
Quantitative Prediction of Crystal Nucleation Rates
for Spherical Colloids: A Computational Study





Quantitative Prediction of Crystal Nucleation Rates
for Spherical Colloids: A Computational Study

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

Prof.dr. P. F. van der Heijden ten overstaan van een
door het college voor promoties ingestelde commissie,

in het openbaar te verdedigen in de Aula der Universiteit
op woensdag 27 november 2002 te 12.00 uur door

Stefan Alexander Auer
geboren te Stuttgart



Promotor:

• Prof.dr. D. Frenkel, Universiteit van Amsterdam

Overige leden:

• Prof.dr. B. Smit, Universiteit van Amsterdam

• Dr. G.H. Wegdam , Universiteit van Amsterdam

• Prof.dr. J. Walraven, Universiteit van Amsterdam

• Prof.dr. A. van Blaaderen, Universiteit Utrecht

• Prof.dr. T. Palberg, Johannes Gutenberg-Universität, Mainz

• Prof.dr. W.C.K. Poon, University of Edingburgh

Faculteit: Natuurwetenschappen, Wiskunde en Informatica

The work described in this thesis was performed at the FOM Institute for Atomic and Molec-
ular Physics, Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands. This work was supported by
the division of Chemical Sciences (CW) of the Netherlands organization for Scientific Research
(NWO). The work of the FOM Institute is part of the research program of FOM and is made
possible by financial support from the Netherlands organization for Scientific Research (NWO).
An NCF grant of computer time on the TERAS supercomputer is gratefully acknowledged.This
thesis is also available on the web: http://www.amolf.nl. The author of this thesis can be con-
tacted by email: auer@amolf.nl.





The following papers are based on this thesis:

• Chapter 5:
Prediction of absolute crystal-nucleation rate in hard-sphere colloids,
S. Auer and D. Frenkel, Nature 409, 1020 (2001).

• Chapter 6:
Suppression of crystal nucleation in polydisperse colloids
due to increase of the surface free energy,
S. Auer and D. Frenkel, Nature 413, 711 (2001).

Related news and views article:
Diversity suppresses growth,
D. Oxtoby, Nature 413, 694 (2001).

• Chapter 7:
Crystallization of weakly charged colloidal spheres: A numerical study
S. Auer and D. Frenkel, J. Phys.: Condens. Matter 14, 7667 (2002).

Other publications by the author of this thesis:

• Computersimulaties onthullen mechanisme van kristalnucleatie,
S. Auer, P. R. ten Wolde and D. Frenkel,
Nederlands Tijdschrift voor Natuurkunde, 68, 50 (2002).



Contents

1 Introduction 1
1.1 Nucleation rate experiments and classical nucleation theory . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

I Theoretical and technical introduction 7

2 Rare events 9
2.1 Phenomenological rate equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Microscopic description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Bennett-Chandler approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Diffusive barrier crossing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Classical theory: Steady-state nucleation 15
3.1 Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Nucleation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Multicomponent system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Appendix: Surface tension of a curved surface . . . . . . . . . . . . . . . . . . . . 20

3.3.1 General definition of a surface tension . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Curved surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Quantitative prediction of a nucleation rate: A computational approach 23
4.1 Calculation of the nucleation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1 Distribution of cluster sizes in equilibrium . . . . . . . . . . . . . . . . . . 23
4.1.2 Identification of solid clusters: Local bond-order analysis . . . . . . . . . . 27
4.1.3 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.1.4 Umbrella Sampling with parallel tempering . . . . . . . . . . . . . . . . . 31

4.2 Calculation of the kinetic prefactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Application to hard colloidal spheres . . . . . . . . . . . . . . . . . . . . . 36

II Application to spherical colloids 39

5 Prediction of absolute crystal-nucleation rate in hard-sphere colloids 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Crystal nucleation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Crystal nucleation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Structure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 Appendix A: Protocol of the simulation . . . . . . . . . . . . . . . . . . . . . . . . 47



viii Contents

5.6 Appendix B: Calculation of the chemical potential . . . . . . . . . . . . . . . . . . 48
5.7 Appendix C: Classical prediction of the kinetic factor . . . . . . . . . . . . . . . . 49

6 Suppression of crystal nucleation in polydisperse colloids 51
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Crystal barrier calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Appendix A: Protocol of the simulation . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Appendix B: Calculation of the chemical potential . . . . . . . . . . . . . . . . . . 56
6.6 Appendix C: Size fractionation and polydispersity . . . . . . . . . . . . . . . . . . 57
6.7 Appendix D: Turnbull’s rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.8 Appendix E: Nucleation theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.9 Appendix F: Kinetic factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.10 Appendix G: Average size of a crystallite . . . . . . . . . . . . . . . . . . . . . . . 60

7 Crystallization of weakly charged colloidal spheres: A numerical study 63
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Homogeneous nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.3.1 Nucleation barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.3.2 Nucleation rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3.3 Nucleation pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.4 Appendix A: Protocol of the simulation . . . . . . . . . . . . . . . . . . . . . . . . 75
7.5 Appendix B: Calculation of the chemical potential . . . . . . . . . . . . . . . . . . 75

8 Phase behavior and crystallization kinetics of PHSA-coated PMMA colloids 79
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Model potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.3 Phase behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.4 Crystallization kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8.4.1 Homogeneous nucleation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4.2 Nucleation barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.4.3 Nucleation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

9 Wall induced crystallization in a hard-sphere system 87
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Coexistence region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
9.3 Crystallization Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Bibliography 95

Summary 99

Samenvatting (Summary in Dutch) 103

Curriculum Vitae 107

Acknowledgments 109



1
Introduction

1.1 Nucleation rate experiments and classical nucleation theory

Heating a block of ice will result in melting. Cooling the resulting water will freeze it again.
Water and ice can coexist at only one temperature. This temperature is so important for every-
day life, that it has been defined as the zero-point of the most widely used temperature scale
invented by the Swedish physicist Celsius. A closer inspection of this melting and freezing
transition showed that this transition is not so symmetric. Ice heated above 0◦ C always melts,
whereas cooling it below 0◦ C does not result immediately in freezing. In fact water and most
other liquids can be cooled significantly below their freezing temperature and kept there with-
out crystallizing [1, 2]. This phenomena is known as undercooling. An undercooled liquid can
be triggered into freezing by adding a little bit of the corresponding solid. A single snowflake in
a glass of undercooled water will induce freezing of water that touches it and grow rapidly into
a big chunk of ice. Other disturbances, such as dust or even shocks, can trigger the freezing of
undercooled liquids as well. It thus seems that the freezing process has great difficulty to start
spontaneously, but becomes very easy once it is started. The spontaneous formation of a piece
of solid is an example of nucleation.

The fact that a liquid can be undercooled is best understood qualitatively in the framework
of classical nucleation theory (CNT). According to CNT the free energy of a spherical nucleus
that forms in a supersaturated solution contains two terms. The first is a bulk term, which takes
care of the fact that the solid phase is more stable than the liquid. This term is negative and
proportional to the volume of the nucleus. The second term is the surface term which describes
the free energy needed to create a liquid-solid interface. This term is positive and proportional
to the surface area of the nucleus. The (Gibbs) free energy of a spherical nucleus of radius R has
the following form:

∆G =
4

3
πR3ρs∆µ+ 4πR2γ, (1.1)

where ρs is the number density of the bulk solid,∆µ the difference in chemical potential between
the liquid and the solid, and γ is the liquid-solid surface free energy density. The function ∆G
goes through a maximum at R = 2γ/(ρs|∆µ|) and the corresponding height of the nucleation
barrier is given by

∆Gcrit =
16π

3

γ3

(ρs|∆µ|)2
. (1.2)

For small nuclei the surface term dominates and the free energy increases. Only if this nucleus
exceeds a critical size does its free energy decrease and the liquid start to crystallize, see Fig. 1.1.
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Figure 1.1: Free energy barrier of a spherical nucleus described by classical nucleation theory
Eq. (1.1). For small radii the surface term dominates and the free energy increases. The function
then goes through a maximum and for larger radii the bulk term dominates and the free energy
decreases.

We note from the above equation that for a constant surface free energy γ the nucleation bar-
rier decreases with supersaturation ∆µ. The probability for the formation of a critical nucleus
depends exponentially on its free energy of formation:

Pcrit ∝ exp(−∆Gcrit/kBT). (1.3)

The crystal nucleation rate is given by the product of Pcrit and a kinetic factor κ, which describes
the rate with which a critical nucleus grows, and the corresponding expression from CNT is:

I = κ exp
[
−
16π

3kBT

γ3

(ρs|∆µ|)2

]
, (1.4)

with κ = 24ρlZDSn
2/3
crit/λ

2. Here ρl is the number density of the liquid, Z =
√

|∆µ|/6πkBTncrit
is the Zeldovitch factor, DS is a self-diffusion coefficient and λ is a typical diffusion distance for
particles to attach to the critical nucleus. The above expression for the nucleation rate is the one
most commonly used to analyse crystal nucleation rate experiments. The problem with the CNT
approach is however that, in most cases, neither λ nor γ are accurately known. Both parameters
are used to fit the experimental observations. The result is often that estimates for the kinetic
prefactor seem unphysical. To illustrate the problems that can arise from this approach we give
two examples.

Let us start with Turnbull’s first quantitative measurement of a nucleation rate in liquid
mercury [2], see Fig. 1.2. For the interpretation of his data he used Eq. (1.4), where he estimated
the difference in chemical potential between the two phases by ∆µ ≈ ∆h(Tm − T)/Tm. Here ∆h
is the enthalpy change per particle on freezing at coexistence, Tm is the coexistence temperature
and T is the temperature of the liquid mercury. A plot of log(I) versus 1/T∆T2 should give a
straight line with the slope proportional to γ3 and the intercept equal to log(κ). From this two
parameter fit we see that the functional form given by CNT for the nucleation rate reproduces
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Figure 1.2: The steady state nucleation rate, I in units of 1/(m3s), as a function of undercooling
in Kelvin for liquid mercury from Ref. [2]. The open and the filled circles correspond to two
different samples. The solid lines result from a two parameter fit of Eq. (1.4) to the experimental
data.

the experimental data. However, the resulting value of κ is about 107 larger than predicted
from CNT. The corresponding estimate for the typical diffusion constant λ is many orders of
magnitude too small. To explain this Turnbull noted is his paper: ...suppose that γ depends upon
temperature according to the equation: γ = γ0 + bT , [where γ0 is the value at coexistence and
b is a constant], .... a value of b=0.0008/K is sufficient to change the apparent value of the kinetic
factor by six orders of magnitude. A remarkable statement which might be correct, but at the time
direct corroboration was not possible because of the absence of a priori knowledge of both fit
parameters.

The major problem of experimental investigations of crystallization kinetics in atomic sys-
tems is the high speed of nucleus formation and subsequent crystal growth, as well as the dif-
ficulty of preventing heterogeneous nucleation. The second example we take from more recent
experiments on the crystallization kinetics in a suspension of hard-sphere colloids. Crystal-
lization in colloidal suspensions is interesting because it can be studied in considerable detail,
since colloidal particles are much larger than atoms. Colloids therefore crystallize on a timescale
which is about ten orders of magnitude longer than that for an atomic liquid. Moreover because
of their size, colloids can be probed by powerful optical methods such as time-resolved static
laser light scattering and confocal microscopy. In these systems it is also somewhat easier to
control heterogeneous nucleation. In Fig. 1.3 we show the results from crystallization rate mea-
surements in hard-sphere colloids, performed by two different groups [3,4]. For this system the
difference in chemical potential between the two phases can be calculated accurately from ex-
isting analytical expressions for the equation of state. The curves in the figure result from a two
parameter fit of Eq. (1.4) to the experimental data. Palberg [5] fitted the data from Harland and
van Megen [3] and obtained γ = 0.5kBT/σ

2 and λ = 17dNN, while for the data from Heymann et
al. [4] he found γ = 0.54kBT/σ

2 and λ = 2.8dNN, where σ is the particle diameter and dNN is the
nearest neighbor distance. Again, the functional form is described well by the CNT expression
for the nucleation rate. The estimates for the surface free energy are now known to be rather
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Figure 1.3: Measured crystal nucleation rates I as of function of volume fraction φ in a system
of hard-sphere colloids. The data are taken from Ref. [3] (open circles) and Ref. [4] (filled cubes).
The lines result from a two parameter fit of Eq. (1.4) to the experimental data. The inset shows
the dimensionless nucleation rate densities plotted logarithmically versus 1/(φ∆µ)2. The figure
is taken from Ref. [5].

low [6]. In addition, the values of the effective jump length λ seem rather extreme. However, as
the experimental results could be fitted with Eq. (1.4), there was little reason to doubt the values
of the fit parameters thus obtained from experiment. As the crystal nucleation rate is a difficult
quantity to measure there is a clear need for a first principle prediction of a crystal nucleation
rate.

In this thesis we approach this problem by using a combination of numerical techniques to
simulate the crystal nucleation process. We use umbrella sampling, in combination with local
bond-order analysis for the identification of crystal nuclei, to compute the shape and height
of the nucleation barrier and to study the structure of critical nuclei. Our barrier calculations
in combination with a precise knowledge of the difference in chemical potential between the
two phases enable us to deduce the surface free energy for the critical nucleus. This allows
us to detect any dependence of the surface free energy on supersaturation. In addition we
perform kinetic Monte Carlo simulations to compute the actual nucleation rate. The result can
be compared directly with experiments without any adjustable parameter.

1.2 Overview

This thesis is devoted to the numerical study of crystallization in a suspension of spherical
colloids. It is divided into two parts. The first part contains a brief review of the relevant
theoretical background and a description of the methods used. In the second part we apply
these techniques to several model colloids.

In chapter 2 we give a summary of the general formulation of the theory of rare events in
the framework of linear response theory. Our aim is to illustrate how molecular simulations
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can be used to compute the rate of activated processes. At the end of this chapter we apply
this formulation to the special case of diffusive barrier crossing, which is appropriate for crystal
nucleation. We continue in chapter 3 with a detailed discussion of classical nucleation theory,
which is widely used to analyse crystallization rates, both in experiments and in computer sim-
ulations. We also make the connection between the results for the nucleation rate from chapter 2.
In chapter 4 we give a practical introduction to the numerical techniques needed for a quantita-
tive prediction of a nucleation rate.

In the second part, we first study the crystallization kinetics in hard-sphere colloids (chap-
ter 5). As crystallization of hard-sphere colloids has been extensively studied experimentally
this system was an obvious choice. To our knowledge, this work constitutes the first example
where computer simulations of crystal nucleation rates are compared quantitatively with ex-
periment. Furthermore a comparison with CNT is made. Secondly, we study the effect of poly-
dispersity on the crystallization kinetics, again in a system of hard-sphere colloids (chapter 6).
This project was mainly driven by the experimental observation that polydispersity suppresses
crystal nucleation. These simulations shed a new and rather surprising light on this subject. The
third project (chapter 7) was motivated by the experimental observation that charged colloidal
spheres seem to crystallize much faster than hard-spheres. In addition, there were observations
of the formation of crystal nuclei with a body centered cubic structure in a region of the phase
diagram where a close packed structure is stable. Based on our simulation results, we can give
explanations for both observations. Chapter 8 is an extension of the previous project. We study
the effect of a slight softness on the phase behavior and the crystallization kinetics compared to
hard-spheres. The motivation for this project arises from the fact that experimental hard-sphere
colloids are actually slightly soft. At present, there is little a priori knowledge of the effect of
this softness on crystal nucleation. Here again our simulation results can be directly compared
to the experiments. We end part two with chapter 9 where we apply our techniques to a het-
erogeneous system. We study how the presence of a flat hard wall influences the crystallization
barrier in a hard-sphere system. This constitutes an example of a free energy calculation for a
heterogeneous nucleation process.





Part I

Theoretical and technical introduction





2
Rare events

In this chapter we illustrate how molecular simulations can be used for the calculation of a re-
action rate constant, where the rate limiting step is a classical barrier crossing. Examples are the
trans-to-gauche transition in an alkane or ion pair dissociation. This is done in the framework
of linear response theory, where we follow the book of Frenkel and Smit [7]. Here, however we
will not give the detailed derivation of the final results, but focus more on the general concept
and their practical application. This background is needed to place the work presented in a
broader content. Finally, we derive an expression for the rate constant for the special case where
the barrier crossing is diffusive. The result will be applied to the calculation of a crystallization
rate.

2.1 Phenomenological rate equation

Consider a unimolecular reaction A
 B, in which species A is transformed to species B. Let us
assume that the rate limiting step of the reaction is a classical barrier crossing. We first look at
the phenomenological description of this process. We assume that the reaction can be described
by a first order rate equation, where cA and cB are the number density of molecules in state A
and B:

dcA(t)

dt
= −kABcA(t) + kBAcB(t) (2.1)

dcB(t)

dt
= +kABcA(t) − kBAcB(t). (2.2)

Here kAB and kBA are the rate constants of the reaction and we assume that the total number
density is conserved

d[cA(t) + cB(t)]

dt
= 0. (2.3)

In equilibrium the concentrations of molecules in states A and B are time independent, ċA =

ċB = 0, and the solution of the rate equation is stationary:

kAB

kBA
=
〈cA〉
〈cB〉

. (2.4)

Here the 〈〉 denote an ensemble average. If we apply a small perturbation to the system, the
decay is described by Eq. (2.1):

d∆cA(t)

dt
= −kAB∆cA(t) + kBA∆cA(t), (2.5)
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where we have used Eq. (2.3) and Eq. (2.4) and defined ∆cA(t) = cA(t) − 〈cA〉. The solution is :

∆cA(t) = ∆cA(0) exp(−t/τ), (2.6)

where τ = (kBA + kAB)
−1 is the reaction time constant. Using Eq. (2.4) we can rewrite it as:

τ =
〈cB〉
kAB

, (2.7)

where we have normalized the total number density cA + cB = 1. cA and cB are therefore the
probabilities that a given molecule is in state A or B.

2.2 Microscopic description

In the case of classical barrier crossing the rate constant of the reaction can be computed with
molecular simulations. To see this we need to write down a microscopic expression for the
rate constant kAB. This is done in the framework of linear response theory. In what follows
we present only the essentials of the derivation. For more details see Ref. [7]. First we need a
reaction coordinate q, which measures how far the reaction has progressed. In general q can be
a complicated function of the coordinates of all particles. As q is increased the system is driven
from state A to state B. The free energy F(q) as a function of q first increases, goes through a
maximum at q∗, and then starts to decrease. We now apply a small external perturbation to the
system which changes the concentration of the molecules in state A (and B equivalently):

cA → cA + ∆cA. (2.8)

This perturbation is achieved by adding a term to the Hamiltonian H0 of the system, that for
example lowers the potential energy for all states with q < q∗ relative to those with q > q∗:

H = H0 − λgA(q− q∗). (2.9)

Here λ is the strength of the perturbation and gA is the perturbation function. In the following
we assume that the perturbation function gA(q − q∗) varies smoothly from 1 to 0 in the barrier
region, and is 1 in state A and 0 in state B. With this definition the average value of gA is simply
equal to the probability of finding the system in state A and we also note that

∆cA = 〈cA〉λ − 〈cA〉 = 〈gA〉λ − 〈gA〉, (2.10)

where 〈〉λ is the ensemble average with the Hamiltonian H in Eq. (2.9). This identification is
possible, because by definition cA and gA may differ only in the barrier region, where the system
does not spend much time. In the limit of a small perturbation λ→ 0we can use linear response
theory to describe the relaxation process. Onsager’s famous regression hypothesis says that
the relaxation of the macroscopic system is governed by the same laws as the regression of the
spontaneous microscopic fluctuations of the system. If we switch off a perturbation gA at time
t = 0 the concentration cA will relax to its equilibrium value as follows:

∆cA(t)

∆cA(0)
=
〈∆gA(0)∆cA(t)〉
〈∆gA(0)∆cA(0)〉

=
〈∆gA(0)∆gA(t)〉
〈∆gA(0)∆gA(0)〉

, (2.11)

where we have used Eq. (2.10). The basic idea of finding a microscopic expression for the rate
constant kAB is based on the identification of Eq. (2.11) with Eq. (2.6). However one needs to be
careful, as for very short times (such as the average time that the system spends in the barrier
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region), one should not expect the auto-correlation function to relax exponentially. Only at
times that are long compared to typical barrier-crossing times this should be correct. For times t
much larger compared to molecular times but still much shorter than the regression time τ, the
reaction rate is given by

kAB =
〈q̇(0)∂qgB(0)gB(t)〉

〈cA〉
, (2.12)

where we have defined a function gB = 1 − gA. Here the right side of the equation explicitly
depends on time, whereas kAB does not. Therefore the above expression is only valid after a
transient time, where the system relaxes to its steady state and reaches a plateau value. The
expression above is general for the calculation of rate constant. It is still necessary to rewrite it
in a form that is convenient for a numerical calculation. In particular the choice of the pertur-
bation function gA turns out to be important for the efficiency of the numerical calculation. In
the following we show the well-known Bennett-Chandler expression for the rate and a revised
version of it that is particularly efficient for diffusive barrier crossing. It should be stressed that,
apart from computational efficiency, both expressions yield identical results. The expressions
differ only in the choice of gA.

2.3 Bennett-Chandler approach

If we use for the perturbation function gA = Θ(q − q∗) the Heaviside function, we get the
Bennett-Chandler expression for the rate [8]:

kAB =
〈q̇(0)δ(q(0) − q∗)Θ(q− q∗)〉

〈Θ(q∗ − q)〉
. (2.13)

In practice it is more convenient to write the rate in a slightly different form. We multiply
Eq. (2.13) by 〈δ(q− q∗)〉/〈δ(q− q∗)〉 to get:

kAB =
〈q̇(0)δ(q(0) − q∗)Θ(q− q∗)〉

〈δ(q∗ − q)〉
× 〈δ(q

∗ − q)〉
Θ(q− q∗)

. (2.14)

The first term on the right hand side describes the average flux over the top of the barrier. In
a molecular simulation one needs to compute the product of the derivative of the generalized
velocity q̇ at t = 0, multiplied by the probability that the system is at point q∗ at time t = 0, and
this is then multiplied by one if the system ends up in state B or zero otherwise. As the barrier is
usually much higher than the thermal energy kBT , it is not possible to get an good estimate for
the average flux using a conventional molecular simulation, since the statistics would be very
poor. Rather one has to use constrained dynamics or a biased Monte Carlo scheme to generate
a sequence of configurations at the transition state.

In the present thesis, we use biased Monte Carlo sampling to generate an ensemble at the top
of the barrier. The implementation of this biasing scheme is straightforward and will be shown
later in section 4.1.4.

The second term on the right hand side of Eq. (2.14) is the probability density of finding the
system at the top of the barrier divided by the probability of finding the system in state A:

〈δ(q∗ − q)〉
Θ(q− q∗)

=
exp(−βF(q∗))∫q∗

0 dq exp(−βF(q))
, (2.15)

where β = 1/kBT . This is an equilibrium quantity that can be computed with a Monte Carlo
simulation. However as the probability is very small one needs to use biased sampling.
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2.4 Diffusive barrier crossing

The Bennett-Chandler expression for the rate constant for classical barrier crossing is widely
used in numerical simulations. However it becomes inefficient for diffusive barrier crossing.
The reason is that it prepares the system far from the steady state and the relaxation process for
diffusive barrier crossing can be very slow. Furthermore, it uses the noisy Θ−function to detect
whether the system is in state A or B. The result is a poor statistical accuracy. In an improved
version of this scheme [9] Ruiz-Montero et al. used a perturbation function which prepares the
system closer to the steady state and also replaces the detector function by a much smoother
function. The expression for the rate constant then has the following form [9]:

kAB =

∫∞
0
dt〈q̇(0)q̇(t) exp[β{F(q(t)) − F(q(0))}]〉P

N ′〈P〉
N2〈cA〉

with (2.16)

N =

∫qB
qA

dq exp(βF(q)) and

N ′ =

∫qB
qA

dq exp(2βF(q)) and

P(q) =
exp(2βF(q))

N ′
.

