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1 Introduction

Nature is replete with complex, emergent functionality. Think of atoms
binding together to form effector molecules that regulate biological activity,
chains of amino acids folding into transport proteins that move molecules
across cell membranes, and cells clumping together to form muscle tis-
sues with anisotropic elastic moduli. In all these examples, functionality
emerges from the collective response of building blocks —atoms, amino
acids, cells—intricately connected in some spatial structure. Abstractly,
this collective response is captured in the forward structure-property re-
lation that maps microscopic details—building block types and spatial
arrangement—to a macroscopic property of interest, such as the elastic
modulus. Thus, the goal of this relation is to predict for a given structure
the resulting property.

Conversely, the inverse relation—property-structure—aims not to pre-
dict but to design: produce a structure such that the desired property
emerges. In practice, this is an ill-posed problem—there may be many
structures that result in the same property and a solution is not guaranteed.
Crucially, there is an underlying (typically unknown) order to this inverse
relation. This order is captured in design rules: conditions that a structure
should satisfy to support a desired property. Without such rules, design is
limited by intuition or brute force trial-and-error.

In this thesis, we encounter such forward and inverse problems in
the context of mechanical metamaterials: artificially designed materials
that leverage geometric effects to achieve exceptional mechanical func-
tionalities [[1,[2] such as tuneable mechanical properties [3-6], mechanical
memory [7-9]], steerable deformations [10] , and shape-morphing [11-13]
(see Fig. for examples). Specifically, we focus on metamaterials that
feature multiple deformation pathways that cost little energy to actuate.
These so-called multimodal metamaterials allow for new and exciting func-
tionalities, such as nonlocal resonances [14]], multi-shape folding [15+H17],
sequential buckling [18], and selectable mechanical responses [19]]. How-
ever, a systematic strategy to design multimodal metamaterials is lacking.

We aim to find such systematic design strategies. To achieve this ambi-
tious goal, we consider a family of multimodal metamaterials comprised of
building blocks. The challenge is to find tilings of these building blocks
that feature desired deformation pathways. However, we find that such
tilings are rare exceptions in a vast sea of failed designs. This is emblematic
of combinatorial problems which are ubiquitous in science, for example,
in self-assembly [20-24], origami [17, 25], amorphous matter [7,26-29],
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1. Introduction

Ficure 1.1: Examples of mechanical metamaterials. (a) The stiffness to uniaxial
compression can be tuned by changing the horizontal confinement. Adapted
from [3]. (b) The orientation of the slender beams flip iteratively upon compres-
sion, effectively counting the number of compression cycles. Adapted from [8].
(c) A topological defects renders a previously soft metamaterial stiff on the top
side and soft on the bottom side, allowing for steerable deformation along the
bottom . Credit: AMOLF. (d) A kirigami-based metamaterial that can continu-
ously morph from a flat shape (left) into another curved shape (right). Adapted

from .

molecular design [30,31], computer graphics [32H34], chip design [35}[36],
and metamaterial design 37].

Here, we tackle combinatorial problems using both rational design and
machine learning. First, in chapter 2, we devise a theoretical framework
for kinematic constraints to derive design rules. While successful, this
approach can be strenuous, prompting us to explore effective alternatives.
Subsequently, in chapter [3| we use neural networks to accurately delineate
design space into rare compatible and abundant incompatible designs.
Finally, in chapter [4 we formulate a hybrid design approach that combines
computational and rational design to create metamaterials with multiple
targeted spatially-textured deformations. In what follows, we provide brief
background to these chapters and discuss our main findings.

1.1. Mechanical metamaterial design

Throughout this thesis, we take a mechanism-based approach to metama-
terial design. Below, we briefly discuss the basics of metamaterial design
and the challenges that arise.

In general, mechanical metamaterials feature “soft” deformation modes:
pathways of deformation that cost little energy. These soft modes impart

2



1.1. Mechanical metamaterial design

L

FiGure 1.2: Auxetic flexible and mechanism-based metamaterials. (a) A rubber
sheet (green) perforated with holes deforms auxetically when compressed from the
top. Adapted from . (b) Rigid bars (black lines) enclose rigid squares (gray) that
are connected by hinges. These squares freely rotate in an auxetic deformation.

Adapted from [39].

the metamaterial with exceptional mechanical properties. For example, a
block of rubber perforated with multiple holes placed in a square pattern
displays an auxetic response when compressed from the top—the metama-
terial contracts horizontally under vertical compression [Fig.[1.2(a)]. To
understand this auxetic deformation, we neglect the complex nonlinear
elasticity of this highly heterogeneous material and instead consider a
simpler bars-and-hinges framework. This framework consists of rigid bars
connected by hinges that freely rotate. The metamaterial’s deformation can
then be emulated in a frame of connected rigid squares that feature a de-
formation that costs zero energy, i.e., does not stretch any of the bars. This
so-called zero mode effectively rotates the squares in an alternating pat-
tern [Fig.[1.2|b)], closely resembling the deformation of the metamaterial.
This particular deformation is termed the counter-rotating squares (CRS)
mode and provides an effective description of the mechanics
underpinning the metamaterial’s auxetic response. Thus, this bars-and-
hinges framework is an attractive, mechanism-based approach to describe
mechanical metamaterials. Below, we discuss how we use this framework
to calculate zero modes, classify the structural integrity of frames, and
how we can use this to design metamaterials with desired mechanical
properties.



1. Introduction

1.1.1. Calculating zero modes

To calculate the zero modes of a frame [Fig. [1.3(a)], we determine the
frame’s compatibility matrix C. This matrix maps small displacements of
the hinges u to elongations of the bars e to first order in u. Zero modes, i.e.,
deformations that do not stretch any of the bars, span the null space, or
kernel, of C. In other words, uzy is a zero mode if Cuzy = 0 [Fig. b)].
Inversely, the equilibrium matrix Q maps stresses on the bars o to loads
on the hinges 1 and is equal to the transpose of the compatibility matrix
CT. This equivalence follows from requiring the virtual work done by the
hinges and bars to be equal [40]. Stresses that do not induce any load (net
forces) are states of self-stress and span the null space of Q, i.e., ogisa
state of self-stress if Qog = 0 [Fig.[1.3|¢)].

For a given frame with NV hinges and Np bars in d dimensions, the
Np x dN compatibility matrix C can be composed and a set of basis vectors
that span the null space N'(C) can be determined. In other words, this set of
vectors span all the zero modes of the frame. The dimensionality of this set,
dim NV (C), corresponds to the total number of distinct zero modes of the
frame. In practice, we neglect the trivial zero modes: rigid translations and
rotations of the entire frame. Thus, we find that the number of nontrivial
zero modes Nzy = dimN(C) — f(d), where f(d) = d(d + 1)/2 is the
number of rigid body motions in d dimensions. Similarly, the number of
states of self-stress Ng is equal to the dimensionality of the null space of
the dN x Np equilibrium matrix Q, i.e., Ng = dim N (Q). For example, for
the metamaterial in Fig.[1.3(a) we find that Nzy = 1 [Fig.[1.3(b)], f(2) = 3
and Ng = 2 [Fig.[1.3|c)]. For large frames it is cumbersome to calculate the
zero modes and states of self-stress by hand. Instead, the null space can be
computed numerically by singular value decomposition (SVD) algorithms.

1.1.2. Classification of structural integrity

In practice, a simpler structural integrity classification of a frame may
be used that does not require explicit calculation of C. This classification
follows from a counting rule that can be derived directly from the defini-
tions of the compatibility and equilibrium matrices, C and Q, using the

4



1.1. Mechanical metamaterial design

(a) frame (b) zero mode (C) states of self-stress

A

Ficure 1.3: Bars-and-hinges framework. (a) Example of a frame consisting of
rigid bars (black lines) and hinges (white circles). (b) The frame of (a) deformed
by its single zero mode: a small deformation of the hinges (blue arrows) with
respect to the rest frame (gray) that does not stretch any of the rigid bars. We note
that this deformation is equivalent to the counter-rotating squares deformation
of Fig.[1.2|b). (c) The two states of self-stress supported by the frame of (a).
Compressive (tensﬂe) stress on the bar is indicated by the ingoing (outgoing)
arrows and green (red) color. A bar under stress induces a force on its connected
hinges. In a state of self-stress the net force on each hinge is zero.

rank-nullity theorem:
NZM — NS = dlmN(C) — dlmN(Q) — f(d)
= dim N'(C) — dimN'(CT) — f(d)
=dN —n, — (Ng —n,) — f(d)
:dN—NB—f(d)EP,

(1.1)

where n, is the rank of the compatibility matrix C. P is commonly referred
to as the Maxwell-Calladine count 41} 42].

This count P can be used to classify the structural integrity of a frame
into three distinct cases:

i P < 0: hyperstatic, the frame necessarily supports states of self-stress
ii P = 0: isostatic, equal number of modes and states of self-stress,
iii P > 0: hypostatic, the frame necessarily supports zero modes.

We note that this classification does not provide the number of modes Ny
of a frame. Instead, it gives a lower bound: Nzy > P as both Nzy and
Ng are non-negative integers. The Nz exceeds this lower bound if there
are degenerate rigid bars that result in additional states of self-stress. As
we will show, this structural integrity classification is useful to design for
spatially extended zero modes.
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FiGure 1.4: Mode-scaling of hypostatic and hyperstatic frames. (a) Example of a
hypostatic metamaterial. The unit cell (left) is tiled on a n x n square lattice to
form a larger metamaterial (right shows n = 3 tiling). (b) Example of a hyperstatic
metamaterial. (c) The number of modes Nz of the hypostatic (blue circles)
and hyperstatic (red squares) metamaterials and their lower bounds P [Eq. (1.1)]
(dashed lines) as a function of the tiling parameter n. The hypostatic metamaterial
necessarily contains many spatially localized zero modes, because Nz follows
P and thus scales quadratically with n. The hyperstatic metamaterial features
only a single intensive mode, which corresponds to the spatially extensive counter-

rotating squares mode [Fig. b)].

1.1.3. Towards mechanism-based design

To show how the Maxwell-Calladine count [Eq (1.1)] can be used for meta-
material design, we consider two different metamaterial designs: a hypo-
static design [Fig.[1.4(a)] and a hyperstatic design [Fig.[I.4(b)]. Like most
metamaterial designs, these metamaterials are composed of a unit cell that
can be repeated to create a larger n x n tiling of unit cells. Generally, the
goal of mechanism-based metamaterial design is to create a frame that
supports spatially extended zero modes. Thus, at first glance, you might
expect that the design should be hypostatic, as such designs are guaranteed
to support zero modes.

Instead, we find that hypostatic designs are likely to support mostly
spatially localized zero modes. For example, consider the hypostatic meta-

6



1.1. Mechanical metamaterial design

material of Fig.[1.4[a). The Maxwell-Calladine count gives P = 2n?+4n — 1.
As Nzy > P, the number of zero modes Nzy must increase quadratically
as well [Fig.[1.4(c)]. We note that spatially localized modes necessarily
contribute to the scaling of the number of modes Nz\; with the tiling
parameter n, such that this hypostatic metamaterial must contain many
localized modes.

Inversely, hyperstatic designs are less likely to support spatially lo-
calized modes. For example, consider the hyperstatic metamaterial of
Fig.[1.4|b). Note that the frame in Fig.[I.3|a) is a 2 x 2 realization of this
metamaterial. The Maxwell-Calladine count gives P = —2n?+4n — 1, such
that the frame is hyperstatic for n > 2 and must contain states of self-stress.
In fact, recall that we found two states of self-stress for the n = 2 tiling
in Fig.[1.3|c). Moreover, an analysis of the states of self-stress for larger
tilings reveals that these two states of self-stress are repeated periodically
in the frame, such that the number of states of self-stress proliferates as
Ng = 2(n — 1), From Eq. (L.1), it then follows that the number of modes
Nzm(n) = 1 [Fig. [1.4(c)]. That is, the number of modes is constant and
independent of n. Therefore the frame supports a single, intensive zero
mode regardless of n: the spatially extended CRS mode shown before in
Fig.[1.2(b) and Fig.[1.3{b). Such intensive modes do not result in a new
zero mode under spatial translation, because that would constitute a de-
pendence on n. Consequently, intensive modes are likely to span the entire
structure or localize on the edge(s) of the material. Thus, the scaling of
P(n) with n is important to the presence of localized zero modes in the
frame.

Generally, the scaling of P is a polynomial of, at most, degree d in n.
Surprisingly, this is not true for states of self-stress. We note that states of
self-stress are always localized in frames with open boundary conditions,
such that either there are no states of self-stress Ng = 0 or the number
must be proportional to Ng nd. In other words, Ns(n) is either zero
or a polynomial of degree d with a positive d-th degree coefficient. This
localization follows from the observation that a state of self-stress is always
self-contained, i.e., adding extra bars and hinges to the frame does not
alter existing states of self-stress. For example, the state of self-stress in
Fig.[1.5]a) does not change under an increase of the lattice size. Conversely,
this localization argument does not hold for zero modes. For zero modes,
any new bars and hinges that are added to the frame can alter the zero
modes. For example, the CRS mode in Fig.[1.5(b) expands to newly added
hinges under an increase of the lattice size. Thus, for a frame to feature

7
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(@)

(b)

——

Figure 1.5: Localization of states of self-stress and zero modes. (a) A state of
self-stress (left) is always localized, because it does not change under growth of
the lattice (right). (b) A zero mode does not have to be localized, in this example
the zero mode of the 2 x 2 lattice (left) extends under growth of the lattice (right).

no localized modes we require either a constant positive P and Ng = 0, or
P o« —n? and Ng o< n? such that all n-dependent terms cancel.

To summarize, to design metamaterials composed of a n x n tiling of
unit cells with spatially extended zero modes and few localized modes, the
Maxwell-Calladine counting P [Eq. (I.I)] should scale as P o —n?. For
such frames, the number of states of self-stress Ng can cancel the higher
order terms of the polynomial P and result in a positive, constant number
of modes Nzy\. However, a central challenge remains: how do we design
unit cells that feature desired, spatially extensive zero modes?

1.2. Combinatorial design

The space of possible frame geometries is limitless. How to effectively
explore this space to designs frames with desired mechanical properties
is an open problem. Here, we take a combinatorial approach: we limit
ourselves to a discrete set of building blocks that we combine to form larger
structures. This approach renders the design space finite and turns the
design problem into a combinatorial tiling problem: how do we find the
right tilings of building blocks that yield desired properties? We illustrate

8



1.2. Combinatorial design

the appeal and challenges of this combinatorial approach by example
below.

