large, intractable design spaces, and is readily appli-
cable to a broad spectrum of combinatorial problems beyond
metamaterial design.

4.1. Introduction

Data-driven methods are revolutionizing the way we design materials, par-
ticularly in guiding self-assembly [145, 146], designing soft materials [104,
147], engineering proteins [148, 149] and designing metamaterials [48,
52, 150–153]. In most cases, the predicted property is continuous, and
straightforward optimization of an objective function suffices to find a
design with the desired properties. In contrast, for combinatorial designs
with discrete properties that are sensitive to changes in each building block,
the design space is large, high-dimensional and discontinuous [79]. Typi-
cally, targeted designs are rare exceptions in a sea of random, failed designs

105

4444

4. Data-driven design

and cannot be found through optimization of a direct objective function.
Such jagged combinatorial spaces are ubiquitous, for example, in design for
ground states in self-assembly [21, 23, 24], transition graphs in amorphous
matter [7, 26–29], isomers in molecular design [30, 31], and deforma-
tion modes in mechanical metamaterials [14, 19, 79, 154] The latter are
particularly interesting because multiple distinct deformations enable ex-
ceptional functionalities, such as selective mechanical responses [19, 154],
nonlocal resonances [14], multi-shape folding [15–17], and sequential
energy-absorption [18].

Achieving multiple specific target deformations is an extremely chal-
lenging design problem. In principle, multiple deformations enable multi-
ple on-demand properties; yet, in practice, increasing the number of defor-
mation modes too much renders the material floppy and hinders control.
For example, designing metamaterials with multiple target deformations is
extremely challenging due to the risk of generating superfluous undesired
deformations that impede the actuation of the desired deformations [88].
Moreover, deformations are sensitive to changes in the design—changing
a single building block may prohibit one or multiple deformation modes.
Consequently, targeted designs with multiple desired deformations are
extremely rare and direct optimization is unfeasible. It remains an open
question how to systematically find rare designs with multiple desired
properties in large, jagged combinatorial spaces.

Here, we introduce a new design approach that embraces superfluous
deformations to find such rare designs. We consider a family of mechanical
metamaterials with multiple ordered deformation modes [Fig. 4.1(a)-(b)].
To find rare designs with desired deformations, we propose to initially
search for designs with high pluripotency, rather than high fitness. We
define pluripotency P as a statistical measure that quantifies the perfor-
mance of a design over a class of properties—of which the desired property
constitutes a much smaller subset. In the context of our metamaterials,
pluripotency P is positively correlated with the number of intensive zero
modes b [Fig. 4.1(c)]. To illustrate our proposed approach, we draw an
analogy to the process of finding, extracting, and refining rare metals such
as gold, which are scattered across the earth in trace amounts. Because we
focus on pluripotency rather than fitness, our design approach consists
of two steps: (i) prospecting for highly pluripotent candidate designs—
high-grade soil—using a genetic algorithm (GA) guided by a convolutional
neural network (CNN) [Fig. 4.2(a)] and (ii) extracting and refining candidate
designs to find a design with targeted properties [Fig. 4.2(b)].

106

4444

4.1. Introduction

1 2 3 4
b

0.0

0.2

0.4

P

­
P
®

P

(a)

(d)(c)

CRS

D

unit cell

deformation mode
structurerealbuilding

block

(b)

Figure 4.1: Hierarchical structure of pluripotent metamaterials. (a) The build-
ing block (left, gray) can be tiled in four orientations and features two distinct
zero-energy deformations, zero modes, (middle) in two dimensions, which we
label CRS (top, cyan) and D (bottom, pink). We visualize the modal structure of a
deformed building block as a cyan or pink square (right). (b) The building blocks
of (a) combine into larger 5× 5 unit cells (left) that feature intensive zero modes
(middle) upon tiling the unit cell. The mode structure of such intensive modes is
shown on the right. The three unit cells differ only by a single building block to
their neighbors, yet each unit cell supports the zero modes of their top neighbors
in addition to the zero mode directly right to the unit cell. The number of intensive
modes b thus increases from top to bottom and such designs occupy subspaces of
increasing codimension in the design space of (d) as indicated by the arrows. (c)
An increasing number of intensive modes b correlates to a higher average capacity
[Eq. (4.3)] or pluripotency P per design (blue circles). The pluripotency averaged
over random designs (red squares) increases with b. The blue shaded area is a
violin plot to visualize the distribution of P values. (d) Conceptual configuration
space of a discrete combinatorial multimodal metamaterial problem. Random
point-mutations of the design—e.g. rotating or modifying a single building block—
generally lower the number of intensive modes b, most designs have a low b and
we have few examples of rare designs with higher values of b. Here, satisfying a
hierarchy of conditions leads to increasingly low-dimensional subspaces where b
has larger values (areas of the same color). We represent such a structure as nee-
dles (solid lines) in hay (square background), where each needle in turn contains
higher codimension needles (circles). Such a structure forms a hierarchy (insets).

107

4444

4. Data-driven design

b

Prospect

mutate

crossbreed &
clone

fit
ne

ss

Extract & Refine
Target

Extract Refine

se
ar

ch
 &

co

m
bi

ne

defect

(a)

(b)

Library

Figure 4.2: Design strategy for combinatorial multimodal metamaterials. (a)
Step (i) of our design approach uses a convolutional neural network (CNN) to
predict the number of intensive modes b to guide a genetic algorithm (GA) to
efficiently generate high b (highly pluripotent) designs. (b) The generated highly
pluripotent designs are added to a library. We then search and combine designs
from this library to find a design that closely matches a set of target deformations
(red): This process is called extraction. However, our extracted design often
requires further refinement. We achieve this by strategically introducing defects
to the building blocks, a step we refer to as refining. This yields a final refined
design that features the desired target deformation modes while minimizing
undesired superfluous modes.

In step (i), we aim to find highly pluripotent designs by increasing the
number of intensive modes b. We have indications for the existence—but
no examples—of designs with high values of b. Crucially, highly pluripo-
tent designs are not randomly distributed in design space; instead they
follow a structure we describe as ‘needles-within-needles-within-needles
in a haystack’ [Fig. 4.1(d)]. This hierarchical structure is characteristic
of pluripotency and stands in stark contrast to the more discontinuous,
jagged structure of the direct objective function in design space. Analogous
to prospecting for high-grade gold, we aim to exploit this structure to
find ultra-rare highly pluripotent designs. To achieve this, our CNN must
extrapolate and identify designs with a high number of intensive modes b
outside the scope of the training set. However, it remains an open question

108

4444

4.1. Introduction

whether CNNs are suitable for such a task.

In step (ii), we leverage our highly pluripotent candidate designs to
create a design that supports the desired target deformation modes. Specif-
ically, we begin by filling a library with these highly pluripotent candidate
designs, similar to extracting gold from various sources. Next, we com-
bine these candidate designs to form a new design that satisfies the target
property. However, this new design also exhibits many other undesired,
superfluous modes, akin to imperfections in gold. Crucially, the process of
removing such undesired modes—refining—is much easier than finding
them initially: while a single building block can break a mode, supporting
a mode requires an intricate configuration.

In brief, we demonstrate how a combination of a CNN and a GA can
discover previously unseen, rare, highly pluripotent (high b) designs for
combinatorial metamaterials with multiple targeted deformation modes.
Additionally, we illustrate how these discovered designs can be systemati-
cally combined to generate new designs with desired deformation modes.
First, we observe that our CNN provides reasonable predictions for de-
signs with large b, even when its training set comprises designs with lower
b. Second, we show that a GA using such a CNN can efficiently identify
numerous designs with large b—facilitating the creation of a library of
highly pluripotent designs. Third, we use this library to rationally select
and combine designs that feature the desired targeted modes. Finally, we
introduce directed defects to the constituent building blocks to prohibit su-
perfluous modes, resulting in designs that feature only the targeted modes.
As a final proof of concept, we employ our methodology to design larger
metamaterials that feature complex spatially textured modes, such as those
resembling a smiley and a frowny face or the letters A and U. Previously,
designing for targeted deformations was limited to a single target mode
for specific monomodal metamaterials governed by established design
rules [11, 17, 37, 154]. Now, employing our data-driven approach we
can design for multiple target deformations in multimodal metamaterials
without the necessity of knowing the design rules. Thus, our two-step
approach opens up the possibility to use machine learning to efficiently
design metamaterials possessing ultra-rare properties that were previously
unattainable. We anticipate that our approach will be applicable to a wide
range of combinatorial problems characterized by multiple, independent
sets of constraints to satisfy. Such problems can readily be found in, e.g.,
protein folding [155, 156], self-assembly [21, 24], computer graphics [32,
34], and molecular design [157].

109

4444

4. Data-driven design

4.2. Multimodal metamaterial

To test our design approach, we consider the spatial structure of zero
modes—infinitesimal deformations that do not stretch any bonds to first
order—in a multimodal combinatorial metamaterial [Fig. 4.1(a)- (b)] [19,
79, 154]. In Ch. 3, we focused on the scaling behavior of the number of zero
modes, NZM(n), for an n× n tiling of identical unit cells, each comprising
a k × k tiling of building blocks. In particular, we found that

NZM = an+ b , (4.1)

and we developed CNNs capable of distinguishing between so-called in-
compatible (I) designs with a = 0 and compatible (C) designs with a ≥ 1.
Furthermore, we identified that type C designs require the presence of a
specific type of mode we referred to as ’strip modes’, and demonstrated
how these modes can be used to sequentially absorb energy [18]. In Ch. 2,
we have also described a set of combinatorial rules that delineate these
modes. However, for the design of zero modes with complex geometri-
cal structures strip modes are limiting due to their deformations being
localized to one-dimensional strips. Hence, in this chapter, we focus on
spatially extended, intensive modes, the number of which is denoted by b.
Since design rules for these more spatially complex intensive modes are not
known, the construction of an appropriate search algorithm is necessary.
We note that our metamaterial—regardless of the configuration of build-
ing blocks—always supports an intensive, global mode equivalent to the
well-known counter-rotating squares (CRS) mode [19, 38, 158], ensuring
that b ≥ 1 [Fig. 4.3(a)].

We aim to design such intensive modes and set out on finding a design
that features the set of target zero modes {M̂}. Rather than designing for
the exact deformations of every kinematic degree of freedom, we focus
on the higher-level structure of the mode. To define this structure, we
decompose the zero modes into a contribution from the trivial global CRS
mode, and non-trivial deformations—we focus on the spatial structure of
the latter. To do so, we characterize the structure of a zero mode M by
writing the deformations of the constituent building blocks mi as mi =
αimCRS + βimD(ci), where i labels the building block. Here α and β are
(rational) coefficients for the trivial zero mode mCRS and non-trivial modes
mD(ci), respectively, where ci denotes the orientation of the building block
i— mCRS remains independent of the building block orientation c. We
classify building block deformations with β = 0 as CRS blocks and those

110

4444

4.2. Multimodal metamaterial

with β ̸= 0 as D blocks, and characterize the structure of a target zero mode
M̂ by the spatial distribution of CRS and D blocks. For more details on the
zero mode structure of our metamaterial, we refer to [154].

To quantify the pluripotency of a given k × k design, we first define the
similarity of a mode {αi, βi} ∈ M to the target mode {α̂i, β̂i} ∈ M̂ as

S(M,M̂) =
1

k2

k2∑
i=1

{
δ(βi, 0), if β̂i = 0

1− δ(βi, 0), if β̂i ̸= 0
(4.2)

where δ represents the Kronecker delta. We divide by the number of build-
ing blocks k2, such that the maximum capacity is 1. Thus, the similarity
S(M, M̂) denotes the fraction of matching CRS and D blocks between mode
M and the target M̂ .

The similarity S(M,M̂) is defined for a single given deformation mode
M , while a design usually supports a set of basis zero modes {MB} of size
NB rather than a single mode. We define the capacity of a set of modes as
the maximum similarity of all linear combinations of the modes in the set,
i.e.:

C({MB}, M̂) = maxw

[
S(

∑
i

wiM
B
i , M̂)

]
− N̂CRS, (4.3)

where w is the vector of basis-mode weights wi of dimension NB . The
maximum S(

∑
iw

∗
iM

B
i , M̂) is characterized by the weights w∗ which we

compute using constraint programming (see App. A4.1.3). To ensure that
the lowest capacity is 0, we subtract the fraction of CRS blocks in the target
mode N̂CRS =

∑k2

i=1 δ(β̂i, 0)/k
2. This is because the trivial solution w = 0

corresponds to a mode M composed solely of CRS blocks, resulting in a
complete overlap of CRS blocks in mode M and the target M̂ . We define
the pluripotency P of a design as the average capacity C computed over a
randomized set of target modes (see App. A4.1.4).

We find that pluripotency averaged over randomly selected designs ⟨P ⟩
steadily increases with the number of intensive modes b of those designs
[Fig. 4.1(c))]. Thus, we take b as a proxy for pluripotency P . Intuitively, a
design that features more zero modes has more deformational degrees of
freedom and thus, with the appropriate combination of modes, it is more
likely to deform close to a randomized target mode.

Yet, we note that simply increasing the deformational freedom of a
metamaterial is not sufficient—such an approach may indeed enhance
the pluripotency, but at the expense of introducing a large number of
superfluous modes. Such a floppy material would be practically useless.

111

4444

4. Data-driven design

Balancing pluripotency with the number of modes poses a significant
challenge [88]. By increasing the number of intensive modes b, which are
likely to span the entire structure, we effectively increase the pluripotency
without introducing too many superfluous modes. Therefore, our focus lies
on the number of intensive modes b.

4.3. Predicting intensive modes

First, we consider step (i) of our design approach: prospecting for highly
pluripotent designs. Generally, our aim is to find designs that satisfy a
large, independent number of conditions—such designs are more likely
to satisfy randomized target properties. This set of conditions in combi-
natorial configuration spaces describes a hierarchy of embedded sets with
increasing codimension that resembles a needles-within-needles struc-
ture [Fig. 4.1(d)]. Thus, finding needles near the top of the hierarchy is
improbable without informed navigation of the configuration space.

To find these rare needles, we aim to use combinatorial optimization
algorithms that iteratively explore the design space. However, the com-
putational bottleneck of such algorithms lies in evaluating the property
to steer navigation. Calculating this property, the number of intensive
modes b, requires determining NZM(n)–using rank-revealing QR decom-
position [44, 159]—as a function of the number of unit cells n, which is
computationally demanding. In previous work, we demonstrated that con-
volutional neural networks (CNNs) are adapt at classifying combinatorial
problems, even in undersampled regions [79]. Moreover, a trained CNN
significantly improves the computational time complexity by two orders
of magnitude and is readily parallelizable [79], providing an immense
speed-up for population-based combinatorial optimization. Consequently,
a trained CNN allows for a more efficient exploration of the design space.
Therefore, we use CNNs to provide an effective approximate calculation of
the property b. In contrast to our previous work, we now ask the network
to extrapolate. In other words, we investigate whether the CNN can discern
an hierarchical structure within the property and identify regions of the
configuration space that exhibit ultra-rare properties outside the range of
the training set.

To address this question, we explore the design space of 5 × 5 unit
cells, as this size offers a good balance between spatial complexity, the
size of the design space, and the rarity of the number of intensive modes
b. First, we need to generate training data for the CNN. We generate this

112

4444

4.3. Predicting intensive modes

data by Monte Carlo sampling of the design space for 5 × 5 unit cells,
and subsequently, calculate NZM(n) for n ∈ {2, 3, 4} to determine b. The
generated data is then divided into a training (85%) and a test (15%) set.
Because our designs are spatially structured and local interactions between
building blocks drive compatible deformations, CNNs are well-suited for
predicting the number of intensive modes b. We transform our designs
into pixelated black-and-white images as input for our CNNs, facilitating
straightforward identification of neighboring building blocks capable of
deforming compatibly (see App. A4.2.3).

Our CNNs are trained on imbalanced datasets—designs with large
values of b are increasingly rare [Fig. 4.3(a)]. Crucially, there is structure
within the design space, which we explore by characterizing the changes in
b under point mutations of the design, defined as a random rotation of one
of the building blocks [Fig. 4.3(b)]. Comparing the number of intensive
modes of the initial design, bI , to the number of modes of the mutated
design, bNN , we find that the most likely scenario is that bNN = bI , showing
that designs with the same value of b are interconnected. The next most
likely scenario is that bNN = bI − 1, showing that designs with b zero
modes are surrounded by designs with b− 1 zero modes. To gain further
insight, we have explored the ratio r of neighbors that have bNN < bI , and
find that this ratio increases with bI , showing that subspaces with large b
have increasingly small dimensionality [Fig. 4.3(c)]. This means that the
subspaces of the design space with constant b become progressively sparse
and low-dimensional with increasing b. Consequently, the structure of b in
design space resembles a hierarchy of needles-within-needles [Fig. 4.1(d)],
which the CNN may infer. The CNNs are trained using 10-fold cross
validation, and we use the CNN with the lowest loss over the validation set.