Here qA and qB are the values of the reaction coordinate in states A and B. The index 〈...〉P
indicates, that the ensemble average is biased by the distribution function exp(2βF(q)). The
function 2βF(q) acts as a biasing potential which forces the system to sample at the top of the
barrier. The term 〈...〉P is a kinetic factor which can be computed in a molecular dynamics
simulation. If we compare this factor with Eq. (2.14), we see that the starting points of the
trajectories are no longer exactly constrained to the top of barrier. They are generated by the
distribution that is proportional to exp(−βF(q))× exp(2βF(q)) = exp(βF(q)).

The calculation of the rate constant is then again split into two parts. First one computes the
static termN ′〈P〉/N2〈cA〉. The static term can be computed in a biased Monte Carlo simulation.
The average 〈P〉 is proportional to the probability density of finding the system at the top of
the barrier. The quantities 〈P〉,N and N ′ can all be computed once F(q) has been chosen. Then
the kinetic term can be computed in a molecular dynamics simulation. In practice it may be
convenient to generate an ensemble of configurations at the top of the barrier using a biased
Monte Carlo simulation. Each configuration is then the starting point of a molecular dynamics
trajectory and one measures the reaction coordinate q as a function of time.

It should be stressed that the above expression is valid for any choice of F(q). Even if we
have only a rough estimate of the free energy barrier the rate constant can be computed. It
is also not necessary that the barrier crossing be truly diffusive. Note also that the function
exp[β{F(q(t)) − F(q(0))}] decreases rapidly once the system moves out of the barrier region.
This means that the main contribution to the average will come from trajectories close to the top
of the barrier. If we approximate the top of the barrier by a parabolic function, and if the mean
free path is much shorter than the width of the barrier, than Eq. (2.16) reduces to the diffusive
limit:

kAB ≈ D
√

|F ′′|

2πkT

ρeq(q
∗)

〈cA〉
, (2.20)

where the diffusion constant D is defined by the Green-Kubo relation:

D ≡
∫∞
0
dt〈q̇(0)q̇(t)〉. (2.21)
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Moreover we used the fact that 〈P〉 = (1/
√
2)ρeq(q

∗), where ρeq(q∗) = ρA exp(−βF(q∗)) is the
equilibrium density at the top of the barrier, and ρA is the number density of state A.

In nucleation it is necessary to think of cA as the probability that the system is in stateA. Note
that the diffusion coefficient results from the correlation function of the reaction coordinate and
therefore in nucleation, where our reaction coordinate is the size of a cluster, it is related to the
attachment rate of particles to the critical cluster. The above expression is then identical with
the expression for the steady state nucleation rate from the classical theory of nucleation, which
we will derive in section 3.1.





3
Classical theory: Steady-state nucleation

In this chapter we first discuss classical nucleation theory (CNT): the simplest and most widely
used theory that describes a nucleation process. The present form was developed in the first half
of the 20th century. As early as the end of the 19th century, J. W. Gibbs [10,11] showed that, due to
the work required to form an interface between the new phase and its parent phase, a nucleus of
the new phase can only grow after it reaches a critical size. In the 1920’s Volmer and Weber [12]
initiated a kinetic theory for the formation of a nucleus. This theory was further developed by
Faruas [13] and subsequently by Becker and Döring [14], Zeldovich [15] and Frenkel [16]. In
our discussion of CNT we follow Kelton [17]. We extend the thermodynamic expression for
the nucleation barrier to a multicomponent system and discuss the thermodynamics of curved
interfaces.

3.1 Kinetics

Consider a liquid with a given distribution Nn of clusters, where Nn is the number of clusters
of size n. We are interested in the change in cluster size distribution due to an abrupt change
of the pressure or density of the liquid. The transient behavior can be described by a set of
coupled rate equations for the number densities of the clusters. However, in order to do this
one has to make a couple of assumptions. We assume that the mechanisms by which a cluster
can grow or shrink are the attachment and detachment of single molecules. This assumes that
we have a method to identify a cluster and to assign a size to it. Furthermore, events where
pre-existing clusters collide and fuse, or where a cluster splits into two or more smaller cluster
are ignored. In addition we assume that the events by which a cluster gains or loses particles
are not correlated, or in other words, that there are no correlations between successive events.
The rate equations for the time-dependent cluster density Nn then have the following form:

dNn

dt
= f+n−1Nn−1(t) − b−

nNn(t) − f+nNn(t) + b−
n+1Nn+1(t), (3.1)

where f+n is the forward rate for the attachment of particles to a cluster of size n and b−
n the

corresponding backward rate. We can define a flux kn(t) or net rate at which clusters of size n
become clusters of size n+ 1:

kn(t) = f+nNn(t) − b−
n+1Nn+1(t). (3.2)

In the steady state the flux is constant and equal for all sizes:

k = f+nNn(t) − b−
n+1Nn+1(t) = f+n+1Nn+1(t) − b−

n+2Nn+2(t) = ... (3.3)
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In the following we want to solve this equation. After the abrupt change it is generally assumed
that after a transient time τ, during which the cluster size distribution changes, a steady state
is reached in which there is a continuous flux of monomers to larger cluster sizes. However
the cluster size distribution does not change any more and Nn(t) is time independent. The
liquid is, due to the very small steady state flux, in a kind of quasi equilibrium, where for
small cluster sizes n � ncrit, where ncrit is the critical cluster size, the steady state cluster size
distribution is almost equal to the equilibrium Boltzmann distribution: Nssn ≈ N

eq
n . However

for large cluster sizes n� ncrit the steady state cluster size distributionNssn → 0 vanishes while
the corresponding Boltzmann distribution starts to increase and is much larger: Nssn � N

eq
n .

Making use of the fact that there is no net flux in equilibrium: f+nN
eq
n − bn+1N

eq
n+1 = 0 or b−

n =

f+nN
eq
n /N

eq
n+1 we can eliminate the backward rate from Eq. (3.1):

k = f+nN
eq
n

(
Nn

N
eq
n

−
Nn+1

N
eq
n+1

)
. (3.4)

Dividing Eq. (3.4) by f+nN
eq
n and summing both sides over cluster sizes from L � ncrit to H �

ncrit yields:

k

H∑
n=L

1

f+nN
eq
n

=

H∑
n=L

(
Nn

N
eq
n

−
Nn+1

N
eq
n+1

)
=
NL

N
eq
L

−
NH+1

N
eq
H+1

, (3.5)

as all intermediate terms on the right side cancel each other. If we make now use of the fact that
for L� ncrit: NssL ≈ N

eq
L and for H� ncrit: NssH+1/N

eq
H+1 → 0we get

k

H∑
n=L

1

f+nN
eq
n

= 1. (3.6)

It is reasonable to assume that the sum is dominated by cluster sizes close to the top of the
nucleation barrier, as there 1/Neqn has its maximum. We therefore Taylor expand the nucleation
barrier around its maximum up to quadratic order. Furthermore we assume that the attachment
rates near the maximum are constant f+n ≈ f+ncrit . If we extend the summation over ∆n =

n− ncrit from −∞ to +∞ and replace it by an integral we find the final form of the steady state
nucleation rate:

k = Zf+ncritN1 exp(−∆G(ncrit)/kBT), (3.7)

where Z =
√

|∆G(ncrit) ′′|/2πkBT is the Zeldovich factor. Here we have already made use of the
fact that the equilibrium cluster size distribution at the top of the nucleation barrier is given by
the Boltzmann factor: Neqncrit = N1 exp(−∆G(ncrit)/kBT). The only difference in the steady state
nucleation rate compared to the solution one gets if the back flux is set to zero and the Nn are
set to the equilibrium distribution, is the Zeldovich factor.

The steady state nucleation rate can therefore be interpreted as the product of the proba-
bility that a critical nuclei is formed: P(ncrit) = exp(−∆G(ncrit)/kBT), times the number of
monomers, times the rate with which a critical nuclei grows, times the Zeldovich factor, which
takes care of the fact that not all particles at the top of the nucleation barrier end up in the solid
phase, but can also recross and dissolve again.

We can also make a simple estimate for the attachment rate of particles to the critical cluster.
To this end we multiply the number of monomers available at the surface of the nuclei, which
is proportional to n2/3crit, with a typical transition rate of these particles to become part of the
nucleus. This transition rate is proportional toDS/λ2, whereDS is a self-diffusion coefficient and
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λ a typical distance over which the diffusion takes place - of the order of the particle diameter.
The attachment rate of particles to the critical cluster is then given by:

f+ncrit =
24DSn

2/3
crit

λ2
. (3.8)

3.2 Nucleation barrier

Let us consider two systems. System (I) contains the homogeneous, metastable phase β. System
(II) contains the parent phase β with a nucleus of phase α. The height of the nucleation barrier
can be computed in several ways, depending on the thermodynamic variables that we keep
fixed. For instance, for a system with fixed number of particles N at constant pressure p and
temperature T , the nucleation barrier is given by the difference in Gibbs free energy between the
states II and I. In order to compute this barrier we first evaluate the difference in the internal
energy

∆U = UII −UI. (3.9)

The internal energy of system I is given by

UI = T ISI − pIVI + µIN, (3.10)

where S is the entropy, VI the volume and µI the chemical potential of system I. As state II is
also in equilibrium, albeit it an unstable one, the chemical potential is constant throughout the
system - even though the system itself is inhomogeneous. The internal energy of system II is
given by

UII = T IISII − pIIαV
II
α − pIIβV

II
β + γA+ µIIN

= T IISII + (pIIβ − pIIα )VIIα − pIIβV
II + γA+ µIIN (3.11)

We consider the situation that the nucleus is formed at constant pressure and temperature. In
that case pI = pIIβ = p, T I = T II = T and µI = µII = µ. The last equality follows because the
chemical potential in the parent phase is a function of p and T only. The difference in the internal
energies of systems I and II is then given by

∆U = T∆S+ (p− pIIα )VIIα + γA− p∆V, (3.12)

where ∆S = SII − SI and ∆V = VII − VI. Note that the terms involving the chemical potentials
drop out of the expression for ∆U. The expression for the nucleation barrier then becomes

∆G = ∆U+ p∆V − T∆S

= (p− pIIα )VIIα + γA. (3.13)

This equation holds for every dividing surface. Moreover we did not make any approximations
concerning the compressibility of either phase, nor concerning the interfacial free energy. If we
choose the surface of tension to be the dividing surface (see appendix 3.3), then we can use the
Laplace equation (∆p = 2γS/RS) to express the height of the barrier as

∆G =
4

3
πR2SγS

=
2

3
π∆pR3S. (3.14)
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III

Phase (β) Phase (α)

Phase (β)

Figure 3.1: Formations of a nucleus of a stable phase α in a metastable phase β. The nucleation
barrier is given by the free energy difference of the two systems.

In what follows it will be convenient to express the surface tension γS in terms of the barrier
height ∆G and the Laplace pressure ∆p

γS =

(
3

16π

)1/3
∆G1/3∆p2/3. (3.15)

In the following chapters we will use this equation to calculate the surface tension from the
measured barrier height and the Laplace pressure.

In order to derive the expression from CNT for the barrier height, we continue with equation
Eq. (3.13). If we make use of the Gibbs-Duhem relation for a isothermal variation of the pressure
in system II and assume in addition that the fluid is incompressible (ρα = ρβ) we get

µIIα (pIIα ) − µIIα (pIIβ ) =
pIIα − pIIβ

ρα
. (3.16)

Using this relation Eq. (3.13) becomes

∆G = [µIIα (pIIα ) − µIIα (pIIβ )]Nα + γA, (3.17)

where Nα is the number of particles in the parent phase α. As the chemical potentials of the
parent phase and the nucleus are the same µIIα (pIIα ) = µIIβ (pIIβ ), we retrieve the CNT expression
the nucleation barrier

∆G = ∆µNα + γA, (3.18)

where ∆µ = µIIα (pIIβ ) − µIIβ (pIIβ ) is the difference in chemical potential between the two phases at
pressure pβ. Assuming that the nucleus is spherical A = 4πR2, the barrier height is given by

∆G∗ =
16π

3

γ3

ρα∆µ2
(3.19)

while the critical radius is
R∗ =

2γ

ρα∆µ
, (3.20)

see also Fig. 1.1.



3.2 Nucleation barrier 19

3.2.1 Multicomponent system

It is straightforward to generalize the expression for the nucleation barrier from CNT to a multi-
component system. The internal energies UI and UII are given by Eqs. (3.10),(3.11), but we have
to replace the term of the chemical potential by a sum over all species

∑n
i=1 µiNi. We should

note that the general expression for the barrier height Eq. (3.13) is the same for a multicompo-
nent system, as all terms including the chemical potentials drop out. We stress that for every
component the chemical potentials in the parent phase and in the critical nuclei are the same
µIi = µIIi = µi. In the absence of the Laplace pressure, the chemical potentials in phase α would
be lower than those in phase β. The effect of the Laplace pressure is to compensate this differ-
ence for every component i. At the first sight, it would seem that the computation of ∆p is an
intractable problem for a multicomponent system - to satisfy the condition that µαi = µ

β
i for all

i it is not enough to compress phase α; we should also change its composition. The situation is
greatly simplified if we make use of the semi-grand canonical ensemble. In this ensemble, the
independent variables that describe the state of an n-component system are the temperature T ,
the pressure p, the total number of particles N and the set of n − 1 differences in the chemical
potential ∆µi between a reference species, say i = 1 and all other species i 6= 1. The number
of components n can be infinite. At coexistence the chemical potentials of all species i in the
two phases are equal µβi = µαi . This means in the semi-grand ensemble that the temperature
and pressure as well as the reference chemical potential µ1 and all the ∆µi are equal. Now we
consider what happens if we supersaturate the parent phase by compression. In the semi-grand
ensemble we perform this by increasing p, while keeping T and all ∆µi constant. Note that this
does not correspond to the experimental route for supersaturation as there the composition of
the system cannot change. In this case all ∆µi change by different amounts, and it is precisely
this factor that complicates the analysis in multicomponent systems. Suppose that we have
compressed the system up to a pressure pβ, where µ1 and all µi increased by an amount ∆µβ.
An equal compression of phase α leads to an increase ∆µα for all species. Obviously ∆µα is less
than ∆µβ because beyond coexistence phase β is metastable. However we can compress phase
α to a higher pressure pα such that

∆µα(pα) = ∆µβ(pβ). (3.21)

Thus, working in the semi-grand ensemble we have achieved equality of the chemical potentials
of all species in the multicomponent mixture. In homogeneous nucleation it is the Laplace
pressure that ensures that the chemical potentials of all species are equal and we can make
the following identification

∆p = pα − pβ. (3.22)

Note also that only after we have determined the pressure pα, the density and the composition of
phase α can be measured. To solve Eq. (3.21) we can use the following thermodynamic relation

∂µ1

∂p
=
V

p
, (3.23)

which is just the combination of the Gibbs-Duhem relation and the change of the Gibbs free
energy for isothermal compression. We can then write Eq. (3.21) as∫pβ+∆p

pcoex

〈V(p)〉αdp =

∫pβ
pcoex

〈V(p)〉βdp or (3.24)

∫pβ+∆p

pcoex

〈V(p)〉αdp = ∆µβ(pβ) (3.25)
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In practice to determine the Laplace pressure one measures in a semi-grand simulation the aver-
age volume V as a function of pressure in both phases. Integrating the average volume over the
pressure from coexistence pcoex to pβ yields the chemical potential differences in both phases
∆µβ and ∆µα. Using Eq. (3.25) one can determine the Laplace pressure by continuing the in-
tegration over phase α until the chemical potential difference is equal to that of phase β. The
procedure in a one component system is the same, one only uses the NpT− ensemble.

3.3 Appendix: Surface tension of a curved surface

3.3.1 General definition of a surface tension

Let us consider a system with two phases β and α at coexistence. The two phase equilibrium
is characterized by equality of temperature Tα = Tβ, pressure pα = pβ and chemical potential
µα = µβ in the bulk phases. However, the density profile in the interface region varies continu-
ously between the bulk densities of the two phases. This density variation gives rise to an extra
contribution in the thermodynamic functions, which need to include the work γA to create the
surface area A, where γ is the surface tension. If we assume that this system has a fixed number
of particles N, at constant volume V and temperature T , the Helmholtz free energy is given by

F = −ST − pV + γA+ µN, (3.26)

where S is the entropy and µ the chemical potential of the system. The thermodynamic defini-
tion of the surface tension is then given by

γ =

(
∂F

∂A

)
N,V,T

. (3.27)

Following Gibbs we now introduce a dividing surface of zero width in the interface region,
which establishes a boundary between the two bulk phases. The position of the dividing surface
is usually located in the transition zone and the volumes of the two phases are fixed V = Vα+Vβ.
The idea of Gibbs was that any extensive thermodynamic quantity can be written as a sum of
bulk contributions and a contribution which is assigned to the dividing surface. Examples are
the total number of particles in the system N = Nα + Nβ + NS or the Helmholtz free energy
F = Fα + Fβ + FS. Here the index S indicates the contribution from the dividing surface. For a
planar interface the surface tension does not depend on the location of the dividing surface, as
the surface area does not change. For a spherical interface, as we will have in nucleation, this
is not the case. The position of the dividing surface determines not only the volume of the two
bulk phases, but also the interfacial area.

3.3.2 Curved surfaces

Let us consider a spherical nucleus inside a fixed volume V , containing N particles at tempera-
ture T , see Fig. 3.2. We choose a spherical dividing surface with radius R and the corresponding
volumes of phases α and β are

Vα =
4π

3
R3, Vβ = V −

4π

3
R3. (3.28)

The Helmholtz free energy of this system is

F = −ST − pαVα − pβVβ + 4πR2γ+ µN, (3.29)
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Figure 3.2: Sketch of a spherical interface. For radii R < Rα or R > Rβ the densities are those of
the corresponding bulk phases. Radii Rα < R < Rβ constitute the transient region. In this area
we define a dividing surface Rs, which corresponds to the surface of tension.

where pα and pβ are the pressures in the two bulk phases and 4πR2γ is the surface energy for a
given dividing surface. Note that the definition of a dividing surface does not affect the physical
parameters in the system, e.g. F, pα, pβ, µ,N. Therefore for a small (mathematical) displacement
of the dividing surface we get from Eq. (3.29)

[dF] = −∆p4πR2[dR] + 8πRγ[dR] + 4πR2[dγ], (3.30)

where we defined the Laplace pressure ∆p = pα − pβ. We denote by the differential in square
brackets a mathematical displacement of the dividing surface. Differentiation with respect to R
leads us to the generalized Laplace equation

∆p =
2γ

R
+

[
dγ

dR

]
. (3.31)

The Laplace equation relates the pressure difference between the two phases to the surface ten-
sion. The pressure difference arises to ensure equality of the chemical potentials. If the two
phases are in equilibrium, be it stable or metastable, the pressure in the droplet of phase α is
higher than that of phase β. If we choose the dividing surface such that[

dγ

dR

]
R=Rs

= 0, (3.32)

then Eq. (3.31) reduces to the standard Laplace equation

∆p =
2γs

Rs
, (3.33)

where γs = γ[Rs] is called the surface of tension. We can now easily obtain the complete de-
pendence of γ on R. Therefore we write the generalized Laplace equation Eq. (3.31) in a slightly
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Figure 3.3: Dependence of the surface tension on the radius of the dividing surface Eq. (3.36).
The surface tension has a minimum at the surface of tension.

different form

∆pR2 =

[
d

dR

]
R2γ. (3.34)

Integration over R from Rs to an arbitrary R gives

γ(R) =

(
Rs

R

)2
γs +

∆p

3

(
R3

R2s
− Rs

)
. (3.35)

Using Eq. (3.33) we arrive at

γ(R) = γs

{(
Rs

R

)2
+
2

3

[(
R

Rs

)3
− 1

]}
. (3.36)

From Fig 3.3 we see that the surface of tension is at the minimum. The surface tension at any
other position in the interface region will be higher.



4
Quantitative prediction of a nucleation
rate: A computational approach

The aim of this chapter is to illustrate in some detail how a nucleation rate can be calculated
numerically. From Eq. (2.20) or Eq. (3.7) we know that the nucleation rate has the following
form:

I = κ exp[−∆G(ncrit)/kBT ], (4.1)

where κ is the kinetic factor and ∆G(ncrit) is the free energy needed for the formation of a
critical cluster. The calculation of the nucleation rate is split into two parts. First we compute
the nucleation barrier and second we compute the kinetic factor. In the following we discuss
the procedure step-by-step using the hard sphere system as an example. We start with the
calculation of the nucleation barrier, and then move onto the kinetic factor.

4.1 Calculation of the nucleation barrier

In order to compute the free energy barrier that separates the liquid from the solid state, we
need to choose a reaction coordinate that connects the two phases. It has been shown that it is
better to use a global rather than a local reaction coordinate and we use the cluster size [18, 19].
We can then use the theory of thermodynamic fluctuations [20], which relates the probability
P(n) for the formation of a cluster of size n to the corresponding Gibbs free energy:

G(n) = constant − ln[P(n)]. (4.2)

In the following we first derive an expression for the probability distribution function P(n).
Next we discuss how clusters can be identified using local bond-order parameters, and finally
we show how we compute the equilibrium distribution function in a Monte Carlo simulation.

4.1.1 Distribution of cluster sizes in equilibrium

The distribution can be derived both macroscopically from thermodynamics, and microcopi-
cally from statistical mechanics. We describe the two approaches in turn.

Thermodynamic description

We first compute the equilibrium distribution of cluster sizes of phase α in the metastable super-
saturated phase β, see Fig. 3.1, using a thermodynamic description. To this end, we assume that
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the concentration of clusters is low enough that we can ignore interactions between them. Then
we can treat the system as an ideal mixture of clusters consisting of N1 monomers, N2 dimers,
..., Nn n-mers, where Nt =

∑∞
i=1Ni is the total number of clusters. Before we can calculate

the cluster size distribution, we recall some thermodynamic relations for an ideal mixture. The
Gibbs free energy of this system is given by

G(P, T) =

∞∑
i=1

Niµi(P, T), (4.3)

where µi(P, T) is the chemical potential of a cluster of size i at pressure P and temperature T . We
should also note that after mixing, each n-mer exerts a partial pressure pn, such that

∑
pn = P.

The chemical potential of a cluster of size n is then given by

µn(pn, T) = µn(P, T) + kT ln[pn/P] (4.4)
= µn(P, T) + kT ln[Nn/Nt], (4.5)

where we used the fact that the ratio of the partial pressure pn and the pressure P is equal to the
ratio Nn/Nt (Raoult’s law). Combining Eq. (4.3) with Eq. (4.5) yields

G(P, T) =

∞∑
n=1

Nn{µn(P, T) + kT ln[Nn/Nt]} (4.6)

=

∞∑
n=1

Nnµn(P, T) + TSmix, (4.7)

where Smix = −k
∑∞
n=1Nn ln[Nn/Nt] is the entropy of mixing the clusters.