1.2.1. Unimodal design

Consider the building block in Fig.[I.6|a). This building block consists of
two two-dimensional cells. In turn, each cell consists of four rigid triangles
connected by four two-dimensional hinges, resulting in a single zero mode.
Requiring the two cells to be connected and perpendicular constrains the
cells” zero modes, yielding one zero mode for the entire building block
[Fig. [[.6(a)]

Larger metamaterials can be constructed by tiling this building block
in a cubic n X n x n lattice. A simple count of the deformational degrees
of freedom and kinematic constraints yields P = —2n3 + 3n?2, such that
the resulting frame is hyperstatic for n > 2. As P « —n3, tilings of this
building block likely support few extensive, spatially localized zero modes.
Moreover, the building blocks have fewer symmetries than the cubic lattice
they live on. This allows for orientation of the building block in three
distinct ways [Fig. b)] and 3" possible cube configurations. However,
most random configurations are kinematically frustrated, i.e., they do not
support a zero mode [11].

Crucially, design rules can be derived for this metamaterial, enabling
rational design for target deformations. To derive these rules, in- and
outgoing angular deformations are mapped to “spins” that live on edges
in a graph-like framework where vertices correspond to building blocks
[Fig.[1.6(b)]. Note that there is a parity symmetry: flipping all spins results
in the same zero mode modulo the sign. A set of spins is compatible,
i.e., corresponds to a zero mode, if for all edges connected to a vertex the
spins satisfy one of the distinct patterns, similar to ice rules in spin ice
systems [43]]. These patterns correspond to building block orientations
and parity of the zero mode. Thus, a simple check of these patterns gives
the set of building block orientation that support the given zero mode
[Fig.[1.6|c)-i]. We note that configurations of this building block cannot
support more than one mode. This stems from the coupling between
building block deformations: all hinges deform and thus couple to all
neighboring building blocks. As each block supports only a single zero
mode, there is at most only one compatible deformation of the building
blocks.

Moreover, these rules can be used to design spatially-textured deforma-
tions on the faces of a cubic configuration. In this case, there are simple

9
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FiGure 1.6: Combinatorial metamaterial design. (a) Schematic (left) and 3D
printed (right) building block (top) supports one zero mode (bottom). (b) The zero
modes for the different orientations (colors) can be represented in a graph, where
ingoing (outgoing) arrows on the edges represent increasing (decreasing) angular
deformations. The vertex of the edges represents the building block orientation.
Note that there is a parity symmetry—flipping all arrows yields the same zero
mode modulo the sign. (c) Collections of deformations (left) correspond to a
zero mode if the arrows on the edges of each vertex correspond to one of the
configurations in (b). On the surface of the configuration (right), a zero mode
results in a pattern of ingoing (black) and outgoing (white) deformations. This
pattern can be designed by inverting the checkerboard pattern of red and green
building blocks (ii). (d) A 10 x 10 x 10 cube that compresses to show a smiley on
the cube’s face. The inset shows the cube before compression. Adapted from .

rules to yield any desired spatial pattern on one of the faces. First, only
a single slice across the cube parallel to the face of choice needs to be
defined. The rest of the cube are simply copies of this slice due to the parity
symmetry. In this slice, sections that all move inward or outward should
follow a checkerboard pattern of blue and red/green blocks [Fig. [1.6[c)-ii].
By inverting this pattern, sections switch from all inward to all outward
and vice versa. These rules were used to design a metamaterial that, when
compressed, deforms to show a smiley face [Fig.[1.6[d)].

10



1.2. Combinatorial design

In conclusion, this combinatorial approach to metamaterial design
allows for design of complex aperiodic metamaterials with desired textured
shape-changes. However, several open questions remain. How do we
extend this framework to building blocks beyond simple ingoing and
outgoing deformations? How do we design a metamaterial that features
multiple shape-changes, e.g., that can change into a smiley and a frowny?

1.2.2. Multimodal metamaterial

To answer these questions, we extend the combinatorial design approach to
multimodal metamaterials that feature multiple zero-energy deformation
modes. Generally, metamaterials can be categorized into one of three
classes based on the scaling of the number of zero modes with the system
size: [19]

(i) unimodal: a single zero mode,
(ii) plurimodal: many extensive zero modes,
(iii) oligomodal: multiple intensive modes.

On the one hand, unimodal metamaterials feature a single mechanical re-
sponse which is straightforward to actuate. For example, the metamaterial
of Fig.[I.2]is unimodal and the auxetic deformation is actuated by uniaxial
compression. On the other hand, plurimodal metamaterials support many
different mechanical responses which are hard to actuate in practice. For
example, the metamaterial of Fig. a) has a lot of deformational freedom,
but actuating a specific desired deformation is difficult. Oligomodal meta-
materials are a middle ground between these two, allowing for multiple
mechanical responses while maintaining ease of actuation.

We focus on a family of combinatorial metamaterials composed out
of bimodal building blocks [Fig. [.7[a)] that were shown, for the right
tilings, to be oligomodal [19]. Moreover, specific tilings have been realized
experimentally with exceptional functionalities, such as a selectable auxetic
response [[19][Fig. [L.7b)] and sequential buckling [18] [Fig. [L.7|c)-(d)].
However, for tilings larger than 3 x 3, the design space is too large to fully
explore. We believe that this metamaterial is sufficiently rich and complex
to warrant further exploration of the design space. We provide a brief
introduction to this metamaterial below.

The fundamental building block is shown schematically in Fig.[1.7|a).
Each black line represents a rigid bar, while vertices can be thought of as

11
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Figure 1.7: Multimodal combinatorial metamaterial. (a) The undeformed build-
ing block (gray) supports two zero modes (blue and pink). A4, B, C, D, and E label
the five interior angles that can change under zero-energy deformations. (b) 3D
printed flexible tiling (left) of the building block in (a) that deforms in an auxetic
pattern (middle) or not (right) depending on how the metamaterial is actuated
(arrows indicate textured boundary conditions). The colored ellipses indicate the
polarity orientation of each building block in a checkerboard pattern and serves
as a guide to the eye. Adapted from [19]. (c) A 3 x 2 tiling of building blocks (left)
deforms along a strip (right). Note that the hinges at the top and bottom edges of
the tiling do not deform. (d) 3D printed metal tiling (left) of the building block
in (a) in a cylindrical shape sequentially buckles upon compression, numbers
indicate order of buckling. This buckling follows the deformation of shown in (c).
Adapted from [18|.

hinges; the 11 bars are free to rotate about the 8 hinges in 2 dimensions.
The colored triangles form rigid structures, i.e., they will not deform. From
the Maxwell-Calladine counting [Eq. (I.I)] we obtain P = 2-8 —11 —3 = 2.
The building block contains no states of self-stress, such that Nzy = 2.
The precise deformation of these two zero modes can be derived from the
geometric constraints of the building block.

To derive the zero modes to linear order, we note that they preserve the
length of all bars, such that the modes can be characterized by the hinging
angles of the bar. Let 4, B, C, D, and E denote these angles, see Fig.[1.7]a).
Going around the loop ABC'DE, the angles add up to 3x:

A+B+C+ D+ E = 3m. (1.2)
Next, we expand the angles from their rest position to linear order:

A=%+a B=5+8, C=%+y,

_ T _ 3 (13)
D—§+5, E—T"’E.

12



1.2. Combinatorial design

Then, from the condition that the bars cannot change length, we obtain
1—cos(D)=3—2cos(A) —2cos(B)+2cos(A+ B), (1.4)

and
_sin(B+C) _sin(A+ E)

7 =sin(A) 7

Up to first order in «, 3,7, d, ¢, equations (1.4) and (1.5) can be rewritten
as:

sin (B) (1.5)

5 = 20+ 28, (1.6)
B+y=€e+a. (1.7)

Together with the loop condition (1.2)), we obtain a set of three equations
which express 3,7y and § in « and e:

B —2 -1
vl =13 2 (i‘) (1.8)
5 —2 -2

This demonstrates that we can choose the two parameters a and e arbitrarily,
while still satisfying Eqs. (1.2), and (1.7), consistent with the presence
of two zero modes.

By tiling together the building block in different orientations, we can
create 45 size k x k unit cells that we in turn tile to form n xn metamaterials.
These unit cells—and metamaterials built from them—may have more or
less zero modes than the constituent building blocks, depending on the
number of states of self-stress. Previous work on 2 x 2 unit cells showed that
each unit cell could be classified based on the number of zero modes [19].
In this thesis, we consider the previously unexplored cases of 3 x 3 up to
8 X 8 square unit cells.

To explore this design space, we first generate all 3 x 3 unit cell de-
signs, a million random & X k unit cell designs for k € {4,5,6}, and two
million random designs for k € {7,8}. For unit cells up to size k = 6, we
determine the number of modes Nzy; for a n x n tiling of this unit cell
forn € {1,2,3,4} by composing the compatibility matrix and computing
the dimensionality of its null space using rank-revealing QR decomposi-
tion [44]. For the larger unit cells of size k € {7, 8}, we generate n, x 2 and
2 x n, tilings instead. This significantly decreases the size of the compati-
bility matrix and thus the time it takes to calculate the number of modes.
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1. Introduction

(@)
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Ficure 1.8: Distribution of extensive and intensive modes. (a) Stacked bar plot
of the probability density function (pdf) for the number of extensive modes a for
randomly sampled k& x k unit cells. (b) Stacked bar plot of the pdf for the number
of intensive modes b for randomly sampled k x k unit cells.

Surprisingly, we find that all tilings follow a linear mode scaling relation
for sufficiently large n, such that:
Nzm = an + b, (1.9)

where a and b correspond to the number of extensive and intensive modes,
respectively. We note that any unit cell tiling supports the CRS mode, an
intensive mode, such that b > 1. From the Maxwell-Calladine count we

expect P = —k?n? + 4kn — 1, thus our metamaterial designs must contain
Ns o k?n? states of self-stress. The exact scaling depends on the tiling of
the building blocks.

We show the distribution of the number of extensive and intensive
modes of these randomly generated unit cells in Fig. We find that
unit cell designs with a higher number of modes become exponentially
more rare with increasing unit cell size k. Moreover, the size of the design
space increases exponentially with k and the majority of generated designs
feature only a single CRS mode. This is typical of combinatorial meta-
material design—designs with non-trivial properties become increasingly
challenging to find in a design space that mushrooms with size. Without
design rules, finding designs with desired properties is intractable.

In this thesis, we use this metamaterial to tackle the challenge of mul-
timodal metamaterial design. Specifically, we derive design rules for this
metamaterial in chapter [2 show that a neural network can learn such rules
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1.3. Machine learning for metamaterials

from examples in chapter |3, and combine computational and rational de-
sign to design metamaterials with desired spatially aperiodic deformations
in chapter

1.3. Machine learning for metamaterials

Machine learning (ML) forms an essential part of our strategy to design
multimodal metamaterials. Below, we briefly discuss the basics of neural
networks.

Machine learning is an umbrella term that encapsulates a wide range
of general computational techniques to perform desired tasks. In general,
such a technique consists of a machine: an algorithm that can be tuned
to do a specific task in a process termed learning. For example, a neural
network is a ML algorithm typically represented in a directed graph struc-
ture, where each node represents a (usually) real value and edges represent
mathematical operations to transform values from a start node to a new
value in an end node. Such networks have a graph topology, or architecture,
that specifies a clear flow of information; there is an input and an output.
Then, the inner machinations of this network can be tuned by altering
the mathematical operations—typically affine transformations followed
by a non-linear activation function—between nodes such that the network
improves at its intended task. This tuning, or learning, transpires through
minimization of some loss function that dictates how well the network is
doing. To do so, the network requires examples: either pairs of desired
input and output (supervised learning), or just inputs (unsupervised learn-
ing). This set of data that the network uses to learn is called the training
set. After learning, the network is trained and can do its intended task.
The trained network’s performance is typically measured over another set
of data that is not used to learn: the test set. A good performance over this
test set is typically the goal, such a network is said to generalize well. The
type of performance measure—accuracy, mean squared error, area under
ROC curve—that is measured depends on the intended task. In short, the
machine is a general-purpose algorithm that is tuned to perform a specific,
desired task through minimization of a loss function.

Such ML techniques are broadly applicable. Any task that can be
framed in terms of input-to-output can, in principle, be learned by such an
algorithm [45], ranging from learning simple mathematical functions to
abstract tasks such as object identification. Provided there are sufficiently
many examples available, a machine can be trained and perform the de-
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1. Introduction

sired task. The immense increase in computational power and available
data over the past decade significantly fueled this approach, resulting in
machines that can perform tasks that were previously thought impossible
for computers.

Materials science is no exception to this trend. Over the past decade, ML
has found tremendous success in classification, prediction and design of
materials [46,|47]], including mechanical metamaterials [48]]. Most notably,
to design supercompressible structures [49], soft materials [50], truss meta-
materials [51]], and auxetic structures [52]]. However, in all these examples
both the structure and property are continuously varying functions.

In contrast, we aim to classify and predict mechanical properties of
combinatorial metamaterials. Such materials present unique challenges:
the design space is large and intractable, compatible designs are rare, and
mechanical responses are sensitive to minute changes in the design. This
stands in stark contrast to smooth, continuously varying input-output re-
lations that ML algorithms are usually trained for. Several questions thus
arise: to what extend can ML algorithms learn combinatorial design rules?
How does a strong imbalance of the output values influence the perfor-
mance? Can a ML algorithm design metamaterials with properties outside
the range of the training set? To answer these questions, we train a neural
network for classification of a multimodal metamaterial in chapter (3} and
combine a neural network trained for regression with a genetic algorithm
to design multimodal metamaterials in chapter

1.4. Thesis outlook

In this thesis, we show how, using rational design and machine learning,
we can classify and design multimodal combinatorial metamaterials. Our
work opens up a new route for rational and data-driven design of spatially
textured soft modes in multimodal metamaterials, with potential applica-
tions in programmable materials, soft robotics, and computing in materia.
Moreover, we foresee applications beyond the field of metamaterial de-
sign to other fields that encounter similar combinatorial problems. Below
follows a detailed description of each chapter’s content.

In chapter 2, we devise a theoretical framework to keep track of kine-
matic constraints in a given metamaterial design. First, we provide a
mathematical framework that describes the deformations of our building
blocks and tilings thereof. We show that, through enforcing kinematic
constraints between neighboring building blocks, we obtain a transfer
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1.4. Thesis outlook

matrix-like procedure that maps deformations across a design. However,
there are additional local kinematic constraints that should be satisfied.
Surprisingly, we show that mapping these constraints yields emergent non-
local constraints on the tiling. Such constraints are unique to multimodal
metamaterials. We derive these constraints explicitly for a specific type
of zero mode we term strip modes. Using the results of these examples,
we conjecture a set of general design rules that we verify numerically with
complete agreement.

In chapter [3} we show that convolutional neural networks (CNNs) are able
to classify with great accuracy two types of combinatorial metamaterials
in rare compatible (C) and abundant incompatible (I) classes. However,
due to the rarity of the C class, we cannot discern from the test set alone if
the trained CNN is merely interpolating the training set or whether it has
actually learned the (unknown) design rules. To answer this question, we
quantify the CNN’s performance over a set of random walks and compare
the response of the network to the true classification. Surprisingly, we
find a good agreement between the two, suggesting that the network has
learned the design rules.