Despite the sparsity of designs with a high number of intensive modes
b in the training set, we find that the CNN remains accurate for high b
in the test set (Tab. 4.1). In particular, the output of the CNN, bCNN , is
always close to the actual number of intensive modes b, albeit with a slight
underestimation bias. Thus, the CNN is able to accurately delineate the
needles within the bounds of the training data. However, whether the
CNNs can identify needles beyond the range of the training set and can
help in finding ultra-rare designs with b > 6 cannot be deduced from
the test set alone. In other words, it remains an open question at this
point whether the trained CNN can infer the hierarchical structure of
needles-within-needles and extrapolate accordingly.

113

4444

4. Data-driven design

1 3 5
b

100

10-3

10-6

pd
f

1 3 5
bI

1

3

5

7

b N
N

10-5

10-3

10-1

­
p(bNNjbI)

®

1 3 5
bI

0.0

0.4

0.8

r

(a) (b) (c)

Figure 4.3: Statistical characterization of the design space. (a) Probability
density function (pdf) for the number of intensive modes b obtained through
Monte Carlo sampling of 5×5 unit cells. (b) The average probability 〈p(bNN|bI)〉 of
finding a nearest neighbor unit cell with bNN intensive modes by changing a single
building block for a given initial unit cell with bI intensive modes. To highlight the
low probability of transitioning to a higher b, a logarithmic colormap (colorbar)
is used, with zero (measured) probability denoted in black. (c) The ratio r (red
dashed line, shaded area indicates the standard deviation) of nearest neighbor unit
cells with bNN ≤ bI averaged over random unit cells with bI intensive modes and
increases with bI. The ratio varies for individual unit cells (blue circles, where the
size indicates the number of unit cells with the same r) and appears multimodal
in structure. This is likely a consequence of the different types of intensive modes:
edge and global (App. A4.1.5).

4.4. Extrapolation

To probe the rare regions of the design space characterized by a high
number of intensive modes b, we employ a genetic algorithm (GA) to
iteratively progress towards designs with higher b (see App. A4.3). We
observe that the combination of nonlocal and local exploration facilitated
by the GA ensures efficient exploration of the design space. In short, the
GA is able to combine designs to generate new designs with an average

Table 4.1: Confusion matrix for the test set of the CNN with the lowest validation
loss.

predicted bCNN

1 2 3 4 5

actual b

1 105767 47 0 0 0
2 418 37877 38 0 0
3 1 242 5101 16 0
4 0 0 66 383 3
5 0 0 1 5 17

114

4444

4.5. Designing for target deformations

b, after which random mutations eventually allow the GA to reach a high
b. However, generating high b designs with the GA requires a significant
number of calls to the evaluation function. Without a fast approximate
evaluation function, such as a neural network, generating high b designs
would be unfeasible (see App. A4.3). Specifically, we use the GA to find
designs with a target number of intensive modes bT by maximizing the
fitness

f =
1

1 + (bCNN − bT)2
. (4.4)

The fitness f is maximal when the CNN’s prediction equals the targeted
number of intensive modes, i.e., when bCNN = bT .

Surprisingly, starting from a Monte Carlo sampled set of unit cell
designs, the GA consistently reaches its maximum fitness within a finite
number of generations, even when the number of target intensive modes
exceeds the range of the training data, i.e., bT > 6 [Fig. 4.4(a)]. Increasing
bT requires, on average, more generations to converge; this is expected
as the fraction of designs in the design space decreases exponentially
with b [Fig. 4.3(a)]. Crucially, we find that a significant fraction of the
GA-generated designs indeed feature b = bT = bCNN intensive modes
[Fig. 4.4(b)]. The CNN systematically overestimates the number of intensive
modes, but remains close in prediction to the true number. Thus, our CNN
is able to extrapolate and predict quantities beyond the range of the training
data, specifically, our CNN can identify designs with b > 6. Thanks to this
extrapolation, the CNN-guided GA successfully discovers extremely rare
designs that feature up to b = 9 intensive modes. We estimate that such
designs represent only a fraction of O(10−8) of the total design space and
can be found within minutes on a desktop computer. Thus, we conclude
that CNNs can extrapolate to properties outside the range of the training
data by inferring the hierarchical structure in combinatorial problems. In
other words, CNNs can accurately identify not only observed needles but
also extrapolate the hierarchical structure of needles-in-needles to identify
unseen needles.

4.5. Designing for target deformations

Now, we proceed to step (ii) of our design method: transforming our
GA-generated high-pluripotency candidate designs into a design with
targeted deformation modes. We accomplish this in three substeps. First,
we organize: starting from a library of highly pluripotent (high b) initial

115

4444

4. Data-driven design

5 6 7 8 9 10
bT

2

4

6

8

10

b

0.0

0.2

0.4

0.6

0.8

1.0
Á

101 102 103
g

10-1

100

­ f
®

bT
5
6
7
8
9
10

(a) (b)

Figure 4.4: Extrapolation of the trained CNN. (a) Average (solid line) and stan-
dard deviation (shaded area) fitness f [Eq. (4.4)] of the fittest design per generation
g over two hundred GA runs per target number of intensive modes bT (legend). (b)
Fraction φ(b) of fittest designs with b intensive modes for a given target bT across
two hundred GA runs per bT .

designs [Fig. 4.5(a)], we define cliques (sets of compatible deformation
modes derived from initial designs) and list all maximal cliques: the largest
sets of modes that can be supported by the same design [Fig. 4.5(b)]. Second,
we extract: we evaluate the capacity C [Eq. (4.3)] of these maximal cliques
with respect to a target deformation mode, select the clique with the highest
capacity, and consolidate the constituent designs of the clique into a new,
highest-capacity, single candidate design that supports all modes in the
clique [Fig. 4.5(c)]. Third, we refine: generally, the candidate designs feature
not only the target modes but also superfluous modes, which we eliminate
by introducing point defects in our design [Fig. 4.5(d)-(e)]. Below, we
demonstrate that this strategy successfully finds 5× 5 designs that satisfy
randomized target deformation modes with little superfluous modes. In
addition, we show that these 5× 5 candidate designs can be combined into
10× 10 designs with specific target deformation modes. Finally, we design
a metamaterial that features deformation modes whose mode structures
resemble complex spatial structures, such as a smiley and frowny face
[Fig. 4.7 (b)-(c)] or the letters A and U [Fig. 4.7(d)-(e)].

To start, we first employ a GA, guided by our trained CNN, to generate
a library of 1000 designs with a target number of intensive modes of bT = 7.
The distribution of the actual values of b for these 1000 designs is centered
around b = 6 [Fig. 4.6(a)]. Next, we explicitly compute all zero modes
for each design (see App. A4.1.2). As our target modes span the entire
structure, we neglect edge modes where the D sites are all located on the
edge of the unit cell. This reduces the number of modes in the library

116

4444

4.5. Designing for target deformations

defect
defect

target

(a
)

(b
)

pa
re

nt
 d

es
ig

ns

cl
iq

ue

+
=

cl
iq

ue
 d

es
ig

n

m
od

e
st

ru
ct

ur
es

or
ga

ni
ze

(c
)

(d
)

(e
)

(e
)

compute
mode

F
i
g
u
r
e
4
.
5
:

E
xt

ra
ct

in
g

an
d

re
fi

n
in

g
h

ig
h

ly
p

lu
ri

p
ot

en
t

d
es

ig
n

s.
(a

)T
he

ba
si

s
of

ou
r

li
br

ar
y

is
co

m
p

os
ed

of
G

A
-g

en
er

at
ed

d
es

ig
n

s
(l

ef
t)

,
w

h
ic

h
w

e
or

ga
n

iz
e

ba
se

d
on

th
ei

r
m

od
e

st
ru

ct
u

re
s

(r
ig

h
t)

.
W

e
d

is
ca

rd
th

e
co

m
m

on
C

R
S

m
od

e
(a

ll
bl

u
e)

an
d

si
m

p
le

ed
ge

m
od

es
(s

in
gl

e-
bl

oc
k-

w
id

e
st

ri
p

(s
)

of
D

bl
oc

ks
lo

ca
te

d
at

th
e

ed
ge

),
as

in
d

ic
at

ed
by

th
e

gr
ay

ed
-o

u
t

m
od

e
st

ru
ct

ur
es

.(
b)

In
di

vi
du

al
m

od
es

fr
om

di
st

in
ct

pa
re

nt
de

si
gn

s
(i

nd
ic

at
ed

by
co

lo
r)

ar
e

re
pr

es
en

te
d

as
no

de
s

in
a

gr
ap

h.
N

od
es

ar
e

co
nn

ec
te

d
by

ed
ge

s
if

th
e

co
rr

es
po

nd
in

g
m

od
es

ar
e

co
m

pa
ti

bl
e.

E
ac

h
m

ax
im

al
cl

iq
ue

(f
ul

ly
-c

on
ne

ct
ed

no
de

s
en

cl
os

ed
in

gr
ay

ar
ea

)c
or

re
sp

on
d

s
to

a
ne

w
d

es
ig

n
[s

ee
(d

)]
th

at
su

p
p

or
ts

al
lc

on
st

it
u

en
t

m
od

es
.(

c)
T

he
cl

iq
u

e
in

(b
)c

om
p

ri
se

s
m

od
es

fr
om

tw
o

pa
re

nt
de

si
gn

s
(p

ur
pl

e
an

d
or

an
ge

)w
hi

ch
w

e
co

m
bi

ne
in

to
a

ne
w

de
si

gn
(g

ra
y)

th
at

su
pp

or
ts

al
lt

hr
ee

m
od

es
in

th
e

cl
iq

u
e.

(d
)I

nt
ro

du
ci

ng
a

de
fe

ct
(e

xt
ra

ri
gi

d
ba

r,
re

d)
to

a
bu

il
di

ng
bl

oc
k

(b
ot

to
m

le
ft

)p
ro

hi
bi

ts
th

e
D

m
od

e
(t

op
ri

gh
t,

p
in

k)
w

hi
le

re
ta

in
in

g
th

e
C

R
S

m
od

e
(b

ot
to

m
ri

gh
t,

cy
an

).
A

rr
ow

s
in

di
ca

te
th

e
m

od
es

su
p

p
or

te
d

by
th

e
co

nfi
gu

ra
ti

on
.(

e)
St

ra
te

gi
c

p
la

ce
m

en
t

of
an

ex
tr

a
ri

gi
d

ba
r

(r
ed

),
or

d
ef

ec
t,

ca
n

p
ro

h
ib

it
an

u
n

d
es

ir
ed

m
od

e
st

ru
ct

u
re

(t
op

ri
gh

t)
w

h
il

e
re

ta
in

in
g

th
e

d
es

ir
ed

ta
rg

et
m

od
e

st
ru

ct
u

re
(b

ot
to

m
ri

gh
t)

.

117

4444

4. Data-driven design

significantly [Fig. 4.6(a)].
To effectively search this library, we set out on identifying large groups

of compatible modes—such groups correspond to highly pluripotent de-
signs. First, we structure our library of (mostly) bulk modes1 as a graph,
where nodes represent individual modes, and edges indicate pairs of modes
that are “compatible”: the modes have no D blocks with different con-
stituent building block orientations at the same site [Fig. 4.5(b)]. By this
definition, all modes in the library originating from the same design are
compatible. Surprisingly, there is a significant number of pairs of modes
from different designs that are also compatible. For such compatible modes,
we can rationally combine both parent designs to create a new design that
supports both zero modes (see App. A4.4.1) [Fig. 4.5(c)]. We find the
maximal cliques using the Bron-Kerbosch algorithm [160].

Searching over maximal cliques instead of the initial designs improves
the chances of finding a design that features a desired target mode in
two ways. First, searching over maximal cliques significantly expands
the search space compared to the initial designs: the number of maximal
cliques exceeds the number of initial designs by a factor 70. Second, many
of these cliques combine a large number of bulk modes and thus correspond
to designs with higher pluripotency [Fig. 4.6(b)]. To illustrate the advantage
of searching over maximal cliques, we conduct a search to find designs that
satisfy a single randomized target deformation (see App. A4.1.4). Starting
from the largest cliques, we successfully find a set of modes—and thus a
design—that satisfies a single randomized target deformation for all 100
randomized targets. Moreover, out of one hundred sets of two randomized
target deformations, we find designs for 82 sets that fully satisfy the desired
target deformations. Thus, our approach allows us to find designs that
satisfy multiple target deformations with a high probability.

The downside of this approach is that most successfully found designs
originate from large cliques which feature many modes, most of which
are superfluous and should be removed. Crucially, removing undesired
modes is much easier than adding desired modes: a mode requires a
careful selection of building blocks to deform compatibly while changing
a single building block can be sufficient to prohibit the mode. Thus, we
turn to the third substep of our approach—refining the design to eliminate
superfluous modes. To achieve this, we introduce an additional diagonal

1Our library also contains strip-modes as we do not actively exclude them. See Fig. 4.6(a)
for the distribution of the number of extensive modes a in the library prior to discarding
the edge modes.

118

4444

4.5. Designing for target deformations

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 0.
0

0 0.
0

50
0

10
00

no. parent designs

0

50
0

10
00

ge
ne

ra
te

d
b a

0
2

4
6

8
no

. m
od

es

0

50
0

10
00

lib
ra

ry
N
Z
M

2
5

8
cl

iq
ue

 si
ze

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

no. cliques
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0.

0 0.
0

0.
0 0.

0

0.
5

1.
0

fraction of designs

0
3

6
no

. s
up

er
flu

ou
s m

od
es

0.
0

0.
5

1.
0

re
fin

ed
0.

0

0.
5

1.
0

ex
tra

ct
ed

12

N
T

(a
)

(b
)

(c
)

F
i
g
u
r
e
4
.
6
:

D
is

tr
ib

u
ti

on
of

ex
tr

ac
te

d
an

d
re

fi
n

ed
d

es
ig

n
s.

(a
)

To
p

:
h

is
to

gr
am

of
th

e
tr

u
e

nu
m

be
r

of
in

te
n

si
ve

m
od

es
b

(b
lu

e
le

ft
ba

rs
)a

nd
ex

te
ns

iv
e

m
od

es
a

(r
ed

ri
gh

t
ba

rs
)f

or
10

00
G

A
-g

en
er

at
ed

pa
re

nt
de

si
gn

s
w

it
h

a
ta

rg
et

of
b T

=
7
.B

ot
to

m
:

hi
st

og
ra

m
of

th
e

nu
m

be
r

of
m

od
es

N
Z
M

(g
re

en
ba

rs
)a

ft
er

di
sc

ar
di

ng
th

e
tr

iv
ia

lC
R

S
m

od
e

an
d

ed
ge

m
od

es
(s

ee
A

pp
.A

4.
4.

1)
p

er
p

ar
en

t
d

es
ig

n
in

th
e

li
br

ar
y.

T
h

e
to

ta
l

nu
m

be
r

of
m

od
es

is
si

gn
ifi

ca
n

tl
y

re
d

u
ce

d
af

te
r

d
is

ca
rd

in
g.

(b
)

H
is

to
gr

am
of

m
ax

im
al

cl
iq

u
e

si
ze

s
(n

u
m

be
r

of
n

od
es

)
in

th
e

li
br

ar
y.

(c
)

H
is

to
gr

am
s

of
th

e
fr

ac
ti

on
of

d
es

ig
n

s
th

at
h

av
e

a
nu

m
be

r
of

su
pe

rfl
uo

us
m

od
es

ou
t

of
10

0
de

si
gn

s
fo

un
d

in
ou

r
li

br
ar

y
w

it
h

th
e

hi
gh

es
t

cu
m

ul
at

iv
e

ca
pa

ci
ty

[E
q.

(4
.3

)]
fo

r
N

T
(c

ol
or

ba
r)

ra
nd

om
iz

ed
ta

rg
et

de
fo

rm
at

io
ns

be
fo

re
(t

op
)a

nd
af

te
r

(b
ot

to
m

)a
dd

in
g

de
fe

ct
s2

.M
os

t
de

si
gn

s
fo

un
d

by
se

ar
ch

in
g

m
ax

im
al

cl
iq

u
es

fo
r

ta
rg

et
m

od
es

fe
at

u
re

a
la

rg
e

nu
m

be
r

of
su

p
er

fl
u

ou
s

m
od

es
.

St
ra

te
gi

ca
ll

y
in

tr
od

u
ci

n
g

d
ef

ec
ts

to
th

es
e

d
es

ig
n

s
si

gn
ifi

ca
nt

ly
lo

w
er

s
th

e
nu

m
be

r
of

m
od

es
in

m
os

t
ca

se
s—

w
e

re
fe

r
to

su
ch

d
es

ig
ns

as
re

fi
ne

d
.

119

4444

4. Data-driven design

rigid bar to strategically selected building blocks. Recall that CRS blocks
are independent of the orientation c of the building block, while D blocks
are dependent on the orientation. Thus, by adding an extra diagonal bar,
the building block is restricted from deforming in the D mode mD and can
only deform as a CRS block [Fig. 4.5(d)].

To prohibit superfluous modes, we use these extra rigid bars by placing
them in building blocks where undesired modes contain a D block, while
desired modes feature a CRS block [Fig. 4.5(e)] (see App. A4.4.2). We
iterate this procedure until we can no longer add any CRS blocks or only
the desired modes are left. This approach drastically reduces the number
of superfluous modes [Fig. 4.6(c)]. In fact, for a single target deformation
mode, we are able to completely eliminate any superfluous modes2. For
two target deformations, most refined designs feature a single superfluous
mode, and the number of designs with a higher number of intensive modes
rapidly tapers off. Thus, we are able to find extremely rare designs that
exhibit target deformations while minimizing the number of superfluous
deformations.