We can now calculate the difference in Gibbs free energy between system I, containing N
nuclei of size one, and system II, containing one nucleus of size n and N− n nuclei of size one.
Using Eq. (4.3) the difference in Gibbs free energy between the two systems is

∆G(n) = GII(P, T) −GI(P, T) = µn(P, T) − nµ1(P, T). (4.8)

We can now obtain the cluster size distribution from the equilibrium condition µn(pn, T) =

nµ1(p1, T). Insertion of Eq. (4.5) in Eq. (4.8) yields

∆G(n) = kT ln[Nn/Nt] − kT ln[(N1/Nt)
n]. (4.9)

The probability for the formation of a nucleus of size n is then just given by

exp[−∆G(n)/kBT ] =
NnN

n
t

NtN
n
1

=
Nn

N1
, (4.10)

where we have used the fact that the number of monomers is almost equal to the total number
of nuclei N1 ≈ Nt. As the monomers are often in large excess, we can also approximate N1 by
N to get

P(n) =
Nn

N
. (4.11)

Statistical mechanical description

We turn now to a statistical mechanical derivation of the cluster size distribution. The derivation
is based on Refs. [18,19,21]. The partition function of a system containingN particles in a volume
V at temperature T is given by

Q(N,V, T) =
1

Λ3NN!

∫
drN exp[−βU(rN)]. (4.12)
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HereU(rN) is the potential energy of the configuration with coordinates rN andΛ = h/
√
2πmkT

is the thermal de Broglie wavelength. Now we assume that we have a criterion, that enables us
to identify a cluster in our system. We then define a function wn(rn) such that

wn(rn) =

{
1 If all n particles belong to the cluster
0 otherwise.

(4.13)

In addition, we define a function wrest(rN) =
∏N
i=n+1[1 − wn+1(rn, ri)], which ensures that all

other particles do not belong to the cluster

wrest(rN) =

{
1 if no other particle belongs to the cluster
0 if any other particle belongs to the cluster.

(4.14)

We can then define a partition function for a subsystem, that contains at least one n-particle
cluster

Qn(N,V, T) =
1

Λ3nn!

1

Λ3(N−n)(N− n)!
×∫

drn
∫
drN−nwn(rn)wrest(rN) exp[−βU(rn, rN−n)], (4.15)

where we have used the fact that there are N!/(n!(N − n)!) ways to select an n-particle clus-
ter. Note that the remaining particles may still form additional clusters of size n. The product
wn(rn)wrest(rN−n) = 1, only if all rn particles belong to a cluster and all the other rN−n do
not. We now rewrite the potential energy of the system as the product of contributions, which
come from the particles in the cluster Un(rn), times the contribution from all other particles
UN−n(rN−n), times the contribution from the interactions between particles in the cluster and
the others Un,N−n(rn, rN−n). The partition function then becomes

Qn(N,V, T) =
1

Λ3nn!

1

Λ3(N−n)(N− n)!

∫
drN−n exp[−βUN−n(rN−n)]×∫

drnwn(rn)wrest(rN) exp[−βUn(rn)] exp[−βUn,N−n(rn, rN−n)]. (4.16)

We can now define effective potentials for all the particles in the cluster

U ′n = Un − kT ln[wn], (4.17)

and the interaction between cluster particles and the others

U ′n,N−n = Un,N−n − kT ln[wrest], (4.18)

yielding

Qn(N,V, T) =
1

Λ3(N−n)(N− n)!

1

Λ3nn!

∫
drN−n exp[−βUN−n(rN−n)]∫

drn exp[−βU ′n] exp[−βU ′n,N−n]. (4.19)

Multiplication of the right side by Q(N− n,V, T)/Q(N− n,V, T) gives

Qn(N,V, T) =
1

n!Λ3n
Q(N− n,V, T)

∫
drn〈exp[−βU ′n,N−n]〉 exp[−βU ′n], (4.20)
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where we have defined a potential of mean force

〈exp[−βU ′n,N−n]〉 =

∫
drN−n exp[−βU ′n,N−n] exp[−βUN−n(rN−n)]

(N− n)!Λ3(N−n)Q(N− n,V, T)
. (4.21)

It is the average potential the particles in the cluster feel due to the interactions with all other
particles. We define now the partition function of an n-mer as

qn(V, T) =
1

n!Λ3n

∫
drn〈exp[−βU ′n,N−n]〉 exp[−βU ′n]. (4.22)

Note that qn(V, T, µ) is the partition function of a cluster in which the interaction with the re-
maining (N − n) molecules is included in the factor 〈exp[−βU ′n,N−n]〉. The interaction with
possible other clusters is also included as such clusters can still exist in the remaining (N − n)

particles. The partition function Eq. (4.20) can then be written as

Qn(N,V, T) = Q(N− n,V, T)qn(V, T). (4.23)

The probability to find at least one cluster of size n is then given by

Pn =
Qn(N,V, T)

Q(N,V, T)
=
Q(N− n,V, T)

Q(N,V, T)
qn(V, T). (4.24)

As the free energy of the system is given by F = −kT ln[Q], the above equation becomes

Pn = qn(V, T) exp[−β(F(N− n,V, T) − F(N,V, T))]. (4.25)

Using

F(N− n,V, T) ≈ F(N,V, T) −

(
∂F

∂N

)
V,T

n (4.26)

it follows that
Pn = qn(V, T) exp[+βµn]. (4.27)

The problem with this definition of the probability is that it depends on the volume V . To see
this we rewrite Eq. (4.22)

qn(V, T) =
1

n!Λ3n

∫
drn exp[−βUeff], (4.28)

where we defined an effective potential Ueff = 〈U ′n,N−n〉+U ′n. Rewriting the partition function
in terms of the center of mass of the cluster yields

qn(V, T) =
n3

n!Λ3n

∫
dRCM

∫
dr ′n−1 exp[−βUeff]. (4.29)

Performing the integral over the center of mass and defining a partition function of the cluster
in terms of the internal coordinates we get

qn =
V

Λ3n
× qinternaln , (4.30)

where Λn = h/
√
2πnmkT is the de Broglie wavelength of the cluster and

qinternaln =
n3/2

Λ3(n−1)n!

∫
dr ′n−1 exp[−βUeff]. (4.31)
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It is better to define an intensive probability distribution

Pn

N
=

1

ρΛ3n
qinternaln exp[−βµn], (4.32)

where ρ is the number density of the system. For rare clusters we can write the probability as

Pn = pn(1) + pn(2) + ... ≈ pn(1), (4.33)

where pn(i) is the probability that there are exactly i clusters of size n. If we assume that the
formation of different clusters is uncorrelated pn(i) = [pn(1)]i, then we can neglect higher order
terms provided the probabilities are small, pn(1)� 1. As the average number of clusters of size
n is equal to

Nn = 1pn(1) + 2pn(2) + 3pn(3) + ... (4.34)

we can write in the case of rare clusters

Pn

N
=

1

ρΛ3n
qinternaln exp[−βµn] ≈ Nn

N
(4.35)

We note that this is a classical result and should not depend on Planck’s constant h, and, in fact
it does not, as the ideal gas part of the chemical potential

µ = µex + kT ln[Λ] (4.36)

cancels the h in Λn.
The main point of Eq. (4.35) is that we can write down a microscopic expression for the

equilibrium number of n-cluster if this number, which is equal to the probability of finding one
cluster of size 1, is much less than one.

4.1.2 Identification of solid clusters: Local bond-order analysis

For the identification of solid-like particles we use a local bond-order analysis based on that of
ten Wolde [18]. The advantage of this analysis is that it is only sensitive to the overall degree of
crystallinity in the system, but independent of any specific crystal structure. This requirement
is important as otherwise we would apply an external biasing potential, which could force the
system to crystallize in a specific structure. A second advantage is that these bond-order param-
eters can be constructed so as to be independent of the reference frame.

The local bond-order parameters are a measure of the local structure around a particle and
are constructed as follows. First we define a (2l + 1) dimensional complex vector with the
components

qlm(i) =
1

Nb(i)

Nb(i)∑
j=1

Ylm(r̂ij), (4.37)

where the sum goes over all neighboring particlesNb(i) of particle i. Neighbors are usually de-
fined as all particles that are within a given radius rq around particle i. Ylm(r̂ij) are the spherical
harmonics evaluated for the normalized direction vector r̂ij between the neighbors. The orien-
tation of the unit vector r̂ij is determined by the polar and azimuthal angles θij and φij. The
rotationally invariant local bond-order parameters are then defined as follows

ql(i) =

(
4π

2l+ 1

l∑
m=−l

|qlm(i)|2

)1/2
(4.38)
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Figure 4.1: Typical distribution functions of the local bond-order parameters from Monte Carlo
simulations in a hard-sphere system. Here the cutoff radius rq for the local environment of a
particle is chosen to be 1.4σ, where σ is the hard-core diameter. This means that we included
the first, and in some cases also the second nearest neighbors.

and

wl(i) =
ŵl(i)

(
∑l
m=−l |qlm(i)|2)3/2

(4.39)

with

ŵl(i) =
∑

m1,m2,m3
m1 +m2 +m3 = 0

(
l l l

m1 m2 m3

)
qlm1(i)qlm2(i)qlm3(i). (4.40)

The term in brackets in Eq. (4.40) is the Wigner-3j symbol. These order parameters are sensitive
to the degree of orientational correlations of the vectors that join neighboring particles. In simple
liquids we expect that there are no preferred orientations around a particle and therefore the
correlations decay rapidly. In contrast, for a particle with a solid-like environment the vectors
are correlated and as result there should be a clear separation between distribution functions
for the bond-order parameter. In Fig. 4.1 we show typical distribution functions of the local
bond-order parameters one gets from Monte Carlo simulations of a hard-sphere system, under
conditions close to the coexistence point, where the liquid and the solid phase are equally stable.
The figure illustrates that there is some separation between the distribution functions obtained
from the liquid and those obtained from the solid, but the separation is never very pronounced.
Sometimes, there is a separation between the solid structures themselves, a property which we
will use later to distinguish between different solid structures. For the identification of solid-like
particles we have to choose an order parameter that is able to distinguish between the liquid



4.1 Calculation of the nucleation barrier 29

0 10 20 30 40 50
q6q6

0

0.05

0.1

0.15

0.2

D
is

tr
ib

u
tio

n
 f
u
n
ct

io
n

LIQUID BCC

HCP

FCC

Figure 4.2: Distribution functions of the dot product q6(i) · q6(j) from Monte Carlo simulations
in a hard-sphere system.

and all possible solid structures. From Fig. 4.1 we see that q6 has some of the desired properties,
as the values of the solid phases are all shifted to higher values compared to the liquid. As
mentioned above, we can enhance this separation of the distribution function by calculating the
correlation function of the vectors q6 of neighboring particles i and j

q6(i) · q6(j) =

6∑
m=−6

q6m(i) · q6m(j)∗, (4.41)

where the ∗ indicates the complex conjugate. In Fig. 4.2 we show the corresponding distribution
functions one get for the hard-sphere system. In this case we did not normalize the dot-product
to one, as it just causes additional calculations. In this case the relevant solid structures (FCC,
HCP and BCC) yield much higher values for the dot-product than the liquid. We now define two
neighboring particles i and j to be connected, if the dot-product exceeds a certain threshold, in
our case 20. By using this definition we can identify all particles in a solid to be solid-like, how-
ever also in the liquid it happens quite frequently that a particle has more than one connection.
To illustrate this, we show in Fig. 4.3 the distribution functions for the number of connections
per particle. We note that the peak for the solid structures is at 12 for FCC, HCP and around
13 for BCC. These numbers correspond to the first, or first and second nearest neighbors, which
were included in the local environment. In the case of the BCC structure the peak is slightly
shifted to lower values, which is due to the fact that the BCC structure is quite disordered. As
the BCC lattice of hard-spheres always melts, we could generate all the distribution functions
only be adding a polydispersity of 3% to the particles. Therefore it is better to apply a second
criterion for particles to be solid-like, which is a threshold to the number of connections a par-
ticle has with its neighbors. Thereby we have to consider that for a small nucleus almost all
particles are at the surface, and they need to be considered as solid-like as well. For this reason
we choose threshold values between 6 and 8. In summary we can say that this analysis provides
an unambiguous local criterion to identifying solid-like particles. Finally, we need to have a cri-
terion for identifying clusters. The criterion we applied is that if two solid-like particles are less
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Figure 4.3: Distribution functions of the number of connections per particle from Monte Carlo
simulations in a hard-sphere system.

than a certain threshold distance apart, then they belong to the same cluster. This threshold is
usually chosen between 1.5σ− 2σ.

4.1.3 Monte Carlo simulation

To calculate the nucleation barrier, we need to sample the equilibrium distribution function
for the probability P(n), see Eq. (4.2). In section 4.1.1 we derived this probability to be Nn/N,
where Nn is the number of clusters of size n in a system containing N particles, see Eq. (4.11)
and Eq. (4.35). In the previous section we illustrated how a local bond-order analysis can be
used to identify clusters in a system, which will be used for the calculation of Nn =

〈
Nn(rN)

〉
in a Monte Carlo simulation. This is the subject of this section.

In all cases we performed Monte Carlo simulations in the isobaric-isothermal (NPT) ensem-
ble. In this ensemble the average of a microscopic quantity A is given by

〈A〉NPT =

∫
dV
∫
drNA(rN) exp[−β(U(rN) + PV)]∫

dV
∫
drN exp[−β(U(rN) + PV)]

, (4.42)

where U(rN) is the potential energy of the system with particle positions rN. β = 1/(kBT) is
the reciprocal of the thermal energy, N the number of particles and P the applied pressure. In a
Metropolis Monte Carlo simulation the above ensemble average is approximated by

〈A〉NPT ≈
1

M

M∑
i=1

A(ri
N), (4.43)

whereM is the total number of measurements andA(ri
N) the value of our propertyA associated

with configuration ri
N.

In the case of crystal nucleation we need to calculate the average number of clusters of size
n and Eq. (4.43) becomes

〈Nn〉NPT ≈
1

M

M∑
i=1

Nn(ri
N). (4.44)
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Figure 4.4: Measured probability distribution P(n) from Monte Carlo Simulations in a system
of hard-spheres.

As an example we show the results from a Monte Carlo simulations in a system of hard-
spheres. In the simulations we used N = 3375 particles and applied a pressure βPσ3 = 16. At
this pressure, the liquid phase is meta stable with respect to the solid, but does not crystallize
spontaneously as the Gibbs free energy barrier between the two states is too high. The tempera-
ture T does not play a role in that system. After equilibrating the system, one could in principle
measure the cluster size distribution after every Monte Carlo move, however this would be
computationally expensive and statistics would still be poor, as the measurements are strongly
correlated. Instead we measure the cluster size distribution after one trajectory, which consists
of 20 moves per particle (plus some volume moves) in the case for the simulations in a hard-
sphere system. The total length of each simulation was 100000 trajectories. In Fig. 4.4 we show
the results for the probability distribution P(n) for the formation of a cluster of size n. From
this probability distribution we can calculate the corresponding Gibbs free energy Eq. (4.2) for
the formation of such a cluster, which is shown in Fig. 4.5. In this simulation we could measure
cluster sizes up to n = 12 particles. The formation of larger cluster was so rare that the statistical
accuracy was too poor. In order to sample larger cluster sizes we needed to apply the umbrella
sampling technique of Torrie and Valleau [22], which we describe in the next section.

4.1.4 Umbrella Sampling with parallel tempering

The umbrella sampling scheme was proposed to handle situations where important contribu-
tions to the ensemble average come from configurations whose Boltzmann factor is small, lead-
ing to poor statistical accuracy. The method is based on the idea that the ensemble average can
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Figure 4.5: Corresponding Gibbs free energy ∆G(n)/kBT = − ln[P(n)] for the formation of a
cluster of size n.

be rewritten as follows

〈A〉NPT =

∫
dV
∫
drNA(rN) exp[−β(U(rN) + PV)]W(rN)−1W(rN)∫

dV
∫
drN exp[−β(U(rN) + PV)]W(rN)−1W(rN)

(4.45)

×
∫
dV
∫
drNW(rN) exp[−β(U(rN) + PV)]∫

dV
∫
drNW(rN) exp[−β(U(rN) + PV)]

=

〈
A/W(rN)

〉
W

〈W(rN)−1〉W
, (4.46)

where we have introduced a, as yet, unspecified weighting function W(rN) = exp[−βω(rN)],
where ω(rN) is the so-called biasing potential. Instead of performing a Monte Carlo simulation
using the original Boltzmann distribution function, we now sample phase space according to
the biased distribution function exp[−βU(rN) + PV)]W(rN), which is indicated by the subscript
〈...〉W . By specifying the weighting functionW we can force the system to sample in that region
of phase space which is important to improve the statistical accuracy.

In the case of crystal nucleation we can calculate the ensemble average according to the
weighted ensemble Eq. (4.46) as follows

〈Nn〉NPT ≈
∑M
i [Nn(ri

N)/W(ri
N)]∑M

i [W(ri
N)−1]

, (4.47)

where the sum goes over all measurements M. We now need to consider the choice of the
weighting function. In section 4.1.1 we showed that the probability for the formation of a larger
cluster is so small, it can be approximated by the probability to find one cluster of a certain size
in the system, see Eq. (4.33). For this reason we can choose a bias potential that just controls
the size of the largest cluster in the system. In all cases the bias potential was chosen to be a
harmonic function of the size of the largest cluster in the system

ω[n(rN)] =
1

2
kn[n(rN) − n0]

2. (4.48)
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Figure 4.6: Examples of the cluster size sampled during one simulation. The different configura-
tions started with clusters of sizes n = 20, 50 and 110. Due to the parallel tempering technique,
swapping between different windows is possible and the configurations could sample almost
all possible cluster sizes.

The constant kn determines the range of sizes sampled in one simulation, whereas the minimum
n0 determines which cluster sizes are sampled most.

The implementation of the biasing potential in the Monte Carlo simulation is straightfor-
ward. As in the unbiased run we try to avoid calculating the size of the largest cluster after
every Monte Carlo move. Instead we perform a trajectory of a certain number of Monte Carlo
moves per particle according to the unbiased potential U(rN). We then re-calculate the cluster
size and accept or reject the whole trajectory according to the pure biasing potential exp[−β∆ω],
where ∆ω is the difference in the biasing potential after and before the trajectory. This is equiv-
alent to applying the bias potential after every trial move, but computationally much cheaper.
Intuitively, it might seem easier to sample all cluster sizes in one run, but it can be shown that
this is not the case [7], mainly because such a simulation would take too long. Instead we split
the simulation into a number of smaller simulations that were restricted to sample a sequence
of narrow, but overlapping windows of different cluster sizes n. In practice it turned out that it
is best to sample only about 15 different cluster sizes in one window, to ensure high accuracy.
This implies that the sequence of minima needed to be placed in steps of ten n0 = 10, 20, ..., up
to sizes slightly larger than critical cluster size.

In addition we implemented the parallel tempering scheme of Geyer and Thompson [23].
The main reason for using this scheme is that stacking rearrangements in the nuclei are very
slow. With the parallel tempering scheme the phase space can be sampled more efficiently. The
idea is to run all the simulations in the different windows in parallel and allow them to exchange
clusters between adjacent windows.

To illustrate this, we consider again the example of the hard-sphere system. In this case we
needed to calculate the Gibbs free energy of a cluster up to a size of about n = 170. We therefore
split the simulations into 16 windows, where the sequence of minima was placed in steps of
ten: n0 = 10, 20, ..., 160. In order to obtain the 16 starting configurations we grew clusters from
the liquid. We always started from the liquid, applying the bias potential with n0 = 10. Every
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Figure 4.7: Sequence of measured Gibbs free energies ∆Gi(n)/kBT + bi from Monte Carlo Sim-
ulations in a system of hard-spheres in different windows.

time a cluster was stabilized, the minimum n0 was increased in steps of 10. In the parallel
tempering simulation we started all simulations at the same time, but stopped them after 5
trajectories, to allow neighboring windows to exchange clusters. Before that, we need to decide
which sequence we should use to change, either the windows n0 = 10 with 20, 30 with 40, and
so on, or the sequence 20with 30, 40with 50, and so on. This was done by generating a random
number. The actual change between windows i, j is accepted according to exp[−β(wn − wo)],
where wo = ki/2(ni − n0,i)

2 + kj/2(nj − n0,j)
2 is the energy of the biasing potential before and

wn = ki/2(nj − n0,i)
2 + kj/2(ni − n0,j)

2 after the change. In practice it is more convenient to
exchange the minima of the bias potential rather than configurations. This requires much less
communication between different computer nodes. As a result, each initial configuration is able
to reach in principle all cluster sizes in course of the simulation. In Fig. 4.6 we show the cluster
sizes sampled during one simulation for three configurations, which started with cluster sizes
n0 = 20, 50 and 110. The value for the constant of the bias potential was kn = k = 0.15 in all
windows. As in the unbiased run, the length of one trajectory was 20 moves per particle (plus
some volume moves) and in total we performed 100000 trajectories.

In Fig. 4.7 we show the results for the Gibbs free energy of a nucleus obtained from the
simulations in each window (unbiased+biased runs). The Gibbs free energies in the different
windows are determined up to a constant ∆Gi(n)/kBT + bi, where the subscript i indicates
the number of the window. In order to determine the constants bi we fitted all the free energy
estimates in the different windows to one polynomial in n. This can be done by a linear least-
square fit, where we minimize

χ =

nmax∑
n=1

{
nw∑
i=1

wi(n)[∆Gi(n) −

kmax∑
k=1

akn
k − bi]

2

}
. (4.49)

Here wi(n) = 1/σ2∆Gi(n) is the statistical weight determined by the variance σ2∆Gi(n) of the free
energy measurement and nw the total number of windows used in the simulation. The maxi-
mum order of the polynomial used was kmax = 10. The linear least-square fit can be performed
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Figure 4.8: Gibbs free energy for the formation of a cluster of n hard-spheres, after fitting the
results for the free energy in the different windows to one polynomial.

by using the algorithms in Ref. [24]. Note that by using a high-order polynomial, we do not
assume a functional form of the nucleation barrier (the barrier might be correctly described by
CNT). From the unbiased simulation we get the absolute Gibbs free energy for the formation of
a cluster of size nwith respect to the liquid state. Therefore the constant b1 is known. In Fig. 4.8
we show the final result for the calculation of a nucleation barrier in a hard-sphere system.

4.2 Calculation of the kinetic prefactor

4.2.1 General approach

We have developed a new scheme for the calculation of the kinetic factor for diffusive barrier
crossing. Traditionally the kinetic factor has been calculated using the Bennett-Chandler scheme
or a more efficient revised version by Ruiz-Montero et al., as discussed in chapter 2. The prin-
ciple of both methods is to generate a large number of independent configurations at the top of
the barrier. These configurations are then used as the starting point for an unbiased trajectory
in which one determines weather the nucleus grows and the system crystallizes, or if it shrinks.
From the number of nuclei that grow and shrink one can extract the kinetic factor. However,
in order to get a reasonable estimate one has to simulate a rather large number of trajectories.
In a more recent publication ten Wolde et al. [25] applied the approach of Ref. [9] to calculate
the rate of gas-liquid nucleation rate in a Lennard-Jones system. They used over 300 trajectories
of length about 5000 time steps in a isobaric-isothermal MD simulation and still had statistical
errors in the transmissions coefficient of about 100%. Here we use a different approach that
is more efficient for the present problem. Looking closer at the kinetic factor, κ = Zρliqf

+
ncrit

(Eq. (4.11) and Eq. (4.35)), we see that, after the calculation of the nucleation barrier, the only
quantity that we have to compute is the attachment rate f+ncrit of particles to the critical clus-
ter. The Zeldovitch factor Z is already known from the barrier calculation. In order to compute
f+ncrit , we assume that the critical cluster grows and shrinks via the diffusive attachment of sin-
gle particles. We can then define an effective diffusion constant for the change in critical cluster
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Figure 4.9: The figure shows the development of the size n of the critical cluster during one
trajectory at volume fraction φ = 0.5277. Here one block is 100 moves per particle in an NVE
Monte Carlo simulation. Note in particular the fluctuations of the cluster size about its critical
value

size:

Dattncrit =
1

2

〈∆n2crit(t)〉
t

. (4.50)

Here ∆n2ncrit(t) = [ncrit(t)−ncrit(t = 0)]2 is the mean square change in the number of particles
in the critical cluster. As the slope of this change is related to the corresponding attachment rates
via 〈∆n2crit(t)〉/t = (f+ncrit + f−ncrit)/2, and as we know that the forward and backward rates are
equal f+ncrit = f−ncrit at the top of the barrier we get

f+ncrit =
1

2

〈∆n2crit(t)〉
t

. (4.51)

This is a general expression for the calculation of the kinetic factor for diffusive barrier crossing.
It also connects the expressions from Eq. (2.20) and Eq. (3.7). Using a Molecular Dynamics
simulation one only needs to measure the change in size of the critical cluster as a function of
time. The only restriction is that, during the measurement, the critical nucleus needs to fluctuate
around its critical value. One therefore needs to run a couple of trajectories and select the data
where this is the case. In the next section we show how we applied this method to a system of
hard-sphere colloids.