In chapter[4, we present a hybrid design strategy that combines machine
learning and rational design to find designs that feature multiple desired
deformations. First, we focus on designs with a high pluripotency, which we
define to be designs that are likely to have the desired property. We use a
CNN to predict the number of intensive modes—a proxy for pluripotency—
and efficiently guide a genetic algorithm (GA) towards high pluripotency
designs. Surprisingly, the trained CNN is able to correctly predict this
number of intensive modes outside the range of the training set, which
allows the GA to find ultra-rare high pluripotency designs. Subsequently,
we use those designs to make a library, which we search to find a design
that features the desired deformation modes. In a final step, we refine our
designs to remove superfluous modes by strategically adding defects to
the design. This two-step approach allows us to design 10 x 10 metamate-
rials with multiple desired spatially-textured deformations, for example,
one with modes that resemble a smiley and frowny face and another with
modes that resemble the letters A and U.
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Combinatorial Design Rules

Adapted from “Emergent Nonlocal Combinatorial Design Rules for Multimodal
Metamaterials” published in Physical Review E, December 2023

Combinatorial mechanical metamaterials feature spatially tex-
tured soft modes that yield exotic and useful mechanical proper-
ties. While a single soft mode often can be rationally designed
by following a set of tiling rules for the building blocks of
the metamaterial, it is an open question what design rules are
required to realize multiple soft modes. Multimodal metamate-
rials would allow for advanced mechanical functionalities that
can be selected on-the-fly. Here we introduce a transfer matrix-
like framework to design multiple soft modes in combinatorial
metamaterials composed of aperiodic tilings of building blocks.
We use this framework to derive rules for multimodal designs
for a specific family of building blocks. We show that such
designs require a large number of degeneracies between con-
straints, and find precise rules on the real space configuration
that allow such degeneracies. These rules are significantly more
complex than the simple tiling rules that emerge for single-
mode metamaterials. For the specific example studied here,
they can be expressed as local rules for tiles composed of pairs
of building blocks in combination with a nonlocal rule in the
form of a global constraint on the type of tiles that are allowed
to appear together anywhere in the configuration. This nonlocal
rule is exclusive to multimodal metamaterials and exemplifies
the complexity of rational design of multimode metamaterials.
Our framework is a first step towards a systematic design strat-
egy of multimodal metamaterials with spatially textured soft
modes.
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2. Combinatorial Design Rules

2.1. Introduction

The structure and proliferation of soft modes is paramount for under-
standing the mechanical properties of a wide variety of soft and flexible
materials 2, 53-56]. Recently, computational and rational design of soft
modes in designer matter has given rise to the field of mechanical meta-
materials [1,2},39}/57-62]. Typically, such materials are structured such
that a single soft mode controls the low energy deformations. Their ge-
ometric design is often based on that of a single zero-energy mode in a
collection of freely hinging rigid elements [63]]. Such metamaterials display
a plethora of exotic properties, such as tunable energy absorption [64],
programmability [3H6], self-folding [17}65], nontrivial topology [10, |66
68] and shape-morphing [15,|69-77]. For shape-morphing in particular,
a combinatorial framework was developed, where a small set of building
blocks are tiled to form a metamaterial [11]. In all these examples, both
the building blocks and the underlying mechanism exhibit a single zero
mode, so that the metamaterial’s response is dominated by a single soft
mode leading to a single mechanical functionality. Often, by fixing the
overall amplitude of deformation, the combinatorial design problem can
be mapped to a spin-ice model [10}|11}|37]] or, similarly, to Wang tilings 17,
70, [77].

In contrast, multimodal metamaterials can potentially exhibit multiple
functionalities [19]. Such metamaterials host multiple complex soft modes
with potentially distinct functionalities. By controlling which mode is
actuated, one can tune the metamaterial’s response at will. To engineer such
multimodal materials, one requires precise control over the structure and
enumeration of zero modes. However, as opposed to metamaterials based
on building blocks with a single zero mode, the kinematics of multimodal
metamaterials can no longer be captured by spin-ice or tiling problems.
This is because linear combinations of zero modes are also valid zero modes
such that the amplitudes of different deformation modes can take arbitrary
values—such a problem can no longer be trivially mapped to a discrete
tiling or spin-ice model. As a consequence, designing multimodal materials
is hard. Current examples of multimodal metamaterials include those
with tunable elasticity tensor and wave-function programmability [78],
and tunable nonlocal elastic resonances [14]]. In both works, the authors
consider periodic lattices that limit the kinematic constraints between
bimodal unit cells to (appropriate) boundary conditions, thereby allowing
for straightforward optimization. In contrast, we aim to construct design
rules for aperiodic multimode structures that contain a large number of

20



2.1. Introduction

simpler bimodal building blocks and that exhibit a large, but controllable
number of spatially aperiodic zero modes. Such aperiodic modes allow for
complex mechanical functionalities such as a strain-rate selectable auxetic
response [19] and sequential energy-absorption while retaining the original
stiffness [18]]. For aperiodic multimode structures, the number of kinematic
constraints grows with the size of the structure, so that successful designs
require a large number of degeneracies between constraints. A general
framework to design such zero modes is lacking.

Here, we set a first step towards such a general framework for multi-
modal combinatorial metamaterials. We use this framework to find emer-
gent combinatorial tiling rules for a multimodal metamaterial based on
symmetries and degenerate kinematic constraints. Strikingly, we find non-
local rules that restrict the type of tiles that are allowed to appear together
anywhere in the configuration. This is distinct from local tiling rules found
in single-modal metamaterials which consist only of local constraints on
pairs of tiles. Our work thus provides a new avenue for systematic design
of spatial complexity, kinematic compatibility and multi-functionality in
multimodal mechanical metamaterials.

To develop our framework, we focus on a recently introduced mul-
timodal combinatorial metamaterial [[19]. This metamaterial can host
multiple complex zero modes that can be utilized to engineer functional
materials. For example, a configuration of this metamaterial dressed with
viscoelastic hinges allows for a strain-rate selectable auxetic response un-
der uniaxial compression [[19]]. Another recent example utilizes so-called
strip modes to efficiently absorb energy through buckling while retaining
the original stiffness under sequential uniaxial compression [18]. How-
ever, the design space remains relatively unexplored and is sufficiently
rich and complex that further study of this combinatorial metamaterial is
warranted.

More concretely, this combinatorial metamaterial is composed of build-
ing blocks consisting of rigid bars and hinges that feature two zero modes:
deformations that do not stretch any of the bars to second order of de-
formation [19] [Fig. [2.1fa)]. These degrees of freedom are restricted by
kinematic constraints between neighboring building blocks, which in turn
depend on how the blocks are tiled together. We stack these building
blocks to form square k x k unit cells, and tile these periodically to form
metamaterials of n x n unit cells. These metamaterials can be classified in
three distinct classes based on the number of zero modes Ny as function
of n: most random configurations are monomodal, due to the presence
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Ficure 2.1: (a) Four differently oriented two-dimensional building blocks (left),
combine into a square k = 5 unit cell (middle) which is tiled in a n = 3 grid to form
a combinatorial metamaterial (right). The four orientations of the building block
each have a unique color to guide the eye. The black lines represent rigid bars
that hinge freely at intersections with other rigid bars. Colored regions are rigid
polygons. We note that rigid pentagons with a reentrant edge are kinematically
equivalent to rigid diamonds (rotated squares). (b) The number of zero modes
Nznm(n) as a function n. We distinguish between three design classes, exemplified
by the three unit cells designs shown in the legend. Note that the unit cells differ
only by the rotation of a single building block, yet each belongs to another class.
(c) Probability density function (pdf) to find each design class through Monte
Carlo sampling of the design space. Class (ii) (blue triangles) and (iii) (red circles)
become exponentially more rare with increasing unit cell size k, while class (i)
(green squares) becomes abundant [80]]. The rate of exponential decline for class
(ii) and (iii) depends on if & is odd (filled) or even (open).

of a trivial global (counter-rotating) single zero mode (Fig. (19, 79].
However, rarer configurations can be oligomodal (constant number > 1
of zero modes) or plurimodal (number of zero modes proportional to n)
[Fig. 2.1{b)].

The design space of this metamaterial was fully explored for 2 x 2 unit
cell tilings of such building blocks [19]]. For larger tilings, a brute-force
calculation of the zero modes up to 8 x 8 reveals that this classification
holds for larger unit cells (see Sec.[1.2.2). However, it is an open question
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how to construct design rules to determine this classification directly from
the unit cell tiling without requiring costly matrix diagonalizations.

In this chapter, we focus on the specific question of obtaining tiling
rules for plurimodal designs for the aforementioned building blocks. Such
plurimodes drive the mechanism behind the sequential energy-absorption
metamaterial [Fig.[1.7(d)] [18]]. A crucial role is played by degeneracies
of the kinematic constraints. These kinematic constraints follow trivially
from the tiling geometry and take the form of constraints between the
deformation amplitudes of adjacent building blocks. For random tilings,
the kinematic constraints rapidly proliferate, leading to the single trivial
mode. Checking for degeneracies between these constraints is nontrivial,
as they are expressed as relations between the deformation amplitudes of
different groups of building blocks. To check for degeneracies, we use a
transfer matrix-like approach to map all these constraints to constraints
on a small, pre-selected set, of deformation amplitudes. This allows us to
establish a set of combinatorial rules. Strikingly, these combine local tiling
constraints on pairs of building blocks with global constraints on the types
of tiles that are allowed to appear together; hence, local information is not
sufficient to identify a valid plurimodal tiling.

The structure of this paper is as follows. In Sec.[2.2] we investigate
the phenomenology of this metamaterial, focusing on the number of zero
modes Nzy(n) for unit cell sizes 3 < k < 8. We show that random configu-
rations are exponentially less likely to be oligomodal or plurimodal with
increasing unit cell size k. Additionally, we define a mathematical repre-
sentation of the building blocks” deformations that allows us to compare
deformations in collections of building blocks. In Sec.[2.3|we derive a set
of compatibility constraints on building block deformations that capture
kinematic constraints between blocks. In Sec.[2.4we use these constraints
to formulate an exclusion rule that prohibits the structure of zero modes in
collections of building blocks. Subsequently, we categorize the “allowed”
mode-structures in three categories. In Sec.[2.5|we devise a mode-structure
that, if supported in a unit cell, should result in a linearly growing number
of zero modes, i.e., the unit cell will be plurimodal. We define a set of
additional constraints on deformations localized in a strip in the unit cell
that should be satisfied to support a mode with such a mode-structure. We
refer to such modes as ‘strip’-modes. In section [2.6| we define a transfer
matrix-like formalism that maps deformation amplitudes from a column
of building blocks to adjacent columns. In Sec. we define a general
framework using the transfer mappings defined in the previous section to
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determine if a strip of building blocks supports a strip mode of a given
width W. In Sec. [2.8|we apply this framework explicitly on strips of width
1 < W < 3 and derive a set of tiling rules for strips of each width W.
Surprisingly, we find that strips of width W = 3 require a global constraint
on the types of tiles that are allowed to appear together in the strip. Finally,
we conjecture that there is a set of general design rules for strips of arbi-
trary width W, provide numerical proof of their validity and use them to
construct a strip mode of width W = 10.

2.2. Phenomenology

Configuration.—We consider a family of hierarchically constructed combi-
natorial metamaterials [Fig.[2.1fa)] [19]. A single building block consist
of three rigid triangles and two rigid bars that are flexibly linked, and its
deformations can be specified by the five interior angles 64,605, ..., 0g that
characterize the five hinges [Fig.[2.1[a)]. Each building blocks features two,
linearly independent, zero energy deformations (see Sec. [19]. As the
undeformed building block has an outer square shape and inner pentagon
shape, each building block can be oriented in four different orientations:
c={NE,SE,SW,NW} [Fig.[2.1{a)]. We stack these building blocks to
form square k x k unit cells. Identical unit cells are then periodically tiled
to form metamaterials consisting of n x n unit cells; we use open boundary
conditions. Each metamaterial is thus specified by the value of n and the
design of the unit cell, given by the k x k set of orientations C.

Three classes.—We focus on the number of zero modes Nzyi(n) (defor-
mations that do not cost energy up to quadratic order) for a given design.
In Sec. we showed that the number of zero modes is a linear function
of n: Nzy = an + b, where a > 0 and b > 1 (see Fig.[2.1[b)) [79]]. Based on
the values of @ and b, we define three design classes: Class (i): a = 0 and
b = 1. For these designs, which become overwhelmingly likely for large k&
random unit cells [Fig.[2.1]c)], there is a single global zero mode, which we
will show to be the well known counter-rotating squares (CRS) mode [?2}38|,
63,165,169, 71,/81-84]; Class (ii): a = 0 and b > 2. For these rare designs,
the metamaterial hosts additional zero modes that typically span the full
structure, but Nzy(n) does not grow with n; Class (iii): @ > 1. For these
designs the number of zero modes grows linearly with system size n, and
we will show that these rare zero modes are organized along strips. Designs
in class (ii) and (iii) become increasingly rare with increasing unit cell
size k (see Fig.[2.1)c)). Yet, multi-functional behavior of the metamaterial
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requires the unit cell design to belong to class (ii) or (iii). Hence we aim to
find design rules that allow to establish the class of a unit cell based on its
real space configuration C' and that do not require costly diagonalizations
to determine Nzyi(n). Such rules will also play a role for the designs of the
rare configurations in class (ii) and (iii).

As we will show, deriving such rules requires a different analytical
approach than previously used to derive design rules in mechanical meta-
materials [[10,|11}17,|37|] The reason is for this is that each building block
has two degrees of freedom yet potentially more than two nondegener-
ate constraints to satisfy. The problem can therefore not be mapped to a
tiling problem [17}72]]. In what follows, we will define an analytic frame-
work based on transfer-mappings and constraint-counting and use this
framework to derive design rules for unit cells of class (iii).

Zero modes of building blocks.—To understand the spatial structure of
zero modes, we first consider the zero energy deformations of an individual
building block, irrespective of its orientation [Fig.[2.2(a)]. We can specify a
zero mode m of a single building block in terms of the infinitesimal defor-
mations of the angles 04,03, ..., 0g, which we denote as df4,d0p, ...,d0Eg,
with respect to the undeformed, square configuration [Fig.[2.2(a)]. As the
unit cell can be seen as a dressed five-bar linkage, it has two independent
zero modes (see Sec. [19,179]]. We choose a basis where one of the
basis vectors correspond to the Counter-Rotating Squares (CRS) mode,
where
(dHA, dﬂB, d@c, dGD, d@E) 0.8 (1, —1, 1, 0, —1),
and the other basis vector corresponds to what we call a ‘diagonal’ (D)
mode, where
(df4,d0p,d0¢c,d0p,dbE) o (—1,—1,3,—4,3) [Fig.[2.2fa)].