4.6. Combining unit cells

To illustrate the effectiveness of our sequential method of prospecting,
extracting, and refining, we apply our method to find multiple 5 × 5
tilings that can be combined into larger metamaterials that feature complex,
spatially-textured target mode structures. Specifically, we aim to create
two 10× 10 metamaterials that support two distinct modes with spatially
complex mode structures: one that resembles a smiley and frowny face and
another that resembles the letters A and U. We stress that finding designs
that feature such modes, especially within the design space of 10 × 10
tilings, is intractable with direct optimization methods.

We illustrate our method for combining 5×5 “unit cells” by an example.
First, we use symmetry to our advantage and reduce the two desired 10×10
target mode structures into two 5× 10 target deformations: a half-smiley
and half-frowny (Fig. 4.7(a)-i). Next, we divide the deformations into three
5 × 5 parts: the eye, sad mouth, and happy mouth (Fig. 4.7(a)-ii). For
each of these target deformations, we search over all maximal cliques and
compute the capacity [Eq. (4.3)] of each clique. Subsequently, we rank the
best cliques—and thus unit cell designs—for the top left and bottom left

2Note that we neglect the trivial global CRS mode, as we are free to prohibit this mode
by adding a single additional horizontal or vertical rigid bar.

120

4444

4.7. Discussion

unit cells by the averaged capacity over the target deformations: eye, and
sad and happy mouth, respectively (Fig. 4.7(a)-iii). Finally, we combine
the unit cell designs to create a 5 × 10 tiling and calculate the tiling’s
capacity with respect to the half-smiley and half-frowny modes. In general,
combining two unit cells may prohibit certain modes due to kinematic
constraints at the interface. Thus, combining two unit cells with high
individual capacity is not guaranteed to result in a high averaged capacity.
Therefore, we iterate over the highest ranked combinations if the result is
not satisfactory (Fig. 4.7(a)-iv). Using this approach, we find a 5×10 design
which we mirror to create the 10 × 10 design [Fig. 4.7(b)] that features a
mode structure which resembles a smiley and frowny face [Fig. 4.7(c)].

In addition to the smiley and frowny modes, we find seven superfluous
modes—we neglect the trivial global CRS mode that is always present,
as we can remove this mode while retaining all other modes by adding a
single extra horizontal or vertical rigid bar to the design. This large number
of superfluous modes is because our method combines highly pluripotent
designs. Hence, we turn to the final step of our method: refining. Again, we
strategically add extra rigid bars to prohibit undesired modes [Fig. 4.5(e)].
By placing 5 extra rigid bars, we reduce the number of superfluous modes
in our design to two. Thus, we have found, in the intractable design space
of 10 × 10 designs, a design that features two desired, spatially textured
deformation modes that represent a smiley and frowny face.

To demonstrate the generality of this approach, we follow the same
procedure to find a design that features modes whose structures resemble
the letters A and U, spelling Au for gold. Once again, we leverage symmetry
to our advantage and find a 5 × 10 design which we then mirror to form
our 10× 10 design [Fig. 4.7(d)]. This design features 11 superfluous modes
in addition to the two desired modes [Fig. 4.7(e)]. By strategically placing
5 rigid bars, we manage to reduce this to 6 superfluous modes. Thus, our
sequential method allows us to find extremely rare designs with multiple
desired mode structures within an otherwise intractable design space.

4.7. Discussion

Combining building blocks to create structures with desired properties is
notoriously difficult—the problem is often ill-posed, and the design space
is too vast to fully explore. Without access to underlying design rules,
directly navigating such spaces using a strongly discontinuous objective
function to find designs with desired properties is hopeless. In this chap-

121

4444

4. Data-driven design

(a)
(b)

+

ii. split

top

bottom

iii. rank

iv. com
bine &

 test

+

i. target
sm

iley

frow
ny

AU

(c)

(d)
(e)

fail
success

F
i
g
u
r
e
4
.
7
:C

om
bin

in
g

design
s

for
target

deform
ation

s.(a)Strategy
for

com
bining

designs
in

four
substeps.(b)T

he
found

and
refi

ned
1
0
×

10
d

esign
for

the
target

sm
iley

and
frow

ny
d

eform
ation

m
od

es.T
he

d
efects

ad
d

ed
du

ring
the

refi
ning

are
highlighted

in
red.(c)T

he
design

of
(b)features

tw
o

deform
ation

m
odes

w
hose

structure,w
hich

w
e

visualize
by

C
R

S
blocks

(cyan)and
D

blocks
(pink),resem

bles
a

sm
iley

and
frow

ny
face.(d)Found

and
refi

ned
10

×
10

design
for

the
target

A
and

U
d

eform
ation

m
od

es.(e)T
he

d
esign

of
(d

)featu
res

tw
o

d
eform

ation
m

od
es

w
hose

stru
ctu

re
resem

bles
the

letters
A

and
U

.

122

4444

4.7. Discussion

ter, we introduced a general strategy to find such ultra-rare designs using
pluripotency: a statistical measure that quantifies performance over a class
of problems. In short, our approach exploits the hierarchical structure of
pluripotency in design space to generate a library of many highly pluripo-
tent designs. Subsequently, we select and refine from this library to reach
the final, ultra-rare design that satisfies the desired properties.

Our approach opens up new exciting avenues for combinatorial design.
For example, our approach could be readily applied to metamaterial de-
signs for a plethora of different building block designs, allowing for much
faster exploration of the vast design space of metamaterial geometries that
remain largely unexplored. Moreover, we foresee applications beyond the
field of metamaterials. For example, self-assembling systems require the
right set of building blocks to achieve the desired end geometry—this is
hard without access to assembly rules [21, 23, 161]. Additionally, informa-
tion processing in designer matter can be described by a set of hysteretic
elements—how to order and tune interactions between these elements to
achieve complex memory properties is an open challenge [7, 28, 29].

Data availability statement.—The codes to calculate zero modes and
their structures [162], and to design [163] are freely available. Additionally,
the data used to train our neural networks [91] is also freely available.

Acknowledgments.—This work was carried out on the Dutch national
e-infrastructure with the support of SURF Cooperative. C.C. acknowledges
financial support from the European Research Council under Grant Agree-
ment 852587. M.D. acknowledges financial support from the European
Research Council under Grant Agreement 884902.

123

4444

124

4444

Appendix

In this appendix we provide an extended description of our metamaterial,
convolutional neural networks (CNNs), genetic algorithm (GA), and design
approach. Additionally, we provide details on obtaining and preprocessing
the training data for our CNNs. Moreover, we show that the combination
of local and nonlocal exploration allows our GA to efficiently explore the
design space.

A4.1. The metamaterial

In this chapter, we focus on a combinatorial metamaterial built by tiling
building blocks to form k × k unit cells which are periodically repeated
to tile a larger n × n metamaterial [Fig. A4.1(a)]. This metamaterial is
composed of a collection of rigid bars and hinges. The building block
features two zero modes—infinitesimal deformations that do not stretch
any of the bonds up to first order—that we label mCRS and mD(c), where c
is the orientation of the building block (see Ch. 2) [154].

In chapter 2, we have showed that there are limitations on the structure
of zero modes [154]. Most importantly, we have showed that areas of
adjacent CRS blocks must be rectangular of shape, that is their boundaries
feature only convex corners. This constraint strongly limits the possible
mode structures in our metamaterial. In particular, we distinguish between
three types of zero modes: (i) strip-modes, (ii) edge-modes, and (iii) global
modes [Fig. A4.1(b)]. Each of these mode-types are defined by the spatial
ordering of CRS and D blocks. Specifically, strip-modes feature a horizontal
or vertical strip of D blocks that spans the entire material sandwiched
between two areas of CRS. Edge-modes feature a strip of D blocks that
borders the edge(s) of the material, the bulk are CRS blocks. Global modes
feature D blocks throughout the entire material.

Additionally, these types of zero modes correspond to a change in the
scaling of the number of non-trivial zero modes NZM(n) = an+b. Note that
we exclude the three trivial zero modes corresponding to translation and
rotation of rigid bodies in two dimensions. Strip-modes are translationally
invariant in one direction, resulting in a linear increase of NZM and a
contribution to the slope a. In contrast, edge-modes and global-modes are
not translationally invariant: such modes correspond to an offset of NZM

and thus contribute to the number of intesive modes b.

125

4444

4. Data-driven design

building block unit cell

metamaterial

zero modes
real structure

metamaterial design(a) (b)

k

k

n

n

Figure A4.1: Metamaterial design and zero modes. (a) Building blocks (top left)
combine into a k = 5 unit cell (top right) to form a n = 2 metamaterial (bottom).
(b) Examples of the three types of zero mode structures: (i) strip-modes (top); (ii)
edge-modes (middle); (iii) global modes (bottom).

A4.1.1. Calculating the number of zero modes

To calculate the coefficients a and b from our mode-scaling relation
[Eq. (4.1)], we use rrQR to calculate the number of modes NZM(n) for
n × n tilings of unit cells with open boundary conditions in the range
n ∈ {1, 2, 3, 4}. We use NZM(3) and NZM(4) to determine the slope a and
offset b. We use 1M 5× 5 unit cells drawn from an uniform discrete distri-
bution to obtain the distribution of b shown in Fig. 4.3(a).

To obtain Fig. 4.1(b), we select 100 designs per number of intensive
modes b from the set of Monte Carlo sampled designs and generate 100
randomized target deformations. For each design, we calculate the capac-
ity [(4.3)] with respect to the target deformations. The average of these
capacities gives the pluripotency P per design. The average pluripotency
⟨P ⟩(b) is simply the pluripotency P averaged over all the designs with b
intensive modes.

To obtain Fig. 4.3(b)-(c), we selected at most 1000 designs per initial
number of intensive modes bI from the set of Monte Carlo sampled designs.
For bI = 5 and bI = 6, there are fewer than 1000 designs available, instead
we use only 311 and 8 designs, respectively. For each of the selected

126

4444

A4.1. The metamaterial

designs, we infer the number of strip modes a and intensive modes b for
the 75 designs that differ from the selected design by a single building
block mutation. We determine the ratio of neighboring designs with bNN

intensive modes to the total number of neighboring designs for each design
and average over all designs for a given initial number of intensive modes
bI to obtain the probability density function p(bNN|bI). Similarly, we define
the normalized codimension for a design with bI modes as the fraction of
all neighboring designs with bNN ≤ bI.

A4.1.2. Determining the structure of a zero mode

The structure of zero modes can be defined in terms of individual building
block deformations. As described in Ch. 2, our building blocks feature
two zero modes: the CRS mode mCRS and D mode mD. A building block
can deform with any linear combination of these two independent modes:
m = αmCRS + βmD. We classify building blocks by these zero modes: if a
block deforms with β = 0, it is a CRS block, and if a block deforms with
β ̸= 0, it is a D block. In chapter 2, we showed that there are limitations
on the spatial structure of zero modes in tilings of these building blocks:
regions of adjacent CRS blocks must always be rectangular of shape [154].

To determine the structure of zero modes supported by a given design
in terms of CRS and D blocks, a simple calculation of the null space of the
compatibility matrix C is no longer sufficient. Instead, we directly solve for
the kinematic degrees of freedom of the building block: α and β. These
kinematic degrees of freedom effectively describe the infinitesimal change
in each of the five free interior angles of the building block to first order.
The kinematic constraints between neighboring building blocks can be
described as constraints of adjacent angles of building blocks. For more
technical details on this representation of modes, we refer to Ch. 2.

In short, we solve for each building block’s kinematic constraints by
composing a large integer matrix of all kinematic constraints between
building blocks and use the Python package sympy [164] to find the null
space of this matrix. This yields a set of rational vectors that form a basis
for all valid zero modes in the design and translate directly to the kinematic
degrees of freedom α and β. Thus, this method allows us to determine
the structure of zero modes for a given metamaterial design in terms of
CRS and D blocks. The code for this is freely available on our public
GitLab [162].

127

4444

4. Data-driven design

A4.1.3. Capacity of a set of modes

The capacity C({MB}, M̂) [Eq. (4.3)] of a set of basis zero modes {MB}
with respect to a target mode M̂ is S(M∗, M̂) [Eq. (4.2)], where M∗ =∑

w∗
jM

B
j is a linear combination of the basis modes, and the set of weights

w∗ maximizes S. To find this set of weights, we use constraint program-
ming [165].

Specifically, we consider the D mode coefficients βj
i at site i correspond-

ing to the basis mode labeled by j. We define a set of integer variables w
such that M =

∑
j wjM

B
j . The goal is to find an M that is close to the target

mode M̂ . For every D site i in the target mode, if any of the basis modes
{MB} also has a D block at that site, we add a constraint

∑
j wjβ

j
i ̸= δi,

where δi is a non-negative integer variable. Similarly, at every CRS site i
in the target mode, if any of the basis modes {MB} also has a D block at
that site, we add the constraints

∑
j wjβ

j
i ≥ −δi and

∑
j wjβ

j
i ≤ δi. The

constraint programming solver then attempts to find a solution to all the
variables that minimizes

∑
δi. The underlying idea is that by minimiz-

ing this sum, the program tries to find a set w∗ for which most variables
satisfy δi = 0. When δi = 0 for all i, the mode M has the same kind of
block, CRS or D, at site i as the target mode M̂ . The final similarity is then
S(M∗, M̂) [Eq. (4.2)] with M∗ =

∑
j w

∗
jM

B
j . The code we used to calculate

the capacity is publicly available [163].

A4.1.4. Randomized target deformations

To determine the pluripotency P of a design or a set of zero modes, we
calculate the average capacity C [Eq. (4.3)] for a set of randomized target
modes M̂ . We define our target modes M̂ in terms of their structure: the
spatial distribution of CRS and D blocks. However, our metamaterial has
limitations regarding the mode structures it can achieve. In chapter 2, we
demonstrated that any valid mode must comprise rectangular patches of
adjacent CRS blocks [154]. Thus, to assess our designs fairly, we cannot
simply generate any random distribution of CRS and D blocks.

Instead, we generate viable target modes by generating a horizontal and
vertical strip of D blocks within a background of CRS blocks. The position
and width of these strips are randomly drawn from a uniform distribution.
Where the two strips overlap, we replace the D blocks with CRS blocks.
This approach ensures that there are only rectangular patches of adjacent
CRS blocks present. Using this approach, we generate 200 unique target
modes (the 200 possible target deformations are shown in Fig. A4.2).

128

4444

A4.1. The metamaterial

F
i
g
u
r
e
A
4
.
2
:

A
ll

20
0

p
os

si
bl

e
gl

ob
al

ta
rg

et
d

ef
or

m
at

io
n

s
ge

n
er

at
ed

u
si

n
g

th
e

m
et

h
od

as
d

es
cr

ib
ed

in
th

e
M

at
er

ia
ls

an
d

M
et

ho
d

s.

129

4444

4. Data-driven design

(a; b) = (0; 3)

0.0

0.2

0.4

0.6

0.8

1.0

p
d
f(
D

)

(a; b) = (0; 5)

0.0

0.2

0.4

0.6

0.8

1.0

p
d
f(
D

)

(a) (b)

Figure A4.3: Spatial distribution of the probility density function (pdf) of D
blocks for 2× 2 tilings of random 5× 5 unit cells with a = 0 extensive modes and
b = 3 (a) or b = 5 (b) intensive modes.

A4.1.5. Distribution of edge-modes and global modes.

The codimension of the subspace of designs with b intensive modes appears
multimodal in distribution, especially for larger b. This is most likely due
to the different types of modes that contribute to b: edge-modes and global
modes. For low b, most intensive modes are edge-modes [Fig. A4.3(a)]. As b
increases, global modes become more prevalent [Fig. A4.3(b)]. The reason
for this is twofold. First, edge-modes consisting of a single line of D blocks
require less building blocks with specific orientations than global modes
that contain more D blocks (recall that the CRS mode is independent of
the building block orientation). Thus, random unit cells are more likely
to contain edge-modes than global modes. Second, the number of edge-
modes is limited by the number of edges of the metamaterial. Thus, for
sufficiently large number of intensive modes b there is a higher probability
of global modes. The codimension is related to the probability to prohibit
an intensive mode by changing the orientation of a randomly selected
building block. The type of mode influences this probability. In general,
modes with more D blocks are easier to prohibit as the D mode is sensitive
to the orientation of the building block. Additionally, building blocks at
the edge are less kinematically restricted than building blocks in the bulk
(see Ch. 2) [154], making them more robust to changes of orientation.

130

4444

A4.2. Convolutional neural networks

A4.2. Convolutional neural networks

A4.2.1. Training the CNNs

We train our convolutional neural network (CNN) on 5×5 designs obtained
from Monte Carlo sampling of the space. Before training, we preprocess
the data.

The configurational data of the unit cell designs is preprocessed to a
pixelated representation (see Supplemental Information) for input to the
neural network. Additionally, we use periodic padding to add an extra
one-pixel-wide layer to the designs. This allows the network to capture the
interactions between building blocks with periodic boundary conditions.

