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The T cell receptor (TCR) is a key component of the adaptive immune system, recognizing foreign antigens
(ligands) and triggering an immune response. To explain the high sensitivity and selectivity of the TCR in
discriminating “self” from “non-self” ligands, most models evoke kinetic proofreading (KP) schemes, however
it is unclear how competing models used for TCR triggering, such as the kinetic segregation (KS) model,
influence KP performance. In this paper, we consider two different TCR triggering models and their influence on
subsequent KP-based ligand discrimination by the TCR: a classic conformational change model (CC-KP), where
ligand-TCR binding is strictly required for activation, and the kinetic segregation model (KS-KP), where only
residence of the TCR within a close contact devoid of kinases is required for its activation. Building on previous
work, our computational model permits a head-to-head comparison of these models in silico. While we find
that both models can be used to explain the probability of TCR activation across much of the parameter space,
we find biologically important regions in the parameter space where significant differences in performance can
be expected. Furthermore, we show that the available experimental evidence may favor the KS-KP model over
CC-KP. Our results may be used to motivate and guide future experiments to determine accurate mathematical
models of TCR function.
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I. INTRODUCTION

In the immune system, the T cell receptor (TCR) is at the
heart of T cell function, allowing these cells to discriminate
foe from self. TCR signaling is activated when TCRs interact
with peptide antigens derived from pathogens or self proteins
that are presented on peptide-major histo-compatibility com-
plexes (pMHCs) on the membrane of an antigen-presenting
cell (APC). Activation then triggers a bespoke immune re-
sponse to the invading pathogen. However, MHCs also present
peptides derived from self proteins, so to allow robust pro-
tection from pathogens while minimizing false activation, i.e.,
auto-immunity, the TCR has to discriminate rare foreign, non-
self peptides (as few as 1–10 [1,2]; hereafter referred to as
“activating ligands”) from a sea of self ligands (105-106 [3];
hereafter referred to as “nonactivating ligands”). The TCR
therefore operates in a challenging regime, combining high
sensitivity with high specificity [4,5].
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The mechanism that enables T cells to process signals
so remarkably well has remained elusive—partially because
equilibrium thermodynamic processes are insufficient to
explain ligand discrimination [4,6,7]. To address the discrep-
ancy, it was suggested that the TCR uses kinetic proofreading
(KP) [8] to discriminate binding events of different duration
[9]. Briefly, KP occurs when ligand binding to a receptor trig-
gers a series of irreversible, energy-consuming biochemical
modifications of the receptor until a final, signaling-competent
state is reached, while intermediate states do not relay the
signal. If ligand unbinding results in modifications being re-
moved, this means that only long binding lifetimes result in
receptor signaling. Applied to TCR activation through multi-
site phosphorylation, KP can account for TCR discrimination;
KP models have been found to fit experimental TCR acti-
vation data better than models without proofreading steps
[5,10,11]. For a discussion of the “lifetime dogma” of TCR
activation, see Ref. [12].

Independently of the physical basis assumed for KP-aided
ligand discrimination, all KP steps are downstream of initial
ligand binding to the TCR. In other words, the TCR must
first sense that ligand binding has occurred before KP-based
ligand discrimination may occur, even if the modifications
underlying KP can be made to unbound TCRs. Despite much
research, the mechanism of TCR triggering is also still an
unresolved question. Proposed models have either evoked
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conformational change or aggregation of TCRs to explain
the ligand-induced shift in TCR phosphorylation or a mech-
anism referred to as kinetic segregation (KS) model of TCR
triggering [4,7]. The KS model proposes that TCR phospho-
rylation and activation is determined by the TCR’s residence
time in so-called close contacts between T cells and APCs,
when these cells bring their membranes into close proximity
to allow for TCR-pMHC binding [13,14]. Due to the tight
intermembrane spacing, these close contacts are depleted of
deactivating phosphatases with large extracellular domains,
such as CD45, but retain the TCR kinase Lck needed for TCR
phosphorylation and activation [15–17]. TCRs will activate if
they remain in a close contact for a sufficiently long time so
that they are fully phosphorylated, with ligand binding only
serving to enhance residence times by preventing TCRs from
diffusing out of the close contact. Among other work support-
ing the KS model, TCR elongation was shown to prevent TCR
signaling [18], while TCRs were observed to activate ligand
independently within sufficiently large close contacts with a
decreased CD45-to-Lck ratio [17].

Importantly, the two questions of how TCRs are triggered
and how they discriminate between ligands are connected
to each other: the assumptions made in any TCR triggering
model will impact how KP could be physically implemented
in TCR triggering. Yet, there is little literature over how a
particular triggering model, e.g., TCR triggering modeled by
KS, will affect KP-based ligand discrimination by the TCR.
Classic formulations of KP in TCR signaling models usually
assume that the TCR is “reset” to its initial, unphosphorylated
state by ligand unbinding. When incorporating the KS model
of TCR triggering, one needs to assume that phosphorylation
can occur as long as the TCR is in the close contact, whether
ligand bound or not, and that TCR dephosphorylation and
thus resetting only occurs when a TCR leaves the close con-
tact. The mathematical implementation of KP is thus directly
linked to the triggering model assumed and may affect over-
all model performance. Moreover, modeling KS-driven TCR
triggering also requires explicit modeling of kinase-enriched
membrane areas, close contacts, and TCR diffusion (see also,
e.g., Ref. [19]), which makes it hard to directly compare
models of KS-based TCR triggering to other models that often
do not model TCR diffusion and, if they do, not in the context
of close contacts.

Here, we address this knowledge gap by developing a
computational framework for describing a combined model
for TCR triggering and ligand discrimination: a classic, multi-
step downstream signaling model implementing KP combined
with an explicit model for TCR triggering inside the close
contacts postulated by the KS triggering model. While this
framework is tailored to the KS model of TCR triggering (our
KS-KP model), we can easily modify the model to assume that
instead of by KS, the TCR is strictly triggered by ligand bind-
ing only, e.g., based on conformational change of the TCR
(our CC-KP model). Our new approach therefore allows us to
directly compare CC-KP and KS-KP models of TCR activa-
tion and test how performance differs for those two models.
We find that while both models predict similar trends of TCR
activation for a wide range of parameters, the KS-KP model
predicts a much higher “background” probability of activation
than the CC-KP model in the absence of any activating ligands

for realistic TCR phosphorylation rates. While both CC-KP
and KS-KP predict similar patterns of TCR activation, we also
find differences in several biologically important situations,
such as when small numbers of activating ligands are present
or for ligands with comparatively larger off rates. To reach
similar discrimination than CC-KP, KS-KP needs a large num-
ber of KP steps; moreover, when looking at the trade-offs
between discrimination and sensitivity, CC-KP outperforms
KS-KP with the notable exception of slower phosphorylation
rates. While we discuss some experimental evidence to sup-
port KS-KP over CC-KP, we also conclude that CC-KP and
KS-KP models are difficult to distinguish through the mere
comparison of downstream metrics of T cell activation in the
absence of further biochemical data on signal transduction.