A general deformation can then be written as

(d4,dOp,dbc,d0p,d0E) = a(1,-1,1,0,—1) + 5(—1,—1,3,—4,3),

where o and f3 are the amplitudes of the CRS-mode and D-mode, respec-
tively.

Zero modes of unit cells.—We now consider the deformations of a single
building block in a fixed orientation. Hence, we can express a zero mode of
an individual building block m, as m;(as, 52, ¢;) = a,mcrs + B-mp(cz).
The deformation of each building block is completely determined by three
degrees of freedom: the orientation c, and the amplitudes o, and 3, of the
CRS and D mode. To compare these deformations for groups of building
blocks, we now define additional notation. We use a vertex representa-
tion [[19] where we map the changes in angles of the faces of the building
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FiGure 2.2: (a) Zero modes of the building block in orientation NE are infinitesimal
deformations of the undeformed building block (left) expressed in the two basis
zero modes CRS (middle) and D (right). These deformations are characterized
by changes in the four angles on the faces of the block (cyan circles) and the four
angles on the corners of the block (pink squares). (b) The five interior angles
of the building block in orientation NE are represented by edges in the bond
representation (left). We express deformations of the building block as values on
these edges, which we represented as arrows. The number of arrows corresponds
to the magnitude of deformation, and the direction of the arrows (incoming,
outgoing) to the sign. Note that the CRS mode (middle) deforms only the angles
on the faces of the building block and thus does not depend on the orientation
of the building block. However, the D mode (right) does deform a diagonal edge
and the mode thus depends on the orientation of the building block. (c) Building
blocks are tiled together on a grid to form unit cells (left, for a 2 x 2 example),
where the row index j increases from top to bottom and the column index ¢ from
left to right. The bond representation (right) forms the static background. (d) The
static background is dressed with arrows on its bonds that represent deformations
of the unit cell (left) in the vertex representation (right).

block, df4,dfp,d0¢c and dfg to values on horizontal (I, r) and vertical (u, v)
edges, and the change in angle of the corner of the building block, dfp,
to the value d° on a diagonal edge—note that the location of the diagonal
edge represents the orientation, ¢, of each building block [Fig.[2.2(b)]. Irre-
spective of the orientation, we then find that a CRS mode corresponds to
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[Fig. 2-2(b)

(u,v, 1,7, dNE, d%F @SV d"W) « (=1,-1,1,1,0,0,0,0) = mcrs.

For a D mode, the deformation depends on the orientation; for a NE block
we have [Fig.[2.2|b)]

(u, v, 1,7, dNB a5 dSW a"W) « (3,-1,-1,3,-4,0,0,0) = mp(NE).

We note that for a D mode in a building block with orientation ¢, only a
single diagonal edge is nonzero. For ease of notation, we express the de-
formation of a building block with orientation c in shorthand (u, v,{,7,d°),
where the excluded diagonals are implied to be zero. In this notation, the
D mode for a SE block is

(u,v,1,7r,d%) (1,3, —-1,3,—4) = mp(SE),

for a SW block it is

(u,v, 1,7, dV) < (=1,3,3, -1, —4) = mp(SW),

and for a NW block it is

(u,v, 1,7, dNWV) o (3,-1,3,—1,—4) = mp(NW).

In addition, throughout this paper we will occasionally switch to a more
convenient mode basis for calculation, where the degrees of freedom of m,
are the orientation ¢, and the deformations u, and v,.

To describe the spatial structure of zero mode deformations ina k x k
unit cell, we place the building blocks on a grid and label their location
as (7, j), where the column index i increases from left to right and the row
index j increases from top to bottom [Fig. [2.2)c)]. We label collections
of the building block zero modes m; j(«; j, Bi j, i ;) as M (A, B,C), where
A, B, and C are the collections of «;;, 3;; and ¢; ;. Such a collection
M(A, B, C) describes a valid zero mode of the collection of building blocks
C'if M’s elements, building block zero modes m; j, deform compatibly
with its neighbors.

2.3. Compatibility constraints

Here, we aim to derive compatibility constraints on the deformations of
individual building blocks in a collection of building block C' to yield a
valid zero mode M (Sec.[2.2). We find three local constraints that restrict
the spatial structure of such valid zero modes. First, we require compatible
deformations along the faces between adjacent building blocks, and thus
consider horizontal pairs (e.g., a building block at site (¢, j) with neighbor-
ing building block to its right at site (i + 1, 7)) and vertical pairs (e.g., a
building block at site (7, j) with neighboring building block below at site
(4,7 + 1))[Fig.[2.2c)]. To be geometrically compatible, the deformations of
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2. Combinatorial Design Rules

the joint face needs to be equal, yielding
rij = —lit1j, and vj = —u;j41 (2.1)

for the ‘horizontal” and ‘vertical’ compatibility constraints respectively.
Due to the periodic tiling of the unit cells, we need to take appropriate pe-
riodic boundary conditions into account; the deformations at faces located
on the open boundary of the metamaterial are unconstrained.

Second, we require the deformations at the shared corners of four
building blocks to be compatible. This yields the diagonal compatibility

constraint [Fig.[2.2(c)]:
SE | JNE SW NW
dij +dijia +dify;+didy i =0 (2.2)

We note that we again need to take appropriate periodic boundary condi-
tions into account, and note that the deformations at corners located on the
open boundary of the metamaterial are unconstrained (see App.[A2.1). For
compatible collective deformations in a configuration of building blocks,
we require these constraints to be satisfied for all sites, with appropriate
boundary conditions: either periodic or open.

2.4. Mode structure

In this section we determine an important constraint on the spatial struc-
ture of the zero modes that follows from the compatibility constraints
[Egs. and (2.2)]. We use the compatibility constraints to derive a
constraint on the mode-structure of 2 x 2 configurations, which in turn
restricts the “allowed” spatial structures of valid zero modes M in any
configuration C. To derive this constraint, we label the deformations of
each building block as either CRS or D, depending on the magnitude of the
D mode, 3; ;. We refer to building blocks with 3; ; = 0 as CRS blocks that
deform as m; j o« mcrs, and to building blocks with 3; ; # 0 as D blocks.
We will find that the compatibility constraints restrict the location of D
and CRS blocks in zero modes.

Regardless of the unit cell configuration C, there is always a global
CRS mode where all building blocks are of type CRS [19,[79]]. To see this
from our constraints, note that CRS blocks trivially satisfy the diagonal
compatibility constraint [Eq. (2.2)], and when we take a;; = (—1)""q,
also the horizontal and vertical compatibility constraints [Eq. (2.1)]. We
refer to a deformation of CRS blocks that satisfies these constraints as an
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2.4. Mode structure

area of CRS with amplitude a. Any configuration of building blocks with
open boundaries supports a global area of CRS with arbitrary amplitude.
Another way to see this is to note that locally, the CRS mode m¢cprs does
not depend on the building block’s orientation c.

To find additional modes in a given configuration, at least one of the
building blocks has to deform as type D. We now show that any valid zero
mode in a 2 X 2 plaquette cannot contain a single D block. Consider a 2 x 2
configuration of building blocks with an open boundary and assume that
three of the building blocks deform as CRS blocks (81,2 = 82,1 = f2,2 = 0)
[Fig.[2.3|a)]. These three blocks deform such that

ug1 = —li2. (2.3)
However, this is incompatible with a D block at site (1, 1)—irrespective of
its orientation, for a D block vy; # —71,1, so a D block is not compatible
with three of such CRS blocks. Clearly, this argument does not depend on
the specific location of the D blocks, since we are free to rotate the 2 x 2
configuration and did not make any assumptions about the orientations of
any of the building blocks. Hence, valid zero modes in any 2 x 2 plaquette
cannot feature a single D building block [Fig.[2.3(b)].

This implies that, first, in tilings that are at least of size 2 x 2, D blocks
cannot occur in isolation. Second, this implies that areas of CRS must
always form a rectangular shape. To see this, consider zero modes with
arbitrarily shaped CRS areas and consider 2 x 2 plaquettes near its edge
[Fig.[2.3|c)]. Any concave corner would locally feature a 2 x 2 plaquette
with a single D block, and is thus forbidden; only straight edges and convex
corners are allowed. Hence, each area of CRS must be rectangular. In
general, this means that in a valid zero mode the D and CRS blocks form a
pattern of rectangular patches of CRS in a background of D [Fig.[2.3(d)].

Note that our considerations above only indicate which mode structures
are forbidden. However, we have found that modes can take most “allowed”
shapes, including ‘edge’-modes where the D blocks form a strip near the
boundary, ‘stripe’-modes where the D blocks form system spanning strips,
and ‘Swiss cheese’-modes, where a background of D blocks is speckled
with rectangular areas of CRS [Fig.[2.3(d)].

We associate such modes with class (ii) or (iii) mode-scaling in unit
cells. We observe that most edge-modes in a unit cell persist upon tiling
of the unit cell by extending in the direction of the edge, resulting in a
single larger edge-mode [Fig. [2.3((e)-left]. Swiss cheese-modes can also
persist upon tiling of the unit cell by deforming compatibly with itself or
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Ficure 2.3: (a) 2 x 2 configuration of building blocks with open boundaries.
Three building blocks deform compatibly as CRS blocks (cyan solid squares)
with amplitude o = 1, while the top left building block is undetermined (gray
dash-dotted square). (b) Left: example of an invalid zero mode. The top-left
building block deforms incompatibly as a D block (pink dashed square) with
its CRS block neighbors (frustrated deformation is circled by thick red square).
Right: we describe the structure of a mode M in CRS blocks (cyan and solid) and
D blocks (pink and striped). In general, a valid zero mode cannot contain any
2 x 2 configurations that deform with a single D block surrounded by CRS blocks.
Thus 2 x 2 configurations with a single D block are forbidden, which we label by
a thick red square. (c) Forbidden zero mode structures for a 6 x 6 configuration
with open boundaries. (d) Allowed zero mode structures for a 6 x 6 configuration
with open boundaries. In App.[A2.2]we show specific realizations of ‘edge’-modes
(left), 'stripe’-modes (middle), and ’Swiss cheese’-modes (right). (e) Zero mode
structures for a 2 x 2 tiling of a 6 x 6 unit cell (thick black squares). Note that the
strip of D blocks in the stripe-mode (middle) can be located in both the top and
bottom row of the tiling, and therefore leads to two valid zero modes in the tiling.
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2.5. strip modes

another Swiss cheese-mode, creating a single larger Swiss cheese-mode
[Fig. [2.3|e)-right]. Thus unit cells that support only edge-modes and Swiss
cheese-modes have class (ii) mode-scaling. Moreover, we will show that
a special type of stripe-mode, ‘strip’-modes, extend only along a single
tiling direction, and allow for more strip modes by a translation symmetry
[Fig. [2.3e)-middle]. Here, we have found a rule on the deformations of
2 x 2 plaquettes of building blocks that restricts the structure of valid zero
modes in larger tilings.

2.5. strip modes

We now focus on unit cells that are specifically of class (iii). We argue
that a unit cell that can deform with the structure of a ‘strip’-mode is a
sufficient condition for the number of modes Nyzy(n) to grow linearly with
a > 1 for increasingly large n x n tilings. Here, we distinguish between
stripe-modes and strip modes. We consider any zero mode that contains a
deformation of non-CRS sites located in a strip enclosed by two areas of
CRS a stripe-mode [Fig.[2.3(d)]. strip modes are a special case of stripe-
modes: in addition to the aforementioned mode structure, we require
the strip mode to deform compatibly (anti-)periodically across its lateral
boundaries [Fig.[2.4(a)]. As we will show, this requirement ensures that the
strip mode persists in the metamaterial upon tiling of the unit cell and in
turn leads to a growing number of zero modes with n. To find rules for unit
cell configuration C' to support strip modes, we first in detail determine
the required properties of strip modes for class (iii) mode-scaling. We then
use these properties to impose additional conditions on the zero mode
inside the strip of the configuration, strip conditions, and introduce a
transfer matrix-based framework to find requirements on the configuration
to support a strip mode.

We now consider the required properties of a strip mode for a k£ x k
unit cell. We consider a unit cell in the center of a larger metamaterial
that features a horizontal strip mode of width W [Fig.[2.4(a)]. In the strip
mode, we take the areas outside the strip to deform as areas of CRS with
amplitudes a = o" and a = " for the areas above and below the strip
respectively. We denote the deformation of the area inside the strip as
M*SM and require the strip to contain at least one D block. Compatibility
between our central unit cell and its neighbors requires neighboring areas
of CRS to be compatible. This is easy to do, as every unit cell is free to
deform with a unit cell-spanning area of CRS. Thus the unit cells above and
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Ficure 2.4: (a) Mode-structure of a strip mode in a 6 x 6 unit cell. The strip of
width W deforms with strip deformation M (pink and striped blocks) enclosed
by two areas of CRS (cyan and solid blocks) above and below the strip with CRS
amplitudes a* and . (b) Unit cells above and below the central unit cell deform
compatibly with the strip mode as global areas of CRS. The sign of the CRS
amplitudes depends on the parity of k and the size of the area of CRS above and
below the strip. Unit cells to the left and right of the central unit cell deform
compatibly with the strip mode as strip modes. (c¢) A 6 x 6 unit cell with a
W = 3 strip that supports a strip mode is tiled to form a 3 x 3 metamaterial. This
metamaterial supports a strip mode in the bottom (left), middle (middle) and top
(right) rows.

below the central unit cell deform compatibly with the strip mode if they
deform completely as areas of CRS with equal or staggered CRS amplitude
o and oV [Fig.[2.4|b)]. In addition, we require compatibility between the
central unit cell and its left and right neighbors. Because the deformation
in the strip MM deforms compatibly with (anti-)periodic strip conditions
across its lateral boundaries, unit cells to the right and left of the central
unit cell deform compatibly with the strip mode if they deform as strip
modes themselves [Fig.[2.4(b)]. In an n x n tiling, all unit cells in any of
the n rows deforming as strip modes is a valid zero mode in the larger
metamaterial [Fig.[2.4(c)]. Therefore, we find a linearly increasing number
of zero modes Nzyi(n) for unit cells that support a strip mode.