To train the CNNs to predict the number of intensive modes bCNN , we
require a set of unit cell designs X = {Xi} and their respective number
of intensive modes b = {bi}. The combination of these designs and their
corresponding numbers of intensive modes is referred to as the training
set Dt = (X,b). We split our original data into a training and test set;
the training set contains 848898 samples, and the set set contains 149982
samples. Both the training and test set follow the same distribution of the
number of intensive modes b; the majority of samples have b = 1, while
there are only 4 samples with b = 6 in the training set.

We train the CNN to minimize the mean squared error (MSE) between
the CNN’s prediction bCNN and the true b using the Adam optimization
algorithm [143]. We use 10-fold cross-validation to validate the robustness
of our network architecture and training procedure. The network with the
lowest MSE over the validation set is selected to be the primary network to
use. Specifically, we use a learning rate of 0.0005, train the network for 100
epochs, and use a batch size of 256. Additionally we use L2-regularization
on the weights and biases to reduce overfitting.

A4.2.2. Neural network architecture

The CNNs used in this chapter are composed of three convolution layers for
feature extraction, which are connected to a fully-connected hidden layer,
which in turn is connected to a single-neuron output layer. Specifically,
the first convolution layer consists of twenty 2 × 2 filters with a stride
of (2, 2). As the convolution starts in the upper left corner of the input
image, the network convolves only 2× 2 plaquettes between four building
blocks. Each plaquette contains a black pixel if one of the four constituent
building blocks is oriented such that it has its diagonal interior angle within

131

4444

4. Data-driven design

that plaquette (see Supplemental Information). As such, each plaquette
contains information on which building blocks share adjacent diagonal
corners and allow for possible compatible deformations of those corners.
We conjecture that restricting the network to see only these plaquettes
helps achieve a better and more robust performance.

The second and third convolution layers have 80 and 160 2× 2 filters,
respectively, with a stride of (1, 1). After each convolution operation, we
add a trainable bias vector and apply a ReLu activation function on each
element of the convolved images. Note that we do not use pooling opera-
tions in-between convolution layers. After the third convolution layer, we
flatten the convolved images and fully-connect this vector to a hidden layer
of 1000 neurons. Again we add a bias vector and apply the ReLu activation
function. The final layer consists of only a single neuron, and we do not
apply an activation function. We take the single output neuron to be bCNN ,
which we aim to be as close to the true b of any input design as possible.
We use Jax [166] to code our networks.

We use 10-fold cross-validation to validate the robustness of our net-
work architecture and training procedure. The network with the lowest
mean squared error (MSE) over the validation set is selected to be the
primary network to use. Specifically, we use a learning rate of 0.0005, train
the network for 100 epochs and use a batch size of 256. Additionally we
use L2-regularization on the weights and biases. The architecture of our
CNN is shown schematically in Fig. A4.4(b). The training process for each
fold is shown in Fig. A4.4(c).

A4.2.3. Preprocessing

The configurational data of the unit cell designs is preprocessed to a pix-
elated representation (see Fig. A4.4(a)) for input to the neural network.
We found that representing the unit cell designs in this pixelated repre-
sentation improved convergence during training and better performance
of the trained networks over the validation sets. We believe that this is
due to the orientations of the building blocks being clearly represented
visually as opposed to simply representing the orientations as integers in a
matrix. Because each building block is represented as a 2× 2 square, we
can choose where the convolutional layer applies its filters more finely. As
discussed in the Methods and Materials section, this allows us to let the
networks ‘see’ only the interactions between building blocks. Additionally,
we use periodic padding to pad the designs with an extra one pixel wide
layer to allow the network to see interactions between building blocks with

132

4444

A4.2. Convolutional neural networks

co
nv

 2
0

co
nv

 8
0

co
nv

 1
60

fla
tte

n

hi
dd

en
 1

00
0

ou
tp

ut
 1

0
25

50
75

ep
oc

h

10
-3

10
-2

10
-1

MSE

tra
in

va
lid

at
io

n

12345678910
fo

ld
(a

)
(b

)
(c

)

b C
N

N

F
i
g
u
r
e
A
4
.
4
:

C
on

vo
lu

ti
on

al
n

eu
ra

ln
et

w
or

k
(C

N
N

)
fo

r
m

et
am

at
er

ia
lp

re
di

ct
io

n
.

(a
)T

o
fe

ed
ou

r
m

et
am

at
er

ia
ld

es
ig

ns
in

to
a

ne
ur

al
ne

tw
or

k,
w

e
re

p
re

se
nt

ou
r

de
si

gn
s

as
a

bl
ac

k-
an

d-
w

hi
te

im
ag

e.
B

ui
ld

in
g

bl
oc

ks
ar

e
re

p
re

se
nt

ed
as

2
×
2

p
la

qu
et

te
s

of
p

ix
el

s,
on

e
bl

ac
k

an
d

th
re

e
w

hi
te

(l
ef

t)
.5

×
5

d
es

ig
n

s
(b

ot
to

m
ri

gh
t)

tr
an

sl
at

e
to

10
×
10

p
ix

el
im

ag
es

.A
d

d
it

io
n

al
ly

,w
e

p
ad

th
es

e
im

ag
es

u
si

n
g

p
er

io
d

ic
bo

u
n

d
ar

y
co

n
d

it
io

n
s

w
it

h
on

e
ad

d
it

io
n

al
la

ye
r

of
p

ix
el

s,
so

th
at

w
e

en
d

u
p

w
it

h
a
1
2
×

1
2

p
ix

el
im

ag
e

(t
op

ri
gh

t)
.(

b)
T

he
p

ix
el

im
ag

e
of

(a
)f

or
m

s
th

e
in

p
ut

fo
r

ou
r

C
N

N
,w

hi
ch

co
ns

is
ts

of
th

re
e

co
nv

ol
ut

io
na

ll
ay

er
s,

a
si

ng
le

hi
dd

en
la

ye
r

an
d

a
si

ng
le

ou
tp

ut
no

de
.(

c)
T

he
tr

ai
ni

ng
(s

ol
id

li
ne

)a
nd

va
li

da
ti

on
(d

as
he

d
li

ne
)m

ea
n

sq
ua

re
d

er
ro

r
(M

SE
)o

ve
r

th
e

tr
ai

ni
ng

ep
oc

hs
fo

r
ea

ch
fo

ld
(c

ol
or

ba
r)

in
ou

r
10

-f
ol

d
cr

os
s-

va
li

d
at

io
n.

N
ot

e
th

at
w

e
u

se
d

an
ea

rl
y

st
op

p
in

g
co

nd
it

io
n

to
p

re
ve

nt
ov

er
fi

tt
in

g,
re

su
lt

in
g

in
d

iff
er

en
t

nu
m

be
r

of
tr

ai
ni

ng
ep

oc
hs

fo
r

th
e

fo
ld

s.

133

4444

4. Data-driven design

periodic boundary conditions.

A4.3. Genetic algorithm

We employ a genetic algorithm (GA) to explore our CNN beyond its train-
ing scope and to prospect highly pluripotent designs (see Fig. A4.5 for
a schematic overview). Specifically, we utilize a GA where the fitness
function [Eq. (4.4)] is estimated by a trained CNN. Without such an ap-
proximate fitness function, the computational time increases by a factor
390 and exploration of the design space is unfeasible. The goal of the GA
is to achieve a target number of intensive zero modes bT . To achieve this
goal, the GA iteratively generates a population of designs (the generation)
in three steps: (i) sampling, (ii) fitness evaluation, and (iii) update. Below,
we give an overview of these three steps.

In the first step, a fixed number of candidate designs is randomly drawn
from the discrete design space. In GA terminology, this set of designs (pop-
ulation) is referred to as generation 0. Only the very first generation is
generated in this manner. Second, we score and rank the designs based on
their fitness f [Eq. (4.4)]. This fitness is maximal when the CNN’s predic-
tion is equivalent to the target number of intensive modes bT . Finally, we
use the ranking of designs based on the fitness to generate a new population
of designs—the next generation. To efficiently explore the design space,
the GA combines and mutates designs. To this end, we employ several
standard GA techniques. We select a group of designs from the initial
population based on a three-way random tournament selection, and we
always include the design with the highest fitness (elitism). This group of
designs forms the “parents”. From this set of parents, we combine designs
using a custom crossbreeding scheme (see below), and we clone to create
an additional set of designs. This set of designs also undergoes random mu-
tations of building blocks and produces the “children”. The combination
of parents and children then forms the next generation, maintaining the
same size as the previous generation. This procedure of fitness evaluation
and generation of a new population of designs is repeated until the fitness
is maximized or a predefined criterion is met.

Specifically, our genetic algorithm has a population size of 100, of
which 29 are selected to be parents using a three-way tournament selec-
tion. Additionally, the fittest candidate in the population is automatically
selected to be one of the parents, so that we have a total of 30 parents. To
create a new generation of 100 designs, we require 70 children. Of those 70

134

4444

A4.3. Genetic algorithm

b

tournament
selection

crossbreeding

mutations

elitism

cloning

+

parentschildren

generation

evaluate
compute
fitness

fitnessbuilding
blocks

(a)

(b)

mask mask

Figure A4.5: Schematic representation of our genetic algorithm. (a) A CNN
calculates the number of intensive modes bCNN for each design in the generation.
(b) A generation of designs (top) is ranked based on the fitness f . Using a three-
way tournament selection the algorithm selects designs from the generation that,
together with the fittest design in the generation, form the parents (right). From
the parents, we generate new designs in two ways: cloning and crossbreeding
(bottom). In cloning, we simply make a copy of the parent design chosen at
random. In crossbreeding, we randomly select two parents that we combine using
two-dimensional masks (black-and-white matrices). Additionally, building blocks
in these newly generated designs have the chance to mutate into new orientations.
The mutated designs form the children (left) who, together with the parents, form
the next generation. This iterative procedure continues until a sufficiently high
fitness or stopping condition is reached.

children, half are created using cross-breeding of randomly selected pairs
of parents. To combine the design of two parents to create a new child, we
use a Gaussian filter to filter a random binary 5× 5 mask, which we then

135

4444

4. Data-driven design

again binarize to create a mask where half of the elements are 0 and half are
1. This mask is then used to take part of the two parents and combine them
to create a new child [Fig. A4.5(a)]. The reason we use this method over
more standard methods, such as k-point crossover or uniform crossover, is
that we believe local clusters of building blocks are important for intensive
zero modes. The other 35 children are taken by cloning randomly selected
parents. All building blocks in the children designs have a chance of 10%
to mutate to a different orientation. Each of these different orientations are
equally likely to be selected. The combination of the parents and children
after mutation form the new generation of designs.

A4.3.1. GA exploits nonlocal structure

To understand how the GA explores design space, we investigate the two
key exploration techniques of our GA. Underlying the evolution of genera-
tions of designs are two main processes: (i) cloning and (ii) crossbreeding
[Fig. A4.5(b)]. Our GA thus explores the design space in two ways: (i)
the cloned designs undergo local mutations. This is local exploration of
the design space surrounding the cloned parent design. (ii) The crossbred
designs are combinations of two parent designs on top of local mutations.
This is non-local exploration of the design space.

The combination of both local and non-local exploration are crucial for
the success of the GA. To illustrate this, we determine the minimal distance
between between the design X with the highest fitness of generation g + 1
and every other design Y in generation g as

dmin = min{Y }

∑
i,j

1− δ(Xi,j , Yi,j)

 , (A4.1)

where δ(x, y) is the Kronecker delta function and Xi,j is the orientation
of the building block at site (i, j) in design X. (A4.1) thus captures the
number of different building blocks between design X of generation g + 1
and the design Y in generation g that is closest to X . Non-local exploration
primarily plays a role for early generations when bCNN (g) is likely to be
small, which allows the GA to find designs of a higher bCNN (Fig. A4.6(c)).
For larger bCNN , in later generations, local exploration is key.

Intuitively, the GA is able to efficiently explore the design space by
first crossbreeding designs to quickly find designs with a reasonably high
number of intensive modes bCNN . This is most likely a consequence of
the fact that most designs with a low number of intensive modes feature

136

4444

A4.3. Genetic algorithm

3 4 5 6 7 8
bCNN(g)

3

4

5

6

7

8

b C
N
N
(g
+
1)

0.0

0.2

0.4

0.6

0.8

1.0
pdf

3 4 5 6 7 8
bCNN(g)

3

4

5

6

7

8

b C
N
N
(g
+
1)

0

2

4

6

8

10

­
dmin

®(a) (b)

Figure A4.6: GA design space exploration. (a) Pdf for the design with the
highest fitness in a GA run to transition from bCNN (g) to bCNN (g+1) for iterative
generations. For low bCNN (g) the GA is more likely to transition to a higher
bCNN . For high bCNN (g) the GA struggles to quickly find designs with a larger
bCNN (g+1). Note that bCNN (g) can never transition to a lower bCNN (g+1) as the
GA always takes the design with the highest bCNN to the next generation. (b) The
average minimal distance 〈dmin〉 [Eq. (A4.1)], where 〈.〉 denotes the average over
an ensemble of GA runs, for the fittest design in generation g+1 with bCNN (g+1)
as a function of bCNN (g) of the fittest design in generation g. As bCNN (g) increases,
the distance 〈dmin〉 between the fittest design in the next generation g + 1 and all
designs in generation g decreases.

deformations that are localized on the edge of the material. Such edge
modes are less sensitive to building block mutations than global modes
and thus crossbreeding is more likely to combine designs that feature
edge modes. Moreover, as the number of intensive modes b increases the
probability to inhibit any mode by changing orientations increases, such
that the crossbreeding is more likely to result in a net conservation or
decrease of b. After b = 5, the GA appears to rely on cloning to locally
explore around an ensemble of designs with high b to find rare b + 1
designs. Thus, the GA is able to efficiently generate designs that feature
a large number of intensive modes b thanks to both non-local and local
exploration, resulting in successful runs that generally converge.

A4.3.2. Random walks

To both obtain starting designs for the random walks and compare the
evolution of GA designs, we perform and keep track of a hundred GA runs
with bT = 7. We start a hundred random walks from the final hundred
designs with the highest fitness, thus the starting b(s = 0) varies from
5 ≤ b ≤ 7.

137

4444

4. Data-driven design

A4.3.3. Comparison to other methods.

Our GA is able to find ultra-rare designs with a large number of intensive
modes b, that is not possible using random search as designs with high
b become exponentially more rare with b. Alternatively, one could try to
exploit the hierarchical design space structure through a hill-climbing
method. While this approach succeeds sometimes, it fails an exponentially
larger fraction of the time for increasing target number of intensive modes
bT [Fig. A4.7(a)-(b)]. This results in a larger average number of evaluations
of the fitness function f for large bT to make a successful run [Fig. A4.7(c)-
(d)]. Compared to state-of-the-art generative methods, such as variational
autoencoders (VAE), generative adversarial neural networks (GANs), and
normalizing flows, our method allows for extrapolation outside the scope
of the training set. These generative methods all aim to approximate
the (unknown) underlying probability distributions of the training set—
without examples such methods are unable to generate designs with the
desired property.

A4.4. Design approach

Here, we describe in more detail the second step of our design approach:
extracting and refining designs.

A4.4.1. Combining and selecting designs for target deformations

The goal of extracting is to combine and select from a set of 5× 5 designs
to form larger larger metamaterial that deform close to desired target
deformations. We start from a set of designs generated using our design
method and compute the mode structures. We aim to throw away edge
modes. We do this by checking the location of CRS sites; if the entire 4× 4
inner square of the 5× 5 mode consists of CRS blocks, we assume it is an
edge mode and disregard it.

Next, we determine which modes are compatible with each other. Here,
compatible means that there exists a design that can feature both modes.
Modes are compatible if (1) there are no overlapping D sites or (2) if for
all overlapping D sites, the building block orientations from the original
designs are the same. This means that all modes that originate from the
same design are compatible, as they should be. Surprisingly, modes that
originate from different designs can also be compatible. By taking the
building block orientations of the D sites for both modes, we can create

138

4444

A4.4. Design approach

5 7 9
bT

0.8

0.9

1.0

S

5 7 9
bT

103

104

­ N
e

® su
cc
es
s

5 7 9
bT

10-1

10-2

10-3

S

5 7 9
bT

100

200

­ N
e

® su
cc
es
s

103

104

105

­ N
e

® =
S

5 7 9
bT

0.8

0.9

1.0

S

5 7 9
bT

103

104

­ N
e

® su
cc
es
s

(a)

(c)

(b)

(d)

Figure A4.7: Comparison of hill-climbing and genetic algorithm. (a) Success
rate S of 10000 hill-climbing runs to reach target number of intensive modes
bT decreases exponentially. (b) The success rate S of 10000 GA-runs to reach bT .
(c) The average (blue circles) and standard deviation (blue shaded area) of the
number of evaluations of the fitness function f for successful runs 〈Ne〉success to
reach bT using hill-climbing. The average number of evaluations per successive
run 〈Ne〉 S (pink squares) increases exponentially with bT . (d) The average (blue
circles) and standard deviation (shaded area) of the number of evaluations of the
fitness function f for successful runs 〈Ne〉success increases exponentially with bT .

a design that features both modes, as the orientation of CRS blocks is
irrelevant. This procedure yields a set of modes and pairs of modes that
we label compatible. We represent this as a graph with nodes (modes) and
undirected edges (compatible).