II. RESULTS

A. Computational modeling of KS-KP and CC-KP

To allow a direct comparison between a conformational
change-kinetic proofreading KP (CC-KP) and a kinetic
segregation-kinetic proofreading (KS-KP) model (Fig. 1),
we developed a mathematical framework and computational
model that is described in detail in the Materials and Methods
section. In this framework, we explicitly consider the close
contacts formed between T cells and APCs. We allow in-
dividual TCRs to diffuse into and out of the close contact
by Brownian motion, binding to and unbinding from both
activating and nonactivating ligands while being in the close
contact. (While this terminology is often used in the literature,
it is possible that a nonactivating ligand can activate a TCR,
although at a much lower rate than an activating ligand.) We
assume that ligand bound TCRs are unable to leave the close
contact, since we define the close contact as the region in
which the cell membranes of the two contacting cells are in
sufficiently close apposition to allow a pMHC-TCR complex
to form across the two contacting cells.

In our model, we consider a T cell to be activated once
all n proofreading steps are completed for at least one TCR.
Consistent with recent work, we consider small values of n,
which are known to be consistent with ligand discrimination
[5,20]. Moreover, while we model these proofreading steps
as phosphorylation reactions, we note that these steps are not
intended to directly correspond to specific TCR phosphory-
lation sites but could also include phosphorylation sites on
Zap70 or LAT [21], in line with recent literature suggesting
that the number of proofreading step may not directly corre-
spond to all steps in the biochemical network [5,22]. In the
CC-KP model, ligand unbinding results in immediate reset
of the proofreading cascade (full dephosphorylation of all
sites) whereas in the KS-KP model, ligand unbinding resets
proofreading if and only if the TCR has subsequently also
diffused out of the close contact.

Unlike earlier related models [19,23], we modify the
(de)phosphorylation rates depending on whether the ligand
is bound or unbound and depending on which version of KP
we use. In CC-KP, the phosphorylation rate of unbound TCR
is zero, and the dephosphorylation of unbound TCR rate is
effectively infinite, resulting in an immediate reset after ligand
unbinding. Meanwhile, in KS-KP, the (de)phosphorylation
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FIG. 1. Overview of our computational models of T cell receptor (TCR) activation in close contacts. (top row) The conformational change–
kinetic proofreading (CC-KP) model is depicted with three phosphorylation sites (n = 3) in the example. A TCR can be phosphorylated when
bound to nonactivating or activating ligands and is rapidly dephosphorylated upon ligand unbinding (scheme, left). The signaling active state
(all three sites phosphorylated) is highlighted in blue. (middle and right columns) An unproductive trajectory (on which the TCR does not reach
the active state before leaving the close contact) and productive trajectory, respectively. Note that in the unproductive trajectory, the TCR only
binds to nonactivating ligands, with a rapid off rate preventing TCR phosphorylation. In the productive trajectory, a long period of time where
the TCR is ligand bound results in all three sites being phosphorylated while the TCR is immediately fully dephosphorylated upon ligand
unbinding. (bottom row) The kinetic segregation–kinetic proofreading (KS-KP) model is shown in the bottom half of the figure. The diagram
on the left shows how, with the KS-KP model, phosphorylation can take place whether a ligand is bound or not and can only be reversed
when the TCR leaves the close contact (depicted with dashed arrows). Accordingly, in both the unproductive and productive trajectories
shown for KS-KP, phosphorylation events occur for both bound and unbound TCRs. KS-KP is still sensitive to ligand concentrations because
ligand binding influences the time that a TCR spends in the close contact before leaving. In this figure, Mn and Ma represent concentrations
of nonactivating and activating ligands, respectively; k+

n and k+
a represent the corresponding on-rates of ligand binding (with k−

n and k−
a

representing the off-rates); and kp represents the phosphorylation rate.
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FIG. 2. Activation probability as predicted by KS-KP is much more strongly dependent on number of phosphorylation steps n than CC-KP.
Activation probability is plotted against the fraction of activating ligand G for n = 2 (a), n = 3 (b), and n = 2 (c). As the number of steps
increases, activation probability decreases, as it is less likely for the TCR to remain in the close contact (in KS-KP) or bound to the ligand (in
CC-KP) until complete phosphorylation. Phosphorylation rate is set to kp = 1 s−1; examples for other values of kp are found in SI, Fig. S4.
Inset in (c): KS-KP and CC-KP yield similar results when compared at slightly different values of n. The KS-KP n = 4 line is superimposed on
the CC-KP n = 3 line; the responses are similar, suggesting that solutions for both KS-KP and CC-KP can be readily found. Further examples
are provided in SI, Fig. S3. Error bars are standard deviations, calculated as described in the Materials and Methods. See Table S1 for the
parameters used in this figure.

rate is independent of the binding state in the close contact,
and the timescale for reset depends on binding only insofar
as binding increases the TCR’s residence time in the close
contact, as effective dephosphorylation only occurs once a
TCR has diffused out of the close contact. (As a check of the
accuracy of our diffusive model, in the SI we show that the
residence time in the close contact is dependent on the off rate
of the activating ligand, indicating that the binding dynamics
of the ligand modify its diffusion, as expected; see Fig. S1 of
the Supplemental Material [24].

As we model only the very first steps of TCR activation,
we assume that TCRs do not interact with each other. While
formation of TCR clusters is known to play an important
role in TCR signal integration [25,26], experimental data also
suggest that triggering a single TCR is sufficient to activate
a T cell [1,2], consistent with our assumption that the T
cell is activated once TCR phosphorylation exceeds a certain
threshold.