To find conditions on unit cell configurations C' to support a strip
mode, we derive strip conditions from the structure of the strip mode
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2.5. strip modes

on the strip deformation M*°M. Because areas of CRS are independent
of the orientations of the building blocks in the area, we need only to
find conditions on the configuration of building blocks in the strip C°M.
Without loss of generality, we focus on horizontal strip modes only. We
consider a strip of building blocks C°M of length k and width W and
relabel the indices of our lattice such that (i,j) = (1,1) corresponds to
the upper-left building block in the strip: the row index is constrained to
1 < i < k and the column index is constrained to 1 < j5 < W. For building
blocks at the top of the strip to deform compatibly with an upper CRS area
we require

Uj,1 = —Ui4-1,1, (2.4)

to hold along the entire strip. We refer to this constraint as the upper strip
condition. Without loss of generality we can set u; 1 = 0 everywhere along
the strip to ease computation, because we are free to add the global CRS
mode with amplitude —a" to the full strip mode so as to ensure that the
upper deformation u;; = 0 for all <. Similarly, we require the building
blocks at the bottom of the strip to satisfy

ViW = —Vip1,w (2.5)

along the entire strip. This constraint is referred to as the lower strip condi-
tion. Finally, we require the strip deformation to deform (anti-)periodically:

2.6
|Vk+1‘, if Ul,W = 0 ( )

B {(—1)kvk+1, if v #£0
V1 =

where the vector v; = (v; 1, v; 2, ..., v; w) fully describes the deformation of
the building blocks in column ¢, if all deformations in the column satisfy
the vertical compatibility constraints Eq. (2.1). We refer to this condition
as the periodic strip condition (PSC). We note that if the building blocks at
the bottom of the strip deform as v; v = 0, both anti-periodic and periodic
strip conditions result in a valid strip deformation.

Together with the horizontal and vertical compatibility constraints
Eq. and diagonal compatibility constraints Eq. (2.2), the strip condi-
tions Eq. and Eq. allow us to check if a configuration of building
blocks in strip SM can satisfy all constraints and thus allow for a strip
mode.
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2.6. Transfer mapping formalism

Now, we aim to derive necessary and sufficient requirements for configura-
tions of building blocks in a strip of width W, C*M such that they allow
for a valid strip deformation M SM To find such conditions, we introduce
here transfer mappings that relate deformations in a column of building
blocks to deformations in its neighboring columns. We will show later that
these transfer mappings allow us to relate constraints and conditions on
zero modes to requirements on the strip configuration.

To derive such transfer mappings, we first derive linear mappings
between the pairs of degrees of freedom that characterize the zero mode m,:
the amplitudes of the CRS and D mode (., 3,), the vertical edges (u.,v,)
and horizontal edges (I.,7,). Subsequently, we derive a framework to
construct strip modes: we fix the orientations c, throughout the strip (C°M).
We first fix the (u,,v,) deformations for the left-most blocks in the strip
[Fig.[2.5[a)]. Then, using our linear maps, we determine (I.,7) for these
blocks [Fig.[2.5(b)]. We use the upper strip condition [Eq. to determine
u of the top block in the second column, and the horizontal compatibility
constraint [Eq. to determine [, of the second column [Fig. [2.5]c)].
Then we use a linear map to determine (v;) of the first block in the second
column, and use vertical compatibility constraint [Eq. to determine
(uz) of the second block in the second column [Fig. [2.5(d)]. Repeating this
last step, we obtain (u., v,) of the second column [Figs. e) and [2.5[f)],
after which we can iterate this process to obtain (u, v;,,,r,) throughout
the strip. While above we have worked with upper and lower vertical
edges (u;,v;), we note that the deformations in a column follow from
only the lower vertical edges v, in a column of building blocks v;, where
u, follows from applying the vertical compatibility constraint [Eq. (2.1)].
Thus, the deformation of building blocks in column i+1 is fully determined
by the deformation in column ¢ by satisfying the vertical and horizontal
compatibility constraints and the upper strip condition.

We refer to the linear mappings relating the deformations of column ¢,
v;, to the deformations in adjacent column ¢ + 1, v; 1, as a linear transfer
mapping 7'(c;, c;+1) which depends on the orientations of the building
blocks in the two columns. Thus, by iterating this relation, the strip
deformation is determined entirely by the deformations v; of the left-most
column.
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Ficure 2.5: (a-f) Step-wise schematic illustration of our transfer mapping of
deformations in a column of building blocks in the strip (white squares) to the
next column in the strip, see main text. Yellow circles (light gray) indicate known
deformations of the building blocks, the upper white half-circles represent the
upper strip condition [Eq.[2.4]. (g-i) Schematic illustration of the constraints
and conditions on the strip deformation, see main text. Red squares (dark gray)
indicate known diagonal deformation d, of the building blocks, the lower white
half-circles represent the lower strip condition [Eq. (2.5)], and the lower numbers
enumerate the columns for a strip of length k.

2.6.1. Linear degree of freedom transformations

To derive these transfer mappings, we require linear mappings between
the pairs of degrees of freedom that characterize the zero mode m,. For
given set of orientations {c,}, we derive linear mappings from the mode-
amplitudes (o, 3,) to vertical edges (u., v,) to horizontal edges (I.,r,) and
find that they all are nonsingular—this implies that any of these pairs fully
characterizes the local soft mode m.

First, we define A as
Uy N Qy
(Uz) = A(c,) (ﬁz> . (2.7)

Subsequently, we express (I, 7,) in terms of (u.,v,) as

(7{) =I(c.) (g) = T(ez)A ™ (cz) (g) . (2.8)
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Explicit expressions for the 2 x 2 matrices A and I" are given in App.
Finally, we rewrite this equation as (see Table. 2.1):

I\ (Lu(cs) Ly(c)\ (ue
(r) - (Ru(cz) Ry(c.)) \v, )~ (2.9)
Similarly, we can express the diagonal edge d? at orientation o in terms of

(uz,v;) as (see App.|A2.3)
dJ = D°(c)(—uz +vs) , (2.10)

where the coefficients D°(c,) are given in Table for all orientations
o = {NE,SE,SW,NW}. We note that for CRS blocks where u, = v,
this equation immediately gives d7 = 0 for all orientations o. Together,
Egs. and allow to express all building block deformations as
linear combinations of the vertical deformations (u,,v,).

2.7. Constraints and Symmetries

Here, we define a general framework based on transfer-mappings and
constraint-counting to determine if a given (strip) configuration C°™ sup-
ports a valid strip mode M. The strip deformation v; describes a valid
strip mode only if it leads to a deformation which satisfies the diagonal
compatibility constraints [Eq. [Fig.[2.5)g)], the lower strip conditions
[Eq. [Fig.[2.5[h)] and the periodic strip condition [Eq. [Fig.[2.5]i)]

everywhere along the strip. To determine if these constraints are satisfied

TaBLe 2.1: Values for the coefficients L,, L, Ry, R, for the (u,v.) to (I,,7,)
mapping [Eq. (2.9)] and the coefficient D° for the (u,,v,) mapping to d¢ for a
building block of orientation ¢, = {NE, SE,SW,NW} [Eq. (2.10)].

NE SE  SW NW
L, -1/2 -1/2 -3/2 1/2
L, -1/2 -1/2 1/2  -3/2

R, 1/2 -3/2 -1/2 -1/2
R, -3/2 1/2 -1/2 -1/2
DNE 1 0 0 0

DSE 0 -1 0 0
DSW 0 0 -1 0
DXW 0 0 0 1
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FiGURE 2.6: (a) A seemingly valid strip deformation of width W = 4 (thick black
solid line) can be decomposed into two strips of smaller widths (thick, red dashed
and yellow dash-dotted lines) if it does not satisfy the CC and NT conditions. (b)
Realization of a W = 4 strip deformation (thick black solid line) that does not
satisfy the CC and NT conditions: it can be decomposed into W’ = 2 (enclosed
in thick red dashed line) and W’ = 1 (thick yellow dash-dotted line) strips that
individually satisfy the NT and CC conditions.

by the deformation v;, we use the transfer mapping to map all the con-
straints throughout the strip to constraints on v;. Since each additional
column yields additional constraints, we obtain a large set of constraints on
v1, and without symmetries and degeneracies, one does not expect to find
nontrivial deformations which satisfy all these constraints. However, for
appropriately chosen orientations of the building blocks, many constraints
are degenerate, due to the underlying symmetries. Hence, we can now
formulate two conditions for obtaining a nontrivial strip mode of width W.

First, after mapping all the constraints in the strip to constraints on vy,
and after removing redundant constraints, the number of nondegenerate
constraints should equal W — 1 so that the strip configuration contains a
single non-CRS floppy mode. We refer to this condition as the constraint
counting (CC) condition. Second, we focus on irreducible strip modes
of width W, and exclude strip deformations composed of strip modes of
smaller width or rows of CRS blocks [Fig. [2.6[a)]. Such reducible strip
deformations not only satisfy all constraints in a strip of width W, but
also in an encompassing strip of width W’ < W [Fig.[2.6(b)]. Irreducible
strip modes of width W do not satisfy all constraints for any encompassing
strips of width W’ < W. We refer to this condition as the nontrivial (NT)
condition as it excludes rows of CRS from the strip mode, which are trivial
solutions to the imposed constraints. Valid strip modes are those that
satisfy both CC and NT conditions.

To map all constraints to vi, we use the linear mapping between the di-
agonal edge d and (u;,v.) [Eq. (2.10)] such that the diagonal compatibility
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constraints [Eq. (2.2)] can be expressed in v.. The diagonal compatibility
constraints, lower strip conditions [Eq. (2.5)] and periodic strip condition
[Eq. (2.6)] can all be expressed in v, and then be mapped to v by iteratively
applying the set of transfer mappings {T'(c;, ciy1)}.

This constraint mapping method allows us to systematically determine
if a given strip configuration C°* supports a valid strip mode M>:

1. Determine the set of transfer matrices {T'(c;,c;i+1))}-

2. Express the diagonal compatibility constraints [Eq. (2.2)], lower strip
conditions [Eq. (2.5)] and periodic strip condition [Eq. (2.6)] in terms
of {Vz}

3. Map the set of all constraints to constraints on v; using the transfer
matrices.

4. Check if the CC and NT conditions are satisfied on vj.

In what follows, we consider the transfer mappings and constraints
explicitly for strips of widths up to W = 3 and derive geometric necessary
and sufficient rules for the orientations c, of the building blocks to satisfy
the CC and NT conditions. Finally, we consider strips of even larger width
W and construct sufficient requirements on strip configurations.

2.8. Deriving rules for strip modes

Here we aim to derive design rules for strip modes. We first derive neces-
sary and sufficient conditions on strip configurations C°™ of widths up to
W = 3. Then, we use those requirements to conjecture a set of general rules
for strips of arbitrary widths. We provide numerical proof that these rules
are correct and use them to generate a W = 10 example that we would not
have been able to find through Monte Carlo sampling of the design space.

2.8.1. Casel: /W =1

We now derive necessary and sufficient conditions on the orientations of the
building blocks for strip modes of width W = 1 to appear [Fig.[2.7(a)]. We
show that a simple pairing rule for the orientations of neighboring building
blocks gives necessary and sufficient conditions for such a configuration
to support a valid strip mode, i.e., a strip deformation that satisfies the
horizontal compatibility constraints [Eq. (2.1)], the diagonal compatibility
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Ficure 2.7: (a) Schematic representation of the degrees of freedom, constraints,
and mapping for a W = 1 strip mode of length k = 4 in the vertex representation.
The building blocks in the strip and lower CRS area are highlighted with pink
(dashed) and blue (solid) boxes; the upper CRS area has amplitude zero. Applying
the horizontal compatibility constraint and upper strip condition leads to a map-
ping from v; ; to v;41,1. We show the deformation of each building block in the
strip for such a mapping with vy ; = 2. The diagonal compatibility constraints are
indicated by > = 0 in thick red dashed boxes and are all satisfied by the mapping.
The lower strip condition (v; 1 = —wv;41,1, arrows) and periodic strip condition
(v1,1 = vs,1, long arrow) are also satisfied by the mapping. The strip therefore
deforms compatibly with the lower CRS area with amplitude two. (b) The six
h-pairs of horizontally adjacent building blocks (c; 1,¢;+1,1) that satisfy Eq.
and examples of their deformations in vertex representation obtained from the
map [Eq. (211)] with v;; = 2. Note that d}F = —dN, and d&7F = —d?}} | are
satisfied either trivially or by the transfer mapping [Eq. ] (corner nodes
highlighted with thick red squares) for all h-pairs. (c) Example of a k = 4 strip
configuration (top) deformed as a valid strip mode M*M (bottom, vertex rep-
resentation) that satisfies all compatibility constraints and strip conditions. (d)
Example of a k = 4 strip configuration (top) that can only satisfy all compatibility
constraints and strip conditions by not deforming (bottom, vertex representation).

constraints [Eq. (2.2)], the upper strip conditions [Eq. (2.4)], the lower
strip conditions [Eq. (2.5)], and the periodic strip condition [Eq. (2.6)[] (see
Fig.[2.7(a)) in addition to the constraint counting (CC) and nontrivial (NT)
conditions.
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First, we derive the transfer mapping that maps the deformations of
building block (7, 1) to block (i + 1,1) for general orientations (¢; 1, ¢i+1,1)-
Without loss of generality, we set the amplitude a" = 0 such that u;; =0
everywhere along the strip—this trivially satisfies the upper strip condi-
tion [Eq. (2.4)] (recall that we can always do this by adding a global CRS
deformation of appropriate amplitude to a given mode). The deformations
of each building block are now completely determined by choosing v; ;.
However, these cannot be chosen independently due to the various con-
straints. Implementing the horizontal compatibility constraints and upper
strip condition, we find that the v;; in adjacent blocks are related via a

linear mapping (see App.[A2.4):

ir = Atlein)
ot Ly(cit1,1)

where the values of R, (c) and L,(c) are given in Table We interpret this
mapping as a simple (scalar) version of a transfer mapping (see Fig.[2.7|a)).
The idea is then that, by choosing v;; and iterating the map [Eq. ],
we determine a strip deformation which satisfies both the upper strip con-
ditions and horizontal compatibility constraints. The goal is to find values
for the orientations ¢;; that produce a valid strip mode, i.e., a deforma-
tion which also satisfies the diagonal compatibility constraints [Eq. (2.2),
red dashed boxes in Fig. [2.7[a)], lower strip conditions [Eq. (2.5), black
arrows in Fig.[2.7]a)], periodic strip condition [Eq. (2.6), long black arrow
in Fig. a)], and CC and NT conditions—note that if we take v;; = 0,
all deformations throughout the unit cell are zero and we have simply
obtained a zero amplitude CRS mode, which is not a valid strip mode [see
example in Fig.[2.7(d)].

To construct configurations that produce a valid strip mode, we first con-
sider an example. In this example, we only consider orientations (¢; 1, ¢i4+1,1)
that satisfy

Ui,l s (2.11)

Ry(cin) = Lu(cit11) , (2.12)
and show that this is a sufficient condition to produce a valid strip mode.
We refer to the six pairs (¢; 1, c¢it1,1) that satisfy condition Eq. as
h-pairs (for horizontal) [Fig. [2.7(b)].