To explore our set of modes for combinations that deform close to a
target deformation, we search the space of maximal cliques. Such cliques
hold the largest set of compatible modes, thus providing the design with the
most deformational freedom. We calculate the set of maximal cliques using
the Bron-Kerbosch algorithm with vertex ordering by first calculating the
degeneracy ordering of the graph [160, 167] . For any given set of designs,
we need to perform this calculation only once and save the graph and
maximal clique for subsequent searches for target deformations.

To determine if a maximal clique of modes deforms closely to tar-
get deformations, we calculate the capacity C [Eq. (4.3)]. This score is
calculated using a constraint programming solver that uses satisfiability
methods [165] as described in Materials and Methods C.

139

4444

4. Data-driven design

To design larger metamaterials, such as the 10×10 designs of Fig. 4.7(b)
and 4.7(d), we split the larger target deformation into local 5× 5 deforma-
tions. We rank all maximal cliques based on their cumulative capacity C
for each 5× 5 subset. Then, we take a greedy search approach and combine
designs with the highest capacity for each 5× 5 subset and calculate the
total capacity for the combined design. If the total score in unsatisfactory
(below a predefined threshold), we iteratively try the next best designs for
each 5× 5 subset until we find a satisfactory total score.

A4.4.2. Prohibiting undesired zero modes

To prohibit undesired zero modes, we strategically introduce additional
rigid bars to the metamaterial structure. To determine the placement of
these bars, we analyze the modal structure of the desired and undesired
zero modes. In particular, if the undesired mode contains a D block where
the desired modes feature CRS blocks, we add a rigid bar across the diago-
nal to transform the pentodal building block shape to a square shape. This
prohibits the building block from deforming with the D mode, effectively
prohibiting the undesired mode without introducing any new (undesired)
zero modes.

140

55555

5 Discussion
In this thesis, we set out to find systematic design strategies for multimodal
metamaterials. To this end, we have focused on one family of combi-
natorial metamaterials that are emblematic of multimodal metamaterial
design—designs with desired properties are extremely rare, mechanical
properties are sensitive to minute changes, and the design space is vast.
Without design rules, finding designs with desired mechanical properties
is intractable.

Central to combinatorial design problems is the notion of an underly-
ing structure in design space. At first glance, the design problem seems
intractable: the number of possible building block combinations is too
large to fully enumerate and tilings with desired properties are too rare to
find through Monte Carlo sampling of the design space. However, there is
an implicit, lower dimensional order to the design space. In other words,
properties are not randomly dispersed throughout design space but form
structured sets. Precisely because such an order exists, we can use tech-
niques, rational or computational, to uncover a set of simpler descriptors
that delineate these structured sets—the design rules. Below, we summa-
rize how we uncovered this order in each chapter.

In chapter 2, this structure emerges through kinematic constraints
linked to pairs of neighboring building blocks. Both the pairs and con-
straints can be grouped into distinct types—revealing a first lower order
to the structure-property map of extensive modes. Remarkably, these
constraints, by large, map within the set of constraints induced by other
types of pairs. Thus, kinematic constraints can be captured in a directed
graph dictating how constraints map to new constraints under a given
configuration of building blocks. Configurations resulting in a mapping of
kinematic constraints across the entire configuration that do not exhaust
the deformational degrees of freedom support an extensive mode. Thus,
we can derive an explicit set of (nonlocal) conditions that configurations
need to satisfy to support an extensive mode, allowing for rational design
of such configurations.

In chapter 3, the underlying structure to the design space becomes
apparent in the success of the neural network. By virtue of the accuracy of
the trained network to new, previously unseen designs, the design space
must have some lower dimensional structure that is captured by the trained
network. Intuitively, we describe this structure as needles-in-hay—rare
designs form a sparse filamentous network of hyperplanes (needles) of

141

55555

5. Discussion

lower dimensionality than the encompassing design space (hay). This intu-
itive picture helps interpret the characteristic response of statistical probes
of the boundary between classes in the average dimensionality of these
needles. In comparing this average dimensionality to that of the internal
representation of the trained networks, we found a remarkable agreement.
We conclude that the trained neural networks infer (approximate) design
rules that delineate the design space to a higher accuracy than expected
through simple interpolation of the space.

In chapter 4, we train a neural network for regression of the number of
intensive modes instead of classification. The structure of this number in
design space is similar to the needles-in-hay structure of chapter 3. How-
ever, the number’s structure is hierarchical—needles contain more needles
themselves, and an intuitive picture of needles-within-needles-within-
needles emerges. Needles higher in the hierarchy become exponentially
more rare and are sparsely found through Monte Carlo sampling of the
design space. As such, the network is not trained on designs in ultra-rare
needles high in the hierarchy. Surprisingly, a trained neural network is
able to accurately predict, for some designs, a number of intensive modes
beyond the range in the training set. Thus, we conclude that the network
has learned the implicit hierarchical structure to the design space. This al-
lows us to efficiently generate, using a genetic algorithm, ultra-rare design
with a high number of intensive modes. Due to the nature of these modes,
such designs are likely to feature any desired deformation. Using a library
of such designs, we find designs that deform close to a set of targeted
deformations. Finally, we use directed defects to prohibit undesired modes
and create designs with desired modes and few superfluous modes.

Recognizing that design rules can be systematically derived or learned
using neural networks opens new strategies for metamaterial design. For
instance, our rational approach in chapter 2 can be readily applied to
combinatorial metamaterials with different building block designs. Such
designs will alter the vertex model, yet the kinematic constraints can be
derived in the same way. Using these constraints, another transfer mapping
can be made, and constraints can be mapped and tracked across configu-
rations. Alternatively, neural networks can be trained to classify designs
and predict their number of deformation modes. For these networks to be
successful, there should be order to the structure-property map present in
the data set. Moreover, our strategy to design metamaterials by first increas-
ing their deformational freedom before prohibiting undesired modes is
generally applicable to multimodal metamaterials with spatially extended

142

55555

modes. We hope our work will push the interest in such multimodal meta-
materials which have potential applications in programmable materials,
soft robotics, and computing in materia.

More broadly, our work is relevant to combinatorial design problems
that are ubiquitous in science. In chapter 2, we present a systematic strat-
egy to solve tiling problems with nonlocal constraints, beyond Wang tiles.
In chapter 3, we show how well neural networks can capture combinatorial
rules in a strongly class-imbalanced design space. In chapter 4, we show
that a two-step strategy of first finding designs that satisfy many inde-
pendent sets of conditions before changing the design to violate selected
undesired conditions is preferable to direct optimization for the desired
sets of conditions. We believe that combinatorial metamaterials are well
suited to probe open questions in combinatorial design, as they are straight-
forward to simulate yet exhibit complex combinatorial structure. Some
open questions include, for instance, how can we learn size-independent
combinatorial rules from data? What is the relation between the complex-
ity of the combinatorial rules and that of neural networks? How do we
best overcome a strong data-imbalance? How do we infer interpretable
combinatorial rules using machine learning? What are good strategies for
exploring a vast combinatorial space when simulations are computationally
expensive?

143

144

Bibliography

1. Reis, P. M., Jaeger, H. M. & Van Hecke, M. Designer matter: A perspective. Extreme
Mechanics Letters 5, 25–29 (2015).

2. Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical meta-
materials. Nature Reviews Materials 2, 1–11 (2017).

3. Florijn, B., Coulais, C. & van Hecke, M. Programmable mechanical metamaterials.
Physical review letters 113, 175503 (2014).

4. Silverberg, J. L. et al. Using origami design principles to fold reprogrammable
mechanical metamaterials. Science 345, 647–650. eprint: https://www.science.
org/doi/pdf/10.1126/science.1252876. https://www.science.org/doi/abs/
10.1126/science.1252876 (2014).

5. Medina, E., Farrell, P. E., Bertoldi, K. & Rycroft, C. H. Navigating the landscape of
nonlinear mechanical metamaterials for advanced programmability. Physical Review
B 101, 064101 (2020).

6. Mueller, J., Lewis, J. A. & Bertoldi, K. Architected multimaterial lattices with
thermally programmable mechanical response. Advanced Functional Materials 32,
2105128 (2022).

7. Bense, H. & van Hecke, M. Complex pathways and memory in compressed cor-
rugated sheets. Proceedings of the National Academy of Sciences 118, e2111436118
(2021).

8. Kwakernaak, L. J. & van Hecke, M. Counting and sequential information processing
in mechanical metamaterials. Physical Review Letters 130, 268204 (2023).

9. Guo, X., Guzmán, M., Carpentier, D., Bartolo, D. & Coulais, C. Non-orientable order
and non-commutative response in frustrated metamaterials. Nature 618, 506–512
(2023).

10. Meeussen, A. S., Oğuz, E. C., Shokef, Y. & Hecke, M. v. Topological defects produce
exotic mechanics in complex metamaterials. Nature Physics 16, 307–311 (2020).

11. Coulais, C., Teomy, E., De Reus, K., Shokef, Y. & Van Hecke, M. Combinatorial design
of textured mechanical metamaterials. Nature 535, 529–532 (2016).

12. Jiang, C., Rist, F., Wang, H., Wallner, J. & Pottmann, H. Shape-morphing mechanical
metamaterials. Computer-Aided Design 143, 103146. issn: 0010-4485. https://www.
sciencedirect.com/science/article/pii/S0010448521001573 (2022).

13. Meeussen, A. & van Hecke, M. Multistable sheets with rewritable patterns for
switchable shape-morphing. Nature 621, 516–520 (2023).

14. Bossart, A. & Fleury, R. Extreme Spatial Dispersion in Nonlocally Resonant Elastic
Metamaterials. Physical Review Letters 130, 207201 (2023).

15. Cho, Y. et al. Engineering the shape and structure of materials by fractal cut. Pro-
ceedings of the National Academy of Sciences 111, 17390–17395. eprint: https://www.
pnas.org/doi/pdf/10.1073/pnas.1417276111. https://www.pnas.org/doi/
abs/10.1073/pnas.1417276111 (2014).

16. Sussman, D. M. et al. Algorithmic lattice kirigami: A route to pluripotent materials.
Proceedings of the National Academy of Sciences 112. Publisher: Proceedings of the
National Academy of Sciences, 7449–7453. https://www.pnas.org/doi/10.1073/
pnas.1506048112 (2024) (June 2015).

17. Dieleman, P., Vasmel, N., Waitukaitis, S. & van Hecke, M. Jigsaw puzzle design of
pluripotent origami. Nature Physics 16, 63–68 (2020).

145

https://www.science.org/doi/pdf/10.1126/science.1252876
https://www.science.org/doi/pdf/10.1126/science.1252876
https://www.science.org/doi/abs/10.1126/science.1252876
https://www.science.org/doi/abs/10.1126/science.1252876
https://www.sciencedirect.com/science/article/pii/S0010448521001573
https://www.sciencedirect.com/science/article/pii/S0010448521001573
https://www.pnas.org/doi/pdf/10.1073/pnas.1417276111
https://www.pnas.org/doi/pdf/10.1073/pnas.1417276111
https://www.pnas.org/doi/abs/10.1073/pnas.1417276111
https://www.pnas.org/doi/abs/10.1073/pnas.1417276111
https://www.pnas.org/doi/10.1073/pnas.1506048112
https://www.pnas.org/doi/10.1073/pnas.1506048112

Bibliography

18. Liu, W., Janbaz, S., Dykstra, D., Ennis, B. & Coulais, C. Leveraging yield buckling to
achieve ideal shock absorbers 2023. arXiv: 2310.04748 [cs.CE].

19. Bossart, A., Dykstra, D. M., Van der Laan, J. & Coulais, C. Oligomodal metamaterials
with multifunctional mechanics. Proceedings of the National Academy of Sciences 118,
e2018610118 (2021).

20. Gazit, E. Self-assembled peptide nanostructures: the design of molecular building
blocks and their technological utilization. Chemical Society Reviews 36, 1263–1269
(2007).

21. Zeravcic, Z., Manoharan, V. N. & Brenner, M. P. Size limits of self-assembled colloidal
structures made using specific interactions. Proceedings of the National Academy of
Sciences 111, 15918–15923 (2014).

22. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nature
Reviews Chemistry 4, 615–634 (2020).

23. Gartner, F. M., Graf, I. R. & Frey, E. The time complexity of self-assembly. Proceedings
of the National Academy of Sciences 119, e2116373119 (2022).

24. Evans, C. G., O’Brien, J., Winfree, E. & Murugan, A. Pattern recognition in the
nucleation kinetics of non-equilibrium self-assembly. Nature 625, 500–507 (2024).

25. Hull, T. The combinatorics of flat folds: a survey in Origami3: Proceedings of the 3rd
International Meeting of Origami Science, Math, and Education (2002), 29–38.

26. Keim, N. C., Paulsen, J. D., Zeravcic, Z., Sastry, S. & Nagel, S. R. Memory formation
in matter. Reviews of Modern Physics 91, 035002 (2019).

27. Mungan, M., Sastry, S., Dahmen, K. & Regev, I. Networks and hierarchies: How
amorphous materials learn to remember. Physical review letters 123, 178002 (2019).

28. Van Hecke, M. Profusion of transition pathways for interacting hysterons. Physical
Review E 104, 054608 (2021).

29. Shohat, D., Hexner, D. & Lahini, Y. Memory from coupled instabilities in unfolded
crumpled sheets. Proceedings of the National Academy of Sciences 119, e2200028119
(2022).

30. Rouvray, D. Isomer enumeration methods. Chemical Society Reviews 3, 355–372
(1974).

31. Chhabra, N., Aseri, M. L. & Padmanabhan, D. A review of drug isomerism and
its significance. International journal of applied and basic medical research 3, 16–18
(2013).

32. Merrell, P. Example-based model synthesis in Proceedings of the 2007 symposium on
Interactive 3D graphics and games (2007), 105–112.

33. Merrell, P. & Manocha, D. in ACM SIGGRAPH Asia 2008 papers 1–7 (2008).
34. Merrell, P. & Manocha, D. Model synthesis: A general procedural modeling algo-

rithm. IEEE transactions on visualization and computer graphics 17, 715–728 (2010).
35. Adya, S. N. & Markov, I. L. Combinatorial Techniques for Mixed-Size Placement.

ACM Trans. Des. Autom. Electron. Syst. 10, 58–90. issn: 1084-4309. https://doi.
org/10.1145/1044111.1044116 (Jan. 2005).

36. Oh, C. et al. Bayesian Optimization for Macro Placement. arXiv preprint
arXiv:2207.08398 (2022).

37. Pisanty, B., Oğuz, E. C., Nisoli, C. & Shokef, Y. Putting a spin on metamaterials:
Mechanical incompatibility as magnetic frustration. SciPost Physics 10, 136 (2021).

38. Resch, R. D. Geometrical device having articulated relatively movable sections United
States of America Patent 3201894 (1965).

39. Evans, K. E. & Alderson, A. Auxetic Materials: Functional Materials and Structures
from Lateral Thinking! Advanced Materials 12, 617–628 (2000).

146

https://arxiv.org/abs/2310.04748
https://doi.org/10.1145/1044111.1044116
https://doi.org/10.1145/1044111.1044116

Bibliography

40. Lubensky, T., Kane, C., Mao, X., Souslov, A. & Sun, K. Phonons and elasticity in
critically coordinated lattices. Reports on Progress in Physics 78, 073901 (2015).

41. Maxwell, J. C. L. on the calculation of the equilibrium and stiffness of frames. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 27, 294–
299 (1864).

42. Calladine, C. R. Buckminster Fuller’s “tensegrity” structures and Clerk Maxwell’s
rules for the construction of stiff frames. International journal of solids and structures
14, 161–172 (1978).

43. Isakov, S. V., Moessner, R. & Sondhi, S. L. Why spin ice obeys the ice rules. Physical
review letters 95, 217201 (2005).

44. Hong, Y. P. & Pan, C.-T. Rank-revealing QR Factorizations and the singular value
decomposition. Mathematics of Computation 58, 213–232 (1992).

45. Hornik, K., Stinchcombe, M. & White, H. Multilayer feedforward networks are
universal approximators. Neural Networks 2, 359–366 (1989).

46. Schmidt, J., Marques, M. R., Botti, S. & Marques, M. A. Recent advances and ap-
plications of machine learning in solid-state materials science. npj computational
materials 5, 83 (2019).

47. Merchant, A. et al. Scaling deep learning for materials discovery. Nature 624, 80–85
(2023).

48. Zheng, X., Zhang, X., Chen, T.-T. & Watanabe, I. Deep learning in mechanical
metamaterials: from prediction and generation to inverse design. Advanced Materials
35, 2302530 (2023).

49. Bessa, M. A., Glowacki, P. & Houlder, M. Bayesian machine learning in metamaterial
design: Fragile becomes supercompressible. Advanced Materials 31, 1904845 (2019).

50. Coli, G. M. & Dijkstra, M. An Artificial Neural Network Reveals the Nucleation
Mechanism of a Binary Colloidal AB13 Crystal. ACS Nano 15, 4335–4346 (2021).