4.2.2 Application to hard colloidal spheres

In principle, it is straightforward to apply the above method to the calculation of a kinetic fac-
tor for crystal nucleation. However, in the case of hard colloidal spheres one needs to have a
simulation method that generates trajectories following Brownian dynamics, and the effect of
hydrodynamic interactions also needs to be considered. Trajectories following Brownian dy-
namics could be generated using a kinetic Monte Carlo scheme proposed by Hinsen and Ci-
chocki [26]. These authors show that, in the limit of very small maximum particle displacement,



4.2 Calculation of the kinetic prefactor 37

0 2000 4000 6000 8000
Number of blocks

-200

0

200

400

600

800

A
tt

a
ch

m
e

n
t 

R
a

te
 f

+
/D

0

Figure 4.10: Attachment rate of particles to the critical cluster at volume fraction φ = 0.5277.
The attachment rate for short times is much higher than for long times. As the diffusion time of
a cluster over the nucleation barrier is in the range of the long time behavior of the attachment
rate, this value has to be used.

∆xmax → 0, the trajectories generated by the kinetic Monte Carlo simulation are stochastically
equivalent to the process described by the Smoluchowski equation. The limit ∆xmax → 0means
that simulation time would become infinitely long. However, Hinson and Cichocki also propose
an extrapolation procedure with which this limit can be approached systematically by repeating
simulations with a smaller maximum displacement. In experiments nucleation rates are usually
presented in dimensionless form kσ5/D0, where σ is the diameter of a monomer andD0 the free
diffusion coefficient. Therefore we only need to compute the ratio f+ncrit/D0. First we computed
the nucleation barrier using a biased NPT Monte Carlo simulation. From these simulations we
could determine the critical cluster size and had generated independent configurations in which
such a cluster was stabilized. We used these configurations, to perform an unbiased kinetic NVE
Monte Carlo simulation, measuring the size of the critical cluster as a function of Monte Carlo
cycles. Here one cycle is 10 trial moves per particle. In Fig. 4.9 we show such a measurement
at φ = 0.5277(P = 16). From these data we then extracted the attachment rate using Eqn. (4.51)
(see Fig. 4.10). Surprisingly, we see that the attachment rate has a different short time and long
time behavior. This implies that, at short times, the diffusion in cluster size is not a Markov
process. As the diffusion of the critical cluster over the nucleation barrier is on the time scale of
the long time behavior of the attachment rate, this is the value we have to use. To test the depen-
dence of our results on the maximum particle displacement we performed simulations for two
different values ∆xmax = 0.12σ and 0.012σ. The corresponding values for the free diffusion co-
efficients are D0 = 〈∆x2max〉/6. The ratio of the results for f+ncrit/D0 in both simulations is equal
to 4.79. Computing the long time self diffusion coefficientDLS/D0 = 〈(r(0)−r(t))2〉/6tD0 we get
a ratio in both simulations of 5.07. Therefore the difference in the results for the attachment rate
is mainly due to diffusion. In our simulations we did not follow the extrapolation procedure
for ∆xmax → 0 described in [26], as for ∆xmax = 0.012σ we are already in a limit where the at-
tachment rate has effectively reached its limiting value. We justify this by testing our approach
on the calculation of the long time self diffusion coefficient, which will be discussed later. So
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Figure 4.11: Reduced long time self diffusion coefficients DLS/D0 from Monte Carlo simulations
compared with experimental measurements. Our simulation results (large black filled circles)
are in the range of the statistical errors of the experimental studies.

far in our simulations we did not include the effect of hydrodynamic interactions, which is cer-
tainly important at high volume fractions. As proposed by Medina-Noyola [27], we corrected
for this effect by replacing the free diffusion coefficient D0 by the short time self diffusion coef-
ficient DSS. We therefore have to multiply our result by a factor α = DSS/D0. There are several
rather similar functional forms for this factor proposed in the literature. Here we used the phe-
nomenological expression (1− φ/0.64)1.17 [28], where φ is the volume fraction. As a test of our
approach, we computed the long-time self diffusion coefficient DLS. We could reproduce exper-
imental data within statistical error. The results for the long-time self diffusion coefficient are
shown in Fig. 4.11. The resulting value for the reduced attachment rate for our example was
f+ncrit/D0 = 21. For the calculation of the kinetic factor we usually performed about 5 trajec-
tories. The length of the trajectory depends on whether the cluster size fluctuates around the
critical size or not; if not the simulation is stopped. From these simulations we calculated the
attachment rate. The error estimates vary between a factor of one for the larger critical cluster
sizes and a factor of two to three for the smaller cluster sizes. In the regime of smaller critical
cluster sizes, the fluctuations in cluster size are almost on the order of the critical cluster size
and it becomes therefore more difficult to get a good estimate. To compare the efficiency of our
scheme with the previous one we need to compare the number of trajectories to run, but also
the absolute length of the trajectory itself. The latter is difficult to compare as different systems
were simulated with different algorithms. However, as the number of trajectories we used is
about two orders of magnitude fewer the power of our scheme is clear.



Part II

Application to spherical colloids





5
Prediction of absolute crystal-nucleation
rate in hard-sphere colloids

Crystal nucleation is a much-studied phenomenon, yet the rate at which it occurs remains difficult to pre-
dict. The reason is that the rate-limiting step - the formation of a so-called critical nucleus - cannot easily
be probed experimentally. Small crystal nuclei can form spontaneously in a supersaturated solution. But,
unless their size exceeds a critical value, they will dissolve rather than grow. The crystal-nucleation rate
depends on Pcrit, the (very small) probability that a critical nucleus forms spontaneously, and on κ, a
factor that measures the rate at which critical nuclei grow. Given the absence of a priori knowledge of
either quantity, classical nucleation theory [17] (CNT) is commonly used to analyse crystal nucleation
experiments, with the unconstrained parameters adjusted to fit the observations. This approach yields
no first principles prediction of absolute nucleation rates. Here we approach the problem from a different
angle, simulating the nucleation process in a suspension of hard colloidal spheres, to obtain quantitative
numerical predictions of crystal nucleation rates. We find large discrepancies between the computed nu-
cleation rates and those deduced from experiment [3,29,30]: the best experimental estimates of Pcrit seem
to be too large by several orders of magnitude.

5.1 Introduction

The probability (per particle) that a spontaneous fluctuation will result in the formation of a
critical nucleus, depends exponentially on the free energy ∆Gcrit that is required to form such
a nucleus:

Pcrit = exp(−∆Gcrit/kBT), (5.1)

where T is the absolute temperature and kB is Boltzmann’s constant. According to CNT the total
free energy of a crystallite that forms in a supersaturated solution contains two terms: the first is
a “bulk” term that expresses the fact that the solid is more stable than the supersaturated fluid -
this term is negative and proportional to the volume of the crystallite. The second is a “surface”
term that takes into account the free-energy cost of creating a solid-liquid interface. This term
is positive and proportional to the surface area of the crystallite. According to CNT, the total
(Gibbs) free-energy cost to form a spherical crystallite with radius R is

∆G =
4

3
πR3ρS∆µ+ 4πR2γ, (5.2)
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where ρS is the number-density of the solid, ∆µ (< 0) the difference in chemical potential of the
solid and the liquid, and γ is the solid-liquid interfacial free energy density. The function ∆G
goes through a maximum at R = 2γ/(ρS|∆µ|) and the height of the nucleation barrier is

∆Gcrit =
16π

3
γ3/(ρS|∆µ|)2. (5.3)

The crystal-nucleation rate per unit volume, I, is the product of Pcrit and the kinetic prefactor κ:

I = κ exp(−∆Gcrit/kBT). (5.4)

The CNT expression for the nucleation rate then becomes

I = κ exp
[
−
16π

3
γ3/(ρS|∆µ|)2

]
. (5.5)

This expression has been used extensively to analyze a crystal-nucleation experiments. How-
ever, as a rigorous theory for the kinetic prefactor is lacking, CNT has not been very successful
in predicting absolute nucleation rates. Rather, the kinetic prefactor κ and, more often than not,
the effective interfacial free energy γ are fitted to match the experimental nucleation rates [17].
This situation is now changing. The computer simulations that we report in this Letter, allow us
to predict absolute crystal nucleation rates without making use of any adjustable fit parameters
nor, for that matter, of the assumptions underlying CNT. It is obviously important to compare
the simulation results with crystal-nucleation experiments on a system that is very well charac-
terized. For this reason, we chose to simulate crystal nucleation in suspensions of hard-sphere
colloids. The hard-sphere freezing transition is probably better characterized than any other.
Moreover, several groups have performed experimental studies of crystal nucleation in sus-
pensions of hard-sphere colloids [3, 29–31]. Experimental nucleation rate densities are usually
expressed in dimensionless form: I∗ ≡ Iσ5/D0. Here σ is the hard-core diameter of the colloidal
particles and D0 is their self-diffusion coefficient at infinite dilution. In what follows, we al-
ways use reduced quantities and hence we will omit the superscript ∗. We use σ as our unit of
length, kBT as our unit of energy and σ2/D0 as our unit of time. In the analysis of experiments
on hard-core colloids, the kinetic prefactor κ is usually written as Aφ5/3liqD(φliq), where φliq is
the volume fraction of the colloids in the liquid phase, D(φ) is the (known) reduced diffusivity
at volume fraction φ, while A and γ are treated as adjustable parameters [3, 28, 30]. Note that,
even apart from the use of adjustable parameters to fit the data, the experimental tests of CNT
for hard-sphere freezing are, at present, rather indirect as experiments do not probe the shape
of the nucleation barrier directly. Nor do they provide information about the structure of the
critical nucleus.

5.2 Crystal nucleation barrier

We have performed numerical simulations of hard-sphere colloids, that allow us to compute the
shape and height of the nucleation barrier and the structure of the critical nucleus. In addition,
we have performed kinetic Monte Carlo simulations to compute the kinetic prefactor κ. These
allow us to compare our simulation results for the reduced nucleation rate (without adjustable
parameters) with the values of I determined in experiment [3, 29, 30].

To study the formation of a critical crystal nucleus, we used the biased Monte Carlo method
described in Refs. [25, 32] . This scheme allows us to compute the equilibrium probability P(n)

for the formation of a crystalline cluster of size n. The (Gibbs) free energy of a cluster of size n
is given by:

G(n) = const.− ln[P(n)]. (5.6)



5.2 Crystal nucleation barrier 43

0 100 200 300
Clustersize n

0

10

20

30

40

G
(n

)/
k B

T

φ=0.5207

φ=0.5277

φ=0.5343

Figure 5.1: Calculated free energy barrier for homogeneous crystal nucleation of hard-sphere
colloids. The results are shown for three values of the volume fraction. From top to bottom:
φliq = 0.5207, 0.5277 and 0.5343. The drawn curves are fits to the CNT-expression (Eq. 5.2). The
fits yield the following values: γeff(P = 15) = 0.71 , γeff(P = 16) = 0.737 and γeff(P = 17) =

0.751.

We computed the nucleation barrier as a function of the cluster size n for hard-sphere fluids that
were compressed above the coexistence pressure Pcoex = 11.67 [33]. Simulations were carried
out at reduced pressures P = 15, 16 and 17, corresponding to volume fractions of the liquid
φliq = 0.5207, 0.5277 and 0.5343. These state points correspond to the lower range of super-
saturations where hard-sphere nucleation was studied experimentally [3, 29, 30].The reason for
selecting this density regime is that at higher supersaturations, many crystal nuclei form simul-
taneously.

Fig. 5.1 shows the computed excess Gibbs free energy associated with the formation of a
cluster of size n in a supercooled liquid. The top of the barrier determines ∆Gcrit and the crit-
ical nucleus size. Comparing our results for ∆Gcrit with the best experimental estimates, we
find that the latter are three times too low [3, 30]. One possible source of discrepancy could
be that we simulated monodisperse suspensions, while the experimental systems have a size-
polydispersity of approximately 5%. We therefore repeated the simulations for a system with
5% polydispersity. However, we found that the only effect of polydispersity is to shift the coex-
istence curve. To within the numerical error in ∆Gcrit (±1kBT ), the monodisperse and polydis-
perse suspensions have the same nucleation barrier at the same supersaturation (i.e. at the same
value of ∆µ). We also compared the computed nucleation barriers with the predictions based
on CNT. The dependence of ρS and ∆µ on P can be accurately computed using the phenomeno-
logical equations of state for the solid and fluid phase of hard spheres [34], see appendix 5.6.
For γ we take a recent numerical estimate [6]. The resulting CNT predictions for ∆Gcrit are
30 to 50% too low. These deviations are not small. For instance, for a barrier height of 40kBT ,
an error of 30% in ∆Gcrit implies an error of O(105) in exp(−∆Gcrit/kBT) and the experimen-
tal estimate of exp(−∆Gcrit/kBT) is even off by a factor O(1011)! While the computed barrier
heights are not predicted correctly by CNT, we can still fit our data to the functional form given
by CNT (Eq.5.2). Using n = 4πρSR

3/3, we can express Eq. 5.2 in terms of the cluster size n. The
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only adjustable parameter in our fit of the simulation data is the effective interfacial free-energy
density γeff. The figure shows that CNT reproduces the functional form of the nucleation bar-
rier, except for very small clusters. The fit yielded the following values: γeff(P = 15) = 0.71,
γeff(P = 16) = 0.737 and γeff(P = 17) = 0.751. Again, we find the same answer for the system
with 5% polydispersity: i.e. at the same supersaturation we obtain the same values for γeff of the
monodisperse and polydisperse samples. We note that the numerical estimate of γeff is higher
than the value deduced from the analysis of experimental nucleation data: the data-analysis of
Refs. [3, 30] suggests that γeff = 0.5. As ∆Gcrit ∼ γ3eff, the experimental estimate of ∆Gcrit is a
factor three too low. If we assume that γeff depends linearly on pressure, then our simulation
results extrapolate to a value of γ ≈ 0.64 at coexistence - in surprisingly good agreement with
the numerical estimate [6]. However, in the regime where nucleation experiments have been
performed, we find much larger values for γeff (between 0.7 and 0.75). CNT fails because it
uses the value of γ at coexistence in Eq. 5.3 to predict ∆Gcrit.

5.3 Crystal nucleation rate

Our simulations allow us to give the first parameter-free estimate of the crystal nucleation rate.
To this end, we need to compute the reduced kinetic prefactor κ. It has the following form
κ = Zρfnc/D0, where Z is the Zeldovitch factor [17], ρ is the number density of the super-
saturated liquid, and fnc is the addition rate of particles to the critical nucleus. The Zeldovitch
factor Z =

√
|∆G′′(ncrit)|/(2πkBT) can be obtained directly from the simulation results. We have

computed fnc/D0 using kinetic Monte Carlo simulations of the hard-sphere suspension [26]. In
such simulations, the effect of hydrodynamic interactions between colloids is ignored. How-
ever, in the spirit of ref. [27], we correct for this effect by multiplying our MC results for fnc
with a factor α(φ) ≡ Ds(φ)/D0,where Ds(φ) is the short-time self-diffusion coefficient at vol-
ume fraction φ. Several, rather similar, functional forms for α(φ) have been proposed in the
literature. Here we use the phenomenological expression α(φ) = (1 − φ/0.64)1.17 [28]. When
applying the same approach to the computation of the long-time self-diffusion constant, we re-
produce the experimental data in the same density range (see [30]) to within the statistical error.
We estimate that the error in ln κ is ±1, i.e. about the same as the error in ∆Gcrit/kBT . Figure
5.2 shows our numerical estimate for the reduced nucleation rate I. We have computed I both
for a monodisperse suspension and for a suspension with 5% polydispersity. The latter results
can be compared directly with the experimental studies of steady-state nucleation [3, 29, 30].
In Ref. [35] the polydispersity is about 2.5%. As can be seen in figure 5.2, the simulated and
experimental curves almost intersect, but for most densities we observe discrepancies of many
orders of magnitude. Such discrepancies are real and worrisome, as we estimate that our com-
puted nucleation rates are accurate to within one order of magnitude. We therefore argue that
the problem must be with the interpretation of the experiments. Hopefully, future “real-space”
experiments will provide an explanation for the discrepancy in the computed nucleation rates
and barrier heights.

5.4 Structure analysis

The simulations allow us to address a question that cannot, at present, be answered experimen-
tally: what is the structure of the critical nucleus? Fig. 5.3 shows an example of a snapshot of a
critical nucleus observed in our simulations. CNT makes the assumption that the (pre) critical
nuclei are effectively spherical and have the same structure as the stable bulk phase that is nu-
cleating. However, already in 1897, Ostwald pointed out [36] that the phase that nucleates need
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Figure 5.2: Reduced nucleation rates I as a function of the volume fraction of the meta-stable
liquid. The simulation data for monodisperse colloids are indicated by the ∗- the drawn curve
joining the simulation points is meant as a guide to the eye. In the same figure we show the
experimental results of Ref. [29](�), Ref. [3](◦ and •), Ref. [30](4) and Ref. [35](H). We also
performed simulations on model systems that have the same polydispersity (5%) as the exper-
imental systems. These simulation results are denoted by the filled squares. The discrepancy
between the latter simulations and experiment is unexpected and significant. Several factors
could complicate the comparison with the available experiments: firstly, the experiments yield
a “time-averaged” nucleation rate that may differ from the steady-state rate that we compute.
Secondly, it is conceivable that the experimental systems contain some pre-critical nuclei.

not be the one that is thermodynamically stable. In recent years, several attempts have been
made to provide a microscopic explanation for Ostwald’s observation [37–39]. Alexander and
McTague [37] have argued, on the basis of Landau theory, that in the early stages of crystal nu-
cleation a bcc crystallite should form that would subsequently transform into the stable crystal
phase. In fact, simulations of pre-critical nuclei in a Lennard-Jones (”argon”) liquid, are indeed
found to have a bcc structure, rather than the stable fcc structure [25]. In the case of hard
spheres, it is known that the stable crystal structure is face-centered cubic - but this fcc phase is
only slightly more stable than the hexagonal close packed (hcp) phase [40]. In fact, the fcc−hcp
free-energy difference is so small, that small hard-sphere crystals will always contain an equi-
librium concentration of stacking faults [31, 41–43]. It would clearly be interesting to know
by what route hard-sphere crystals nucleate: does the small size lift the effective degeneracy be-
tween fcc and hcp structures to the extent that one of these dominates, or do hard-sphere crystal
nuclei obey the predictions of the Alexander-McTague theory and exhibit a bcc or possibly even
icosahedral structure? To answer this question we analysed the structure of the crystalline nu-
cleus. The stable structure of a bulk hard-sphere solid is fcc [40]. However, as the free energy
of stacking faults is small [42, 43] small crystallites are expected to exhibit random stacking of
fcc and hcp domains. Indeed, direct inspection of the crystal nuclei generated in our simula-
tions show that the critical nucleus is randomly stacked. The next question to ask is if there is
any evidence for bcc or icosahedral ordering. To this end, we used the analysis technique of ten
Wolde et al. [25]. This approach allows us to analyse any cluster structure as a mixture of sim-
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Figure 5.3: Snapshot of a cross-section of a critical nucleus of a hard-sphere crystal at a liquid
volume fraction φ = 0.5207. The figure shows a three-layer thick slice through the center of the
crystallite. Solid-like particles are shown in yellow and liquid-like particles in blue. The layers
shown in the figure are close-packed hexagonal crystal planes. The stacking shown in this figure
happens to be fcc-like, i.e. ABC-stacking - however, analysis of many such snapshots showed
that fcc and hcp stackings were equally likely.

ple reference structures. We assume that pre-critical nuclei need not have the random-stacked
close-packed (rhcp) structure. Rather, we allow for the possibility that the nuclei exhibit a signa-
ture characteristic of bcc, icosahedral or even liquid-like ordering. Every structure is characterized
by a set of numbers fbcc, frhcp,ficos, fliq, where the value of fα denotes the relative importance
of structure α in the cluster. In Fig. 5.4 we show the results for fbcc, frhcp, ficos and fliq as a
function of the size of the largest cluster in the system at P = 15. The results for P = 16 and
17 are qualitatively similar. The figure shows that icosahedral ordering is not observed for any
nucleus size. Small clusters still have some bcc or liquid-like signature. But in all cases the rhcp
signature is dominant. The same conclusion holds for the weakly polydisperse crystals that
we studied. This observation is interesting, as it shows that the simplest of all crystals does
not confirm the theoretical prediction that bcc (or icosahedral) (pre)nuclei should be favored
in the crystallization of simple liquids [37–39]. Our finding is also unexpected in the light of
the finding that pre-critical Lennard-Jones nuclei have a bcc structure [25]. As the structure of
simple liquids is known to be dominated by the short-ranged repulsive forces, one would have
expected that the structure of the pre-critical nucleus in hard-sphere fluids would be bcc, as in
the Lennard-Jones case. Random hexagonal close packing (rhcp stacking) in freshly nucleated
colloidal hard-sphere crystals has been observed in several experiments [31, 41]. It is usually
assumed that the origin of the rhcp stacking is purely kinetic. While this may be correct for
larger crystals, the present simulation indicates that, in the early stages of nucleation, the rhcp
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Figure 5.4: Structure analysis of (pre) critical crystal nuclei. The figure shows the relative weight
of the structural signatures for rhcp, bcc, icosahedral and liquidlike ordering in hard-sphere
crystal nuclei of size n . In order to carry out the structural analysis, we first computed the distri-
bution of bond-order parameters for the various pure structures (see Ref. [25]). This is straight-
forward for liquid structures. In the case of the randomly-stacked hexagonal close-packed struc-
ture, we determined the signature of a randomly stacked bulk crystal. However, no stable bcc or
icosahedral structures exist for monodisperse hard spheres. However, we found that we could
generate meta-stable bcc structures for slightly (3%) polydisperse hard-sphere crystals. We com-
puted the bcc signature for this structure. In the case of the icosahedral structre, we computed
the relevant bond-order parameter distributions for a particle that was constrained to be in an
artificially stabilized icosahedral environment of the correct density. The figure shows that bcc
and icosahedral structures play no role in the nucleation process. Small clusters are fairly disor-
dered and have an appreciable liquidlike signature. The figure shows that the rhcp signature is
dominant for all cluster sizes. However, small crystallites tend to be fairly disordered. In those
structures, the bcc and liquidlike signatures become noticeable.

structure is simply more stable than fcc. This phenomenon can be interpreted as a manifestation
of Ostwald’s “step rule” [36]. The hard-sphere fluid nucleates into the metastable rhcp structure.
Only later does this metastable structure transform into the stable fcc structure [42, 43].