Finally, as a check for consistency of our framework with
previous models, we calculated the probability of a single
TCR remaining in the close contact as a function of time;
we then compare it with the same quantity calculated from
a partial differential equation (PDE) model adapted from
Fernandes et al. [23]. The simulation results match reason-
ably well with those from the PDE model (Fig. S2 of the
Supplemental Material [24]). We may therefore assume that
the results we obtain are comparable with results obtained
from earlier related models.

B. CC-KP and KS-KP models predict highly similar T cell
activation but for different numbers of proofreading steps

We first investigated how the number n of proofreading
steps affects the activation probability for different activat-
ing or nonactivating (activating or self) ligand ratios in both
CC-KP and KS-KP models at a fixed phosphorylation rate
(kp = 1 s−1 [5]), using values for n in the range of 2–4 (Fig. 2).

We note that we use values of n in the range that was previ-
ously found to well explain T cell activation data [5] and that
are optimal for ligand resolution in the presence of molecular
noise [22].

Generally, the activation probability predicted by KS-KP
was much more strongly dependent on n as that predicted
by the CC-KP model. We can rationalize these findings in
the light of the overall increased activation probability seen
for the KS-KP model. This “background activation” stems
from ligand-independent triggering of TCRs that, even in
the absence of a ligand, show a close-contact residence time
sufficient to complete all KP steps. Thus, it is logical that for
KS-KP and a small number of KP steps, we observed higher
levels of background activation than for the CC-KP model.
Interestingly, however, very small changes to n (±1 step)
and/or kp (factor of two or less) were sufficient for KS-KP
and CC-KP to yield highly similar results (inset to the n = 4
panel of Fig. 2 and Fig. S3 of the Supplemental Material
[24]). Taken together, these results suggest that CC-KP and
KS-KP may be difficult to distinguish through downstream
metrics of T cell activation, such as, e.g., in Ref. [5]. In
contrast, quantification of the ligand-independent contribution
to TCR triggering would allow us to further test our KS-
KP model and to discriminate between CC-KP and KS-KP
models.

When we varied the phosphorylation rate kp more
broadly, we found that for a lower phosphorylation rate
(kp = 0.5 s−1), KS-KP was able to distinguish low and high
G values better than CC-KP for n = 3 and n = 4 (Fig. S4
of the Supplemental Material [24]). Meanwhile, at a higher
phosphorylation rate (kp = 2 s−1), KS-KP was entirely unable
to distinguish between different activating fractions at n = 2.
This is again in line with the expectation that in KS-KP,
ligand-independent phosphorylation of the TCR contributes
to a higher sensitivities at slow rates for the KP steps, helping
to “push” TCR across the signaling threshold. Conversely, for
fast KP rates this ligand-independent phosphorylation results
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FIG. 3. CC-KP is able to mount more distinct responses than KS-KP to activating ligands with different off rates, especially at higher
close contact lifetimes. (a)–(c) Activation probability for TCRs with the KS-KP and CC-KP models with k−

a = 0.1 s−1, 1 s−1, and 10 s−1,
respectively, as a function of activating fraction G at the indicated close contact lifetime. Examples for additional values of tc are provided in
the SM, Fig. S7 [24]. Error bars are standard deviations, calculated as described in the Materials and Methods. See Table S1 for parameters
used in this figure [24].

in all TCR being immediately phosphorylated and hence loss
of discrimination.

Finally, we note that in our model, TCR phosphorylation
times (for each step) are exponentially distributed (we assume
first-order kinetics). As we assume that each of the n steps
occurs at a similar rate, it is reasonable to approximate the
total time (i.e., the time until full phosphorylation or activation
time) as an Erlang-n distribution [see Materials and Methods;
Eq. (25)]. We note that earlier work by Fernandes et al. [23]
used a simplified model for TCR activation, in which any
TCR that remained in the close contact for at least 2 s was
immediately and fully activated, i.e., the effective probability
density function for the activation time has a Dirac δ function
at t = 2 s. In such a simplified model, activation probabilities
for KS-KP are markedly underestimated at low fractions G
of activating ligand, implying better discrimination by KS-KP
than are likely realistic. Further information on this point is
found in the Supplemental Material (SM) (Fig. S9 and SM
text section S1 [24]).

C. KS-KP and CC-KP predict distinct responses
to different off rates of activating ligands

Activating ligand off rates have been shown to correlate
with TCR activation [7,27,28], a fact that has been used as evi-
dence of KP. We therefore wanted to test how activating ligand
off rates influence the performance of our models. We used ac-
tivating ligand off rates of k−

a ∈ {0.1 s−1, 1 s−1, 10 s−1}, and
we use a nonactivating (self) ligand off rate of k−

n = 50 s−1 for
all simulations; that is, the weakest binding activating ligand
we examine (k−

a = 10 s−1) has a fivefold smaller dissociation
constant than the nonactivating ligand [23]. We first tested
how activation probability changed as a function of activating
fraction G for different close contact lifetime tc and different
k−

a . For a small tc, activation probability always varies with
k−

a , with smaller k−
a giving rise to more activation as expected,

but there is little difference between the activation predicted

by either KS-KP or CC-KP models (Fig. 3(a), tc = 5 s). At
larger values of tc [Figs. 3(b) and 3(c), tc = 30, 120 s], KS-KP
and CC-KP predict significantly different activation for large
k−

a , with KS-KP predicting a higher activation probability.
As before, these findings can be rationalized by consider-
ing the contribution from ligand-independent triggering to
the activation probability, only present in the KS-KP model
and significant for close contact lifetimes substantially longer
(tc = 30, 120 s) than the time taken to activate (Erlang distri-
bution around 2 s). For none of the close contact lifetimes
tc tested, KS-KP or CC-KP can reliably discriminate ligands
with the lowest k−

a = 10 s−1 or a fivefold smaller dissociation
constant than the nonactivating ligand for the ligand frac-
tions tested (G � 0.1). The ligand-independent contribution
to activation is also readily visible when plotting activation
probability as a function of close contact lifetime tc (Fig. 4): in
contrast with CC-KP, KS-KP predicts nonzero TCR activation
even in the absence of activating ligand (G = 0) that increases
as tc increases, as expected independently of ligand off rate k−

a
[Fig. 4(a)]. Interestingly, the extent of this ligand-independent
activation seen in the KS-KP model is similar to the level of
activation predicted for a ligand of k−

a = 1 s−1 at G = 0.01 in
the CC-KP model [4(b)]. For larger G (e.g., G = 0.1) and slow
k−

a , predictions by CC-KP and KS-KP differ little but they
remain marked for faster values of k−

a [Fig. 4(c)], consistent
with the previous results.