51. Bastek, J.-H., Kumar, S., Telgen, B., Glaesener, R. N. & Kochmann, D. M. Inverting
the structure–property map of truss metamaterials by deep learning. Proceedings of
the National Academy of Sciences 119, 1. issn: 0027-8424 (2022).

52. Deng, B. et al. Inverse design of mechanical metamaterials with target nonlinear
response via a neural accelerated evolution strategy. Advanced Materials 34, 2206238
(2022).

53. Alexander, S. Amorphous solids: their structure, lattice dynamics and elasticity.
Physics Reports 296, 65–236. issn: 0370-1573. https://www.sciencedirect.com/
science/article/pii/S0370157397000690 (1998).

54. Van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostatic-
ity. Journal of Physics: Condensed Matter 22, 033101 (2009).

55. Liu, A. J. & Nagel, S. R. The jamming transition and the marginally jammed solid.
Annu. Rev. Condens. Matter Phys. 1, 347–369 (2010).

56. Nicolas, A., Ferrero, E. E., Martens, K. & Barrat, J.-L. Deformation and flow of
amorphous solids: Insights from elastoplastic models. Reviews of Modern Physics 90,
045006 (2018).

57. Sigmund, O. Materials with prescribed constitutive parameters: an inverse homoge-
nization problem. International Journal of Solids and Structures 31, 2313–2329 (1994).

58. Sigmund, O. On the design of compliant mechanisms using topology optimization.
Journal of Structural Mechanics 25, 493–524 (1997).

59. Zadpoor, A. A. Mechanical meta-materials. Mater. Horiz. 3, 371–381. http://dx.
doi.org/10.1039/C6MH00065G (5 2016).

147

https://www.sciencedirect.com/science/article/pii/S0370157397000690
https://www.sciencedirect.com/science/article/pii/S0370157397000690
http://dx.doi.org/10.1039/C6MH00065G
http://dx.doi.org/10.1039/C6MH00065G

Bibliography

60. Ion, A. et al. Metamaterial mechanisms in Proceedings of the 29th annual symposium on
user interface software and technology (2016), 529–539.

61. Zhu, B. et al. Design of compliant mechanisms using continuum topology optimiza-
tion: A review. Mechanism and Machine Theory 143, 103622 (2020).

62. Dykstra, D. M., Janbaz, S. & Coulais, C. The extreme mechanics of viscoelastic
metamaterials. APL Materials 10, 080702 (2022).

63. Coulais, C., Kettenis, C. & van Hecke, M. A characteristic length scale causes anoma-
lous size effects and boundary programmability in mechanical metamaterials. Nature
Physics 14, 40–44 (2018).

64. Fan, H., Tian, Y., Yang, L., Hu, D. & Liu, P. Multistable mechanical metamaterials
with highly tunable strength and energy absorption performance. Mechanics of
Advanced Materials and Structures 29, 1637–1649 (2022).

65. Coulais, C., Sabbadini, A., Vink, F. & van Hecke, M. Multi-step self-guided pathways
for shape-changing metamaterials. Nature 561, 512–515 (2018).

66. Kane, C. & Lubensky, T. Topological boundary modes in isostatic lattices. Nature
Physics 10, 39–45 (2014).

67. Paulose, J., Chen, B. G.-g. & Vitelli, V. Topological modes bound to dislocations in
mechanical metamaterials. Nature Physics 11, 153–156 (2015).

68. Ghatak, A., Brandenbourger, M., Van Wezel, J. & Coulais, C. Observation of non-
Hermitian topology and its bulk–edge correspondence in an active mechanical
metamaterial. Proceedings of the National Academy of Sciences 117, 29561–29568
(2020).

69. Mullin, T., Deschanel, S., Bertoldi, K. & Boyce, M. C. Pattern transformation triggered
by deformation. Physical review letters 99, 084301 (2007).

70. Doškář, M. et al. Wang tiles enable combinatorial design and robot-assisted manu-
facturing of modular mechanical metamaterials. arXiv preprint arXiv:2305.09280
(2023).

71. Shim, J., Perdigou, C., Chen, E. R., Bertoldi, K. & Reis, P. M. Buckling-induced
encapsulation of structured elastic shells under pressure. Proceedings of the National
Academy of Sciences 109, 5978–5983 (2012).

72. Waitukaitis, S., Menaut, R., Chen, B.-g. & van Hecke, M. Origami multistability:
From single vertices to metasheets. Physical review letters 114, 055503 (2015).

73. Silverberg, J. L. et al. Origami structures with a critical transition to bistability
arising from hidden degrees of freedom. Nature materials 14, 389–393 (2015).

74. Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using
origami tessellations. Nature materials 15, 583–588 (2016).

75. Overvelde, J. T. et al. A three-dimensional actuated origami-inspired transformable
metamaterial with multiple degrees of freedom. Nature communications 7, 10929
(2016).

76. Overvelde, J. T., Weaver, J. C., Hoberman, C. & Bertoldi, K. Rational design of
reconfigurable prismatic architected materials. Nature 541, 347–352 (2017).

77. Nežerka, V. et al. A jigsaw puzzle metamaterial concept. Composite Structures 202,
1275–1279 (2018).

78. Hu, Z. et al. Engineering zero modes in transformable mechanical metamaterials.
Nature Communications 14, 1266 (2023).

79. Van Mastrigt, R., Dijkstra, M., van Hecke, M. & Coulais, C. Machine learning of
implicit combinatorial rules in mechanical metamaterials. Physical Review Letters
129, 198003 (2022).

148

Bibliography

80. The kink in the probability to find class (i) unit cells through Monte Carlo sampling
of the design space is most likely due to the change in how we calculate the the
number of zero modes #M(n) for k ≥ 6 onward. See [79] for details on this
calculation.

81. Czajkowski, M., Coulais, C., van Hecke, M. & Rocklin, D. Conformal elasticity of
mechanism-based metamaterials. Nature communications 13, 1–9 (2022).

82. Grima, J. N. & Evans, K. E. Auxetic behavior from rotating squares. Journal of
materials science letters 19, 1563–1565 (2000).

83. Bertoldi, K., Reis, P. M., Willshaw, S. & Mullin, T. Negative Poisson’s ratio behavior
induced by an elastic instability. Advanced materials 22, 361–366 (2010).

84. Coulais, C., Overvelde, J. T. B., Lubbers, L. A., Bertoldi, K. & van Hecke, M. Discon-
tinuous buckling of wide beams and metabeams. Physical review letters 115, 044301
(2015).

85. Kim, J. Z., Lu, Z., Strogatz, S. H. & Bassett, D. S. Conformational control of mechani-
cal networks. Nature Physics 15, 714–720 (2019).

86. Choi, G. P., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami
tessellations. Nature materials 18, 999–1004 (2019).

87. Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami.
Physical Review Research 3, 043030 (2021).

88. Dykstra, D. M. & Coulais, C. Inverse design of multishape metamaterials. arXiv
preprint arXiv:2304.12124 (2023).

89. Liu, K., Sun, R. & Daraio, C. Growth rules for irregular architected materials with
programmable properties. Science 377, 975–981 (2022).

90. Bian, X., Wei, L.-Y. & Lefebvre, S. Tile-based pattern design with topology control.
Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 1–15
(2018).

91. Van Mastrigt, R., Dijkstra, M., van Hecke, M. & Coulais, C. Zero Modes and Classifi-
cation of Combinatorial Metamaterials 2022.

92. Hoffmann, J. et al. Machine learning in a data-limited regime: Augmenting experi-
ments with synthetic data uncovers order in crumpled sheets. Science advances 5,
eaau6792 (2019).

93. Colen, J. et al. Machine learning active-nematic hydrodynamics. Proceedings of the
National Academy of Sciences 118, 10 (2021).

94. Falk, M. J., Alizadehyazdi, V., Jaeger, H. & Murugan, A. Learning to Control Active
Matter. arXiv preprint arXiv:2105.04641 (2021).

95. Dulaney, A. R. & Brady, J. F. Machine learning for phase behavior in active matter
systems. Soft Matter 17, 6808–6816 (2021).

96. Bar-Sinai, Y., Hoyer, S., Hickey, J. & Brenner, M. P. Learning data-driven discretiza-
tions for partial differential equations. Proceedings of the National Academy of Sciences
116, 15344–15349 (2019).

97. Wiecha, P. R., Arbouet, A., Girard, C. & Muskens, O. L. Deep learning in nano-
photonics: inverse design and beyond. Photonics Research 9, B182–B200 (2021).

98. Ma, W. et al. Deep learning for the design of photonic structures. Nature Photonics
15, 77–90 (2021).

99. Xu, Y., Zhang, X., Fu, Y. & Liu, Y. Interfacing photonics with artificial intelligence:
an innovative design strategy for photonic structures and devices based on artificial
neural networks. Photonics Research 9, B135–B152 (2021).

149

Bibliography

100. Harrington, M., Liu, A. J. & Durian, D. J. Machine learning characterization of
structural defects in amorphous packings of dimers and ellipses. Physical Review E
99, 022903 (2019).

101. Mozaffar, M. et al. Deep learning predicts path-dependent plasticity. Proceedings of
the National Academy of Sciences 116, 26414–26420 (2019).

102. Gu, G. X., Chen, C.-T. & Buehler, M. J. De novo composite design based on machine
learning algorithm. Extreme Mechanics Letters 18, 19–28 (2018).

103. Wang, L. et al. Deep Generative Modeling for Mechanistic-based Learning and
Design of Metamaterial Systems. arXiv preprint arXiv:2006.15274 (2020).

104. Coli, G. M., Boattini, E., Filion, L. & Dijkstra, M. Inverse design of soft materials via
a deep learning–based evolutionary strategy. Science Advances 8, eabj6731 (2022).

105. Shin, D. et al. Spiderweb nanomechanical resonators via Bayesian optimization:
inspired by nature and guided by machine learning. Advanced Materials, 2106248
(2021).

106. Hanakata, P. Z., Cubuk, E. D., Campbell, D. K. & Park, H. S. Forward and inverse
design of kirigami via supervised autoencoder. Physical Review Research 2, 042006
(2020).

107. Forte, A. E. et al. Inverse Design of Inflatable Soft Membranes Through Machine
Learning. Advanced Functional Materials 32, 2111610 (2022).

108. Cubuk, E. D. et al. Identifying structural flow defects in disordered solids using
machine-learning methods. Physical Review Letters 114, 108001 (2015).

109. Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems.
Nature Physics 16, 448–454 (2020).

110. Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural
approach to relaxation in glassy liquids. Nature Physics 12, 469–471 (2016).

111. Hsu, Y.-T., Li, X., Deng, D.-L. & Sarma, S. D. Machine learning many-body localiza-
tion: Search for the elusive nonergodic metal. Physical Review Letters 121, 245701
(2018).

112. Venderley, J., Khemani, V. & Kim, E.-A. Machine learning out-of-equilibrium phases
of matter. Physical Review Letters 120, 257204 (2018).

113. Swanson, K., Trivedi, S., Lequieu, J., Swanson, K. & Kondor, R. Deep learning for
automated classification and characterization of amorphous materials. Soft matter
16, 435–446 (2020).

114. Van Damme, R., Coli, G. M., van Roij, R. & Dijkstra, M. Classifying Crystals of
Rounded Tetrahedra and Determining Their Order Parameters Using Dimensional-
ity Reduction. ACS Nano 14, 15144–15153 (2020).

115. Miles, C. et al. Correlator convolutional neural networks as an interpretable ar-
chitecture for image-like quantum matter data. Nature Communications 12, 1–7
(2021).

116. Andrejevic, N., Andrejevic, J., Rycroft, C. H. & Li, M. Machine learning spectral
indicators of topology. arXiv preprint arXiv:2003.00994 (2020).

117. Bohrdt, A. et al. Classifying snapshots of the doped Hubbard model with machine
learning. Nature Physics 15, 921–924 (2019).

118. Carrasquilla, J. Machine learning for quantum matter. Advances in Physics: X 5,
1797528 (2020).

119. Van Nieuwenburg, E., Bairey, E. & Refael, G. Learning phase transitions from dy-
namics. Physical Review B 98, 060301 (2018).

120. Bohrdt, A. et al. Analyzing nonequilibrium quantum states through snapshots with
artificial neural networks. Physical Review Letters 127, 150504 (2021).

150

Bibliography

121. Sigaki, H. Y., Lenzi, E. K., Zola, R. S., Perc, M. & Ribeiro, H. V. Learning physical
properties of liquid crystals with deep convolutional neural networks. Scientific
Reports 10, 1–10 (2020).

122. Geiger, P. & Dellago, C. Neural networks for local structure detection in polymorphic
systems. The Journal of Chemical Physics 139, 164105 (2013).

123. Dietz, C., Kretz, T. & Thoma, M. Machine-learning approach for local classification
of crystalline structures in multiphase systems. Physical Review E 96, 011301 (2017).

124. Zhang, L.-F. et al. Machine learning topological invariants of non-Hermitian systems.
Physical Review A 103, 012419 (2021).

125. Carrasquilla, J. & Melko, R. G. Machine learning phases of matter. Nature Physics
13, 431–434 (2017).

126. Van Nieuwenburg, E. P., Liu, Y.-H. & Huber, S. D. Learning phase transitions by
confusion. Nature Physics 13, 435–439 (2017).

127. Deng, D.-L., Li, X. & Sarma, S. D. Machine learning topological states. Physical
Review B 96, 195145 (2017).

128. Zhang, Y. & Kim, E.-A. Quantum loop topography for machine learning. Physical
Review Letters 118, 216401 (2017).

129. Zhang, P., Shen, H. & Zhai, H. Machine learning topological invariants with neural
networks. Physical Review Letters 120, 066401 (2018).

130. Zhang, Y. et al. Machine learning in electronic-quantum-matter imaging experi-
ments. Nature 570, 484–490 (2019).

131. Ch’Ng, K., Carrasquilla, J., Melko, R. G. & Khatami, E. Machine learning phases of
strongly correlated fermions. Physical Review X 7, 031038 (2017).

132. Rem, B. S. et al. Identifying quantum phase transitions using artificial neural net-
works on experimental data. Nature Physics 15, 917–920 (2019).

133. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature
596, 583–589 (2021).

134. Demaine, E. D. & Demaine, M. L. Jigsaw puzzles, edge matching, and polyomino
packing: Connections and complexity. Graphs and Combinatorics 23, 195–208 (2007).

135. Imaizumi, M. & Fukumizu, K. Deep Neural Networks Learn Non-Smooth Functions
Effectively in Proceedings of the Twenty-Second International Conference on Artificial
Intelligence and Statistics (eds Chaudhuri, K. & Sugiyama, M.) 89 (PMLR, Apr. 2019),
869–878. https://proceedings.mlr.press/v89/imaizumi19a.html.

136. Rolnick, D., Veit, A., Belongie, S. & Shavit, N. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694 (2017).

137. Goodfellow, I. et al. Generative adversarial nets. Advances in Neural Information
Processing Systems 27 (2014).

138. Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013).

139. Bengio, Y., Lodi, A. & Prouvost, A. Machine learning for combinatorial optimization:
a methodological tour d’horizon. European Journal of Operational Research 290, 405–
421 (2021).

140. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning
(still) requires rethinking generalization. Communications of the ACM 64, 107–115
(2021).

141. Johnson, J. M. & Khoshgoftaar, T. M. Survey on deep learning with class imbalance.
Journal of Big Data 6, 1–54 (2019).

142. Van Mastrigt, R., Dijkstra, M., van Hecke, M. & Coulais, C. Convolutional Neural
Networks for Classifying Combinatorial Metamaterials 2022.

151

https://proceedings.mlr.press/v89/imaizumi19a.html

Bibliography

143. Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014).

144. Hossin, M. & Sulaiman, M. N. A review on evaluation metrics for data classification
evaluations. International Journal of Data Mining & Knowledge Management Process 5,
1 (2015).

145. Dijkstra, M. & Luijten, E. From predictive modelling to machine learning and reverse
engineering of colloidal self-assembly. Nature materials 20, 762–773 (2021).

146. Vargo, E. et al. Using Machine Learning to Predict and Understand Complex Self-
Assembly Behaviors of a Multicomponent Nanocomposite. Advanced Materials 34,
2203168 (2022).

147. Kim, B., Lee, S. & Kim, J. Inverse design of porous materials using artificial neural
networks. Science advances 6, eaax9324 (2020).

148. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for
protein engineering. Nature methods 16, 687–694 (2019).

149. Goverde, C. A., Wolf, B., Khakzad, H., Rosset, S. & Correia, B. E. De novo protein
design by inversion of the AlphaFold structure prediction network. Protein Science
32, e4653 (2023).

150. Guo, K. & Buehler, M. J. A semi-supervised approach to architected materials design
using graph neural networks. Extreme Mechanics Letters 41, 101029 (2020).

151. Mao, Y., He, Q. & Zhao, X. Designing complex architectured materials with genera-
tive adversarial networks. Science advances 6, eaaz4169 (2020).

152. Brown, N. K., Garland, A. P., Fadel, G. M. & Li, G. Deep reinforcement learning for
the rapid on-demand design of mechanical metamaterials with targeted nonlinear
deformation responses. Engineering Applications of Artificial Intelligence 126, 106998
(2023).