5.5 Appendix A: Protocol of the simulation

The barrier was computed using Eq. (5.6). A prerequisite for the calculation of the nucleation
barrier is the choice of a “reaction coordinate” that measures the progress from liquid to solid.
As our reaction coordinate, we use n, the number of particles that constitute the largest solid-
like cluster in the system. A criterion based on the one described in Ref. [25] was used to identify
which particles are solidlike (see section 4.1.2. The cutoff for the local environment was set to
rq = 1.4σ, the threshold for the dot product q6q6 = 20 and the threshold for the number of
connections was set to 6. If two solidlike particles are less than 2σ apart, where σ is the diameter
of a particle, then they are counted as belonging to the same cluster. Using this technique we
are able to distinguish between particles in a liquidlike environment and particles that belong to
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crystalline nuclei. For all but the smallest clusters, P(n) � 1 . We used umbrella sampling [22]
to determine P(n) in the range where it is very small. The total simulation was split up into a
number of smaller simulations that were restricted to a sequence of narrow, but overlapping,
“windows” of n values. It turned out that stacking rearrangements in the crystalline nuclei
were slow. To alleviate this problem, we applied the parallel tempering scheme of Geyer and
Thompson [23] to exchange clusters between adjacent windows. All simulations were carried
out at constant pressure and with the total number of particles (solid plus liquid) fixed. For
every window, the simulations took at least 1 × 106 MC moves per particle, excluding equi-
libration. The results of all simulations are presented in reduced units . In all cases, periodic
boundary conditions were imposed. To eliminate noticeable finite-size effects, we simulated
systems containing 3375 hard spheres. We also used a combined Verlet and Cell list to speed
up the simulations. The kinetic factor was calculated using Eq. (4.51). We performed a kinetic
Monte Carlo simulation [26], to measure the size fluctuations of a critical cluster. Kinetic Monte
Carlo simulation means in this case a standard Monte Carlo simulation in the limit of very small
maximum particle displacements ∆xmax = 0.01σ. From the barrier calculations we had gener-
ated configurations containing a critical cluster, which we used as starting configurations. We
run between 5− 10 independent trajectories, which was enough to get a reasonable estimate for
the attachment rate. More details of the simulations are described in section 4.2.

5.6 Appendix B: Calculation of the chemical potential

Here we describe the calculation of the chemical potential for the monodisperse hard-sphere
system. For the system with 5% polydispersity this is described in section 6.5. For the calculation
of the chemical potential of the two phases, we performed a thermodynamic integration. The
Helmholtz free energy F, per particle and in units of the thermal energy kBT , of a liquid is
determined by integrating the equation of state, starting from low densities, where the fluid
behaves like an ideal gas [7]:

F(ρ)

NkBT
=
Fid(ρ)

NkBT
+

1

kBT

∫ρ
0
dρ ′

(
P(ρ ′) − ρ ′kBT

ρ ′2

)
, (5.7)

where P(ρ) is the pressure and Fid(ρ)/NkBT = ln(ρ)−1 the free energy of an ideal gas at density
ρ. The corresponding chemical potential is given by:

µ(ρ)

kBT
=
F(ρ)

NkBT
+
P(ρ)

ρkBT
. (5.8)

The calculation of the chemical potential of the solid is slightly more complicated. The reason
is that it is not possible to perform the integration from the ideal gas limit, as the solid melts
at lower densities. One has to calculate the excess free energy of a solid at a reference density
where the solid is stable, which requires a different thermodynamic integration technique, the
so called Einstein integration. The idea is to transform the solid reversibly into an Einstein
crystal, where the atoms are coupled harmonically to their lattice sites. The free energy can be
calculated very precisely and we use the results from Polson et. al. [44] for the excess free energy
of a (defect free) hard sphere solid at coexistence: Fex(ρcoex = 1.0409)/NkBT = 5.91889. From
the above equation we can then calculate the chemical potential of the solid at any other density
according to:

µ(ρ)

kBT
=
Fid(ρ)

NkBT
+ 5.91889+

1

kBT

∫ρ
ρcoex

dρ ′
(
P(ρ ′) − ρ ′kBT

ρ ′2

)
+
P(ρ)

ρkBT
. (5.9)

For the equation of state P(ρ) we used the analytical expressions by Hall [34] for the liquid and
the solid. The integration was performed numerically.



5.7 Appendix C: Classical prediction of the kinetic factor 49

φ ∆G(ncrit) ncrit f+ncrit/D0 log10[I] λ ∆µ

0.5207 43.0 260 189 −19.3 0.31 0.34

0.5277 27.8 130 43 −13.5 0.46 0.44

0.5342 18.5 75 66 −9.14 0.27 0.54

Table 5.1: Summary of the simulation results for the calculation of the nucleation rate for
monodisperse hard sphere colloids. Hereφ is the volume fraction of the liquid phase. ∆G(ncrit)

is the measured free energy to form a cluster of critical size ncrit. f+ncrit/D0 is the attachment rate
of particles to the critical cluster divided by the free diffusion coefficient. I is the reduced nu-
cleation rate and λ is the estimated typical jump distance from the calculation of the attachment
rate. ∆µ is the difference in chemical potential between the two phases

5.7 Appendix C: Classical prediction of the kinetic factor

Experimentally determined values for the kinetic factor often differ by orders of magnitude
from those predicted by classical nucleation theory (CNT). For this reason it is important to
compare our numerical computed kinetic factor with the ones predicted by CNT. The following
expression has been proposed in literature [17] (see section 3.1):

κCNT = Zρl
24DSn

2/3
crit

λ2
. (5.10)

Here DS is a self diffusion coefficient in the bulk liquid, ρl is the number density of the liquid,
ncrit is the critical cluster size, λ is a typical atomic jump distance in the liquid and Z is the Zel-
dovitch factor. In the calculations of the nucleation barrier we saw that the functional form of the
nucleation barrier can be fitted accurate to the corresponding analytical expression from CNT.
The prediction of the Zeldovitch factor from our numerical calculations and CNT are therefore
almost identical. The attachment rate can be identified as f+CNT = 24DSn

2/3
crit/λ

2, which we can
compare directly to our numerical calculations. If we assume that DS = DLS, where DLS is the
long-time diffusion constant, and treat λ as a fit parameter to reproduce our calculated attach-
ment rates, we get values between λ ≈ 0.27 − 0.46σ (see table 5.1). This is in the order of the
inter particle spacing and therefore close to what we would expect for a typical jump distance.
In contrast to that, experimental estimates yield values λ = 2.8 − 17σ [5]. The identification
DS = DLS is justified by the fact that the time λ2/DLS corresponds to long-time diffusion.





6
Suppression of crystal nucleation in
polydisperse colloids due to increase of
the surface free energy

The formation of small crystallites is governed by two competing factors: the free energy gained upon
transferring atoms, molecules or colloidal particles from the metastable liquid to the more stable solid, and
the free energy needed to create the surface area of the crystallite [17]. Because the ratio of surface area
to bulk is large for small particles, small crystallites dissolve spontaneously under conditions where large
crystallites are stable and macroscopic crystal growth occurs only if spontaneously formed crystallites ex-
ceed a critical minimum size. On theoretical grounds [17], the probability of forming such critical crystal
nuclei is generally expected to increase rapidly with supersaturation. However, experiments show [17,45]
that the rate of crystal nucleation in many systems goes through a maximum as the supersaturation is
increased. It is commonly assumed that the nucleation rate peaks because, even though the probability to
form critical nuclei increases with increasing concentration, the rate of growth of such nuclei decreases.
Here, we report simulations of crystal nucleation in suspensions of colloidal spheres with varying size
distributions. Surprisingly, our simulations show that the probability to form critical nuclei itself goes
through a maximum as the supersaturation is increased. This effect is strongest for systems with the
broadest size distribution. It is due to the increase with supersaturation of the solid-liquid interfacial
free energy. The magnitude of this effect suggests that vitrification at high supersaturation should yield
colloidal glasses that are truly amorphous, rather than nano-crystalline.

6.1 Introduction

Colloidal suspensions of identical, hard, spherical particles can be either fluid or crystalline. At
low densities, the fluid state is stable, but when the colloids occupy more than 49.4% of the
volume, a crystalline phase should form [45]. In practice, several factors influence the crystal-
lization of hard-sphere colloids. First of all, synthetic colloids have a distribution of particle
radii with a width that is rarely less than 2 − 3% of the average radius. This non-uniformity of
size (“polydispersity”) is known to affect the location of the freezing curve. Simulations [46, 47]
show that higher compressions are needed to freeze a polydisperse suspension. Irrespective
of the composition of the coexisting fluid, the polydispersity of the crystal never exceeds 5.7%.
Experiments on crystal formation in hard-sphere colloids indicate that crystallization is sup-
pressed in suspensions with a polydispersity exceeding 12% [45]. This must be due to kinetic
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factors, as crystallization of strongly polydisperse suspensions is not excluded on thermody-
namic grounds.

Classical Nucleation Theory (CNT) [17] offers a simple thermodynamic explanation why
small crystal nuclei are less stable (i.e. have a higher free energy) than the supersaturated par-
ent phase. CNT uses macroscopic arguments to estimate the free energy required to form a
crystallite. The decrease in free energy due to the transfer of n particles from the metastable
liquid to the solid state, is approximated as n∆µ, where ∆µ = µsolid−µliquid is the difference in
chemical potential between the solid and the liquid state. The CNT estimate for the free-energy
cost involved in the creation of the surface area A of the nucleus is γA, where γ is the surface
free energy of the solid-liquid interface.

Due to the competition between bulk and surface terms, the Gibbs free energy ∆G(n) re-
quired to form an n-particle nucleus goes through a maximum at a value of n called the critical
nucleus size. For a spherical nucleus, the maximum value of ∆G(n) is

∆G∗(ncrit) =
16π

3
γ3/(ρ|∆µ|2) (6.1)

where ρ is the number density of the crystal phase. The rate I at which nuclei are formed
depends exponentially on ∆G∗(ncrit):

I = κ exp(−∆G∗(ncrit)/kBT) (6.2)

where T is the absolute temperature, kB is Boltzmann’s constant and κ is a kinetic prefactor that
is proportional to the short-time self-diffusion constant of the colloids. The form of Eq. (6.2)
does not rely on the validity of CNT.

In the CNT picture, increasing the supersaturation (i.e. increasing |∆µ|), lowers the nucle-
ation barrier. If γ were independent of |∆µ|, then ∆G∗ would always decrease with increasing
supersaturation. In experiments [3,5,28] the rate of colloidal crystal nucleation starts to decrease
again for large supersaturations. This effect is attributed to the decrease in the kinetic prefactor
κ: in order to crystallize, colloidal fluids must be compressed beyond the freezing curve. But
eventually, the suspension will vitrify under compression. This vitrification slows down the
particle motion and presumably reduces κ in Eq. (6.2). A problem with this interpretation is
that recent experiments on colloidal crystallization in micro-gravity have found evidence for
crystallization at densities that are well beyond the glass-transition point [31].

6.2 Crystal barrier calculation

We performed Monte Carlo simulations to study the crystal-nucleation barrier and the structure
of the critical nucleus, as a function of both polydispersity and supersaturation. As in the case of
monodisperse suspensions [48], we find that all critical nuclei have a randomly-stacked close-
packed structure. During crystallization, size-fractionation occurs [46, 47]: the particles that
make up the critical nucleus are on average larger than those in the metastable liquid, see also
Appendix 6.6. We find that ∆G∗, the height of the nucleation barrier, at fixed |∆µ|, does not
depend on the polydispersity for polydispersities ≤ 5% (see Fig. 6.1). As the polydispersity is
increased beyond 5%, ∆G∗ increases rapidly. This implies that the probability to form a critical
nucleus, is suppressed in polydisperse suspensions. It follows from Eq. (6.1) (or actually, from
its polydisperse equivalent, see section 3.2.1) that, at constant |∆µ|, the variation of ∆G∗ with
polydispersity is due to an increase of the interfacial free energy γ. The increase of γ with
polydispersity runs counter to Turnbull’s suggestion that the interfacial free energy should be
proportional to ∆H, the latent heat of fusion [17]. For the systems that we studied, ∆H crosses
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Figure 6.1: Computed dependence of the free-energy barrier for crystal nucleation of polydis-
perse suspensions of hard, colloidal spheres. The free energy is expressed in terms of kBT , where
kB is Boltzmann’s constant and T is the absolute temperature. |∆µ| (also in units of kBT ) is the
absolute difference between the chemical potential of the liquid and the solid. It is a measure for
the degree of supersaturation. The curves are fits that have been drawn as a guide to the eye. To
facilitate comparison with experiment, we have collected in Table 6.1, the relation between |∆µ|

and the volume fraction φ of the liquid, for the different systems that we studied.

zero at a polydispersity of 9%, where the liquid becomes denser than the coexisting solid [46,47].
Yet, γ clearly remains non-zero, see Appendix 6.7.

Surprisingly, the variation of ∆G∗ with |∆µ| is non-monotonic. As |∆µ| is increased, the nu-
cleation barrier goes through a minimum (Fig. 6.1). This non-monotonic behavior of ∆G∗ is
due to the increase of γ with |∆µ| (Fig. 6.2). To illustrate this, let us approximate the |∆µ|-
dependence of γ by γ ≈ γ0(1+ a|∆µ|). Ignoring the slight |∆µ|-dependence of the solid density,
it then follows from Eq. (6.1) that ∆G∗ must go through a minimum when |∆µ| = 2/a. The
nucleation theorem [49] suggests that the minimum in ∆G∗ is due to the inversion of the den-
sities of the polydisperse fluid and the crystal nucleus, see Appendix 6.8. In CNT it is usually
assumed that γ is constant. A linear variation of γ with |∆µ| has been observed in inorganic
glasses [17], but there the constant a is negative and hence there is no minimum in ∆G∗. In
other systems [50, 51], non-monotonic behavior of ∆G∗ is induced by a hidden phase transition
in the meta-stable phase.

The minimum value of ∆G∗ increases rapidly with polydispersity. Using kinetic Monte
Carlo simulations, we can estimate the value of the kinetic prefactor [26]. We find that, over
the range of supersaturations studied, the kinetic prefactors vary by at most an order of mag-
nitude, see Appendix 6.9. This means that the variation in the rate of nucleation is dominated
by the behavior of ∆G∗. We estimate that, for colloidal particles with a radius ≥ 500 nm, ho-
mogeneous nucleation will be effectively suppressed (less than one nucleus per cm3 per day)
when the polydispersity exceeds 10%. This finding has important implications for the morphol-
ogy of polycrystalline colloidal materials. Using a simplified version of the analysis proposed
by Shi et al. [50] to estimate the size of crystallites in a polycrystalline sample, it is easy to de-
rive that Rc, the average crystallite size at the end of a nucleation experiment, should scale as
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Figure 6.2: Dependence of the interfacial free energy γ of crystal nuclei in polydisperse sus-
pensions of hard, colloidal spheres. The interfacial free energy is expressed in terms of kBT/σ2,
where σ is the average hard-sphere diameter. The curves are fits that have been drawn as a
guide to the eye.

exp(∆G∗/4kBT), Appendix 6.10. Our observation of a minimum in ∆G∗ thus implies the exis-
tence of a minimum in the typical crystallite size. This should be experimentally observable.

We could only compute ∆G∗ if spontaneous nucleation did not occur in the course of a sim-
ulation. In practice, this implied that we could not study barriers lower than 15kBT . As a result,
we could not test whether ∆G∗ in systems with a low polydispersity (less than 8.5%) also has a
minimum. If we assume that, also at lower polydispersities, we can extrapolate the increase of γ
with |∆µ| to large supersaturations, then we predict that a minimum in ∆G∗ should occur even
in nearly monodisperse systems. Again, this should be experimentally observable, because we
should expect to see the formation of larger crystallites if the solution can be compressed rapidly
through the region where ∆G∗ is small.

6.3 Conclusions

There are two ways to interpret the experimental finding that crystallization is not observed
in suspensions with a polydispersity > 12%: either crystals do not form, or they are too small
to be observed. Our simulations support the first interpretation. Using Shi’s approach, we
can estimate the maximum number of crystallites per unit volume [50]. For a suspension of
colloids with a 500 nm radius, we expect to see less than one crystallite per cubic centimeter, once
∆G∗ > 32kBT . In other words, under those conditions the colloidal glass is truly amorphous.

Our predictions concerning the structure and free energy of colloidal crystal nuclei can be
tested experimentally. Recently, the technique of Confocal Scanning Laser Microscopy has been
applied by Gasser et al. [52] to study the structure and size of critical crystal nuclei in dense
colloidal suspensions. This technique would be perfectly suited to test our predictions. Our pre-
diction concerning the minimum in ∆G∗ is even easier to verify. By visual inspection, one could
verify whether the crystallites that nucleate in strongly supersaturated solutions are larger than
those that form at lower supersaturations. Over a decade ago, Pusey and van Megen published
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0% 5% 8.5% 9.5% 10%
∆µ φ ∆µ φ ∆µ φ ∆µ φ ∆µ φ

0.339 0.5207 0.310 0.5344 0.385 0.5614 0.397 0.5697 0.382 0.5717
0.439 0.5277 0.349 0.5377 0.451 0.5673 0.465 0.5746 0.419 0.5738
0.538 0.5342 0.395 0.5414 0.512 0.5726 0.509 0.5782 0.455 0.5775

0.448 0.5456 0.728 0.5864 0.565 0.5808 0.587 0.5878
0.544 0.5528 0.833 0.5948 0.575 0.5828 0.959 0.6239

1.088 0.6145 0.616 0.5859
1.260 0.6212 1.125 0.6239

Table 6.1: Supersaturation and volume fraction of polydisperse colloids. ∆µ is the supersatu-
ration and φ is the volume fraction of the colloidal fluid. The polydispersity ranges from 0%
(left) to 10% (right). The polydispersities quoted in this table and in the figures, are those of the
metastable liquid.

beautiful images of the morphology of poly-crystalline hard-sphere colloids [53] (Similar mor-
phologies have recently been observed in a study of colloidal crystallization in micro-gravity -
Z.D. Cheng, W.B. Russel and P.M. Chaikin, unpublished data). Pusey and van Megen observed
an increase of the crystallite size at large supersaturations. However, they attributed this effect
to heterogeneous nucleation. Hence, a direct test of our prediction is still lacking.

6.4 Appendix A: Protocol of the simulation

The simulation techniques that are required to compute the free energy of small crystal nuclei,
have been described in section 4.1. In the present work, we used constant-pressure, semi-grand
canonical Monte Carlo (SGMC) simulations of the type described in [46, 47]. In such a sim-
ulation it is not possible to impose the size distribution of the particles directly, but the size
distribution can be controlled through variation of the imposed activity-ratio distribution func-
tion exp[βµ(σ) − µ(σ0)]. Here µ(σ) is the chemical potential related to a particle with diameter
σ. For all simulations, but the two with the highest supersaturation at 10% polydispersity, we
used for the chemical potential difference function:

β[µ(σ) − µ(σ0)] = −(σ− σ0)
2/2ν, (6.3)

which gives rise to a Gaussian activity distribution that peaks at σ = σ0, with width ν. In the
limit ν → 0 the monodisperse phase is recovered. For high supersaturations and polydispersi-
ties we needed to include terms up to cubic in the sphere diameter:

∆µ(σ) = c1σ+ c2σ
2 + c3σ

3. (6.4)

This cubic form was need to maintain the desired size distribution under these conditions. It is
important to mention that at the relatively low polydispersities (≤ 10%) needed in our simula-
tions, we do not expect that the crystal nucleation barrier is very sensitive to the details of the
size distribution. For higher polydispersities (> 5%), the resulting size distribution is a function
of the density. For this reason it was necessary to map the variation of the polydispersity with ρ
and ν to find a proper parameter set (ν, βP

〈
σ30
〉
), with β = 1/kBT , at which we could perform

our barrier calculations. In table 6.2 we give a summary of the parameter set ν, βP
〈
σ30
〉

used
in our simulations. Note, that in order to get physically meaningful values for the pressures,
it is necessary to scale P∗ with for < σ3 >, where σ is for example the average diameter of the
particles in the liquid. For more details of the simulation method and the scaling see [46, 47].
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0% 5% 8.5% 9.5% 10%
P∗ ν P∗ ν P∗ ν P∗ ν P∗ ν

15 0 24.6 0.0023 174 0.0044 1147 0.0032 7920 0.002
16 0 25.7 0.0023 227 0.0042 1823 0.00288 12900 0.0017
17 0 27 0.0023 293 0.0039 2990 0.0025 74000 0.001

28.6 0.0023 600 0.0032 4000 0.0023 P̃ c3
31.7 0.0023 940 0.00288 6210 0.002 8.5× 10−5 1× 10−6

3045 0.002 10095 0.0017 6.8× 10−5 5× 10−6

4215 0.0017 2183190 0.000276199

Table 6.2: Collection of parameter sets (ν, P∗) used in the simulations. ν is the width of the
imposed particle size distribution function and P∗ = βP

〈
σ30
〉

the pressure. Here P̃ = P∗(ν/σ0)
3

is a rescaled pressure. In the infinite pressure limit (P∗ → ∞, ν → 0) P̃ = 0.000151765. This
corresponds to an activity distribution where c1 = 1 and c2 = c3 = 0, see Eq. (6.4). The polydis-
persity ranges from 0% (left) to 10% (right). The polydispersities quoted in this table and in the
figures, are those of the metastable liquid.

To identify solid-like particles in our simulations, we used the same criterion as in the case
for monodisperse hard spheres (see section 4.1.2). The only adjustment we had to make is due
to the different sizes of the particles. The local environment was defined as the surface to surface
distance between particles. All particles where this distance is smaller than 0.4× 〈σ〉, where 〈σ〉
is the average diameter of all particles, are considered to be neighbors. The threshold for the
dot product q6q6 = 20 and the threshold for the number of connections was set to 7, as in the
monodisperse hard-sphere case. Two solid like particles were considered to be belong to the
same cluster if their surface to surface distance was less than 0.8 × 〈σ〉. To eliminate possible
finite-size effects, we used systems of 3375 particles. Very long runs, up to 1.6× 107 trial moves
per particle, in combination with parallel tempering [23], were needed to ensure equilibration
of the dense, polydisperse fluid.

6.5 Appendix B: Calculation of the chemical potential

The calculation of the chemical potential of the liquid and the solid phases is described in sec-
tion 5.6. This time we did only calculate the chemical potential difference between the two
phases. The coexistence pressure and density has been calculated [46, 47]. We used this data
and performed a thermodynamic integration starting at coexistence, where the chemical poten-
tial difference is zero:

∆µ(P)

kBT
=

1

kBT

∫ρs
ρs,coex

dρ ′s

(
P(ρ ′s) − ρ ′skBT

ρ ′2s

)
+
P(ρs)

ρskBT
−
P(ρs,coex)

ρs,coexkBT
+ log(ρs) − log(ρs,coex)

−

{
1

kBT

∫ρl
ρl,coex

dρ ′l

(
P(ρ ′l) − ρ ′lkBT

ρ ′2l

)
+
P(ρl)

ρlkBT
−
P(ρl,coex)

ρl,coexkBT
+ log(ρl) − log(ρl,coex)

}
.

Here ∆µ(P) = µs(P) − µl(P) and ρl, ρs are the number densities of the liquid and the solid.
The index coex indicates the coexistence data. The equation of state P(ρ) we measured in a
constant-pressure, SGMC simulation and performed the integration numerically. A summary
of the coexistence pressure we used from Ref. [46, 47] is given in table 6.3. Our results for the
chemical potential difference are given in table 6.1.
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0% 5% 8.5% 9.5% 10%
P∗coex ν P∗coex ν P∗coex ν P∗coex ν P∗coex ν

11.7 0 17.3 0.0023 665 0.0044 2321 0.0032 13365 0.002
11.7 0 17.3 0.0023 854 0.0042 3827 0.00288 22026 0.0017
11.7 0 17.3 0.0023 1096 0.0039 6310 0.0025 126754 0.001

17.3 0.0023 2321 0.0032 8547 0.0023 P̃ c3
17.3 0.0023 3827 0.00288 13365 0.002 1.54469× 10−4 1× 10−6

13365 0.002 22026 0.0017 1.65185× 10−4 5× 10−6

22026 0.0017 6920522 0.000276199

Table 6.3: Notation as in caption of Tab. 6.2, but we give the coexistence pressure.