In summary, while we find similar overall behavior be-
tween the two models as we change the activating ligand off
rate (k−

a ), it is noteworthy that the KS-KP model predicts
close contact lifetime-dependent ligand-independent activa-
tion probabilities (Fig. 4) in contrast with the CC-KP model.

While ligand-independent activation is qualitatively con-
sistent with experimental observations of activation in the
absence of activating ligands [17,18], we expect it to neg-
atively affect ligand discrimination (by adding spurious
activation in the absence of ligand) while sensitivity could be
positively affected (increasing background phosphorylation of
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FIG. 4. Activation probability for TCRs with the KS-KP and CC-KP models with k−
a = 0.1 s−1, 1 s−1, and 10 s−1 as a function of close

contract lifetime at the indicated activating fraction G. (a), (b) At low activating fraction G, the activation probability for KS-KP (blue lines)
at all values of k−

a is significantly greater than that for CC-KP (orange lines). (c) At high activating fraction, a strong difference only exists for
large k−

a ; cf. Fig. 3. Examples for additional values of G are provided in the SM, Fig. S8 [24]. Error bars are standard deviations, calculated as
described in the Materials and Methods. See Table S1 for parameters used in this figure [24].

the TCR can lower the threshold for its activation). Thus,
we tested the trade-offs made between discrimination and
sensitivity by KS-KP and CC-KP models.

We define sensitivity as the derivative of Pa with respect to
G at G = 0

S = ∂

∂G
Pa(G, tc)|G=0. (1)

We make the dependence of Pa on G explicit here, although
in general we do not write out this dependence for the sake
of simplifying notation. This quantity can be interpreted as
the ability of the T cell to respond to introduced activating
ligands. We define discrimination as

α = 1 − Pa(G = 0, tc), (2)

describing how well the T cell can discriminate between high
and low activating ligand concentrations. If α is close to zero
then the T cell will likely activate even at low activating ligand
concentrations, while if α is close to one the T cell will not
activate at low concentrations but will activate at high enough
G values. See the Methods section for more detail.

We investigated for both models how sensitivity and dis-
crimination change as a function of KP steps (Fig. 5). As
to be expected, increasing the number of KP steps n from
one (i.e., no KP) to two always increases both sensitivity
and discrimination. After this, discrimination keeps increasing
further with every added KP step, but the trade-off between
sensitivity and discrimination is different for KS-KP and CC-
KP. At some point, for CC-KP, increasing n results in marginal
improvements in already high discrimination for large losses
in sensitivity. In contrast, the trade-offs for KS-KP contin-
ues to involve large gains in discrimination for small losses
in sensitivity before nearing perfect discrimination and low
sensitivity at larger n. KS-KP only outperforms CC-KP in
sensitivity for slower kp rates: for kp = 0.5 and n = 3, KS-KP
is more sensitive with moderate discrimination loss [Fig. 5(a),
bottom row]. For kp � 0.5, CC-KP is both more sensitive and

discriminate than KS-KP at equal n and hence equal energetic
cost (Fig. 5).

D. KS-KP and CC-KP models both distinguish between
experimentally characterized activating

and nonactivating ligands

To compare our theoretical results for the CC-KP and
KS-KP models to experimental data, we used published EC40

and EC50 values for several ligands with known on and off
TCR binding rates [27,28] (see Table S2 [24]). In aggregate,
these experiments provide information about the overall T cell
activation probability for three nonactivating ligands and four
activating ligands each in the absence of any other ligand. To
compare the CC-KP and KS-KP models to these results, we
ran simulations and calculated activation probabilities as be-
fore, using the corresponding experimental on and off binding
rates for each ligand. For nonactivating ligands we used G = 0
and for activating ligands (weakly activating or otherwise) we
used G = 1, while varying the overall ligand concentration,
M. We estimated EC40 and EC50 values (according to the
quantity available for each ligand, from here on referred to as
EC40/50) by finding the value of M for which the activation
probability was 40% or 50% maximal, respectively. While
we do not expect our proxy for T cell activation (Pa) to
quantitatively predict experimental EC40/50 values, it should
be possible to qualitatively predict the correct order of the
ligands. Both the CC-KP and KS-KP models were able to
distinguish activating from nonactivating ligands, with lower
theoretic EC40/50 values predicted for all activating ligands
(Fig. 6). However, remarkably, there is a difference between
KS-KP and CC-KP in ordering of the ligands, and particularly,
the KS-KP model differentiates between the activating and
weakly activating ligands better than the CC-KP model. The
ordering of, e.g., T72 and OVA is also more accurate by
the KS-KP model. These differences can be rationalized by
KS-KP results being dependent on the dissociation constant,
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FIG. 5. Trade-offs between discrimination and sensitivity in the number of proofreading steps are more pronounced for KS-KP than for
CC-KP. Sensitivity and discrimination are defined in the Methods section, equations (37)–(39). Blue points are for CC-KP while orange points
are for KS-KP. The leftmost points of the KS-KP and CC-KP points with the lowest discrimination are for n = 1 proofreading steps (i.e., no
proofreading), while the rightmost points with the highest discrimination are for n = 8. For each column, with (a) kp = 0.5 s−1, (b) kp = 1 s−1,
and (c) kp = 2 s−1, the plot in the bottom row shows the trade-off region highlighted in the box within the top row. In the bottom row, the
lowest and highest number of steps shown in the trade-off region are indicated. Below the smallest n in the trade-off region, increasing n results
in both higher discrimination and sensitivity. For all three values of kp shown, the trade-offs for CC-KP in n involve marginal improvements
in high discrimination for large losses in sensitivity. In contrast, trade-offs for KS-KP involve large gains in discrimination for small losses
in sensitivity at lower n before nearing perfect discrimination and low sensitivity at large n. See Table S1 for the parameters used in this
figure [24].

while CC-KP is more sensitive to the off rate. In other words:
the duration of an active period for KS-KP only depends on

FIG. 6. Comparison of experimental EC40 and EC50 values for
ten ligands with theoretical predictions from the CC-KP and KS-KP
models. The model EC40 and EC50 values are the ligand concen-
trations at which activation probability is equal to 0.4 and 0.5,
respectively, with G = 0 for nonactivating ligands and G = 1 for
(weakly) activating ligands to match experimental conditions where
a single ligand type is present. Both the CC-KP and KS-KP models
differentiate nonactivating from activating ligands, separating them
into two clear clusters along the y axis. The KS-KP half-maximal
activation probability ligand concentrations are lower than the
CC-KP predictions, consistent with the results in previous sections.
The ten ligands considered, along with the corresponding binding
and unbinding rates, are listed in Table S2 [24]. See Table S1 for the
parameters used in this figure [24].

how long a TCR stays in the close contact, which correlates
to how often it is bound. CC-KP, however, solely depends on
the duration of binding, which is controlled by the off rate.