We find that configurations consisting only of h-pairs satisfy the
lower and periodic strip conditions and diagonal compatibility constraints.
Specifically, we find the following for h-pairs

(1) the map Eq. (2.11) simplifies to v;+1,1 = —v;1 and thus directly satis-
fies the lower strip condition [Eq. (2.5)] and periodic strip condition
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[Eq. (2.6)] by iterating the map, see deformations in Fig.[2.7|b).

(2) the diagonal compatibility constraints are either trivially satisfied or
the same as the map Eq. and thus impose no constraints on v; 1.
To see this, note that the diagonal compatibility constraint [Eq. (2.2)] is
required to be satisfied at all corner nodes in the strip (pink squares in
Fig.[2.7[a)). Note that away from the strip, all diagonals are zero (recall
that a CRS block always has d° = 0). Thus, the diagonal compatibility
constraint at the corner nodes shared between two building blocks
in a pair simplifies to delE = dﬁvl‘fl and dffj = dﬂ/‘ﬁl (see Fig. a)).
For the six h-pairs, there are four pairs where all diagonals in the
constraints are zero, i.e., trivially satisfied, and two pairs where the
diagonals are nonzero (highlighted in red in Fig.[2.7|b)). For the latter
case, the diagonal compatibility constraint implies that v; 1 = —vj41,1—
this follows from u;; = 0 and the mapping [Eq. (2.10)]—which is the
same as the map Eq. (2.11).

Thus, all conditions and constraints are trivially satisfied for strip configu-
rations consisting only of h-pairs, see Fig.[2.7|c) for an example.

Such strip configurations thus impose no constraints on vy, thereby
satisfying the constraint counting (CC) condition. Additionally, such con-
figurations satisfy the nontrivial (NT) condition as well so long as v1,1 # 0.
Hence, the pairing rule

(i) Every pair of horizontally adjacent building blocks in the strip must
be an h-pair.

is a sufficient condition to obtain valid W = 1 strip modes, and thus class
(iii) mode scaling. It is also a necessary condition, because any pair that
does not satisfy condition Eq. does not trivially satisfy the lower strip
condition [Eq. (2.5)], breaking the CC condition, and thus only satisfies all
compatibility constraints and strip conditions of a strip mode for vy ; =0,
breaking the NT condition, see Fig.[2.7(d) for an example. Concretely,
when u; 1 and vy 1 are both zero, the whole deformation is zero which is
not a valid strip mode but rather a zero amplitude CRS mode. Hence, the
pairing rule (i) is a necessary and sufficient condition to obtain W = 1 strip
modes.

2.8.2. Case2: W =2

Now, we consider strips of width W = 2. strip deformations in such strips
have an additional degree of freedom, v; 2, compared to strips of width
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2. Combinatorial Design Rules

W = 1. To result in a valid strip mode there must be one constraint on the
strip deformation v; to satisfy the constraint counting (CC) condition. We
show that a simple adjustment and addition to the pairing rule results in a
sufficient and necessary condition to obtain W = 2 strip modes.

First, we extend our transfer mapping to account for the extra row
of building blocks in the strip. We again set the amplitude a* = 0, so
that the deformations of column i are completely determined by fixing
vector v; = (v;1,v;2) [Fig. . We now aim to obtain a complete map
from v; to v; ;1. Note that the map for v;1 11 does not depend on the extra
row of building blocks and therefore follows the map [Eq. (2.11))] derived
for W = 1 strip modes. To obtain a map for v;;12, we note that for the
building blocks in column ¢ + 1 to deform compatibly, we require the
vertical compatibility constraint [Eq. (2.1)] to be satisfied [Fig.[2.5]. Then,
by implementing the horizontal and vertical compatibility constraints, we
find a linear mapping for v,y » which depends on both v; 1 and v; > (see

App.[A2.4):
_ Ly(cit1,2) ( Ru(ci2) Ry(cin) > i1

Vitl2 = Lo(civ1,2) \Lu(cit1,2)  Lo(Cit1,1)

poleia) (2.13)

T Lo(eii2) b

Together, Eq. (2.11) and Eq. (2.13) form the transfer mapping from v; to
vi+1, which we capture compactly as vi11 = T(c;, ci1)v; (see Fig.[2.8|a)
for a schematic representation), where :

T(ci,civ1) =
 Ru(ein) 0
Ly(cit1,1)
Lu(cit1,2) Ru(ci,;s _ Ru(ein) _ Ry(ci2) : (2.14)
Ly(cit1,2) \ Lu(cit1,2) Ly(cit1,1) Ly(cit1,2)

Note that T'(c;, ci+1) is a lower-triangular transfer matrix which depends
only on the orientations ¢; = (¢; 1, ¢;2) of column ¢ and column i + 1.
Now, we want to find values for the orientations c; that produce a valid
strip mode, i.e., a deformation which satisfies all constraints: the diagonal
compatibility constraints [Eq. (2.2)], the lower strip condition [Eq. (2.5)]
and periodic strip condition [Eq. (2.6)]. Additionally, the strip deformation
v1 should satisfy the CC and NT conditions. We note that vi; = 0 corre-
sponds to the strip deforming as an area of CRS [Fig.[2.8|b)-i]. Additionally,
v1,1 = 0 while v 2 # 0 corresponds to the top row deforming as an area
of CRS with zero amplitude [Fig. b)—ii] and vy,; = —v1 2 corresponds
to the bottom row deforming as an area of CRS with arbitrary amplitude
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2. Combinatorial Design Rules

[Fig. [2.8b)-iii, see App.[A2.5]. All these cases break the nontrivial (NT)
condition as they describe strip deformations completely or in-part com-
posed of rows of CRS blocks and thus do not represent valid W = 2 strip
modes. We exclude these configurations.

To construct valid strip configurations, we consider 2 x 2 configurations
of building blocks (c;, ci+1). We compose such 2 x 2 configurations by
vertically stacking pairs of horizontally adjacent building blocks (¢; 1, ¢it1.1)
and (¢; 2, ¢iy1,2) for the top row and bottom row. There are 16 different
pairs, and we note these can be grouped in four categories, depending on
the corresponding values of R,, R,, L,, and L, (Table :

h — pairs : L}j?c(fif)i) = Lljzc(f:)y) =1, (2.15)
u — pairs : 7;3(‘0%2) =1, (2.16)
d — pairs : 75&&1@) =1, (2.17)
sopairss S = TR =1 (2.18)

Each of the sixteen possible pairs satisfy only one of these conditions
[Fig.[2.8|c)]. We denote groups of 2 x 2 configurations as vertical stacks of
such pairs, e.g., a (d, u)-pair obeys the condition for d-pairs [Eq. (2.17)] for
(¢ij,cit1,1) and the condition for u-pairs [Eq. (2.16)] for (c; 2, cit1,2); see
Figs. a) and [2.9(c) for examples of (d, u)-pairs.

By stacking pairs, there are 162 possible 2 x 2 configurations. We now
show that (d, u)-pairs and (h, h)-pairs are the only 2 x 2 configurations that
make up strip configurations that support valid W = 2 strip modes. First,
we will show that a strip composed only of (d, u)-pairs results in a valid
strip mode. Second, we show that a strip composed only of (h, h)-pairs
does not result in a single W = 2 strip mode, but in two W = 1 strip modes,
breaking the CC condition. Finally, we show that combining (h, h)-pairs
and (d, u)-pairs in a strip configuration results in a valid W = 2 strip mode.

First, we consider (d, u)-pairs and show that these satisfy all conditions
for a valid strip mode, provided that a single constraint on v; is satisfied.

First, from Eq. (2.16) and Eq. (2.17) we see that such pairs satisfy the

condition
R, (ci2) _ Ry(cin)
Lu(ciy12)  Lo(ciy11)’
which implies that the transfer matrix 7'((d, u)) [Eq. (2.14)] is purely diag-

onal. The map [Eq. (2.13)] from v; 5 to v;41 2 is thus independent of v; ;.
We now show that the choice vi = (v1,1,0), which satisfies the constraint

(2.19)
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2. Combinatorial Design Rules

v1,2 = 0, produces a valid strip mode for v1; # 0, see Fig. a) for an
example strip deformation. This choice clearly satisfies the lower strip
condition [Eq. (2.5)]. Moreover, the diagonal compatibility constraints
[Eq. (2.2)] on corner nodes between the two columns ¢ and i + 1 are also
satisfied by the constraint v; » = 0, regardless of the precise orientations
of the building blocks as can be shown (see App.[A2.6.1). Finally, by it-
erating the transfer map [Eq. (2.14)] for a strip that consists only of (d,
u)-pairs, we find that v; 1 = vp111 and vi 2 = V412 = 0, i.e., the periodic
strip condition [Eq. (2.6)] is satisfied. Thus, a strip consisting only of (d,
u)-pairs satisfies all constraints in the strip by imposing a single constraint
on vy, satisfying the CC condition, and satisfies the NT condition so long
as v1,1 # 0. The resulting strip deformation is characterized by the choices
of Cij and V1 = (Ul,h 0).

Second, we consider (h, h)-pairs and show that, while satisfying the diag-
onal compatibility constraints [Eq. (2.2)], lower strip conditions [Eq. (2.5)]
and periodic strip conditions [Eq. (2.6)], they in fact lead to two adjacent
W =1 strip modes, breaking the CC condition. Using Eq. and the
definition of the transfer matrix, we find that 7'((h, h)) = —I, where [ is the
identity matrix. Thus, (h, h)-pairs trivially satisfy the lower strip condition
and diagonal compatibility constraints (see App. see Fig.[2.9(b) for
examples of strip deformations). Additionally, a strip that consists only
of (h, h)-pairs maps vy ; = (—1)Fvj41 ; by iterating the transfer mapping
[Eq. (2.14)] and thus satisfies the periodic strip condition. However, a strip
which consists only of (h, h)-pairs does not place any constraints on v; and
retains the two degrees of freedom that each can describe valid W = 1 strip
modes [Fig.[2.9(b)], breaking the CC condition. Thus, a strip composed
only of (h, h)-pairs does not support one W = 2 strip mode, but two W =1
strip modes.

We now consider combining (h, h)-pairs and (d, u)-pairs in a single
strip and show that such a strip supports a valid W = 2 strip mode. We
note that for both pairs, the transfer matrix [Eq. (2.14)] is diagonal. Thus,
the constraint from a (d, u)-pair anywhere in the strip, v; » = 0, to satisfy
the diagonal compatibility constraints [Eq. (2.2)] and lower strip condition
[Eq. (2.5)] locally maps to the constraint v1 2 = 0 on vi. Both (h, h)-pairs
and (d, u)-pairs satisfy the diagonal compatibility constraints and lower
strip condition locally with this constraint, see Fig.[2.9|¢) for an example
strip deformation. To result in valid strip mode, we also require the periodic
strip condition [Eq. (2.6)] to be satisfied. We find that vy 9 = vj412 = 0 and
vig = (—1)NoMhy, ) 1, where No.(h, h) is the number of (h, h)-pairs in

46



2.8. Deriving rules for strip modes

the strip with periodic boundary conditions, thereby satisfying the periodic
strip condition [Eq. (2.6)].

Thus, a strip that consists of any number of (h, h)-pairs and at least
one (d, u)-pair satisfies all constraints as well as the CC and NT conditions
when vy = (v1,1,0) with vy # 0, thereby resulting in a valid W = 2 strip
mode. Hence, the pairing rules for configurations that support valid W = 2
strip modes are the following:

(i) Every 2 x 2 configuration of building blocks in the strip must be an
(h, h)-pair or (d, u)-pair.

(ii) There must be at least a single (d, u)-pair in the strip.

These are sufficient conditions to obtain W = 2 strip modes. They can
also be shown to be necessary conditions, because any pair that is not a
(h, h)-pair or (d, u)-pair constrains the strip deformation v; to v ; = 0,
or v1) = —vy, or both (see App.[A2.6.1), thereby breaking the nontriv-
ial (NT) condition and therefore does not result in a valid W = 2 strip
mode [Fig.[2.9(d)]. Hence, these pairing rules are necessary and sufficient
conditions on the strip configuration to obtain W = 2 strip modes.

2.8.3. Case3: W =3

Finally, we consider strips of width W = 3. We show that in addition
to simple adjustments to the pairing rules, we require an additional rule
restricting the ordering of pairs in the strip configuration. This ordering
rule highlights that the problem of constructing configurations that support
valid strip modes is not reducible to a tiling problem which relies on
nearest-neighbor interactions, but rather requires information of the entire
strip configuration. This is surprising, as these rules emerge from local
compatibility constraints. The new set of rules that we obtain are necessary
and sufficient conditions to obtain W = 3 strip modes.

First, we extend our transfer mapping to account for the extra row
of building blocks in the strip. As in the previous two cases, we set the
amplitude a" = 0 such that the deformations of column ¢ are completely
determined by fixing vector v; = (v; 1, v; 2,v; 3). We again want to obtain
a complete map from v; to v;41. The maps for v;y1 1 and v;112 do not
depend on the extra row of building blocks and therefore follow Eq.
and Eq. respectively. To obtain a map for v; 3, we implement the
horizontal and vertical compatibility constraints [Eq. (2.1)] and find a linear
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2. Combinatorial Design Rules

mapping for v; ;13 (see App.[A2.4):

; :Lu(cz'+1,2) Lu(cit1,3) ( Rulci2)  Ru(ein) Vs
i+1,3 Ly(cit1,2) Lo(cit1,3) \ Lu(cit1,2) Lo(citrn) ) V0l
Luy(ciy1,3) Ru(ciz)  Ru(ci2) v
Ly(cit1,3) \ Lu(cit1,3) Ly(cit1,2) 0,2
Ru(eia)
Lv(0¢+1,3)vz’3 . (2.20)

Together, Eq. (2.11), Eq. and Eq. form the transfer mapping
from v; to v;;1, which we capture compactly as v, 41 = T'(c;, ¢i+1)v;. Note
that the transfer matrix 7'(c;, c;+1) is now a 3 x 3 lower-triangular matrix
that depends on the orientations ¢; = (¢; 1, ¢;,2, ¢i,3) of the building blocks
in column ¢ and column 7 + 1.

Now, we want to find values for the orientations c; that produce a
valid strip mode, i.e., a deformation v; which satisfies all constraints:
the diagonal compatibility constraints [Eq. (2.2)], lower strip condition
[Eq. (2.5)] and periodic strip condition [Eq. (2.6)]. Additionally, the strip
deformation v; should satisfy the CC and NT conditions. We note that v; =
0 corresponds to the strip deforming as an area of CRS with zero amplitude,
i.e., not deforming at all. Additionally, vi; = 0 with v;2 #0and v1 3 # 0
corresponds to the top row not deforming at all and vy = —v; 3 with
v11 # 0 corresponds to the bottom row deforming as an area of CRS with
arbitrary amplitude. All these cases break the nontrivial (NT) condition as
they describe strip deformations completely or in-part composed of rows of
CRS blocks and thus do not describe valid W = 3 strip modes. We exclude
these configurations.