153. Ha, C. S. et al. Rapid inverse design of metamaterials based on prescribed mechanical
behavior through machine learning. Nature Communications 14, 5765 (2023).

154. Van Mastrigt, R., Coulais, C. & van Hecke, M. Emergent nonlocal combinatorial
design rules for multimodal metamaterials. Phys. Rev. E 108, 065002. https://
link.aps.org/doi/10.1103/PhysRevE.108.065002 (6 Dec. 2023).

155. Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design.
Nature 537, 320–327 (2016).

156. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606,
49–58 (2022).

157. Bilodeau, C., Jin, W., Jaakkola, T., Barzilay, R. & Jensen, K. F. Generative models
for molecular discovery: Recent advances and challenges. Wiley Interdisciplinary
Reviews: Computational Molecular Science 12, e1608 (2022).

158. Grima, J. N., Alderson, A. & Evans, K. Auxetic behaviour from rotating rigid units.
Physica Status Solidi (b) 242, 561–575 (2005).

159. Gu, M. & Eisenstat, S. C. Efficient algorithms for computing a strong rank-revealing
QR factorization. SIAM Journal on Scientific Computing 17, 848–869 (1996).

160. Bron, C. & Kerbosch, J. Algorithm 457: finding all cliques of an undirected graph.
Communications of the ACM 16, 575–577 (1973).

161. Hormoz, S. & Brenner, M. P. Design principles for self-assembly with short-range
interactions. Proceedings of the National Academy of Sciences 108, 5193–5198 (2011).

162. Van Mastrigt, R. Code for calculating zero modes https://uva-hva.gitlab.host/
published-projects/CombiMetaMaterial. 2023.

163. Van Mastrigt, R. Code for inverse design https : / / uva - hva . gitlab . host /

published-projects/inversecombimat. 2024.

152

https://link.aps.org/doi/10.1103/PhysRevE.108.065002
https://link.aps.org/doi/10.1103/PhysRevE.108.065002
https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial
https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial
https://uva-hva.gitlab.host/published-projects/inversecombimat
https://uva-hva.gitlab.host/published-projects/inversecombimat

Bibliography

164. Meurer, A. et al. SymPy: symbolic computing in Python. PeerJ Computer Science 3,
e103. issn: 2376-5992. https://doi.org/10.7717/peerj-cs.103 (Jan. 2017).

165. Perron, L. & Didier, F. CP-SAT version v9.8. Google, Nov. 15, 2023. https://
developers.google.com/optimization/cp/cp_solver/.

166. Bradbury, J. et al. JAX: composable transformations of Python+NumPy programs ver-
sion 0.3.13. 2018. http://github.com/google/jax.

167. Eppstein, D., Löffler, M. & Strash, D. Listing all maximal cliques in sparse graphs
in near-optimal time in Algorithms and Computation: 21st International Symposium,
ISAAC 2010, Jeju Island, Korea, December 15-17, 2010, Proceedings, Part I 21 (2010),
403–414.

153

https://doi.org/10.7717/peerj-cs.103
https://developers.google.com/optimization/cp/cp_solver/
https://developers.google.com/optimization/cp/cp_solver/
http://github.com/google/jax

154

Summary

Understanding how simple building blocks conspire to create larger struc-
tures with emergent properties is key to design functional matter. Think
of molecular design, which aims to arrange atoms in molecular structures
with desired properties; of protein engineering, which aims to sequence
amino acids in a chain to fold into a functional protein; of self-assembly,
which aims to combine building blocks with distinct shapes and inter-
actions to spontaneously assembly into larger structures. In all these
examples, building blocks with relatively simple local interactions combine
into larger spatial structures with new, emergent properties. Underlying
this process is the abstract notion of a combinatorial design (or configu-
ration) space that contains all possible arrangements of building blocks,
i.e., the structures. In turn, each of these structures can be dressed with an
emergent property. For example, the stability of the molecule; the binding
affinity of the protein; the yield of assembled shapes. Crucially, there is an
order to this dressed design space that can be captured in so-called design
rules: a set of conditions that a structure should satisfy to yield the desired
property.

In this thesis, we aim to utilize such design rules to design mechanical
metamaterials: engineered compound materials that leverage geometric
effects to achieve unusual mechanical properties beyond the mechanical
properties of the constituent materials. For example, an ordinary block of
rubber surrounded by air expands laterally under uniaxial compression.
However, if this block of rubber is perforated with carefully placed holes,
it will contract laterally under uniaxial compression—in other words, the
metamaterial is auxetic. Crucially, the mechanical properties of the rubber
and air have not changed, but the arrangement (or geometry) of these
materials has, resulting in a diametric mechanical response.

Specifically, we focus on so-called multimodal metamaterials. Such
metamaterials utilize multiple soft deformation pathways to achieve ex-
ceptional properties, such as selectable mechanical responses, sequential
energy-absorption, nonlocal resonances, and multi-shape folding. The key
challenge is to design metamaterials with multiple, spatially extended de-
sired deformations and few undesired deformations. However, designing
multimodal metamaterials is fiendishly difficult: deformations are sensitive
to minute changes in the design; the design space is too vast to enumerate;
and superfluous deformations proliferate rapidly and impede actuation of

155

Summary

desired deformations. A systematic approach to design such metamaterial
is lacking. Here, we set out to find systematic design strategies.

To achieve this goal, we take a combinatorial approach to design: we
restrict ourselves to a discrete set of building blocks. This combinatorial
approach is ideal to design metamaterials with spatially textured defor-
mations for, e.g., shape-morphing. The challenge is to find tilings of these
building blocks that yield metamaterials with desired deformation path-
ways. For combinatorial metamaterials with a single deformation, targeted
designs follow simple tiling rules. However, for multimodal metamaterials
the challenge is exacerbated as we aim to control both the structure and
enumeration of the deformation pathways. Targeted tilings are rare excep-
tions in a vast sea of failed designs, and exploration of this design space
is unfeasible without design rules. This is characteristic of combinatorial
design problems that are ubiquitous in science, for example in the fields
mentioned before. As such, many of the strategies we develop in this thesis
are of relevance beyond the field of metamaterial design. Below follows a
summary of the main results and insights per chapter.

In chapter 1, we provide a brief background to mechanism-based
metamaterial design, combinatorial metamaterials, and machine learn-
ing. Specifically, we take a mechanism-based approach to metamaterial
design that uses a frame of rigid bars and hinges to derive and design defor-
mations. We show that the structural integrity of such frames, captured in
the Maxwell-Calladine count, is crucial to prevent the rapid proliferation
of undesired, spatially localized deformations and we provide a condition
on the integrity of unit cell designs based on this count. We show that this
condition is satisfied in earlier work of a shape-morphing combinatorial
metamaterial and how, for this metamaterial, one can use local tiling rules
to design desired spatially textured deformations. However, that particular
metamaterial design is limited to a single deformation at most. Thus, we
focus on another family of metamaterials comprised of bimodal building
blocks which feature two deformations. Using random sampling of the
design space, we show that this metamaterial features intensive, spatially
extended deformations and extensive, spatially localized deformations.
How to design this metamaterials to control these deformations remains
an open question at this point. Finally, we discuss machine learning, in
particular neural networks, and how application of such algorithms to
combinatorial problems is relatively unexplored.

In chapter 2, we derive a set of design rules for the extensive defor-
mations. To do so, we first set-up a mathematical framework for the

156

Summary

deformations in a tiling of building blocks. Using this framework, we get
expressions for kinematic constraints between neighboring building blocks.
For any deformation to be supported by a configuration of building blocks,
all these constraints should be satisfied. This requirement allows us to
define a transfer mapping, that maps kinematic degrees of freedom (dof)
of a set of building blocks to the dof of neighboring building blocks that
satisfy the kinematic constraints between the two sets. However, there are
additional local kinematic constraints that stem from constraints to the
structure of extensive deformations. We explicitly derive conditions on the
configurations of building blocks to satisfy these additional constraints for
so-called ’strip’ modes. These strip modes are localized along horizontal or
vertical strips in the configuration and comprise the extensive deformations
of the metamaterial. Surprisingly, we find emergent nonlocal constraints
for the configuration—this is exclusive to multimodal metamaterials and
exemplifies the challenge in designing such metamaterials. Finally, we
conjecture a set of general design rules for strip modes and verify them
numerically with complete agreement. More broadly, our strategy is ap-
plicable to combinatorial problems with emergent nonlocal constraints
beyond Wang tiles.

In chapter 3, we show that convolutional neural networks (CNNs) are
remarkably adapt at learning combinatorial rules from data, despite heavily
undersampled training sets. While our strategy in Ch. 2 is successful, it
is rather strenuous. Instead, here we ask if a neural network might be
able to infer the design rules from data alone. We show that CNNs are
accurate at classifying combinatorial metamaterials into rare compatible
(C) and abundant incompatible (I) designs. We ascribe this success to the
CNNs’ ability to capture local spatial correlations, because local kinematic
constraints are key to determine the compatibility of deformation with
a given design. Moreover, we note that the structure of C designs in
design space delineate a filamentous set of hyperplanes that span the
space, which we intuitively picture as needles (C) in a haystack (I). In
this picture, it is clear that the boundaries of these needles are relatively
undersampled—I designs are likely to be far removed from any needles.
On the one hand, if the network is naively interpolating the data, it would
overestimate the width of the needles. On the other hand, the design
space is structured by combinatorial rules, which the network might be
able to infer. Thus, we ask whether the trained CNN is able to accurately
delineate these undersampled boundaries. To answer this question, we
probe the boundary using random walks, starting from C designs. We find a

157

Summary

characteristic response of the probability to transition to an I design, which
we neatly fit with a single free parameter that represents the dimensionality
of the hyperplanes (the width of the needles). We find that the CNN’s
classification agrees remarkably well with the true dimensionality. This
suggests the CNN infers the underlying combinatorial rules from the sparse
training set, rather than doing simple interpolation. This opens up new
possibilities for design of complex metamaterials and application to other
combinatorial problems.

In chapter 4, we devise a two-step design strategy for metamaterials
with multiple desired deformations. The goal is to create a metamaterial
with multiple spatially patterned deformations. However, direct optimiza-
tion for such designs is unfeasible—the design space is jagged and vast.
Instead, we first create a library of high pluripotency designs which are
likely to deform close to randomized target deformations, rather than spe-
cific deformations. In our metamaterial, the pluripotency is positively
correlated to the number of intensive modes. However, designs with a
high number of intensive modes are very rare. Crucially, there is struc-
ture to this number in the design space: designs with the same number
form connected sets in design space and are surrounded by sets of de-
signs with one less intensive mode. Intuitively, we represent this space as
‘needles-within-needles-within-needles in a haystack’, where each needle
corresponds to sets of designs with the same number of intensive modes.
To find such designs, we train a CNN to predict the number of intensive
modes and couple it to a genetic algorithm (GA) to generate designs with
a high number of intensive modes. We find that the CNN is able to ex-
trapolate to designs beyond the range of its training set, which allows us
to find high pluripotency designs using the GA. We ascribe the success of
this approach to the underlying structure of pluripotency in the design
space. In the second step, we focus on specific target deformations. From
our library, we select and combine designs to create a new design that fea-
tures the desired deformations. However, this design also feature multiple
undesired deformations. We remove these superfluous deformations by
strategically placing defects in the design. Finally, we show the success of
our approach by designing two metamaterials that feature deformations
that resemble a smiley and frowny face, and that resemble the letters A and
U. Our design strategy opens up systematic design of complex metamateri-
als with multiple spatially textured deformation modes that are relevant to
programmable materials, soft robotics, and computing in materia. More
broadly, our strategy is relevant to combinatorial problems with jagged

158

Summary

design spaces where direct optimization is unfeasible.
In conclusion, we have derived both rational and computational design

strategies for multimodal combinatorial metamaterials. Crucial to the
success of these methods is the notion of an underlying structure in the
design space. By capturing this structure, either through a mathematical
framework or using machine learning, we have shown that the previously
intractable design space can be effectively explored to find metamaterials
with desired properties. This notion is present in all combinatorial design
problems, which makes our strategies relevant beyond metamaterial design
to fields such as self-assembly, molecular design, protein engineering,
computer graphics, and chip design. Even more broadly, this work is
a small contribution to a long standing effort to better understand and
control emergent behavior in complex systems. We have put special effort
in contextualizing our approaches and results beyond metamaterial design
and hope that a broader spectrum of scientists find interest in our work.

159

160

Samenvatting

Voor het ontwerp van functionele materialen is het cruciaal om te begrijpen
hoe simpele bouwstenen samenwerken in grotere structuren om nieuwe
eigenschappen tot uiting te brengen. Denk hierbij bijvoorbeeld aan het
ontwerpen van moleculen, waarbij atomen juist geplaatst moeten worden in
een moleculaire structuur; het ontwerpen van eiwitten waarin de volgorde
van de aminozuren het vouwen en de uiteindelijke functie van het eiwit
bepaalt; en aan zelfassemblage waarbij bouwstenen met specifieke vormen
en interacties zo gecombineerd worden dat ze spontaan samenkomen in
een grotere structuur.

In al deze voorbeelden worden bouwstenen met relatief simpele lokale
interacties gecombineerd tot een grotere ruimtelijke structuur wat nieuwe,
emergente eigenschappen voortbrengt. Ten grondslag aan dit ontwerppro-
ces ligt het concept van een ontwerpruimte (of configuratieruimte) die alle
mogelijke rangschikkingen van de bouwstenen omvat, d.w.z., alle mogelijke
structuren. Vervolgens kan aan elk van deze structuren een eigenschap
worden toegekend. Bijvoorbeeld de stabilititeit van het molecuul; de bin-
dingsaffiniteit van het eiwit; de gemiddelde opbrengst van geassembleerde
vormen. Om te ontwerpen is het cruciaal dat er een (onbekende) ordening
zit in deze ontwerpruimte die kan worden beschreven met zogeheten ont-
werpregels: een verzameling aan condities waaraan een structuur moet
voldoen om de gewenste eigenschap te hebben.

In dit proefschrift wordt gebruik gemaakt van zulke regels voor het
ontwerpen van mechanische metamaterialen: samengestelde materialen
die geometrische effecten gebruiken om zo ongebruikelijke mechanische
eigenschappen te verkrijgen die meer zijn dan de som van de mechanische
eigenschappen van de betreffende materialen. Neem bijvoorbeeld een
regulier blok rubber omsloten met lucht. Dit blok wordt dikker als je het
indrukt. Echter, als dit blok rubber op de juiste manier met gaten wordt
geperforeerd, dan zal het blok op zichzelf inklappen en dus dunner worden
als je het indrukt. In andere woorden, het geperforeerde blok rubber is
auxetisch en een metamateriaal. Hierbij is het cruciaal dat de mechanische
eigenschappen van het rubber en de lucht onveranderd blijven, alleen de
ruimtelijke verdeling (geometrie) van de betreffende materialen (rubber en
lucht) is veranderd. Het veranderen van de geometrie resulteert dus in een
diametrale mechanische respons van het metamateriaal.

In het bijzonder richt dit proefschrift zich op zogeheten multimodale
metamaterialen. Zulke metamaterialen maken gebruik van meerdere ver-

161

Samenvatting

vomingspaden om zo uitzonderlijke eigenschappen zoals een selecteerbare
mechanische respons, opeenvolgende absorptie van energie, niet-lokale
resonanties, en meervorming vouwen te verkrijgen. De kern uitdaging
is om metamaterialen te ontwerpen met meerdere ruimtelijk gespreide
gewenste vervormingen en weinig ongewenste vervormingen. Echter is
het ontwerpen van zulke multimodale metamaterialen erg uitdagend. Ver-
vormingen zijn gevoelig voor kleine veranderingen in het ontwerp, de
ontwerpruimte is te groot om helemaal te benoemen, en overbodige ver-
vormingen vermenigvuldigen zich snel en hinderen de aandrijving van de
gewenste vervormingen. Een systematische methode om zulke metamateri-
alen te ontwerpen ontbreekt. Dit proefschrift probeert zo’n systematische
methode op te stellen.

Om dit doel te bereiken gebruiken we een combinatorische aanpak
voor het ontwerpen. Dat wil zeggen, we beperken onszelf tot een dis-
crete verzameling bouwstenen. Deze combinatorische aanpak is ideaal
voor het ontwerp van metamaterialen met ruimtelijke en getextureerde
vervormingen voor, bijvoorbeeld, vormveranderende materialen. De uit-
daging is om legpatronen van deze bouwstenen te vinden die leiden tot
metamaterialen met gewenste vervormingen. Voor enkele vervormingen
kunnen combinatorische metamaterialen ontworpen worden met behulp
van simpele betegelingsregels. Voor multimodale metamaterialen is deze
uitdaging moeilijker, omdat we zowel de structuur en het aantal van de
vervormingen willen bepalen. Succesvolle legpatronen zijn zeldzame uit-
zonderingen in een zee van gefaalde ontwerpen en het verkennen van de
ontwerpruimte is niet mogelijk zonder ontwerpregels. Dit is typerend voor
combinatorische ontwerpproblemen die alom vertegenwoordigd zijn in
de wetenschap, bijvoorbeeld in de eerder genoemde velden. Veel van de
ontwerpstrategieën die we ontwikkelen zijn daarom ook relevant buiten
het veld van metamaterialen. Hieronder volgt een samenvatting van de
belangrijkste resultaten en inzichten per hoofdstuk.