III. DISCUSSION

While both CC-KP and KS-KP predict similar patterns of
TCR activation, we also find differences in several biologi-
cally important situations, such as when small numbers of
activating ligands are present or for ligands with compara-
tively larger off rates. To reach similar discrimination than
CC-KP, KS-KP needs a large number of KP steps and when
looking at the trade-offs between discrimination and sensitiv-
ity, CC-KP outperforms KS-KP with the notable exception of
slower phosphorylation rates. We also conclude that CC-KP
and KS-KP models are difficult to distinguish through the
mere comparison of downstream metrics of T cell activation
in the absence of further biochemical data on signal transduc-
tion. For example, recently published experimental work that
has been interpreted as evidence for CC-KP [10,11] would
also be consistent with KS-KP if, under the conditions used
for these studies, phosphatases are excluded from regions of
TCR-ligand interactions. Other experimental evidence indi-
cates that TCRs may activate even with no activating ligands
present [17,18], which is more likely under KS-KP than CC-
KP, but the high specificity seen in Refs. [1,2] is more readily
explained by CC-KP. An advantage of our computational
approach is that both KS-KP and CC-KP might be viewed
as extreme points on a spectrum of possible behaviors: for
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example if ligand binding changes kp but is not essential for
it, such a model would exist between KS-KP and CC-KP, and
could be evaluated in our framework in future studies.

In this work, we have developed a computational frame-
work for describing a combined model for TCR triggering
and ligand discrimination: a classic, multistep downstream
signaling model implementing KP combined with explicitly
modeling TCR triggering inside the close contacts postulated
by the KS triggering model. We have used this to compare
the KS model of TCR triggering (our KS-KP model) to one
where the TCR is strictly triggered by ligand binding only
(our CC-KP model). Considering existing models in the litera-
ture, our KS-KP model is generalized so that phosphorylation
rates while bound can be different from those while unbound
(compared with Ref. [19]), and has a more accurate model
of activation time (compared with Ref. [23]), while applying
a diffusion framework to allow direct comparison between
CC-KP and KS-KP. Integrating diffusion with conformational
change-based KP in the CC-KP model captures aspects of T
cell activation not found in KP models ignoring diffusion. If
TCR complexes cannot leave the close contact when bound
to a ligand, trajectories that happen to spend more time in
a bound state will be more likely to remain in the close
contact longer than trajectories that are in the bound state less
often. This has a selective effect where trajectories with higher
individual activation probabilities, Ps(t ), are more likely to
remain in the close contact longer (Fig. S10 [24]). However,
because most TCR complexes rapidly exit the close contact,
the overall probability of a single TCR complex activating
is greatly reduced in the CC-KP model with diffusion, as
compared with a model ignoring diffusion. This complex cou-
pling between diffusion and activation necessitates a model
explicitly including both aspects.

Over a wide parameter range, CC-KP and KS-KP models
make similar predictions. This is due to the fact that the kinetic
segregation mechanism in KS-KP also implements a form of
kinetic proofreading, where a reset to the fully dephosphory-
lated state occurs upon the TCR complex diffusing out of the
close contact (instead of upon ligand dissociation, as in CC-
KP). Our modeling of CC-KP and KS-KP in a close-contact
zone context suggest that all else being equal, KS-KP leads to
higher activation probabilities than CC-KP along with sizable,
nonzero activation probabilities without activating ligands
present. This positive minimal activation probability results
from any TCR increasing the activation probability as long as
kp is sufficiently large to drive TCR phosphorylation while in
a close contact, and it results in worse differentiation between
activating ligands with varied off rates in the KS-KP than CC-
KP model. However, we note that for lower phosphorylation
rates (kp = 0.5 s−1) KS-KP performed better than CC-KP in
terms of sensitivity. For kp = 0.5 s−1, both sensitivity and
discrimination were better for KS-KP, as for this rate, full
phosphorylation of the TCR (and hence activation) cannot be
reached before ligand dissociation in CC-KP. Conversely, at
fast phosphorylation rates (kp = 10 s−1), KS-KP was entirely
unable to distinguish between different activating fractions for
all n tested as at this rate all TCRs are fully phosphorylated
before they leave close contacts, even for residence times
expected for free TCRs. For other parameters, KS-KP and
CC-KP are generally similar at low tc, low-to-moderate k−

a ,

or moderate-to-high G, while significant differences are seen
at high k−

a and low G, with these differences being largely
due to ligand-independent activation present in the KS-KP
model.

In this light, contemporary experimental evidence ob-
served for different TCR signaling models is hard to interpret
unambiguously but points in favor of KS-KP. For example, re-
cently published experimental work that has been interpreted
as evidence for CC-KP [10,11] would also be consistent
with KS-KP if, under the conditions used for these studies,
phosphatases are excluded from regions of TCR-ligand in-
teractions. Other experimental evidence indicates that TCRs
may activate even with no activating ligands present [17,18],
which is more likely under KS-KP than CC-KP, but the high
specificity seen in Refs. [1,2] is more readily explained by
CC-KP. An advantage of our computational approach is that
both KS-KP and CC-KP might be viewed as extreme points on
a spectrum of possible behaviors: for example if ligand bind-
ing changes kp but is not essential for it, such a model would
exist between KS-KP and CC-KP, and could be evaluated in
our framework in future studies.