To construct valid strip configurations, we consider 2 x 3 configurations
of building blocks (c;, ¢;11). Again, we compose such configurations by ver-
tically stacking pairs of horizontally adjacent building blocks (c¢; ;, ¢i+1,5)
for the top row j = 1, middle row j = 2 and bottom row j = 3, e.g., a triplet
of d-, u-, and h-pairs, which we denote as a (d, u, h)-pair, satisfies condition
[Eq. (2.17)] for (¢;,1, ciy1,1), satisfies condition [Eq. (2.16)] for (c; 2, cit1,2)
and satisfies condition [Eq. (2.15)] for (c;3, cit1,3), see Fig.[2.10[a) for an
example of a (d, u, h)-pair. Additionally, we now distinguish between
the s—pair (C,"j,czq_l’j) = (NE, SW) and the a—pair (Ci,j, Ci+1,j) = (SE,NW)
[Fig. [2.8|c)] despite both pairs satisfying condition [Eq. (2.18)] as config-
urations composed of such pairs impose distinct constraints on the local
strip deformation v;.

In what follows, we will show that a valid strip configuration consists
only of (h, h, h), (d, u, h), (h, d, u), (d, s, u) and (d, e, u)-pairs. Specifically,
we will show the following for strip configurations composed of such pairs:
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(a) configurations
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Figure 2.10: (a) 2 x 3 configurations (c;, c;+1) consisting of triplets of (d, u, h)-
pairs, (d, s, u)-pairs, (d, e, u)-pairs and (h, d, u)-pairs, impose one or two of
four constraints (Eqs. (2.21)-(2.24), labeled 1 to 4 respectively) on the local strip
deformation v;. We indicate this by black solid arrows. Note that the shown
configurations are examples of the indicated pair type; other configurations that
belong to the same type are possible. (b) A tiling of a (h, d, u)-pair and (d, u,
h)-pair. Both pairs impose a constraint on their local strip deformation, v;_; and
v; respectively, indicated by solid black arrows pointing to squares with numbers
corresponding to the constraints as indicated in (a). Additionally, the constraint
on v; can be mapped using the transfer matrix 7'((h,d,u)) to a constraint on
v;_1. This imposes constraint 2 with ¢ — ¢ — 1 on v;_1, the transfer mapping is
indicated by the dashed arrow. (c) The constraints map from a constraint on strip
deformation v; to a constraint on v;_; under application of the transfer mapping
T(ci—1,c;) (dashed arrows) for the configurations (c;_1, ¢;) as indicated next to
the arrows. Note that here we only consider (h, h, h)-pairs, (d, u, h)-pairs, (h, d,
u)-pairs, (d, s, u)-pairs and (d, e, u)-pairs. A constraint maps to the indicated
constraint with ¢ — ¢ — 1. Constraints are labeled by number as indicated in (a).
Every constraint can map to a constraint that breaks the NT condition.

(1) each of these configurations except (h, h, h)-pairs imposes one or two
constraints out of a set of four possible constraints on the deformation
v; to satisfy the diagonal compatibility constraints [Eq. (2.2)] and lower
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strip condition [Eq. (2.5)] locally.

(2) upon applying the transfer mapping 7'(c;_1, c;), each of the four possi-
ble constraints on v; map to constraints on v;_; that are degenerate to
the four possible constraints that can be imposed by the (c;_1, ¢;)-pair
locally on v;_; for most valid 2 x 3 configurations. For the other valid
configurations, the mapped constraints and local constraints imposed
by the (c;_1, c;)-pair on v;_; together break the CC or NT conditions
and do not result in a valid W = 3 strip mode. We exclude such
combinations.

(3) constraints on the configurational ordering of (c;, ¢;+1)-pairs are cap-
tured with a simple additional rule.

We now consider these points one-by-one.

First, we find that for (d,u,h)-pairs, (h, d, u)-pairs, (d, s, u)-pairs, and
(d, e, u)-pairs the diagonal compatibility constraints [Eq. (2.2)] and lower
strip condition [Eq. (2.5)] are satisfied locally by satisfying one or two of
four different constraints on v;. These four different constraints are (see

App.|A2.6.2):

vi2 =0, (2.21)

20,1 = —vi2, (2.22)
vi1 =03, and (2.23)
Vil = —Vi3 . (2.24)

We find that a (d, u, h)-pair imposes constraint [Eq. (2.21)], a (h, d, u)-
pair imposes constraint [Eq. (2.23)], a (d, s, u)-pair imposes constraints
[Eq. (2.21)] and [Eq. (2.24)], and a (d, e, u)-pair imposes constraints
[Eq. (2.22)] and [Eq. (2.23)] on v; [Fig.[2.10a)]. An (h, h, h)-pair trivially
satisfies the diagonal compatibility constraints and lower strip condition
and does not place any constraints on v;.

Now, we combine the valid 2 x 3 configurations (h, h, h)-pairs, (h, d, u)-
pairs, (d, u, h)-pairs, (d, s, u)-pairs and (d, e, u)-pairs in a strip configuration,
see Fig.[2.10[b) for an example. We find that most combinations of these
configurations result in a valid strip mode, but there are exceptions for
which we devise a rule. First, we consider each of the four constraints [Egs.
(2.21)-(2.24)] on v; and use the transfer mapping 7'(c;_1, ¢;) to transform
each constraint to a constraint on v;_; for each valid 2 x 3 configuration
(ci,cit1) (see App. . The total set of constraints on v;_; then consists
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(h,h,h) (h,h,h) (h,d,u) (h,d,u)
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@

Ficure 2.11: (a) Example of a valid k& = 4 strip configuration supportinga W = 3
strip mode. Notice that we take periodic boundary conditions. There are two
mapped and local constraints on vy, thereby satisfying the CC condition, and both
results do not break the NT condition, resulting in a valid W = 3 strip mode. (b)
Example of an invalid strip configuration that does not support a valid W = 3
strip mode. There is only one mapped and local constraint on v, breaking the
CC condition. The strip deformation can be decomposed into a W = 1 strip mode
and W = 2 strip mode. (c) Example of an invalid strip configuration that does
not support a valid W = 3 strip mode. Some constraints map to a constraint that
breaks the NT condition, resulting in an invalid strip deformation.

of the mapped constraint(s) and local constraints imposed by the configura-
tion (c;_1, ¢;) [Fig.[2.10(b)]. To have a valid strip mode, the total number of
constraints must equal two to satisfy the CC condition. Additionally, none
of the constraints may result in a strip deformation that does not satisfy
the NT condition.

We find that the four constraints on v; [Eqgs. (2.21)-(2.24)] map within
the set of these same four constraints with index ¢ — ¢ — 1 on v;_; for
most configurations (c;_1, ¢;) (see App.|A2.9} Fig.[2.10]c)). However, for
some configurations, the mapped constraints, when taken together with
the local constraints imposed by the configuration on v;, result in a strip
deformation v; that breaks the NT condition [Fig.[2.11|c)]. To construct
strip configurations that result in a valid W = 3 strip mode we exclude
combinations of valid configurations that result in such constraints.

We now aim to find what combinations of valid configurations do not
result in a valid W = 3 strip mode. The constraint mapping [Fig.[2.10|c)]
prohibits certain combinations of valid configurations. In general, for a
given strip configuration C*™ each (c;, ¢;;1)-pair imposes one or two con-
straints [Egs. (2.21)-(2.24)] on the local deformation v;. These constraints
then need to be iteratively mapped to vy, starting from vy, (Fig.[2.11). If
at any point in the strip configuration the CC or NT conditions on v; are
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not satisfied, the strip configuration does not support a valid W = 3 strip
mode [Fig.[2.11|c)]. To find which sets of pairs result in invalid strip modes,
we look for combinations of pairs that lead to a constraint on v;; that will
get mapped to a constraint that breaks the NT condition on v; using the
constraint map [Fig.[2.10fc)]. We find that there are sets of pairs in either
the top two rows or bottom two rows of the strip that are not allowed to
occur in order anywhere in the strip (see App.[A2.10). Moreover, this set of
pairs can be freely padded with (h, h, h)-pairs as such pairs do not add any
constraints of their own and act as an identity mapping for the constraints
[Fig.[2.10fc)]. Thus, to determine if a strip configuration supports a valid
strip mode requires knowledge of the entire strip configuration.

We observe that the combinations of valid configurations that result in
an invalid strip mode all follow a simple configurational rule. To formulate
this rule, we note that the nontrivial diagonal edge d° of each building
block in a strip composed of valid configurations meets at a vertex with a
single other nontrivial diagonal edge of a building block in the strip. We
refer to such pairs of building blocks as linked. Linked building blocks can
be oriented either horizontally, vertically or diagonally with respect to each
other [Fig.[2.12|a)]. We observe that sequences of valid configurations that
result in an invalid strip mode always contain both vertically linked and
diagonally linked building blocks. Thus we can formulate a simple rule
to exclude invalid sequences: all building blocks linked together in two
adjacent rows can only be linked vertically or diagonally, never both.

We capture these necessary requirements in a compact set of design
rules:

(i) Every 2 x 3 configuration of building blocks in the strip must be a (h,
h, h)-pair, (d, u, h)-pair, (h, d, u)-pair, (d, s, u)-pair or (d, e, u)-pair.

(ii) There must be at least a single d-pair in the top row and at least a
single u-pair in the bottom row.

(iii) All linked building blocks in two adjacent rows can only be linked
vertically and horizontally or diagonally and horizontally.

Rule (i) is required to satisfy the constraint counting (CC) condition and
result in a single W = 3 strip mode, rather than multiple smaller strip
modes [Fig.[2.11|b)]. Rule (iii) is added to exclude invalid sequences of
configurations that do not result in a valid W = 3 strip mode [Fig.[2.11]¢)].
Note that this rule is global—checking it requires knowledge of the entire
strip. This is because the CC condition now permits two constraints, both
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FiGure 2.12: (a) Linked pairs of building blocks are marked by a white circle in
the center of each building block and a red solid line that connects the circles.
Linked building blocks are labeled by orientation. (b) £ = 6 strip configurations
are represented as collections of linked building blocks. The invalid configuration
(top) breaks rule (ii) as it contains both vertically and diagonally linked building
blocks in both pairs of adjacent rows (thick red solid lines). The valid configuration
(bottom) describes a strip configuration that supports a W = 3 strip mode.

of which can potentially map to a constraint that breaks the nontrivial
(NT) condition. A constraint introduced at the very end of the strip can be
mapped throughout the entire strip and only encounter an incompatible
configuration at the beginning of the strip. These are sufficient conditions
to obtain W = 3 strip modes. They can also be shown to be necessary con-
ditions, because other 2 x 3 configurations constrain the strip deformation
tovy,1 = 0,v1,1 = —v12 Or v1 2 = —v; 3 or combinations, thereby breaking
the NT condition and therefore do not result in a valid W = 3 strip mode
(see App.[A2.6.2). Hence, these pairing rules are necessary and sufficient
conditions on the strip configuration to support a W = 3 strip mode.

2.8.4. Towards general design rules

Now we discuss how these design rules generalize to larger width W strip
configurations. We have proven that the rules we found for strip modes of
width W =1, W =2 and W = 3 are necessary and sufficient requirements
on a strip configuration to support a valid strip mode. Based on these
rules, we formulate a general set of rules that we conjecture are, at the least,
also sufficient requirements for larger width W strip modes. We formulate
these rules completely in terms of linked building blocks [Fig.[2.12]a)]:

(i) Every building block in the strip must be linked with a single other
building block in the strip
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(ii) All linked building blocks in two adjacent rows must only be linked
vertically and horizontally or diagonally and horizontally, never verti-
cally and diagonally.

The smallest width W and irreducible strip in the unit cell for which these
rules hold supports a strip mode of width W. Rule is a global rule;
checking it requires knowledge of the entire strip [Fig.[2.12b)]. We find
a perfect agreement of our rules for ~ 10° randomly generated k x k unit
cell designs to be of class (iii) or not (see App.[A2.11). We therefore have
strong numerical evidence that our rules are not only necessary to have a
strip mode, but also that strip modes are the only type of zero mode that
result in class (iii) mode-scaling. As a final indication that these rules are
sufficient for a strip configuration to support a strip mode, we use the rules
to design a strip mode of width W = 10 [Fig.[2.13].

2.9. Discussion

The rational design of multiple soft modes in aperiodic metamaterials
is intrinsically different from tiling- or spin-ice based design strategies
for a single soft mode [10, |11} 17, 19, |77} 79]. The key challenge is to
precisely control the balance between the kinematic degrees of freedom
with the kinematic constraints. For increasing sizes, these constraints
proliferate though the sample, and to obtain multiple soft modes, the
spatial design must be such that many of these constraints are degenerate.
What is particularly vexing is that these constraints act on a growing set
of local kinematic degrees of freedom, so that checking for degenerate
constraints is cumbersome. As a consequence, current design strategies
for multimodal metamaterials rely on computational methods, in either
continuous systems [85-87] or discrete systems [88]].

Here, we introduced a general transfer matrix-like framework for map-
ping the local constraints to a small, pre-defined subset of kinematic de-
grees of freedom, and use this framework to obtain effective tiling rules
for a combinatorial multimodal metamaterial. Strikingly, beside the usual
local rules which express constraints on pairs of adjacent building blocks,
we find nonlocal rules that restrict the types of tiles that are allowed to
appear together anywhere in the metamaterial. These kind of nonlocal rules
are unique to multimodal metamaterials.

More broadly, our work is a first example where metamaterial design
leads to complex combinatorial tiling problems that are beyond the limita-
tions of Wang tilings. It is complementary to combinatorial computational
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Ficure 2.13: Realization of a 12 x 12 unit cell that supports a W = 10 strip mode.
To better illustrate the kinematics of the strip mode, we have restrained the top
and bottom layers of building blocks to deform solely with the CRS mode. (a)
Schematic representation of the unit cell. (b) Linked pairs of the configuration.
Note that the horizontal strip between rows 2 and 11 satisfies the general design
rules. (c) Vertex representation of the strip mode. The number of arrows on
horizontal and vertical edges connecting two building blocks is reduced by half
for clearer visualization. (d) Schematic representation of the unit cell deforming
as the strip mode.

methods used in design of irregular architectured materials [89] or com-
puter graphics [90] that use local tiling rules to fabricate complicated
spatial patterns.