In hoofdstuk 1 geven wij wat achtergrondinformatie over mecha-
nisch metamateriaal ontwerp, combinatorische metamaterialen en machine
learning. In het bijzonder gebruiken wij een mechanistische aanpak voor
het ontwerp van metamaterialen, waarbij we gebruik maken van een frame
staven en scharnieren om vervormingen af te leiden en te ontwerpen. We
laten zien dat de structurele integriteit van zulke frames, die we vangen in
de Maxwell-Calladine formule, cruciaal is om de spreiding van ongewenste,
ruimtelijk gelokaliseerde vervormingen te voorkomen. Daarnaast geven wij
een voorwaarde aan de structurele integriteit van eenheidscellen gebaseerd

162

Samenvatting

op deze formule. We laten zien dat aan deze voorwaarde wordt voldaan in
eerder onderzoek naar vormveranderende combinatorische metamateria-
len en hoe, voor dit specifieke metamateriaal, men lokale betegelingsregels
kan afleiden en zo gewenste ruimtelijk getextureerde vervormingen kan
ontwerpen. Echter is dit specifieke ontwerp gelimiteerd tot enkele ver-
vormingen. Daarom richten we ons daarna op een andere familie van
metamaterialen bestaande uit bimodale bouwstenen, d.w.z, bouwstenen
die op twee manieren kunnen vervormen. Metamaterialen opgebouwd
uit deze bouwstenen zijn in staat om op meerdere manieren te vervormen.
Aan de hand van willekeurige legpatronen laten we zien dat dit metama-
teriaal beschikt over intensieve ruimtelijk uitgebreide vervormingen en
extensieve ruimtelijk gelokaliseerde vervormingen. Op dit punt blijft het
een open vraag hoe we dit metamateriaal moeten ontwerpen om deze soort
vervormingen te bepalen. We sluiten af met een korte introductie over
machine learning, in het bijzonder neurale netwerken, en hoe toepassingen
van zulke algoritmes om combinatorische problemen op te lossen relatief
onontgonnen is.

In hoofdstuk 2 verzamelen we ontwerpregels voor extensieve vervor-
mingen. Hiervoor formuleren we eerst een wiskundig kader om de vervor-
ming te bepalen van een legpatroon bouwstenen. Met dit kader leiden we
formules af voor kinematische beperkingen tussen burende bouwstenen.
Een configuratie bouwstenen moet aan al deze formules voldoen om een
bepaalde vervorming te ondersteunen. Met deze eis aan de configuratie
kunnen we een overdrachtsafbeelding definiëren die de kinematische vrij-
heidsgraden (vg) van een verzameling bouwstenen afbeeldt naar de vg van
burende bouwstenen zodat deze voldoen aan de kinematiche beperkingen
tussen de twee verzamelingen. Er zijn echter extra lokale kinematische
beperkingen die voortkomen uit de structuur van extensieve vervormin-
gen. We leiden voorwaarden af voor configuraties bouwstenen om aan
deze extra voorwaarden te voldoen voor zogeheten strip modes. Deze strip
modes zijn vervormingen die zich lokaliseren in horizontale of verticale
stroken in de configuratie en omvatten de extensieve vervormingen van het
metamateriaal. Verrassend genoeg vinden we dat deze extra beperkingen
resulteren in emergente, niet-lokale beperkingen aan het legpatroon — dit
soort niet-lokale beperkingen zijn typerend voor multimodale metamateri-
alen en illustreert waarom zulke metamaterialen ontwerpen zo uitdagend
is. Als laatste postuleren wij een verzameling algemene ontwerpregels voor
strip modes en testen deze regels numeriek met volledige overeenkomst. In
het algemeen is onze strategie toepasbaar op combinatorische problemen

163

Samenvatting

met emergente, niet-lokale beperkingen die voorbij de restricties van Wang
legpatronen gaan.

In hoofdstuk 3 laten we zien dat convolutionele neurale netwerken
(CNNs) opmerkelijk goed geschikt zijn voor het leren van combinatorische
regels uit data, ondanks dat de training set onderbemonsterd is. Alhoewel
onze methode in hfst. 2 succesvol is, is deze erg inspannend om toe te
passen. Daarom vragen we ons in dit hoofdstuk af of een neuraal netwerk
in staat is om de ontwerpregels uit alleen de data af te leiden. We laten
zien dat CNNs heel accuraat zijn in het classificeren van combinatorische
metamaterialen in zeldzame compatibele (C) en overvloedige incompati-
bele (I) ontwerpen. We onderschrijven dit succes aan de vaardigheid van
de CNNs om lokale ruimtelijke correlaties te herkennen, omdat lokale
kinematische beperkingen cruciaal zijn voor de compatibiliteit van een
vervorming voor een gegeven ontwerp. Daarnaast merken we op dat de
structuur van C ontwerpen een draadvormige verzameling hypervlakken
afbakent die de ontwerpruimte opspannen. We beschrijven deze structuur
intuïtief als naalden (C) in een hooiberg (I). Met dit beeld in gedachte is
het duidelijk dat de grenzen van deze naalden relatief onderbemonsterd
zijn — het is waarschijnlijk dat de meeste I ontwerpen ver zijn verwijderd
van naalden. Aan de ene kant is het te verwachten dat als het netwerk
simpelweg de data naïef interpoleert, dat de CNN dan de wijdte van de
naalden zou overschatten. Aan de andere kant, precies omdat de ont-
werpruimte een structuur heeft door de combinatorische regels, zou het
netwerk deze regels kunnen afleiden en de structuur van de naalden goed
kunenn vangen. Wij vragen ons dus af of een getrainde CNN in staat is om
deze onderbemonsterde grenzen accuraat af te bakenen. Om deze vraag
te beantwoorden onderzoeken we de grens met behulp van willekeurige
wandelingen in de ontwerpruimte beginnende bij C ontwerpen. We vinden
een karakteristieke respons in de kans om tijdens deze wandeling in een
I ontwerp te veranderen, wat we kunnen passen aan een functie met een
enkele vrije parameter. Deze parameter representeert de dimensionaliteit
van de hypervlakken, d.w.z., de wijdte van de naalden. We vinden dat
de CNN’s classificatie opmerkelijk goed overeenkomt met de werkelijke
dimensionaliteit van de naalden. Dit suggereert dat de CNN de onderlig-
gende combinatorische regels weet af te leiden uit de schaarse training set,
in plaats van dat het simpelweg de data interpoleert. Dit opent nieuwe mo-
gelijkheden tot het ontwerp van complexe metamaterialen en toepassing
to andere combinatorische problemen.

In hoofdstuk 4 introduceren we een tweetakt ontwerpstrategie voor

164

Samenvatting

metamaterialen met meerdere gewenste vervormingen. Het doel is om
een metamateriaal te ontwerpen met meerdere ruimtelijke gepatroneerde
vervormingen. Direct optimaliseren van zulke ontwerpen is in de prak-
tijk echter niet haalbaar — de ontwerpruimte is grillig en uitgestrekt. In
plaats daarvan genereren we eerst een verzameling aan ontwerpen met
een hoge pluripotentie. Zulke ontwerpen hebben een grote kans om zich
te kunnen zo te kunnen vervormen dat het lijkt op willekeurig gegene-
reerde vervormingen. Pluripotentie is positief gecorreleerd aan het aantal
intensieve vervormingen in ons metamateriaal. Helaas zijn ontwerpen
met een hoog aantal intensieve vervormingen erg zeldzaam. Gelukkig
heeft de ontwerpruimte een structuur wat betreft dit aantal vervormingen:
ontwerpen met hetzelfde aantal vormen verbinden verzamelingen in de
ontwerpruimte en zijn omgeven met verzamelingen van ontwerpen met
een enkele intensieve vervorming minder. Deze ruimte omschrijven we
intuïtief als ‘naalden-in-naalden-in-naalden in een hooiberg’, waar elke
naald correspondeert tot een verzameling ontwerpen met hetzelfde aantal
intensieve vervormingen. Om zulke ontwerpen te vinden, trainen we een
CNN om het aantal intensieve vervormingen te voorspellen en koppelen de
CNN aan een genetisch algoritme (GA) om zo efficiënt ontwerpen met een
hoog aantal intensieve vervormingen te genereren. We vinden dat de CNN
in staat is om te extrapoleren naar ontwerpen met aantallen voorbij de
limieten van de training set. Dit stelt ons in staat om het GA te gebruiken
om ontwerpen met een hoge pluripotentie te vinden. Het succes van deze
methode kennen we toe aan de onderliggende structuur van pluripotentie
in de ontwerpruimte. In de tweede ontwerpstap richten we ons op speci-
fieke doelvervormingen. Uit onze verzameling ontwerpen met een hoge
pluripotentie selecteren en combineren we ontwerpen, en maken zo een
nieuw ontwerp met de gewenste vervormingen. Echter bevat dit ontwerp
ook ongewenste, overbodige vervormingen. De ongewenste vervormingen
halen we weg door defecten strategisch te plaatsen in het ontwerp. Tot
slot laten we zien dat onze methode in staat is om twee grotere metama-
terialen te ontwerpen die vervormingen hebben die lijken op een smiley
en een frowny gezichtje, en op de letters A en U. Onze ontwerpstrategie
opent de deur tot systematisch ontwerp van complexe metamaterialen met
meerdere ruimtelijke getextureerde vervormingen. Zulke metamaterialen
zijn relevant voor programmeerbare materialen, zachte robots, en bereke-
ningen doen in materialen. In het algemeen is onze strategie relevant voor
combinatorische problemen met grillige ontwerpruimtes waarbij directe
optimalisatie niet mogelijk is.

165

Samenvatting

Samengevat, we hebben zowel rationele als computationele ontwerp-
strategieën afgeleid voor multimodale combinatorische metamaterialen.
De kern van het succes van deze methodes ligt in het idee van een onder-
liggende structuur in de ontwerpruimte. Door deze structuur te vangen,
zij het door een wiskundig kader of door machine learning, laten we zien
dat dat de voorheen onhandelbare ontwerpruimte efficiënt kan worden
verkend om metamaterialen met gewenste eigenschappen te vinden. Dit
idee is algemeen voor alle combinatorische ontwerpproblemen, wat ons
onderzoek relevant maakt, naast alleen metamateriaalontwerp, voor velden
als zelfassemblage, molecuulontwerp, eiwitontwerp, computer graphics
en chipontwerp. Nog breder gezien is dit werk een kleine contributie aan
een langlopende poging om emergent gedrag in complexe systemen be-
ter te begrijpen en te controleren. Wij hebben extra moeite gestoken in
het contextualiseren van onze methodes en resultaten voorbij metamate-
riaalontwerp en hopen dat het interesse wekt bij een breed spectrum aan
wetenschappers.

166

Publications

This thesis is based on the following publications.

1. van Mastrigt, R., Dijkstra, M., van Hecke, M., Coulais, C. Machine
Learning of Implicit Combinatorial Rules in Mechanical Metamaterials.
Phys. Rev. Lett. 129, 198003 (2022).

2. van Mastrigt, R., Coulais, C., van Hecke, M. Emergent nonlocal combi-
natorial design rules for multimodal metamaterials. Phys. Rev. E 108,
065002 (2023).

3. van Mastrigt, R., Dijkstra, M., van Hecke, M., Coulais, C. Prospecting
for Pluripotency in Metamaterial Design. Manuscript in preparation
(2024).

Other Publications by the author

4. van Mastrigt, R., Coulais, C., van Hecke, M., Dijkstra, M. Machine
Learning of Mechanisms in Combinatorial Metamaterials. 2021 Fifteenth
International Congress on Artificial Materials for Novel Wave Phenomena
(Metamaterials), 442-444 (2021).

167

168

Word of thanks

Right at the start of my PhD, the pandemic and first lockdown happened.
Many of the joys of doing a PhD—summer schools, conferences, brainstorm-
ing sessions—were no longer possible, and work sometimes felt isolating.
Luckily, I was blessed with fun colleagues, wonderful supervisors, and
loving friends and family that pulled me through difficult times in myriad
ways. It goes without saying that I could not have finished my PhD without
the support from many wonderful people. It is not possible to capture my
gratitude for you all in words, but I will try nonetheless.

First of all, I want to thank my supervisors. Marjolein, your sharp
comments always managed to pinpoint exactly the weak points of my work.
You inspire me to stay critical and to continuously work on improving my
research. Martin, your ability to look for the bigger picture is inspiring
and helped me abstract and conceptualize my work. I also want to thank
you for your mentoring, helping me find my next challenge, and taking
time out of your busy schedule to chat and joke around. Corentin, your
seemingly unlimited enthusiasm, creativity and energy is a great motivator
and helped me keep the joy of doing research alive. I hope to take some of
your energy and creativity with me going forward. These past years were
some of the most interesting, challenging and fun of my life (so far) and I
feel privileged to have had you as my supervisors.

Secondly, I want to thank my peers for all the support and fun over
the past years. Despite splitting my time between two groups, I always
felt welcome at both—for that I am truly thankful. Especially, I want to
thank my wonderful colleagues Amitesh, Ananya, Anne, Bernat, Caroline,
Colin, Daan, Daniel, David, Ellen, Freek, Hadrien, Jack, Jonas, Lennard,
Lishuai, Lucie, Margot, Martin, Paul, Rupesh, Shahram, Wenfeng, Xiaofei,
Yao and Yiangnan for all the wonderful coffee chats, lunches, dinners,
borrels, and outings. A special shout-out goes out to those that joined me
for the GeoGuessr sessions during Covid. I also want to thank all the softies
for the fun lunches and engaging Friday talks. Without such a fun, open,
and diverse set of people this journey would have been a whole lot more
boring.

Last but certainly not least, I want to thank my family and friends
for supporting me. Work is only one part of life, and I thank you all
for providing me with welcome distractions, joy, laughter, and love. To
my parents, without whom I wouldn’t be who I am today, for your love
and continuous support in my ambitions. To Kevin and Imre for your

169

Word of thanks

willingness to listen to me complain and keeping me grounded. To my
wonderful friends, Jan Willem, Maarten, Nick, Niels, Pim, Ruben, Thomas,
and Tristan, for all the fun, and drinks, and games, and music, and late
night walks and chats—I am beyond grateful to have such a loving group
of close friends. To Anna and Scott, for always making me feel welcome.
To my dear Doris, for holding me together throughout this ordeal. I am
extremely grateful for your support and love, I will spend the rest of my
days trying to reciprocate even just a fraction of all you have so generously
given me. I love you all.

170

SEARCH
IN

G
 FO

R
 STRU

CTU
RE

Ryan
van M

astrigt

Ryan van Mastrigt

SEARCHING FOR STRUCTURE
Uncovering Combinatorial Rules

to Design Metamaterials

	Cover_front
	inside digital
	Introduction
	Mechanical metamaterial design
	Calculating zero modes
	Classification of structural integrity
	Towards mechanism-based design

	Combinatorial design
	Unimodal design
	Multimodal metamaterial

	Machine learning for metamaterials
	Thesis outlook

	Combinatorial Design Rules
	Introduction
	Phenomenology
	Compatibility constraints
	Mode structure
	strip modes
	Transfer mapping formalism
	Linear degree of freedom transformations
	Constraints and Symmetries
	Deriving rules for strip modes
	Case 1: W=1
	Case 2: W=2
	Case 3: W=3
	Towards general design rules

	Discussion
	Open boundary conditions
	Realizations mode structure
	Linear coordinate transformations
	Deriving the transfer mapping
	nontrivial conditions
	Diagonal compatibility constraints
	Diagonal constraints for W=2 configurations
	Diagonal constraints for W=3 configurations
	lower strip condition

	Constraint mapping
	W=3 constraint mapping
	Invalid W=3 sequences
	Numerical proof strip mode rules
	Machine learning implicit combinatorial rules
	Introduction
	Metamaterial Classification
	Combinatorial structure
	Volume before structure
	Discussion
	Floppy and frustrated structures
	Design rules for floppy structures
	Rarity of floppy structures

	Constructing and Training Convolutional Neural Networks for metamaterials
	Pixel Representation
	CNN architecture details
	Training set details
	Sparsity of the training set
	CNN hyperparameter grid search details

	Assessing the performances of CNNs
	Test set results
	Varying the unit cell size
	Increasing the size of the training set
	Random walk near the class boundary
	Random walk near the decision boundary

	Computational time analysis
	Data-driven design
	Introduction
	Multimodal metamaterial
	Predicting intensive modes
	Extrapolation
	Designing for target deformations
	Combining unit cells

	Discussion
	The metamaterial
	Calculating the number of zero modes
	Determining the structure of a zero mode
	Capacity of a set of modes
	Randomized target deformations
	Distribution of edge-modes and global modes.

	Convolutional neural networks
	Training the CNNs
	Neural network architecture
	Preprocessing

	Genetic algorithm
	GA exploits nonlocal structure
	Random walks
	Comparison to other methods.

	Design approach
	Combining and selecting designs for target deformations
	Prohibiting undesired zero modes

	Discussion

	Cover_back