Throughout our modeling, we assume that the timescale of
immune synapse rearrangement (minutes) is different to the
dynamics in the KS model that result in initial TCR triggering
(milliseconds to seconds). Close contacts, i.e., the region of
phosphatase exclusion, are expected to grow on the timescale
of TCR triggering and diffusion, and the effects of modeling
this growth similar to Ref. [23] on CC-KP and KS-KP predic-
tions could thus be explored in future work.

In conclusion, our results may partly explain the ambiguity
surrounding the models for TCR activation, as without direct
evidence for the number of phosphorylation steps and the rate
of phosphorylation and without experiments that recreate the
close contact context in which TCRs are activated, our results
suggest that distinguishing between the KS-KP and CC-KP
models through downstream measures of TCR activation may
be difficult. On the other hand, our results point to clear differ-
ences that carefully designed experiments could measure. For
example, if TCR activation and discrimination was measured
for different phosphorylation rates, e.g., making use of kinetic
mutants of Lck [29,30], ligand discrimination should be much
more affected for CC-KP than KS-KP. These promising po-
tential directions of future experimentation, combined with
consistency between our model and experimental findings on
TCR activation, is encouraging to future experimental work.
We hope that our results will facilitate further investigation
into TCR signaling mechanisms, perhaps leading to a synthe-
sis of two views of T cell activation (KS-KP and CC-KP) that
are often viewed as being mutually exclusive.

IV. MATERIALS AND METHODS

A. Overview of our approach to modeling TCR activation

Our goal is compare the consequences of conformational
change and kinetic segregation TCR triggering mechanisms.
We are able to directly compare the two mechanisms by si-
multaneously modeling TCR diffusion in a disk, representing
a close contact between a T cell and an APC, and TCR
activation. For both triggering mechanisms, we assume that
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TCRs can only trigger when inside the close contact and
that they cannot leave the close contact while bound to a
ligand. Ultimately, we wish to calculate the probability that
at least one TCR will trigger, given the lifetime of the close
contact, the TCR concentration, the ligand concentration, and
the phosphorylation and binding rates.

We accomplish this task by first simulating TCR diffu-
sion and ligand binding-unbinding. The diffusion-binding-
unbinding dynamics are identical for both triggering mecha-
nisms, so we can use the same simulations for both. Although
many TCRs can enter and leave a close contact through
diffusion, we assume that TCRs diffuse independently be-
fore activation, allowing us to combine the results of single
TCR simulations. We initialize a diffusion-binding-unbinding
simulation with an unbound TCR close to the close contact
boundary. Using a fixed time step, we choose the next lo-
cation of the TCR according to a normal distribution and
the binding state of the TCR according to a Markov chain
determined by nonactivating and activating binding and un-
binding rates. If the TCR is in a bound state at a time step, we
disallow it from leaving the close contact by diffusion in the
next time step. This coupling between diffusion and binding
complicates modeling the conformational change mechanism
using partial differential equations. For KS-KP, the total time
a TCR spends in the close contact determines the proba-
bility of triggering, while for CC-KP the history of ligand
binding times is needed to calculate triggering probability.
The diffusion-binding coupling prevents simple calculation of
the binding time distribution from PDE calculations, which
we instead use to check that the stochastic simulations are
correct.

We can numerically calculate the KS-KP and CC-KP trig-
gering probabilities for each simulation replicate and average
over all replicates to find the probability that a single TCR
will trigger. We can then calculate the probability that at least
one TCR will activate in the close contact lifetime, given TCR
concentration and the size of the close contact.

B. Stochastic simulation of TCR diffusion in a close contact

We wish to directly compare the behavior of a typical
KS-KP kinetic segregation model with that of a CC-KP model
in the context of a T cell-APC close contact. In KS-KP
models, a single TCR can be phosphorylated as long as it
is in the close contact, regardless of whether it is bound
to a ligand or not, and dephosphorylation occurs only upon
leaving the close contact. In CC-KP models, TCRs can be
phosphorylated only when bound to a ligand and are rapidly
dephosphorylated upon ligand unbinding. To capture the be-
havior of both KS-KP and CC-KP models, we used stochastic
simulations of a TCR in a close contact. We simultaneously
modeled Brownian motion of the TCR and its ligand binding
dynamics, where interaction between the two processes has
significant effects on activation probability for CC-KP and no
effect on KS-KP activation beyond extending close contact
lifetimes. We explain this point further below. The output
of each simulation described in this section is a trajectory
of the two TCR spatial coordinates and the binding state,
stored in a 3 × NT matrix, where NT is the number of sampled
times.

Within the close contact, we model TCR motion
according to

x(t + �t ) = x(t ) + η(�t ), (3)

where x(t ) is the two-dimensional Cartesian coordinates of
the TCR at time t , �t is the time step used, and η(�t ) is total
random motion undergone by the TCR over �t . The random
motion η(�t ) is independent between successive time steps
and between dimensions and is normally distributed with

〈ηi(�t )〉 = 0, (4)

and

〈ηi(�t )η j (�t )〉 = 2D�tδi j (5)

for dimensions i, j ∈ {1, 2}, where D is the diffusion coeffi-
cient and δi j is the Kronecker δ function.

We write the biochemical state of the TCR at time t as

b(t ) ∈ {bu, bn, ba}, (6)

where bu is the unbound state, bn is the nonactivating bound
state, and ba is the activating bound state. Using the same
time step �t , we concurrently simulated binding dynamics
according to the transition-probability matrix among bu, bn,
and ba, given by

T = eR�t , (7)

using a Monte Carlo simulation. We obtained the transition-
probability matrix from the rate matrix

R =

⎡
⎢⎢⎣

−(Mnk+
n + Mak+

a ) Mnk+
n Mak+

a

k−
n −k−

n 0

k−
a 0 −k−

a

⎤
⎥⎥⎦, (8)

where the entries in the matrix are in the order given by (6).
The concentrations of nonactivating and activating ligand are
written as Mn and Ma, where the overall ligand concentration
is set as M and Mn and Ma are determined by the activating
fraction G

Mn = (1 − G)M, (9)

Ma = GM. (10)

We modeled the close contact as a two-dimensional disk �

with radius R = 220 nm [23,31] centered at the origin,

� = {
x ∈ R2

∣∣√x2
1 + x2

2 � R
}
. (11)

In keeping with previous KS models of TCR dynamics, we
assume that the TCR can only leave the close contact when
in the unbound state, so that when the TCR was in the bn or
ba biochemical states, the Brownian motion step was repeated
until the TCR remained within � at the next time. When in the
bu state, a Brownian motion step that led to the TCR leaving
� ended the simulation run.