Conversely, instead of clear-cut local rules that state which tiles fit
together, our method requires careful bookkeeping of local constraints
imposed by placed tiles and propagation of these constraints through all
previously placed tiles to a single set of degrees of freedom. As a result,
knowledge of a tile’s neighbors is no longer sufficient information to deter-
mine if that tile can be placed. Instead, one requires knowledge of most,
if not all, previously placed tiles. We believe our method is well-suited to
tackle tiling problems beyond Wang tiles. Several open questions remain:
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are nonlocal rule generically emerging in multimodal metamaterials? How
does our method relate to other emergent nonlocal tiling constraints that
arise, for example, in the fields of computer graphics [32-34] and chip de-
sign [35}36]]? Additionally, our method is limited to design of zero modes
and thus may be insufficient when designing for larger deformations. How
to adjust our method to include nonlinear kinematic constraints is an open
question.

Our framework opens up a new route for rational design of spatially
textured soft modes in multimodal metamaterials, which we demonstrate
by designing metamaterials with strip modes of targeted width and lo-
cation. Such strip modes can be utilized to control buckling and energy-
absorption under uniaxial compression perpendicular to the orientation
of the strip [18]]. Our method can readily be extended to edge-modes, by
considering, e.g., horizontal edge strips, imposing the upper strip condi-
tion and periodic strip condition and taking into account open boundary
conditions at the bottom of the strip. Similarly, Swiss cheese-modes can
be modeled by imposing upper and lower strip conditions horizontally
and vertically at appropriate locations in the metamaterial. Additionally,
our method can be extended to design three dimensional metamaterials by
constructing an additional transfer matrix that propagates local degrees of
freedom (dof) along the newly added spatial dimension. To ensure kine-
matic compatibility, additional constraints may need to be introduced to
ensure different dof propagation paths result in the same final deformation.
We hope our work will push the interest in multimodal metamaterials
whose mechanical functionality is selectable through actuation, with poten-
tial applications in programmable materials, soft robotics, and computing
in materia.

Data availability statement.—The code supporting the findings reported
in this chapter is publicly available on GitLab [[|—the data on Zenodo [91].
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'See |https://uva-hva.gitlab.host/published-projects/CombiMetaMaterial for
code to calculate zero modes and numerically check design rules.
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Appendix

In this appendix, we provide more details on deformations in our metama-
terial, explicit derivations of transfer matrices and kinematic constraints,
and numerical proof of our conjectured general strip mode rules.

A2.1. Open boundary conditions

Here, we show that angles located at an open boundary can deform un-
constrained, both at the faces of the building blocks (u, v, [, ) and corners
(d°). First, we consider angles at the face of each building block. If the
face of the building block is located at an open boundary, the angle can
deform freely as there is no competing adjacent angle. For example, if the
top face of a building block z is located at an open boundary, there are no
constraints placed upon deformation u,.

Second, we consider the nontrivial corner angle d¢ of a building block
with orientation ¢ where the corner is located at an open boundary. Here,
there can be an adjacent diagonal angle of a neighboring building block.
However, the diagonal angle is still unconstrained in its deformation at the
open boundary, regardless if it is adjacent to a diagonal angle of another
building block. To see this, note that for the two neighboring building
blocks at an open boundary to be kinematically compatible, only the an-
gles at the shared face between the two building blocks are constrained
with the horizontal or vertical compatibility constraint. For example, two
horizontally neighboring building blocks at locations z and z + 1 with
their top face at the open boundary deform compatibly only if the right
and left angles satisfy r, = —[,4+1. More formally, this can be shown by
composing the compatibility matrix for these two building blocks in all
possible orientations and determining the dimension of the matrix’ null
space [40},/42|]. This dimension is always equal to six, which corresponds to
three floppy modes and three trivial modes: rotation and translation. As
each building block has two zero modes, there must only be one constraint
placed on their deformations: the horizontal compatibility constraint. As
there are no states of self-stress in this structure, the number of floppy
modes also follows from a simple Maxwell counting argument [41]]. Thus,
nontrivial diagonal corners d° located at the open boundary can deform
unconstrained.
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(a) (b) (c)

Ficure A2.1: Vertex (top) and schematic (bottom) representations of an edge-
mode (a), strip mode (b) and Swiss cheese-mode (c). Note that we replaced rigid
pentagons with a reentrant edge with rigid diamonds (rotated squares) that are
kinematically equivalent in the schematic representation for ease of interpretation.

A2.2. Realizations mode structure

Here we show explicit realizations of unit cells that support an edge-

mode [Fig.[A2.1]a)], a strip mode [Fig.[A2.1(b)] and a Swiss cheese-mode
[Fig. c)] as described in Sec.[2.4)and Fig.

A2.3. Linear coordinate transformations

To find conditions on the strip configuration C*™, we change to a more
convenient basis where instead of mode amplitudes a, and j3,, deforma-
tions u, and v, are the two degrees of freedom for each building block. We

u\ |1 up(cs)| [az\ a,
(Uz) B [1 vD(cz)] (@) = Ale:) <ﬁz> , (A2.1)
where up(c,) and vp(c,) are the u- and v-components of the basis zero

mode mp(c;). Subsequently, we invert A(c;) to find the change of basis
matrix

-1 B 1 vp(cy) —up(cs)
A (ey) = on(e) = up(e) { _1 ] } , (A2.2)

which is well-defined since up(c,) # vp(c,) for all orientations c,. We can
express deformations [, r,, and d¢ in terms of (u,,v,) using the change of
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basis matrix:

<i> =T'(c.)A Y(c) (Z) (A2.3)

and
= ctean e (1), (A2.4)
where
I(c,) = <:i ig((z))) and (A2.5)
(%(cz) = (0,dp(cz)) (A2.6)

depend on the orientation c, of the building block. Note that o denotes
the orientation of diagonal deformation d¢, which is independent from
the building block orientation c,. The equation for [/,,r, and d? further
simplify to

l, = Ly(cy) uy + Ly(c,) vs, (A2.7)
r, = Ry(cy) uy + Ry(cz) v, (A2.8)

and
d? = D°(e;)(—uz + vs). (A2.9)

Values of the coefficients L,,, L,, R, R,, D° for the four orientations c, are

given in Table

A2.4. Deriving the transfer mapping

Here we derive the linear transfer mapping that maps the vertical defor-
mations v; = (vi1,v;,2, ..., v;,w) of row 7 in a strip configuration of width
W to the vertical deformations v;;; of the neighboring row ¢ + 1 such
that v;11 = T'(c;, ci+1)vi. We consider a 2 x W strip configuration of un-
specified orientations (c;, c;+1). To derive this transfer matrix, we solve
the horizontal and vertical compatibility constraints [Eq. (2.1)] and upper
boundary condition [Eq. (2.4)] iteratively for the vertical deformations v;
[Fig.[2.5]a)-(f)]. We first consider the first row in the strip such that j = 1.
From the upper boundary conditions and setting u; ; = 0 without loss of
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generality, we find u; 1 = —u;41,1 = 0 such that the horizontal compatibility
constraint reduces to

Rv (Ci,l)

Vi1. A2.10
Ly(cit1,1) ol ( )

Vit1,1 = —

We now consider a general row j and find that the horizontal compatibility
condition reduces to

S Rulcig) - Roleg)

i+1,5 — 5,5 — i,

7 Ly(ciprg) 7 Ly(ciyry)
Ly(civ1;)
— Vi1 1.1 A2.11
Ly(ciyry) T ( )

Thus we can solve for v;41 ; in terms of v; by recursively applying this
equation. We find

7j—1
R,(c;q Ry(cia
g = 5 (follmn)_ Raea) )

Ly(Cit1,a+1)  Lo(Cit1,a)

a=1
J
Lu(civip) Ry(cij)
X L — > Vi g, A2.12
b:lll Ly(ciy1p) ™ Lu(citry) ( )

for j > 2. The linear map from v; to v;4 is captured in the transfer matrix
T(ci, ci+1), which we can now define explicitly:

Ru(ci’b+1) o Rv(Ci’b) a Lu(ci+1,j) :
(Lu(ci+1,b+1) Ly(cit1,p) Hj:b-H Ly(ciy1,)’ it b<a

T(cisCit1)ap = —%, if b=a
0, if b>a.
(A2.13)

A2.5. nontrivial conditions

Here we show that a CRS site, which has deformations u; ; = v; ;, in the
top row of the strip SM or bottom row of the strip leads to that entire strip
deforming with the CRS mode, breaking the nontrivial (NT) condition.
This already follows from the restriction on the mode structure described
in Sec. but for completeness we derive it here using the transfer-matrix
formalism. Moreover, we show that a CRS block in the second row of
the strip in a W = 3 strip breaks the NT condition. We first consider a
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CRS site in the top row, such that j = 1, and use the upper boundary
conditions [Eq. (2.4)] and transfer matrix [Eq. (A2.13)] to show that the
left-most vertical deformation v1; = 0. Second, we consider a CRS site
in the bottom row, such that j = W, and use lower boundary conditions
[Eq. (2.5)] and transfer matrix [Eq. (A2.13)] to show that the left-most
vertical deformations v; w—1 = —v; . Finally, we consider a CRS site in
the second row, such that j = 2, and use the transfer matrix [Eq. (A2.13)]
to show that such a block results in a constraint on v, that is incompatible
with the four W = 3 constraints [Eqs. (2.21)-(2.24)] and breaks the NT
condition.

First, we consider a general strip configuration C°M. Suppose the
building block at site (4, 1) can only deform with the CRS mode, such that
deformations u;; = v; 1. Without loss of generality, we set the left-most
upper deformation u; 1 = 0. From the upper boundary condition [Eq. (2.4)]
we find that upper deformation u; ; = 0, such that the vertical deformation
becomes v;; = 0. The transfer matrix [Eq. (A2.13)] is lower triangular,
thus v; 1 only depends on the upper left-most vertical deformation vy ; by a
factor consisting of the product of the diagonal transfer matrix components
T'(c;, €i+1)1,1 of the building block pairs between (1, 1) and (4, 1). Therefore,
if v; ; = 0, v1,1 = 0 must be true as well. Moreover, v,,1 = 0 for all columns
a in the strip. Thus all building blocks in the strip are CRS sites and deform
with u; 1 = v;1 = 0, resulting in the entire top row of the strip deforming
as a CRS mode compatibly with area of CRS with amplitude o* = 0.

Second, we consider a general strip configuration C*" where the
building block at site (i, W) deforms with the CRS mode, such that
u;w = v;w. From the vertical compatibility constraint [Eq. (2.1)] we
know that w; w = —v; w—1, such that v; w_1 = —v; w. To find the deforma-
tions of the left neighbor at site (i + 1, W), we plug the map [Eq. (A2.12)]
into the lower boundary condition [Eq. (2.5)] to find

L. (c: — R.(c: — R.(c;
Vir1 W o(Civ1,w) u(ci,w) v(Ci,w) — VW1 (A2.14)
’ Ly(cit1,w) ’

The fraction reduces to 1 for all possible configuration pairs (¢; w, ¢i+1,w)
(see Table [2.1)), such that the vertical deformations of the neighboring
building block deform as v;11,w = —v;+1,w—1 and the block is a CRS site.

Similarly, we can do the same calculation for the right neighbor at site
(1t —1,W) to find

Ry(ci—1,w) — Lu(ciw) — Lo(ci,w)
Ry(ciciw)

Vi1, W—1 = Vi-1,W (A2.15)
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which also reduces to v;—1,w—1 = —v;—1,w for all possible configuration
pairs (¢;—1,w, ¢;w). Thus we find that a CRS site in the bottom of the strip
results in CRS sites to its left and right neighbor upon requiring the lower
boundary condition [Eq. (2.5)] to be satisfied. In conclusion, we find that
a single CRS site in the top or bottom row of the strip SM results in that
entire row deforming as an area of CRS, breaking the NT condition.

Next, we consider how a CRS site in row j = 2, where v; 1 = —v; 2, maps
to a constraint on v;_;. This mapping depends on the configuration of
columns (c;, ¢;+1). In general, we find it maps to

Vic11 = — s Vi—1,2, (A2.16)

where T, 4, is the (a, b)-th component of the transfer matrix 7°(c;, ¢;11). This
mapping depends only on the first two rows of the 2 x W configuration.
If the first two rows are (h, h)-pairs, the constraint maps to itself. If the
column configuration has any other type, the constraint maps to a new
constraint. For W = 3 configurations, this new constraint is not one of the
four constraints [Eqs. (2.21)-(2.24)] we find in the main text. When this
mapped constraint is taken together with one of the four constraints, the
mapped constraint results in either the top two rows, or bottom two rows
to deform as an area of CRS, breaking the NT condition. This is not a valid
W = 3 strip mode. Thus the constraint v; ; = —v; 2 is incompatible with a
valid strip deformation for W = 3 strip modes.

A2.6. Diagonal compatibility constraints

Here we derive the diagonal compatibility constraint [Eq. (2.2)] for all 2 x 2
configurations (c¢; j, ¢ j4+1, Ci+1,5, Ci+1,j+1). We consider all configurations
one-by-one. We first consider the configurations for which every diagonal
edge d in the diagonal compatibility constraint [Eq. (2.2)] is trivially zero.
The diagonal compatibility constraint is then trivially satisfied and imposes
no condition on v;.

Subsequently, we consider the case where di is the only nontrivial
diagonal edge in the diagonal compatibility constraint. To satisfy this
constraint, we require d;; = 0 to hold. From Eq. we find that this
constraint only holds if (7, j) is a CRS site, such that u; ; = v; j. Similarly, if
de‘{ ;18 the only nontrivial diagonal edge, we find u; 1 ; = vi41,5, if d?ﬁrl
is the only nontrivial diagonal edge, we find u; j11 = v; j+1, and if dﬂviﬁl
is the only nontrivial diagonal edge, we find ;11 j4+1 = vi+1,j+1. Thus a

E
J
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2 x 2 configuration where a single building block is oriented such that its
nontrivial diagonal edge d¢ is part of the diagonal compatibility constraint
[Eq. (2.2)] must deform that single building block as a CRS site to satisfy
the diagonal compatibility constraint.

Now we consider configurations that contain horizontally paired build-
ing blocks which have nontrivial diagonal edges d° that are both part of
the diagonal compatibility constraint [Eq. (2.2)]. The two other building
blocks” diagonal edges in the diagonal compatibility constraint are trivial.
We first consider configurations where such a pair of building blocks is in
the top row, such that (¢; j, ¢i41,5) = (SE, SW). The diagonal compatibility
constraint reduces to

SE SW
dij +dif1;,=0
Ui g — Vij + U1 — Vip15 = 0, (A2.17)

where we used Eq. (2.10) to replace d°. We can simplify this further by
replacing v; 1 ; using the map Eq. (A2.12):

Ru 1,7 Rv 1,7
(1 + 7(0 J) > Vij—1+ (1 — 7(0 ’J> > Vi j

Ly(civ1,) Ly(civ1,)
Lu(cz‘+1j)>
NI (IR Y A T ) A2.18
< LU(CZ'+17]') +1,] 1 ( )

where we have also used the horizontal comp