6.6 Appendix C: Size fractionation and polydispersity
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Figure 6.3: Particle size distribution for the liquid and the solid at a pressure of βP 〈σ0〉 = 74000

and ν = 0.001. At such high pressures the average size of the particles and the simulation box
is compressed to small values. However, note that this does not affect the distribution function
itself.

In our simulations we imposed the same chemical potential difference function on the bulk
liquid and the solid phase. This results in different diameter distribution functions, which is
shown in Fig 6.3 for our simulations at pressure βP 〈σ0〉 = 74000 and ν = 0.001. On average the
size of particles in the bulk solid is larger than that of the corresponding bulk liquid, whereas
the polydispersity is smaller. When a crystal nucleus forms in a supersaturated liquid, this
behavior is reflected, see Fig. 6.4. The size and polydispersity of the particles close to the center
of the crystal nucleus are that of the bulk solid. For larger distances the bulk values of the liquid
are approached.
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Figure 6.4: Average size and polydispersity of particles as a function of the center of mass of the
cluster in units of the average diameter of particles in the bulk liquid. Fractionation in particle
size and polydispersity occurs. The particles in the crystal nucleus are in average larger as the
particles in the bulk liquid, while they are less polydisperse.

6.7 Appendix D: Turnbull’s rule

Turnbull suggested that, as the (crystal-vacuum) interfacial free energy is related to the heat of
sublimation in molecular crystals, there should be a relation between the liquid-crystal surface
free energy and the heat of fusion∆h [2]. From crystal nucleation experiments in metallic liquids
a linear dependence was obtained. We could test if this relation holds for a system of polydis-
perse hard-sphere colloids. From our barrier calculations we had estimates for the liquid-crystal
surface free energy. The enthalphy difference we computed according to:

∆h = P∗
(
1

ρs
−
1

ρl

)
(6.5)

where P∗ = βP〈σ30〉 and ρl, ρs are the number densities of the bulk liquid and solid. In Fig. 6.5
we plot the liquid-crystal surface free energy as a function of the enthalphy difference. As can
be seen, in this case we do not find this linear dependence.

6.8 Appendix E: Nucleation theorem

The nucleation theorem relates the change of the nucleation barrier height ∆G∗ with the chemi-
cal potential difference∆µ between the metastable liquid and the stable solid phase to the excess
number of particles in the critical nucleus [49]:

∂∆G∗

∂∆µ
= −∆n∗, (6.6)

where the excess number of particles is given by

∆n∗ = 4π

∫∞
0
drr2 [ρ(r) − ρl] . (6.7)
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Figure 6.5: Surface free energy γ as a function of the enthalpy difference ∆h (per particle) be-
tween the liquid and the crystal phase shown for the different polydispersities.

Here ρ(r) is the density in the system as a function of the distance from the center of mass of
the critical nucleus and ρl is the density of the liquid. Note that in our case the supersaturation
∆µ is the same for all particle sizes and the above equation can be applied directly to the poly-
disperse system. D. Oxtoby suggested [54] that if ∆G∗ passes through a minimum the excess
number of particles of the nucleus must become lower than that of the surrounding liquid. To
test this prediction we compared the number density of the bulk liquid at pressure P, where we
performed our crystal barrier calculations, with the number density of a bulk solid at a pressure
P+∆P, where ∆P is the Laplace pressure. The pressure inside a crystal nucleus is slightly higher
than that of the surrounding liquid to compensate the chemical potentials. The calculation of
the Laplace pressure in a polydisperse system is described in section 3.2.1. In Fig. 6.6 we plot
the ratio of the number densities of the liquid and the solid as a function of the difference in the
chemical potential between the two phases. As can be seen, indeed we observe a inversion of
the number densities for the systems with 9.5% and 10% polydispersity. For the system with
8.5% polydispersity the situation is less clear. Note that at the minimum the number density of
the solid becomes higher than that of the liquid and not vice verse. This is the opposite of what
we expected. The reason is probably due to the fact that at these polydispersities and densi-
ties the number density of the liquid at coexistence is already higher than that of the solid. But
when the system is compressed to higher densities at constant poydispersity of the liquid, the
solid becomes more and more monodisperse. This means that the number density of the solid
increases.

6.9 Appendix F: Kinetic factor

We computed the reduced attachment rate of particles to the critical cluster by using the ki-
netic Monte Carlo scheme described in section 4.2. We should note that the calculated attach-
ment rates do not differ considerably (less than one order of magnitude) from the results in
the monodisperse case, see table 6.4. Considering the high volume fractions at which our sim-
ulations were performed, this is not obvious. Although diffusion is probably slowed down
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Figure 6.6: Ratio of the number densities ρl, ρs of the bulk liquid and solid phases. The number
density of the liquid was computed at a pressure P, while that of the solid was calculated at
slightly higher pressure P + ∆P, where ∆P is the Laplace pressure.

dramatically at such high volume fractions and polydispersities, we did not try to correct for it.
The main reason is that it is not straightforward to apply the idea from Medina-Noyola [27] to a
polydisperse system and there are only a few experimental measurements on the long-time self-
diffusion coefficient, to which we could test this approach. However, considering the fact that
the attachment of particles to the critical cluster does still happen, and that for crystallization
only diffusion on the scale of the short-time self-diffusion coefficient is needed, we can argue
that the variation of the nucleation rate is dominated by the behavior of the nucleation barrier.
In general it is save to say that the decrease of the nucleation rate at high densities is a competi-
tion between a slowing down of the kinetics and a decreasing probability for the formation of a
critical cluster due to an increase in surface free energy.

6.10 Appendix G: Average size of a crystallite

To estimate the average crystallite size at the end of a crystallization experiment, we use a simpli-
fied version of the analysis proposed by Shi et al. [50]. We assume that I, the rate of steady-state
nucleation, is given by Eq. (6.2), and that vg, the rate at which the crystallite radius grows, is
given by the Wilson-Frenkel law:

vg =
DS

λ
[1− exp(−|∆µ|/kBT)], (6.8)

where λ is a typical atomic jump distance andDS a self-diffusion constant. Note that both I and
vg are proportional to DS. The total volume fraction occupied by crystallites as a function of
time t is approximately given by the Avrami growth law

φ ≈ Iπvgt4/3. (6.9)

Crystallization stops when φ is of order 1. This happens after a time tmax ∼ (Iv3g)
−1/4 . The

average crystallite radius at this time is equal to Rc ≈ vgtmax. Using the expression for tmax
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8.5% 9.5% 10%
f+ncrit/D0 ν f+ncrit/D0 ν f+ncrit/D0 ν

40 0.0044 12 0.0032 20 0.002
75 0.0042 60 0.00288 55 0.0017
21 0.0039 15 0.0025 40 0.001
30 0.0032 50 0.0023 c3
15 0.00288 10 0.002 10 1× 10−6

35 0.002 20 0.0017 8 5× 10−6

10 0.0017 5 0.000276199

Table 6.4: Notation as in caption of Tab. 6.2, but we give the reduced attachment rate f+ncrit/D0.

above, it follows that Rc ∼ (vg/I)
1/4.

The crucial point to note is that the average crystallite size depends only on the ratio vg/I. As
the strongly density dependent diffusion constantDS drops out of this ratio, its |∆µ|-dependence
is mainly determined by the variation of exp(∆G∗/kBT), except for small supersaturations. We
therefore expect that the typical crystallite size at the end of a nucleation experiment should
scale as Rc ∼ exp(∆G∗/4kBT). Our prediction of a maximum in the nucleation barrier then
translates into the prediction of a minimum in the typical crystallite size.





7
Crystallization of weakly charged
colloidal spheres: A numerical study

We report a numerical study of crystal nucleation in a system of weakly charged colloids. The interaction
between the colloids is approximated by a repulsive hard-core Yukawa potential. We studied the depen-
dence of the nucleation barrier and the nucleation rate on supersaturation as a function of both contact
value and range of the interaction potential. We find that, at the same volume fraction, nucleation is
much faster for these soft colloids than for hard spheres. This is partly because fluid-solid coexistence in
charged colloids occurs at lower volume fractions than for hard spheres. But, in addition, the softness
of the potential has a pronounced direct effect on the nucleation barrier through a lowering of the solid-
liquid surface free energy. Moreover, the softness of the potential directly affects the pathway for crystal
nucleation: even when the stable crystal phase has a face-centered cubic structure, we find that the initial
crystal nuclei have a bcc structure.

7.1 Introduction

When a suspension of monodisperse colloids is brought to a sufficiently high density, it will
form beautiful, iridescent crystals. The rate at which these crystals form depends strongly on
the steepness of the repulsive forces that act between the colloids. While it is difficult to com-
pare absolute nucleation rates in different colloidal systems under differing conditions, experi-
ments [55, 56] clearly indicate that charged colloids with a soft, long-ranged repulsion, tend to
crystallize much faster than hard-sphere colloids at the same supersaturation. The aim of the
present paper is to elucidate the factors that affect the rate of crystal nucleation in a system of
weakly charged colloids.

In suspension, the charged colloids are surrounded by a cloud of counterions. This counter-
ion double layer screens the pure Coulomb interaction between the colloids. If we use the lin-
earized Poisson-Boltzmann equation to describe the charge distribution around a charged col-
loid with hard-core diameter σ, then we obtain the following expression for the pair interaction
between two charged macro-ions:

βU(r) =

{ ∞ for r < σ
βε

exp(−κ(r/σ−1))
r/σ for r > σ.

(7.1)

U(r) is usually referred to as the ”hard-core Yukawa potential”, see Fig. 7.1. Here κ is the in-
verse screening length in units of the hard-sphere diameter σ and βε is the value of the Yukawa
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Figure 7.1: Plot of the hard-core Yukawa potential for κ = 5 as function of the Yukawa repulsion
βε = 2, 6, 8, 20.

repulsion at contact. β is a measure for the inverse temperature (β = 1/kBT ), where kB is the
Boltzmann constant. In the linearized Poisson-Boltzmann theory, we have explicit expressions
for both κ and ε in terms of the size and surface charge of the colloid, and of the concentration of
counterions and added salt. However, the linearized Poisson-Boltzmann description provides
only an approximation to the real colloid-colloid interaction. For instance, it is expected to break
down at short distances and for low added salt concentrations. A way to treat the interaction be-
tween charged colloids at short distances was already proposed by Derjaguin, Landau, Verweij
and Overbeek (DLVO) in the 1940’s [57]. Since then, several modifications of the form of the
pair potential between charged colloids have been proposed [58, 59] but, except at very short
distances, most expression are very similar to the hard-core Yukawa model. The main differ-
ence between the theories is the values that they yield for κ and ε. In the original DLVO theory,
these parameters depend only on the ionic strength of the solution and on the bare charge of
the colloids. In the more recent theories, κ and ε may themselves depend on the concentra-
tion of charged colloids. In the present work, we simply assume that the interaction between
charged colloids is adequately described by a hard-core Yukawa potential. However, we shall
return later to the question whether this is allowed. A special case of the hard-core Yukawa
model, is the hard-sphere model. The latter model applies in the limit of high salt concentra-
tions κ → ∞ and in the limit that the strength of the repulsion is much less than the thermal
energy, i.e. βε → 0. This is typically the case for weakly charged colloids. We note that, whilst
the hard-core Yukawa model is commonly used to describe slightly charged colloids, it can also
be used as a crude model for sterically stabilized colloids. Hence, many of the conclusions that
we obtain below, in particular those for systems with a high value of κ, should equally apply to
sterically stabilized, uncharged colloids.

The phase behavior of the hard-core Yukawa potential has been calculated in detail by nu-
merical simulation [60]. In these calculations the parameters κ and βε were varied indepen-
dently. This cannot easily be done in experiments as a variation in κ will change ε, unless some
other parameter, such as the charge of the colloid, is varied at the same time. The computed
phase diagram of ref. [60] shows a fluid-solid (bcc/fcc) and a solid-solid (bcc-fcc) coexistence
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Figure 7.2: Calculated coexistence pressure from ref. [60] for κ = 5 as function of the Yukawa
repulsion βε.

line and it exhibits two fluid-bcc-fcc triple points (see Fig.7.2). The main difference between the
phase diagram of the hard-core Yukawa model and that of the pure (i.e. point-particle) Yukawa
potential [61] is the presence of the second triple point. This triple point sets a lower limit for
the strength of the Yukawa interaction for which a bcc phase exists.

Extensive crystallization experiments have been performed on systems of uncharged, hard-
sphere colloids using time resolved laser light scattering or microscopy [3–5, 29, 30, 35, 62]. For
charged colloidal systems, there are fewer studies of this kind [55,63–65]. More recently, Gasser
et al. [52] published a confocal microscopy study of homogeneous crystal nucleation in slightly
charged hard-sphere colloids. In addition, an extensive light-scattering study of crystallization
in more highly charged colloids has been performed by Schöpe [56, 66, 67].

In the present paper, we report a computer-simulation study of crystal nucleation in a hard-
core Yukawa system. In these simulations, we have varied both the amplitude of the Yukawa
repulsion and the magnitude of screening length and studied the effect of both parameters on
crystal nucleation.

7.2 Homogeneous nucleation

Crystal nucleation is an activated process. This implies that it costs free energy to form small
crystal nuclei in the supersaturated liquid. However, once a nucleus exceeds a critical size, its
free energy will decrease as further growth of the crystal takes place. Classical nucleation theory
(CNT) provides a simple, thermodynamic description of the free energy of a crystal nucleus. In
CNT theory the free energy of a nucleus contains two terms, a bulk- and a surface term. The
bulk term takes care of the fact that the chemical potential of the solid phase is lower than that
of the liquid phase. The gain in free energy if N particles transform from the liquid to the
solid phase is N∆µ, where ∆µ = µliq − µsol is the difference in chemical potential between the
liquid and the solid phase. The surface term, Aγ, describes the free energy required to create a
liquid/solid interface of area A, where γ is the interfacial free energy per unit area. For small
nuclei the surface term dominates and the free energy of the nucleus increases as it grows. When
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the nucleus is at its critical size ncrit the function goes through a maximum:

∆G∗ =
16π

3
γ3/(ρs|∆µ|)2, (7.2)

where ρs is the number density of the solid phase. For larger nuclei, the free energy goes
down again because it is dominated by the (negative) bulk term −∆µ. The steady-state nu-
cleation rate per unit volume, I, is the product of the probability that a critical nucleus is formed
Pcrit = exp[−β∆G∗], times a kinetic factor Γ which describes the rate with which a critical nu-
cleus growths:

I = Γ exp[−β∆G∗]. (7.3)

In order to be able to compare our results with experiments, we express the crystallization rates
in dimensionless form: I∗ ≡ Iσ5/D0, whereD0 is the self diffusion coefficient at infinite dilution.
Such an expression for the reduced rate follows logically if all distances are expressed in units σ
and time is expressed in units σ2/D0. In addition, we choose kBT as our unit of energy. Other
choices are possible (e.g ε). However, the present choice facilitates the comparison with earlier
hard-sphere results [48]. In the following we will always use reduced quantities and hence we
omit the asterisk.

We performed calculations of the nucleation barrier, kinetic prefactor and nucleation rate as
a function of supersaturation varying both parameters of the Yukawa potential βε and κ. In
ref. [60], the phase diagram has been computed as a function of βε for κ = 5, and as a function
of κ, for βε = 8. We chose to study the same range of parameters. As was already mentioned
above, in experiments, κ and ε are usually varied simultaneously. Hence, in order to compare
with experiments, we have to combine and interpolate data from both sets of simulations.

One aspect of particular interest is the effect of the fcc-bcc-liquid triple point on the nucle-
ation pathway. Already in 1897, Ostwald [36] formulated his famous ‘step rule’. This rule states
that the phase that nucleates from the melt need not be the most stable solid phase, but rather the
one that is closest in free energy to the metastable liquid phase. Stranski and Totomanow [68] re-
examined this rule and argued that the nucleated phase is the one that has the lowest nucleation
barrier. Alexander and McTague [37] extended the Landau free energy expansion to freezing
transitions that are weakly first order and concluded from general symmetry considerations
that, in three dimensions, formation of the body-centered cubic (bcc) nuclei is uniquely favored
for simple fluids. However, simulations by ten Wolde et al. [69] showed that the situation is
more subtle, at least for the Lennard-Jones system: the core of the critical nucleus has the same
structure as the stable crystal phase (fcc), but the surface bears a structural resemblance to the
bcc phase that, for Lennard-Jones systems, is not stable. In the present system, we can “tune”
the relative stability of the fcc and bcc solids by moving past the triple point. Hence, this is an
ideal system to study nucleation of a metastable phase.

7.3 Simulations

For the calculation of the nucleation barrier we used a biased Monte Carlo method [48,69]. With
this method we can compute the equilibrium probability P(n) for the formation of a cluster
of size n. This probability is related to the free energy of a crystalline cluster consisting of n
particles: ∆G(n) = const− ln[P(n)]. We first computed the nucleation barrier at fixed κ = 5 for
four different values of the amplitude of the Yukawa repulsion βε = 2, 6, 8 and 20. Increasing
the contact value βε of the Yukawa repulsion shifts the volume fraction of the liquid phase at
freezing to lower values than the hard-sphere value η = 0.494. In order to be able to interpret our
numerical data on the free-energy barrier for crystal nucleation, we need an accurate estimate
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ffcc fhcp fbcc fliquid

βε = 2 12.894 12.892 - 11.38
κ = 5 (0.5425) (0.5425) - (0.5032)
βε = 6 23.258 23.256 21.49 19.11
κ = 5 (0.5027) (0.5027) (0.4808) (0.4503)
βε = 8 24.344 24.35 24.32 22.23
κ = 5 (0.4563) (0.4563) (0.4558) (0.4329)
βε = 20 20.872 20.873 20.986 16.16
κ = 5 (0.2888) (0.2888) (0.2895) (0.2529)
βε = 8 11.144 11.147 11.067 10.02
κ = 10 (0.4084) (0.4084) (0.4054) (0.3853)
βε = 8 39.107 39.110 - 38.08

κ = 3.33333 (0.5168) (0.5168) - (0.5055)

Table 7.1: Excess free energy per particle for the different bulk structures and the liquid state
calculated via a thermodynamic intergration in the limit of infinite number of particles [44]. The
statistical accuracy of the computed free energy of the liquid is estimated to be ±0.01kBT . In
the table, the values in brackets indicate the volume fraction at which the excess free energy
was calculated. The calculated excess free energies for the fcc and the hcp structures can be
compared directly, as they were calculated at the same pressure, whereas the others are not. The
fcc-hcp free energy difference is always smaller than (1× 10−2kBT ).

of the density, pressure and chemical potential of the liquid at freezing. The data of ref. [60]
were obtained using a (modified) Gibbs-Duhem integration method. While this technique is
useful to estimate the location of solid-liquid coexistence curves, the computed coexistence data
were not sufficiently accurate for the present purpose. We therefore computed the location of
all coexistence points by direct free-energy calculation of the solid and liquid phases [7]. The
results for the excess free energy per particle are summarized in Table 7.1. From the computed
free energies, we obtain estimates for the chemical potential at freezing that have an error of
±0.01kBT . We found the following values for the volume fraction of the liquid phase at freezing:
η = 0.482, 0.438, 0.405 and 0.262 for βε = 2, 6, 8 and 20, respectively (see Table 7.2).

7.3.1 Nucleation barriers

In Fig. 7.3 we show the results for the barrier height as a function of supersaturation with respect
to the stable solid phase (fcc). As the figure shows, the main effect of increasing the strength of
the Yukawa repulsion is to lower the nucleation barrier at constant supersaturation ∆µ.

Note that the decrease of the height of the nucleation barrier is particularly strong when
only a weak repulsion is added to the hard-core potential. In particular, switching on a re-
pulsive Yukawa potential with a contact value of only 2kBT decreases the nucleation barrier
by some 10kBT . This implies that for real hard-sphere colloids, the presence of only a small
amount of charge can enhance the nucleation rate at constant volume fraction by many orders
of magnitude through two mechanisms: first of all, the charge increases the supersaturation at
constant density. This effect would shift the nucleation curve to lower densities. But, in addi-
tion, the charge lowers the nucleation barrier at constant supersaturation. Further increase of
the strength of the Yukawa repulsion leads to some additional decrease of the nucleation barrier,
but the effect seems to saturate for values of βε between 8 − 20. Let us next consider the effect
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Figure 7.3: Calculated barrier heights of the hard-core Yukawa system with κ = 5 and βε =

2, 6, 8, 20 plotted as a function of supersaturation ∆µ of the liquid phase with respect to the
stable fcc phase.

of the range of the repulsive potential on the nucleation barrier. We computed the height of the
crystallization barrier for κ = 10, 5 and 3.33333 at a fixed contact value βε = 8. In addition, we
know the behavior of the system in the hard-sphere limit (κ =∞). As κ is decreased, the range
of the potential grows. Initially (as κ is decreased from∞ to 10, the density at which the liquid
freezes shifts from η = 0.494 to η = 0.354. Subsequently, the freezing density increases again.
For κ = 5, the volume fraction at freezing is η = 0.405 and for κ = 3.333, the liquid freezes at
η = 0.456. The variation of the crystallization barrier with κ and ∆µ is shown in Fig. 7.4. The
figure shows that increasing the range of the repulsive interaction, at constant supersaturation,
initially has the effect to lower the nucleation barrier. However, as κ is decreased below 5, the
nucleation barrier starts to increase again.

From the CNT expression for the height of the nucleation barrier Eq. (7.2), we can estimate
the corresponding values for the liquid/fcc interfacial free energy γfcc. In Fig. 7.5 we show
the variation of the interfacial free energy with βε at fixed κ. Fig. 7.6 shows the variation of
the interfacial free energy with κ at fixed βε for various values of the supersaturation ∆µ. The
dependence of the interfacial free energy on the range of repulsion mirrors that of the nucleation
barrier and is therefore non-monotonic. Coming from the hard-sphere limit, the interfacial free
energy initially goes down, but for κ less than 5, it increases again.

In refs. [48, 70] we found that, for hard spheres, the interfacial free energy γ increases with
supersaturation ∆µ. As can be seen in Fig. 7.6, such behavior is also observed in a system of
charged colloids. In polydisperse hard-sphere systems [70], the increase of γ with supersatura-
tion could even result in a non-monotonic dependence of the nucleation barrier on supersatu-
ration. In the present system, the interfacial free energy also increases with supersaturation, but
the effect is not strong enough to result in a minimum in the nucleation barrier.



7.3 Simulations 69

0.1 0.2 0.3 0.4 0.5
|∆µ| [kT]

10

20

30

40

50

∆G
 [k

T
]

Hard-Sphere
κ=10
κ=5
κ=3.33333

Figure 7.4: Calculated barrier heights of the hard-core Yukawa system with βε = 8 and κ =

10, 5, 3.33333 plotted as a function of supersaturation ∆µ of the liquid phase with respect to the
stable fcc phase.