We initialized all simulations with x(0) = [0 nm, 210 nm]
and b(0) = bu, in the unbound state. We chose the initial TCR
position to be close to the edge of the close contact to reflect
recent entry into the close contact, as starting simulations in
the unbound state on the close contact boundary would result
in the TCR immediately leaving the close contact. We ran
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each simulation until either the TCR left the close contact or
until 10 s of model time had elapsed. The 10 s maximum simu-
lation time is justified by the convergence of Ps(t ) well before
10 s for even the slowest activating parameter set (Fig. S11
[24]). In calculating Pa(tc), any value of Ps(t ) for t > 10 s was
set to Ps(10). We repeated each simulation 10 000 times. We
performed these simulations using random sampling with the
Numpy package in Python [32].

C. PDE model of TCR diffusion in a close contact

We independently calculated the probability of a TCR re-
maining in a close contact after time t by adapting a previously
published model of TCR diffusion, employing a coupled sys-
tem of partial differential equations (PDEs) [23].

As with the stochastic simulations, we model the close
contact as a disk of fixed radius R = 220 nm [23,31] [as in
Eq. (11)], which individual TCRs can diffuse in and out of.
First, we consider the diffusion of an individual TCR from
the instant it has entered the close contact. Starting at this
instant, we are interested in calculating the probability that
the TCR then exits the close contact after a given amount of
time has passed. We write locations within the close contact
as x = [x1, x2] under the constraint (x2

1 + x2
2 )1/2 � R.

A TCR in the close contact can exist in unbound,
nonactivating bound, and activating bound form. The two-
dimensional diffusion coefficients can in principle differ
between unbound (DT ) and bound (DC) TCRs but here are
identical. Once a TCR reaches the boundary of the close
contact, it is absorbed (leaves the close contact) if unbound to
a ligand or is reflected if ligand bound. We write the boundary
as

∂� = {
x ∈ R2

∣∣√x2
1 + x2

2 = R
}
. (12)

Our goal is to find the probability distributions of unbound,
nonactivating bound, and activating bound TCRs over � as a
function of time since TCR entry to the close contact.

We can find these distributions by solving a coupled sys-
tem of PDEs for the probability density of unbound, T (x, t ),
nonactivating bound, Cn(x, t ), and activating bound, Ca(x, t ),
TCR at x at time t

∂T (x, t )

∂t
= DT ∇2T (x, t ) − (k+

n Mn + k+
a Ma)T (x, t )

+ k−
n Cn(x, t ) + k−

a Ca(x, t ), (13)

∂Cn(x, t )

∂t
= DC∇2Cn(x, t ) − k−

n Cn(x, t ) + k+
n MnT (x, t ),

(14)
∂Ca(x, t )

∂t
= DC∇2Ca(x, t ) − k−

a Ca(x, t ) + k+
a MaT (x, t ).

(15)

Here, t is the time elapsed from the entry of the TCR to the
close contact and k+

s (k−
ns) are the on/off rates for nonactivat-

ing (activating) ligands binding to TCR.
The initial conditions for this system of PDEs for are

T (x, 0) = 1A(x) + (1/2)
[
1∂Ai (x) + 1∂Ao (x)

]
∫
�
1A(x) + (1/2)

[
1∂Ai (x) + 1∂Ao (x)

]
dx

for all x ∈ �, (16)

Cn(x, 0) = 0 for all x ∈ �, (17)

Ca(x, 0) = 0 for all x ∈ �, (18)

where 1S (x) is the indicator function of the specified set S .
The set A is defined as

A = {
x ∈ �

∣∣ri <

√
x2

1 + x2
2 < ro

}
, (19)

with inner radius ri and outer radius ro such that ri < ro < R.
The sets ∂Ai and ∂Ao are the inner and outer boundaries of A
defined as

∂Ai = {
x ∈ �

∣∣√x2
1 + x2

2 = ri
}
, (20)

∂Ao = {
x ∈ �

∣∣√x2
1 + x2

2 = ro
}
. (21)

The boundary conditions are

T (x, t ) = 0 for all x ∈ ∂� and t ∈ [0, tc], (22)

n̂(x) · ∇Cn(x, t ) = 0 for all x ∈ ∂� and t ∈ [0, tc],
(23)

n̂(x) · ∇Ca(x, t ) = 0 for all x ∈ ∂� and t ∈ [0, tc],
(24)

where n̂(x) is the outward-facing unit normal vector at x ∈
∂�. These boundary conditions represent the ability of un-
bound TCRs to leave the close contact and the inability of
bound TCRs to leave the close contact.

We used the py-pde Python package [33] to numerically
solve the system of PDEs in Eqs. (13)–(15) using finite differ-
ence methods.

D. TCR activation model

From a set of replicate trajectories generated from stochas-
tic simulations, we can calculate the probability that over
the lifetime of the close contact at least one TCR will reach
the fully phosphorylated state. We perform this calculation
after the simulations described in Sec. IV B are completed,
using the trajectories produced from those simulations. While
a TCR is in the close contact, the functional TCR complex
can assemble and be phosphorylated. In our model, we ig-
nore complex assembly and only focus on phosphorylation.
If the phosphatase concentration is low enough in the close
contact, we can assume that phosphorylation occurs through
n irreversible steps. Then, the probability that a single TCR
complex is fully phosphorylated by time t in n irreversible
steps, each with the same rate kp, follows the Erlang distribu-
tion

q(t ; n, kp) = kn
p

(n − 1)!
t n−1e−kpt . (25)

If we were to allow for dephosphorylation, we could write
the model as a linear system of ordinary differential equa-
tions where the fully phosphorylated state is absorbing.
However, in this work we assume that dephosphorylation in
the close contact occurs at a slow enough rate to be ignored.
In Fig. S9 [24], we also calculate activation probabilities for

q(t ) = δ(t − 2 s), (26)
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as was used in Fernandes et al. [23]. This approach approxi-
mates the case of large kp and n in Eq. (25), chosen so that the
mean of the distribution is 2 s.