7.3.2 Nucleation rates

In order to calculate the absolute nucleation rate Eqn. (7.3), we need to evaluate the kinetic pref-
actor, which has the following form: Γ = Zρlf

+
ncrit

(σ5/D0) [17]. Here Z is the Zeldovich factor,
ρl the number density of the liquid phase and f+ncrit the attachment rate of particles to the critical
cluster. D0 denotes the diffusion coefficient of the charged colloids at infinite dilution and σ is
the hard-core diameter of the Yukawa particles. The Zeldovich factorZ = [|∆G

′′
(ncrit)|/(2πkT)]

2

depends only on the second derivative of the nucleation barrier at its maximum. This informa-
tion we obtain directly from our numerical results for∆G(n). In order to compute f+ncrit/D0, we
used the kinetic Monte Carlo scheme of ref. [26]. Basically, the method is a numerical scheme
to solve the Smoluchowski equation. In doing so, we neglected the hydrodynamic interac-
tions between the colloids. This drawback can be remedied by using the solution suggested by
Medina-Noyola [27]. In this approach, the hydrodynamic interactions are taken into account
through their effect on the short-time self-diffusion coefficient. In practice, this means that we
assume that, at short times, the mean-squared displacement of a particle is not dominated by the
infinite-dilution value of the diffusion coefficient D0, but by the short-time self-diffusion coef-
ficient DSS. The latter quantity differs from D0 precisely because of hydrodynamic interactions.
We therefore need to know the value of the ratio DSS/D0 at the liquid density of interest. For
hard-sphere suspensions, approximate expressions exist for the density dependence of DSS/D0,
e.g. (1 − η/0.64)1.17 [28]. As a test of this procedure, we used it to estimate the long-time
self-diffusion coefficient of dense hard-sphere suspensions. The results agree within the statis-
tical error with the available experimental data, see section 4.2. This gives us confidence that a
similar approach can also be used to compute nucleation rates. However, the Medina-Noyola
procedure is not directly applicable to the Yukawa system. To resolve this problem, we assumed
that we could map the dynamics of the Yukawa system onto that of the hard-sphere system. To
this end, we defined an effective packing fraction of the Yukawa system such that the packing
fractions at freezing of both systems were equal. This mapping is inspired by the observation
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Figure 7.5: Interfacial free energy calculated from the barrier heights Eq. 7.2 for κ = 5 and
βε = 2, 6, 8, 20. The solid lines are the results assuming that the nuclei have a fcc structure, and
the dashed lines are the results if the nuclei are bcc.

of Löwen et al. [71] that for many different colloidal systems, the ratioDSL/D
S
S has a ”universal”

value of 0.1 at freezing (here DSL is the long-time self-diffusion constant). This rule suggests a
dynamic ”corresponding-states principle” provided all densities are scaled to the freezing den-
sity. In fact, experiments by Van Blaaderen et al. [72] suggest that, for dense, charged colloids
such a rescaling of the long-time self-diffusion coefficient is justified. While this approach is
rather ad hoc, the systematic errors that it might induce are smaller than the random errors due
to statistical inaccuracies in the determination of the height of the nucleation barrier.

Results

Our results for the computed nucleation rates are shown in Fig. 7.7 and Fig. 7.8, where we
plot the nucleation rate as a function of supersaturation. As the kinetic prefactor does not vary
strongly with either supersaturation or interaction potential, the variation of the nucleation rate
shown in Figs. 7.7 and 7.8 reflects the behavior of the barrier height.

In order to compare the computed crystallization rates with the results of the confocal mi-
croscopy experiments of ref. [52], we need to know the potential parameters that best character-
ize the experimental system they used. From the fact that the suspensions studied by Gasser et
al. freeze at a volume fraction η = 0.38, it is clear that the colloidal particles used in these ex-
periments are slightly charged. It is therefore natural to describe them by a Yukawa model that
also has its freezing point at η = 0.38. This condition is, however, not sufficient to fix the values
of both κ and ε. For instance, if κ = 5, then the observed freezing density can be reproduce by
choosing βε ∼ 7. Conversely, if we choose βε = 8, then there are in fact, two values of κ that
will reproduce the observed freezing density (κ ∼ 20 and κ ∼ 6) [60].

In Fig. 7.9, we show a comparison of the nucleation rates reported in ref. [52] with the sim-
ulation results for those κ-βε combinations that yield a freezing point near η = 0.38. As can
be seen from the figure (and from the numbers collected in Table 7.2), different κ-βε combina-
tions yield very different nucleation rates. However, the main effect of the variation of κ and
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Figure 7.6: Interfacial free energy calculated from the barrier heights Eq. 7.2 for βε = 8 and
κ = 10, 5, 3.33333. The solid lines are the results assuming that the nuclei have a fcc structure,
and the dashed lines are the results if the nuclei are bcc.

ε is to shift the nucleation curves horizontally: the slopes of the different curves are all rather
similar. When we compare the computed nucleation rates with the experimental data, we note
two things: first of all, the experimental rates tend to be (much) higher than the computed rates
(Gasser et al. find −6.9 ≤ log[I] ≤ −6.5 for η between 0.45 and 0.53). But, more importantly, the
experiments suggest that the nucleation rate barely varies with volume fraction. This observa-
tion is hard to reconcile with the behavior of any of the Yukawa models that we studied. This
discrepancy between experiment and simulation results suggests that it is incorrect to assume
that the experimental system can be mapped onto a Yukawa model with density-independent κ
and ε. On the contrary, it is very likely that the effective potential parameters of weakly charged
colloids in the absence of added salt depend strongly on concentration. In fact, recent experi-
ments by Schöpe et al. [66] clearly illustrate this effect: with increasing concentration, the effec-
tive potential of charged polystyrene spheres in dilute aqueous solution, becomes increasingly
hard-sphere like. If we assume that the same phenomenon occurs in the more concentrated
suspensions of ref. [52], then experimental results for the nucleation rates at different densi-
ties should be compared with the numerical predictions that correspond to different effective
Yukawa potentials.

As can be seen from Fig. 7.9, the variation of the nucleation rate with density can be strongly
reduced (and can possibly even become non-monotonic) if, as we expect, ε and κ decrease with
density. It is, however, not obvious that this effect is large enough to account for the apparent
discrepancy between experiment and simulation. Clearly, a truly quantitative comparison be-
tween simulation and experiment requires better knowledge of the density dependence of the
effective interaction between slightly charged colloidal spheres.

7.3.3 Nucleation pathways

The repulsive Yukawa system offers a unique opportunity to study the effect of meta-stable
crystal phases on the pathway for crystal nucleation. The role of meta-stable phases in crystal
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Figure 7.7: Dependence of the crystallization rates on the amplitude of the Yukawa repulsion
βε = 2, 6, 8, 20 for κ = 5 plotted as a function of supersaturation ∆µ of the liquid with respect to
the stable fcc phase.

nucleation was first pointed out by Ostwald [36] who, in 1897, formulated his ”step rule”. This
rule states that the crystal phase that is nucleated from solution need not be the one that is
thermodynamically most stable, but the one that is closest in free energy to the fluid phase.
Stranski and Totomanow [68] reexamined this rule and argued that the nucleated phase is the
phase that has the lowest free-energy barrier of formation, rather than the phase that is globally
stable under the conditions prevailing. More recently, Alexander and McTague [37] argued,
on the basis of Landau theory, that in the early stages of crystal nucleation the formation of
bcc crystallites should be favored. Similar conclusions were subsequently reached by other
groups [38, 39]. In the Yukawa system, the fluid phase can coexist with either the fcc or the
bcc phase, depending on the values of κ and βε (see Fig. 7.2). We can therefore study crystal
nucleation both in the regime where the fcc phase is stable, and where the bcc phase is stable.
If Ostwald’s rule would strictly apply, we should expect that fcc nuclei should form where bcc
crystals are stable, and conversely. On the other hand, if the Alexander-McTague scenario is
correct, we should expect to find that bcc nuclei are always preferred. There is little point in
testing the Stranski-Totomanow hypothesis as it amounts almost to a tautology (”the phase that
nucleates fastest, is the one with the lowest nucleation barrier”).

To study the effect of meta-stable intermediates on crystallization, we analyzed the structure
of the (pre)critical nucleus in different regions of the phase diagram shown in Fig. 7.2. As can be
seen from Fig. 7.2, the pressure range region where the bcc phase is stable is rather narrow. For
these pressures, the supersaturation of the fluid phase is small, and hence the nucleation barrier
is very high. As a consequence, we could only study the formation of pre-critical nuclei in this
regime. In order to study the structure of the (pre)critical nuclei, we used the local bond-order
analysis proposed by ten Wolde et. al. [69]. In this analysis the local bond-order signature of a
nucleus is decomposed into the signatures of the different bulk structures (liquid, fcc and bcc)
using a linear least square fit. The value of the resulting coefficients {fliq, ffcc, fbcc} are a measure
of the structure of the nucleus.

Our simulations show that the pre-critical nuclei always have a strong bcc signature. Only
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Figure 7.8: Dependence of the crystallization rates on the inverse screening length κa =

10, 5, 3.33333 for βε = 8 plotted as a function of supersaturation ∆µ of the liquid with respect to
the stable fcc phase.

for larger (post)critical nuclei well inside the fcc regime, do we find a mixture of bcc and fcc
signatures. In this sense, our simulations unambiguously support the prediction that nucleation
into bcc nuclei is always uniquely favored, even when the fcc phase is closer in free energy to
the fluid phase.

Fig. 7.10 shows the results of our cluster analysis for two distinct nuclei of size n = 100 and
n = 200. The picture shows the variation of the structural signature with the distance from
the center of mass of the nucleus. The results shown in this figure apply to the case κ = 10

and βε = 8. This corresponds to the points in the phase diagram where the preference for
the fcc structure is strongest. The core of the cluster of size n = 100 has a clear bcc signature
while the fcc phase does not seem to play a role. However, for the larger nuclei (n = 200)
the core of the nuclei becomes fcc like while the bcc phase seem to disappear. In this case the
cluster transformation happened before it could reach critical size. This phase transition in the
pre-critical nucleus allows us to quantify what value of the bcc-fluid interfacial free energy is
needed in order to compensate for the difference in chemical potential of the two bulk structures.
From our free-energy calculations, we deduce µbcc − µfcc = 0.082 ± 0.005. We used the CNT
expression for the barrier height to estimate the fcc-liquid interfacial free energy: γfcc = 0.446.
The transformation from bcc to fcc nuclei occurred for n ≈ 100. At that point, the gain in bulk
free energy is 100 ∗ 0.082 = 8.2kBT . This free-energy gain must be compensated by the increase
in surface free energy as the crystallite transforms from bcc to fcc. To estimate this surface free
energy, we need to know the radius of the crystal nucleus for n = 100. If we assume that the
nucleus is spherical and that the solid is effectively incompressible, we arrive at the estimate
γbcc = 0.379.

We find such a pre-critical transformation from bcc to fcc for βε = 2 with κ = 5, and for
βε = 8 with κ = 10 and 3.33333. In all the other cases (βε = 6, 8, 20 with κ = 5) even the
critical nuclei had a strong bcc signature. This observation has implications for the interfacial
free energies shown in Figs. 7.5 and 7.6. In these figures, we show interfacial free energies
that were computed from the CNT expression for the barrier height, assuming that the nucleus
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Figure 7.9: Comparison between the experimentally measured nucleation rates [52] and the
simulation data. In the plot we added only the data sets which match the freezing density of the
experimental system.

had the same structure as the stable crystal phase. We now see that, in some cases, the critical
nucleus has a meta-stable bcc structure. This affects the value for ∆µ in the CNT expression,
and hence our estimate for γ. In the cases where the critical nucleus has a bcc structure, we
therefore also estimated the value of γbcc from the height of the nucleation barrier. The results
are also shown in Figs. 7.5 and 7.6.

Thus far we did not mention the possibility that the structure of the crystal nuclei could also
be hexagonal closed packed (hcp) or a random stacking of the fcc and hcp domains (rhcp). In
the case of hard-spheres it is known that the free-energy difference between the stable fcc and
hcp solid structure is very small (≈ 10−3kBT ) and therefore stacking faults are expected. Such
stacking faults have been observed in experiments and computer simulations. In the case of
charged spheres the situation is less clear. Some experiments indicate that the situation changes
and there seems to be tendency that crystal nuclei become more fcc-like [73]. Other experiments
suggest that the structure of the cluster is still rhcp [52]. To resolve this question for the present
model system, we first calculated the free energy difference between the fcc and hcp solid, for
all the different parameters of the model potential for which we performed the rate calculations.
It turns out that the free energy difference per particle between the fcc and hcp structure was
always smaller than 1 × 10−2kBT (see Table 7.1), which is about the limit of the accuracy that
we had in our calculations. This means that thermal fluctuations on the order of a few kBT

could easily transform clusters containing hundreds of particles from fcc to hcp, or generate
intermediate stackings. To find out if this really happens we, analysed the stacking of the (111)-
planes of 10 nuclei with parameters βε = 8, κ = 10 and βε = 8, κ = 3.33333. In both cases,
we do find stacking faults, but they seem to be less frequent than in the pure hard-sphere case.
We stress, however, that these preliminary conclusions are based on the analysis of only a small
number of crystallites.
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Figure 7.10: Structure analysis of two independent crystal nuclei of size n = 100 and 200 from
the simulations with parameters βε = 8 and κ = 10. The figure shows the results for the fit
parameters for the local bond-order analysis as a function of the distance from the center of
mass of the nuclei. The core of the cluster of size n = 100 has a clear bcc signature, where the
cluster of size n = 200 shows a clear fcc structure.

7.4 Appendix A: Protocol of the simulation

The nucleation barrier was calculated analog to the simulations in a system of monodisperse
hard-sphere colloids, which is described in detail in section 4.1. The radius for the local envi-
ronment of a particle was set to 1.5σ. The threshold for the dot product q6q6 = 20 and the
threshold for the number of connection was set to 7. Two solid-like particles were considered
to belong to the same nuleus if their distance was smaller than 1.8σ. For our NPT - Monte Carlo
simulation we used 3375 particles. In each simulation we performed 600000 moves per parti-
cle. To enhance the stacking rearrangement of the cluster we also applied the parallel tempering
scheme [22]. The calculation of the kinetic factor referred to in the text is described in section 4.2.
The attachment rate was estimated on the basis of five trajectories during which we measured
the size fluctuation of the critical cluster.

7.5 Appendix B: Calculation of the chemical potential

The chemical potential for the liquid and solid phases was calculated by a thermodynamic inte-
gration using Eq. (5.9):

µ(ρ)

kBT
=
Fid(ρ)

NkBT
+
Fex(ρref)

NkBT
+

1

kBT

∫ρ
ρref

dρ ′
(
P(ρ ′) − ρ ′kBT

ρ ′2

)
+
P(ρ)

ρkBT
. (7.4)

Once the excess free energy Fex(ρref) at a reference density ρref is known, the chemical potential
can be calculated at any density by a numerical integration. The equation of state P(ρ) was
measured with a Monte Carlo simulation. Still, the excess free energy needed to be calculated
in a separate simulation. To do that, we also performed a thermodynamic integration where we
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P ηliq ηfcc ηbcc ∆µfcc ∆µbcc ∆G∗ f+ncrit/D0 log
10

(I)

κ = 5 25 0.5103 0.5420 - 0.28 - 41 46 -19.1
and 26 0.5159 0.5484 - 0.34 - 29 84 -13.5
βε = 2 27 0.5218 0.5551 - 0.40 - 21 6 -11.1

28 0.5257 0.5599 - 0.46 - 15.5 19 -8.1
κ = 5 37 0.4714 0.4827 0.4808 0.19 0.15 48.1 202 -19
and 38 0.4755 0.4864 0.4848 0.22 0.17 34 57 -16.1
βε = 6 42 0.4903 0.5031 0.5004 0.32 0.25 16.6 52 -8.3
κ = 5 38 0.4415 0.4487 0.4481 0.17 0.15 43 218 -19.5
and 40 0.4491 0.4563 0.4558 0.21 0.19 31 200 -14.3
βε = 8 43 0.4596 0.4671 0.4668 0.26 0.24 19.1 300 -8.8
κ = 5 23 0.2859 0.2888 0.2895 0.15 0.14 39.1 167 -18.2
and 25 0.2938 0.2973 0.2974 0.19 0.19 30.4 58 -14.8

βε = 20 28 0.3048 0.3084 0.3083 0.25 0.25 19.1 53 -9.7
κ = 10 18 0.3848 0.3978 0.3949 0.23 0.15 49 80 -22.6

and 20 0.3955 0.4084 0.4054 0.32 0.21 26.5 44 -13
βε = 8 22 0.4054 0.4180 0.4150 0.40 0.28 15.2 11 -8.5

κ = 3.33333 57 0.4937 0.5042 - 0.24 - 31.5 205 -14.4
and 59 0.4996 0.5106 - 0.28 - 22.5 81 -10.8
βε = 8 61 0.5055 0.5168 - 0.33 - 15.8 80 -7.7

Table 7.2: Summary of the data for the calculations with the repulsive hard-core Yukawa poten-
tial. Here P is the Pressure and ηliq, ηfcc, ηbcc the corresponding volume fraction of the liquid,
fcc and bcc phase. ∆µfcc and ∆µbcc is the difference in chemical potential between the liquid
and the fcc/bcc phases. ∆G∗ are the measured crystallization barriers. f+ncrit/D0 is the reduced
attachment rate of particles to the critical cluster. I is the calculated reduced nucleation rate.

couple our system to a system of known excess free energy. The free energy difference between
the two systems is then given by [7]:

Fex(λ = 1) − Fex(λ = 0) =

∫λ=1
λ=0

dλ

〈
∂U(λ)

∂λ

〉
λ

, (7.5)

where λ is the coupling parameter. U(λ = 0) corresponds to the potential energy of our system
of interest andU(λ = 1) is the potential energy of the reference system. Note that the free energy
difference is expressed by an integration over the ensemble average of the potential energy.

For the calculation of the excess free energy of the hard-core yukawa liquid we used as a
reference system the pure hard-sphere liquid. In this case the internal energy U(λ) is given by:

U(λ) = UHS + (1− λ)UYK, (7.6)

where UHS and UYK corresponds to the potential energy of the hard-shere and the hard-sphere
Yukawa system. For λ = 1 we have the pure hard-sphere system and for λ = 0 the hard core
Yukawa system is recovered. It follows that the difference in free energy is given by

Fex(λ = 1) − Fex(λ = 0) =

∫λ=1
λ=0

dλ 〈UYK〉λ . (7.7)

In some cases it was also possible to calculate the excess free energy of the solid in the same
way. However at strong Yukawa repulsions the freezing density was shifted to such low values
that the pure hard-sphere solid would melt. In these cases, and for all free energy calculations
of the bcc structure, we coupled our system to an Einstein crystal. The potential energy of this
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sytem is given by

U(λ) = UHS + (1− λ)UYK + λ[

N∑
i=1

c(ri − r0,i)2]. (7.8)

Here the sum goes over all particles N, ri is the position of particle i, r0,i is the lattice position
of particle i around which it is fluctuating and c is the spring constant. The exact expression for
the difference in excess free energy is given in [44]. Our results are summarized in table 7.1.





8
Phase behavior and crystallization
kinetics of PHSA-coated PMMA
colloids

Polymethylmethacrylate (PMMA) colloids sterically stabilized by a layer of chemically-grafted poly-12-
hydroxystearic (PHSA) are widely used in experiments as model hard-spheres. However, due to the
coating, the interaction between particles is slightly soft. Here we report a numerical study of the effect of
the PHSA coating on the phase behavior and crystallization kinetics of PMMA colloids based on parame-
ters determined from surface-force measurements PHSA [74,75]. We find that the core volume fraction of
particles at freezing measured by Pusey and van Megen [41] can only be reproduced by using a thickness
of the PHSA layer that is considerably larger than literature values. This may indicate that the particles
are in fact slightly charged. Compared to perfect hard spheres, the crystallization rate in these slightly
soft particles was found to be increased by about two orders of magnitudes.

8.1 Introduction

A disordered collection of hard spheres is perhaps the simplest possible interacting fluid. The
experimental realization of a colloidal suspension that closely mimics the phase behavior of
hard-spheres was a milestone in soft matter research [45, 53, 76]. Pusey and van Megen showed
in the 1980s that polymethylmethacrylate (PMMA) particles stabilised by chemically-grafted
polyhydroxystearic acid (PHSA) system reproduced closely the equilibrium phase behavior ex-
pected of hard-spheres [53]. Other model systems are also known [77, 78]. Recently, it was
shown that the crystallization kinetics of hard-spheres predicted by computer simulations [48]
differed by several orders of magnitude from the crystallization rates measured in model col-
loids [3–5, 29, 30, 35, 62]. Polydispersity in the synthetic colloids cannot account for this discrep-
ancy [70]. Another possible explanation is a slight softness in the interparticle potential. In this
report, we investigate how such softness may affect phase behavior and crystallization kinetics.

In the following we first introduce a model potential for PHSA-coated PMMA spheres. Us-
ing this potential we calculate the freezing and melting volume fractions. These quantities can
be compared to values obtained in experiments [41]. Next, we study how the softness affects the
crystallization kinetics by calculating the nucleation barrier and the nucleation rates at different
volume fractions.
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Figure 8.1: Estimated interaction potential between two PMMA spheres coated with a layer of
PHSA. The curves were computed using the Alexander-de Gennes scaling blob model. Results
are shown for two sphere radii R = 201nm and 305nm. For the density of the grafted chains we
used a value s = 2.0nm and the layer thickness was assumed to be L = 13.5nm. The prefactor
α = 0.025was taken from the experimental data.

8.2 Model potential

The potential that we used to model the interaction between two PHSA-coated PMMA spheres
was deduced from surface-force measurements. Costello et al. [74, 75] measured the force be-
tween two mica surfaces coated with a PMMA (backbone)-PHSA (sidechain) comb copolymer,
with the PMMA backbone directly adsorbed on the mica and the PHSA side chains protruding
into the solvent. The interaction thus mimics that between the surfaces of two PHSA-stabilized
PMMA colloids. The measurements of Costello et al. followed a model proposed by Alexander
and de Gennes [79,80]. In this model, expected to be valid for high grafting densities, each chain
is assumed to consist of connected semi-dilute blobs. The chains are stretched by osmotic repul-
sion between the blobs. This tendency is opposed by the increase in elastic free energy of the
chain upon stretching. The resulting expression for the force per unit area between two parallel
plates at a distance r is

F(r) =
αkBT

s3

[(
2L

r

)9/4
−
( r
2L

)3/4]
, (8.1)

where s is the mean spacing between between grafting points and L is the thickness of the poly-
mer layer; α is a numerical prefactor and kBT the thermal energy. The expression is supposed
to hold for 0 < r < 2L. Integration yields the corresponding energy density. From the distance
of onset of the interaction, Costello et al. estimated that their layer thickness was L = 12.5 nm.
A fit of the Alexander-de Gennes model to experimental measurements yielded α = 0.025 and
s = 2.8 nm. By using the Derjaguin approximation (see e.g. Ref. [81]) we can estimate the
interaction potential between two spheres. Different methods have been used to measure the
thickness of the PHSA layer on PMMA colloids synthesized according to the method of Antl et
al. [82], giving values of L = 7-13 nm [83–87] and a maximum distance between grafting points
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Figure 8.2: Calculated parameter set U0/kBT ,κ of a hard-core yukawa potential that accounts
for the observed shift in the freezing density.

of s = 2.0 nm [88].
In our simulations we used L = 13.5 nm and s = 2.0 nm to yield the strongest repulsion

compatible with the experimental data. The resulting interaction potentials for spheres with
radii R = 305 nm and 201 nm are shown in Fig. 8.1. These radii correspond to the particles sizes
used by Pusey and van Megen [41] and Harland and van Megen [3] respectively. As can be
seen, the interaction potential increases steeply to 10kBT within 6− 7 nm from the point of first
contact.