To calculate the probability of a single TCR complex
reaching the fully phosphorylated state before leaving the
close contact for KS-KP, given the fraction of ligands that are
activating, we calculate

Ps(t ) = 1

N

N∑
i=1

∫ τi (t )

0
q(s)ds, (27)

with

τi(t ) =
{

t for τi � t
τi for τi < t,

(28)

where τi is the close contact residence time of the TCR
in trajectory i. Equation (27) is the probability of a single
TCR complex reaching the fully phosphorylated state before
leaving the close contact, averaged over all trajectories. We
calculated the standard deviation of Ps(t ) for KS-KP accord-
ing to

σ (Ps(t )) = σ
( ∫ τi (t )

0 q(s)ds
)

√
N

, (29)

given the independence of τi between different trajectories.
To calculate the probability of a TCR complex reaching

the fully phosphorylated state with CC-KP, we use the same
trajectories but instead calculate

Ps(t ) = 1

N

N∑
j=1

[
1 −

mj∏
i=1

(
1 −

∫ τi j (t )

0
q(s)ds

)]
, (30)

where the product is over mj bound periods, indexed by i, for a
single trajectory indexed by j. Each term of the product is the
probability that in trajectory j during the ith bound period the
TCR did not reach the fully phosphorylated state. The length
of the ith bound period of trajectory j is

τi j (t ) =

⎧⎪⎪⎨
⎪⎪⎩

τi j for
∑i

k=1 τk j � t

t −∑i−1
l=1 τl j for

∑i
l=1 τl j > t >

∑i−1
l=1 τl j

0 for
∑i−1

l=1 τl j � t,
(31)

which allows us to consider arbitrary times, including those
which fall in the middle of bound period for some trajec-
tory. The product is the probability that none of the bound
periods in trajectory j resulted in the TCR reaching the fully
phosphorylated state, so that one minus this quantity is the
probability that at least one of the bound periods resulted in
full phosphorylation. This quantity is then averaged over all
N trajectories. As with Ps(t ) for KS-KP, we calculated the
standard deviation of Ps(t ) for CC-KP according to

σ (Ps(t )) = σ
(
1 −∏mj

i=1

(
1 − ∫ τi j (t )

0 q(s)ds
))

√
N

. (32)

Equations (27) and (30) provide the probability of a single
TCR complex reaching the fully phosphorylated state by time
t . However, in an actual T cell multiple TCRs can enter and
leave a close contact, and we are interested in the probability

that any one of those TCRs become fully phosphorylated in
the lifetime of the close contact. We can write the probability
that no TCR will enter the close contact and become fully
phosphorylated over the close contact lifetime by assuming
a constant rate of TCR entry into the close contact and by
considering m − 1 time intervals of length tc/m, for positive
integer m. The entry rate of TCR entry into the close contact
is [23]

κ = 4πDTm

ln(A/(πR2) − 1)
, (33)

where Tm is the bulk membrane TCR density far from the
close contact, A is the cell surface area, and R is the radius
of the close contact. Using Eq. (33) and discretizing time into
intervals of length tc/m, the probability that a TCR will not
activate is

Pna(tc; m) =
∏

l∈{0,1,...,m−1}
[1 − Ps(tc − ltc/m)]κtc/m. (34)

Taking the limit of Pna(tc; m) as m → ∞, corresponding to
continuous time, we have the geometric integral [34]

lim
m→∞ Pna(tc; m) = exp

(
κ

∫ tc

0
ln [1 − Ps(tc − t )]dt

)
. (35)

Because Eq. (35) provides the probability that no TCR will
activate in tc, we can then easily find the probability that at
least one TCR will activate in tc as

Pa(tc) = 1 − exp

(
κ

∫ tc

0
ln [1 − Ps(tc − t )]dt

)
. (36)

We again note that for t > 10 s in calculation of Pa(tc), we set
Ps(t ) to Ps(10) as justified by convergence of Ps(t ) with time
(Fig. S11 [24]).

Equation (36) is the activation probability shown in
Figs. 2–4. While the notation of our model obscures the
dependence of Pa(tc) on G, we emphasize that with a fixed
value of M, G fully determines the nonactivating and acti-
vating concentrations Mn and Ma and through the stochastic
simulations influences Pa(tc). To find the standard deviation of
Pa(tc), we used linear error propagation theory implemented
in the Uncertainties Python package [35] using Eqs. (32) and
(29) for the standard deviation of Ps(t ) for CC-KP and KS-KP,
respectively.

E. Parameters

Parameters and parameter ranges for our models were
taken from the literature [5,23,27,28,31,36]. See Tables S1–S3
for parameter values and sources for specific values [24].

F. Quantifying sensitivity and discrimination

For activation probability Pa as a function of G, we define
sensitivity as

S = ∂

∂G
Pa(G, tc)|G=0. (37)

In practice, we calculate sensitivity as

S ≈ Pa(0.005) − Pa(0)

0.005 − 0
. (38)
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We define discrimination as

α = 1 − Pa(G = 0, tc) (39)

so that if α = 0 the TCR cannot discriminate nonactivating
ligands from activating ligands, while if α = 1 the TCR does
not activate without activating ligands.

Our definitions of sensitivity and discrimination are related
to previous definitions but differ in several ways. To make
these differences explicit, we contrast our definitions to those
in Pettmann et al. [5], who use P15(KD), the concentration of
ligand leading to activation of 15% of T cells as a function of
ligand dissociation constant in their definitions of discrimina-
tion and sensitivity. By fitting a power law to P15,

P15(KD) = 10C + Kα
D, (40)

sensitivity is defined as

C = log10 P15(1), (41)

while discrimination is

α = d log10 P15

d log10 KD
. (42)

A smaller value of C means higher sensitivity, as 15% acti-
vation at lower concentrations means that the TCR is more
sensitive to the introduction of small amounts of ligand.
Larger α means more discrimination, since α measures how

much an increase in log10 KD will change log10 P15. Note that
if P15(KD) is smaller, sensitivity as we have defined it (S) will
be larger.

Our definition of sensitivity is similar to that of Pettmann
et al., although it is not defined with a specific KD. Rather
than measuring how well the TCR can discriminate between
ligands with arbitrary KD values as in Eq. (42), our definition
measures the extent to which a TCR can mistake a specific
nonactivating ligand for a specific activating one.
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