8.3 Phase behavior

We used the potential obtained in the previous section to calculate the freezing and melting
densities of the colloidal suspensions. At coexistence the chemical potential and the pressure of
the fluid and the solid phase are equal. The chemical potential of the fluid and the solid phase
can be calculated from simulations using thermodynamic integration [7]

µ(ρ)

kBT
=
Fid(ρ)

NkBT
+
Fex(ρref)

NkBT
+

1

kBT

∫ρ
ρref

dρ ′
(
P(ρ ′) − ρ ′kBT

ρ ′2

)
+
P(ρ)

ρkBT
, (8.2)

where P is the pressure,N the number of particles in the system and Fid(ρ)/NkBT = ln(ρ) − 1 is
the dimensionless free energy per particle at density ρ. In addition we need to know the excess
free energy Fex(ρref) of the liquid and the solid at a reference density ρref, which was calculated
in a separate simulation. We performed a thermodynamic integration where we coupled our
system to a system of known excess free energy (in this case the hard-sphere system). The result
for the excess free energy of the liquid and a fcc solid for the particles with radii R = 201 nm are
Fex

liq(ρref = 0.8495)/NkBT = 4.9557 and Fex
fcc(ρref = 0.94458)/NkBT = 6.0262. For the system with

R = 305 nm we obtained Fex
liq(ρref = 0.8607)/NkBT = 4.5605 and Fex

fcc(ρref = 0.9559)/NkBT =

5.6798. The equation of state for the liquid and solid of the slightly soft system was measured
in a Monte Carlo simulation and the integration to calculate the chemical potential was done
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numerically. The resulting freezing and melting volume fractions for our model potential were
then estimated to be φf = 0.4137 and φm = 0.4579 (for R = 201 nm) and φf = 0.4380 and
φm = 0.4850 (for R = 305 nm). Thus, by scaling the freezing volume fractions to that of hard-
spheres φHSf = 0.494 [33] we obtain the effective hard-sphere diameter σeff = 1.061σ and σeff =

1.041σ of the two systems. We can compare these diameter to the effective hard-sphere diameter
predicted by first order perturbation theory

σeff =

∫∞
0
dr{1− exp[−U(r)/kBT ]}. (8.3)

The results σeff = 1.061σ (for R = 201 nm) and σeff = 1.041σ (for R = 305 nm) are identical to the
estimate above. The values for the interaction potential at this distance are U(r = σeff)/kBT =

0.7056 and 0.7065. If we use the effective hard-sphere diameter to rescale the melting volume
fractions of the soft systems to that of the hard spheres we find φm = 0.5469 and φm = 0.5463

(to be compared with φHS
m = 0.545 [33]).

The results for the particles with R = 305 nm can be compared directly with the observations
of Pusey and van Megen, who found core volume fractions at freezing and melting φf = 0.407

and φm = 0.441 [41]. The corresponding effective hard sphere diameter is σeff = 1.067. The
experimental volume fractions are some 3.1% lower than the freezing volume fraction deter-
mined in our simulations. If we consider the fact that the particles are polydisperse (5%) the
discrepancy is even 4.1% [46].

One may seek to obtain a better fit to experiments by varying the parameters s and L. The
value of s used gives the minimum surface coverage (at aerial density s−2) necessary for steric
stabilization to function [88]. In any case, we find that the effective hard sphere diameter is
somewhat insensitive to variations in s. Instead, agreement with the hard-core freezing volume
fraction of Pusey and van Megen can be obtained by using a value of L ≈ 22 nm. While there
was no direct determination of the PHSA chain length for the batch of PMMA particles used by
these authors, this value of L is twice to three times as long as values obtained from a variety of
experiments on PHSA-coated PMMA particles [83–87]. It is therefore possible that there is an
additional source of weak repulsion.

One possible source of this additional repulsion is a slight charge on the colloids. If we as-
sume that the interaction between charged colloids is described by a repulsive hard core Yukawa
potential: U0/kBT exp[−κ(r/σ−1)]/(r/σ) for r > σ, we can use Eq. (8.3) to estimate the values of
the parameter U0/kBT and κ needed to account for the observed shift in freezing volume frac-
tion. Here U0/kBT is the value of the Yukawa repulsion at contact and κ is the inverse screening
lenght in units of the hard-sphere diameter σ. We find that the added repulsion is indeed quite
weak, and very soft (see Fig. 8.2). Note that such a weak, soft repulsion can hardly be detected
in the surface-force measurement. We can estimate the charge on a particle from the contact
value of the interaction potential: U0/kBT = Q2/4πε0εσ, whereQ is the charge, ε0 and ε are the
permittivity of the vacuum and the PMMA. A value U0/kBT = 0.1 corresponds to an average
colloidal charge of about one electron per sphere.

8.4 Crystallization kinetics

8.4.1 Homogeneous nucleation

When a liquid is compressed to densities beyond freezing crystallization can be very slow. The
reason is that the free energy of a crystalline nucleus that forms in a supersaturated solution is
the sum of two competing terms. The first is a bulk term, that favors the transformation from
the liquid to the solid state. If n particles transform from liquid to solid the free energy gain
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Figure 8.3: Computed crystal nucleation barriers for the slightly soft hard-sphere system plotted
as a function of supersaturation. In addition we also show results from previous simulation on
the pure hard-sphere system, to which the results can be compared.

is n∆µ, where ∆µ is the chemical potential difference between the two phases. This term is
counterbalanced by the surface term, that describes the free energy required to create a liquid-
solid interface Aγ, where A is the surface area and γ the surface free energy density. For small
crystallites, the surface term dominates and the free energy increases. The free energy has a
maximum at the critical cluster size ncrit

∆G(ncrit) =
16π

3

γ3

(ρs|∆µ|)2
, (8.4)

where ρs is the number density of the solid. For larger sizes (smaller surface/volume ra-
tio) the bulk term dominates and the free energy decreases. The crystal nucleation rate per
unit volume is given by the product of the probability for the formation of a critical nucleus
P(ncrit) ∝ exp(−∆G(ncrit)/kBT) and a kinetic prefactor Γ

I = Γ exp[−∆G(ncrit)/kBT ]. (8.5)

We stress that, whilst Eq. (8.4) is an approximation (based on classical nucleation theory), Eq. (8.5)
is more generally valid. Below, we use simulations to estimate Γ and ∆G(ncrit).

8.4.2 Nucleation barrier

The (Gibbs) free energy of a nucleus of size n is given by

∆G(n) = const− ln[P(n)]. (8.6)

To compute the equilibrium cluster size distribution P(n) we used a biased Monte Carlo scheme
in combination with a local bond-order analysis for the identification of crystal nuclei [48].
For the system with R = 201nm we computed the crystal nucleation barrier at four differ-
ent pressures Pσ3/kBT = 12.5, 13, 13.5 and 14, corresponding to volume fractions of the liquid
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Figure 8.4: Results for the crystal nucleation rate for the slightly soft hard-sphere system com-
pared to the pure hard-sphere as a function of supersaturation ∆µ.

ρl = 0.43441, 0.43803, 0.44144 and 0.44480. In Fig. 8.3 we show the results for the crystal nu-
cleation barrier as a function of ∆µ. In the figure we also show the results for the hard-sphere
system. As can be seen, despite the only slight softness, the crystal nucleation barrier is re-
duced by about 2 − 4kBT at constant ∆µ, even though the colloidal particles are very nearly
hard spheres.

8.4.3 Nucleation rate

To estimate the crystal nucleation rate we also need to compute the kinetic prefactor Γ . In re-
duced units, Γ has the following form Γ = Zρlf

+
ncrit

(σ5/D0) [17]. HereZ = [|∆G
′′
(ncrit)|/(2πkBT)]

1/2

is the Zeldovich factor which is a quantity that can be computed once the nucleation barrier is
known. ρl is the number density of the liquid phase. The only unknown quantity is the reduced
attachment rate of particles to the critical cluster f+ncrit/D0, where D0 is the diffusivity of col-
loids at infinite dilution. The attachment rate of particles to the critical cluster can be computed
by measuring the size fluctuations around the critical size f+ncrit =

〈
(n(t) − ncrit)

2
〉
/t [48]. To

compute this quantity we used a kinetic Monte Carlo scheme [26]. In such simulations the effect
of hydrodynamic interactions between the particles is usually neglected. To correct for this we
followed the approach proposed by Medina-Noyola [27]. In this scheme the computed f+ncrit
is multiplied by a factor DSS/D0, where DSS is the short time self diffusion coefficient. For the
hard-sphere system we could use the approximate expressionDSS/D0 = (1−φ/0.64)1.17 [28]. In
order to apply this expression to slightly-soft spheres, we used the rescaled volume fraction of
the corresponding effective hard-sphere diameter. The results for the crystal nucleation rates as
a function of ∆µ are shown in Fig. 8.4. The decrease in the nucleation barrier transforms into an
increase of the crystal nucleation rate of about two orders of magnitudes. In addition we show
the crystal nucleation rate as a function of the rescaled volume fraction of the liquid (Fig. 8.5).
In this figure too, an increase of the nucleation rate of more than one order of magnitude is ob-
served. While this is significant it is not enough to account for the nucleation rates observed in
experiments. Note that in our simulations we used a particle radius R = 201nm, which is the
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Figure 8.5: Comparison of the crystal nucleation rates computed for the slightly soft hard-
spheres and the pure hard-spheres plotted as a function of the volume fraction of the liquid.
The volume fraction used for the slightly soft hard-spheres correspond to the effective hard
sphere model.

radius of the particles used in the experiments by Harland and van Megen [3]. A comparison
to their results is possible if we assume that the effect of the softness on the nucleation rate is
the same for particles that have a polydispersity of 5%. The agreement is only slightly better.
We also show the results of experiments by Sinn et al. [35]. The particles they used are larger
R = 435nm (and therefore less soft) and have a polydispersity of 2.5%. If we extrapolate both
experimental measurements to a monodisperse system, we see that a comparison to our results
for the slightly soft system yields at best a discrepancy of four orders of magnitudes.

The fact that the particles are weakly charged and the system has a large Debye screening
length might have two additional effects on the crystallization kinetics. First of all, the charge
further lowers the surface free energy which increases the nucleation rates. Secondly, as both
the surface charge and the Debye screening length may depend on density this can qualitatively
change the dependence of the nucleation rate on supersaturation [89]. A better agreement with
experimental nucleation rates would be obtained if we make the (not unreasonable) assumption
that the colloids become more hard-sphere like at higher densities.





9
Wall induced crystallization in a
hard-sphere system

We compute the free energy barrier associated with the formation of a crystal nucleus on a smooth hard
wall. We find that the nucleation barrier is much smaller than in a homogeneous system. Spontaneous
crystallization starts already for pressures that are about 5.4% higher than the estimated coexistence pres-
sure. When crystal nuclei form, a (111) face crystal plane forms at the wall. Initially, this crystal grows
laterally, rather than in the third dimension. The calculated free energy of a crystal nucleus that forms
at the wall is about two orders of magnitudes lower than classical nucleation theory (CNT) estimates for
the homogeneous system. Our simulations support theoretical estimates based on available data for the
interfacial free energy. The presence of a nucleation barrier is incompatible with the assumption that the
crystal phase wets the interface [90]

9.1 Introduction

Many liquids can be cooled far below the melting temperature and kept there without freez-
ing [1]. This phenomena is known as undercooling. The reason why in the real world water
usually freezes at 0◦ C is due to the presence of heterogeneous nucleation sites. In the case of
undercooled water a single snowflake can induce the freezing process.

The reason why a liquid can be undercooled is best understood in the framework of classical
nucleation theory (CNT). In CNT the free energy of a crystal nucleus that forms spontaneously
in the supersaturated liquid is described by two competing terms. The first is a bulk term which
describes the gain in free energy if n particles transform from the liquid to the solid state n∆µ,
where ∆µ = µl − µs is the difference in chemical potential between the two phases. This term is
opposed by the energy needed to create a liquid/solid interface Aγ, where A is the surface area
and γ the liquid/solid interfacial free energy density. Turnbull [91] extended CNT to the case
of heterogeneous nucleation of a crystal that forms on a plane substrate. The difference with
the homogeneous case is that there are now two interfaces present. The Gibbs free energy of a
crystal containing n particles is given by:

∆G(n) = n∆µ−Aws(γws − γwl) +Alsγls, (9.1)

where the indices w, l, s refer to the wall,liquid and solid. For a given value of n, the shape that
minimizes ∆G(n) is a spherical vector, with a contact angle θ of the two phases with the wall
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Figure 9.1: Calculated density profile of the particles between the two plane walls at a pressure
P = 12.1 after 100000 trajectories.

given by:

cos(θ) =
γwl − γws

γls
. (9.2)

The resulting height of the nucleation barrier is:

∆G∗ =
16π

3

γ3lsf(θ)

(ρs∆µ)2
, (9.3)

where ρs is the number density of the bulk solid and the factor f(θ) is defined by

f(θ) =
(2+ cos(θ))(1− cos(θ))2

4
. (9.4)

Note that the only difference to the result for the homogeneous case is the factor f(θ). Depend-
ing on the values for the interfacial free energy densities and the resulting value for cos(θ) we
distinguish between three different cases. The first case is when cos(θ) < −1 (or θ > 180◦),
which corresponds to the situation where γwl − γws < −γls. This implies that under these con-
ditions the crystal will not form on the substrate, because this would increase its free energy.
This situation is analog to homogeneous nucleation. The second case is when a finite contact
value is seen: −1 < cos(θ) < 1 (or 0 < θ < 180◦) with the following condition for the interfacial
free energy densities −γls < γwl−γws < γls. This means that a crystal lowers its free energy by
attaching to the wall. This case is also referred to as partial wetting of the wall. The last case is
when cos(θ) = 1(θ = 0◦) or γls < γwl − γws. In this case the solid phase prefers to form a thin
layer on the wall which is referred to as complete wetting. In that case the barrier to nucleation
disappears.

In this chapter we investigate how the crystallization process in influenced by to the pres-
ence of a wall. In particular we focus on a system of colloidal hard-spheres between two pla-
nar hard walls. The hard-sphere system has the advantage that it is thermodynamically well
characterized. Even more importantly, it can be studied experimentally. The estimated value
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Figure 9.2: Snapshot of the configuration which shows the particles between the two plane walls
at the end of these 100000 trajectories.

for the wall/liquid interfacial free energy density at the freezing volume fraction η = 0.494 is
γwl = 1.99kBT/σ

2 [92], where σ is the hard-sphere diameter and kBT the thermal energy. The
values for the wall/solid interfacial free energies for different orientations (111), (110), (100) are
estimated to be γws = 1.42, 3.08, 2.01kBT/σ

2 [92]. The values for the liquid/solid interfacial
free energy again for the three orientations in same order are γls = 0.58, 0.64, 0.62kBT/σ

2 [6].
Based on these values we can speculate which of the three cases applies for the hard-sphere
wall system. For the (110) plane we find that it prefers not to attach to the wall. The condition
γwl − γws < −γls is fulfilled −1.09 < −0.64. In contrast to that, the (100) and the (111) prefer to
partially wet the wall. Both planes fulfill the corresponding condition −γls < γwl − γws < γls
(−0.62 < −0.02 < 0.62 and −0.58 < 0.57 < 0.58). We should note that the condition for wetting
γls < γwl − γws is almost fulfilled by the (111) plane 0.58 < 0.57. Taking into account the sta-
tistical errors which might be present in the calculation of the interfacial free energy densities,
the situation of partial wetting and complete wetting of the (111) plane is not completely clear.
In fact, there are earlier simulations that report complete wetting [90] starting about 3% below
the coexistence pressure. Clear evidence for surface freezing has been reported for a patterned
surface. In this case, surface freezing already sets in 29% below the coexistance pressure [93].

Below we consider whether crystalline layers wet a plane wall below the bulk freezing den-
sity. We find that this is not the case. Next, we calculate the free energy of a nucleus that
partially wets the wall and compare the measured barrier height to a prediction from CNT at
this pressure in the corresponding homogeneous system.

9.2 Coexistence region

To explore the coexistence region we performed Monte Carlo simulations in the constant normal-
pressure (NP⊥T) ensemble. Here N refers to the number of hard-spheres in our rectangular
simulation box of size Lx, Ly, Lz. Periodic boundary conditions are applied in the x and y di-
rections and two plane hard walls at distance Lz confining the system in the z direction. P⊥
is the component of the stress tensor perpendicular to the plane wall, and T is the tempera-
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Figure 9.3: Calculated density profile of the particles between the two plane walls at a pressure
P = 12.2 after 100000 trajectories. The system started to crystallize.

ture. As our unit of length we used the hard-sphere diameter σ, whereas T only sets the energy
scale, but does not affect the phase transition. The hard-sphere system is completely specified
by the volume fraction η of the system. The coexistence volume fractions for the bulk fluid
and solid phase are known [33]: ηf = 0.494 and ηm = 0.545. The corresponding coexistence
pressure is Pcoex = 11.57σ3/kBT . In the following we always use reduced units. To avoid finite
size effects we simulated a system containing N = 13824 particles. The wall area was fixed at
LxLy = 600.25σ2, the distance between the two walls in z direction fluctuated but was close to
24σ. The simplest way to detect prefreezing is to measure the density profile of the particles be-
tween the two walls. In case solid layers form at pressures lower than Pcoex, this will be visible
in the density profile through a pronounced dip, indicating a clear separation between crystal
planes. However this was not observed, even at pressures higher than Pcoex. In Fig. 9.1 we show
the observed density profile at the end of a simulation performed at a pressure P⊥ = 12.1. The
corresponding bulk volume fraction is η = 0.4966. In the simulation we performed 100000 tra-
jectories, where one trajectory consists of 20moves per particle, plus about 10 volume moves. A
snapshot of the corresponding side view of the last configuration of this simulation is shown in
Fig.9.2. The situation changes when the pressure was increased to P⊥ = 12.2. The liquid started
to crystallize, which can be seen from the density profile shown in Fig.9.3. Already from these
simulations it becomes clear that the liquid prefers to partially wet the wall rather than complete
wetting. However the density region where the liquid does not crystallize spontaneously be-
comes very narrow. In the homogeneous system nucleation is very slow for P < 17 (η < 0.53). In
addition we used a local bond-order analysis [48] to distinguish between particles with a liquid-
like and solid-like local environment. The result of this analysis is shown in Fig.9.4, where we
show a snapshot of the particles on the wall at pressure P⊥ = 12.1. The particles in blue have a
liquid-like environment and the particles in yellow have a solid-like environment. Only some
smaller crystal nuclei can be identified. We should note that solid cluster did only form at the
wall and not in the bulk.
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Figure 9.4: Snapshot of particles at the wall. A local bond-order analysis was used to distin-
guish between particles with a liquid-like (blue particles) and solid-like (yellow particles) envi-
ronment. The snapshot is taken from a simulation at pressure P = 12.1.

9.3 Crystallization Barrier

Next, we computed the free energy of a small nucleus at the wall. According to thermodynamic
fluctuation theory the (Gibbs) free energy of a nucleus of size n is given by [20]

∆G(n) = const− ln[P(n)], (9.5)

where P(n) is the equilibrium distribution of cluster sizes. This is the fundamental relation
which enables us to compute the nucleation barrier in a simulation. We perform a Monte Carlo
simulation in the constant normal-pressure (NP⊥T) ensemble in combination with a local-bond
order analysis as described above. As for all but the smallest cluster P(n)� 1we used umbrella
sampling [22]. The total simulation was split into a number a number of smaller simulations,
where each simulation was restricted to sample only a narrow range of cluster sizes. We used
N = 13824 particles and simulated 100000 trajectories of same lenght as described before. The
result for the free energy barrier calculated at a pressure P⊥ = 12.1 is shown in Fig. 9.5. The
estimated barrier height is ∆G∗ = 17kBT at a critical cluster size ncrit = 150. We can compare
this estimate with a prediction for the barrier height in a homogeneous system. In an earlier
publication we showed that given the correct value for the interfacial free energy CNT describes
the barrier height quite well [48]. But we also found that the interfacial free energy depends
on density. As the present system is close to coexistence we use its average coexistence value
γ = 0.61 [6]. We then get ∆G∗CNT = 1334kBT at a critical cluster size of ncrit = 52000. The overall
reduction of the nucleation barrier due to the plane wall is about two orders of magnitudes. This
should have dramatic consequences for colloidal hard-sphere systems. The colloidal suspension
is usually prepared in a cylindrical container. The curvature of the cylinder is quite small so
that one would expect that crystallization is always initiated by the wall. Finally we look closer
with which plane the crystal nuclei attaches to the wall and what the actual shape is. In Fig. 9.6
and Fig. 9.7 we show a snapshot of a critical nucleus of size n = 150. We can clearly see that
the (111) plane attaches to the wall, as expected. Note that the shape of the nucleus on the plane
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Figure 9.5: Calculated nucleation barrier ∆G(n) of a crystal nucleus formed at the wall as a
function of its size n.

is flat and the nucleus prefers to spread on the surface rather to grow in the bulk. This is in
agreement with the CNT predictions based on the surface free energy values. The (111) partially
wets the wall but the condition for complete wetting is almost fulfilled.

The fact that the range of metastability becomes very narrow might provide a powerful
tool for the determination of the freezing density in experimental systems. The initial crystal
formation at a flat surface can be observed using real space imaging. The corresponding density
should differ less than 1% from the coexistence value.
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Figure 9.6: Snapshot of a crystal nucleus of size n = 150 shown in yellow. In the figure we
displayed all solid particles in the system.

Figure 9.7: Snapshot of a crystal nucleus of size n = 150.
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Summary

In this thesis we simulate the crystal nucleation process in a colloidal dispersion of spherical
particles with purely repulsive interaction. The main problem when studying crystal nucleation,
experimentally as well as in computer simulations, is that crystal nucleation is an activated
process. First, small crystal nuclei need to form spontaneously in a supersaturated solution,
but unless their size exceeds a critical value, they will redissolve rather than grow. The crystal
nucleation rate is the product of the probability for the formation of a critical cluster and a kinetic
prefactor that describes the rate with which a critical nucleus grows. Our simulation techniques
enable us to overcome this problem and to predict absolute crystal nucleation rates. In addition
we are able to study the pathway for the formation of small crystal nuclei.

In chapter 2 we begin with a general introduction to how molecular simulations can be used
for the calculation of a reaction rate constant. This is done in the framework of linear response
theory. We focus on the main results for the reaction rate constant and the practical aspects of the
numerical calculation. This formulation is applied to the special case where the barrier crossing
is diffusive. The final result is applicable to the calculation of a crystal nucleation rate.

Chapter 3 summarizes classical nucleation theory (CNT) which is most commonly used to
predict nucleation rates. We explicitly demonstrate that the expression for the nucleation rate
is identical to that derived in chapter 2. Furthermore, we extend the formulation of CNT to a
multicomponent system.

We end the first part of the thesis with chapter 4, which provides an introduction to the
numerical techniques needed to predict a crystal nucleation rate. The calculation of the rate
is split into two parts. First we compute the nucleation barrier and second we compute the
kinetic prefactor. In all cases we perform Monte Carlo simulations, in combination with a local
bond order analysis for the identification of solid particles, for the calculation of the nucleation
barrier. As the formation of cluster is extremely rare we need to use umbrella sampling. The
kinetic prefactor must be calculated in a separate kinetic Monte Carlo simulation.

In the second part we apply our novel techniques to colloidal dispersions of spherical par-
ticles with purely repulsive interaction. As crystallization of hard-sphere colloids has been ex-
tensively studied, this system was an obvious choice to begin with (chapter 5). This study
constitutes the first example where computer simulations of crystal nucleation rates are directly
compared with experiments. To our surprise, we find that our results are at odds both with
the existing experiments and with CNT. We state explicitly that, according to our estimates,
the computed nucleation rates are accurate to within one order of magnitude. The discrepancy
with experiments must therefore be attributed to problems in the experimental data analysis. In
addition we find that CNT underestimates the nucleation barrier by about 50%. Based on our
barrier calculations and a precise knowledge of∆µ (the difference in chemical potential between
the liquid and the solid phases) we deduce the liquid solid surface free energy γ for a critical
nucleus. We find that these estimates for γ are much higher than the coexistence value, and γ
increases with density. The dependence of γ on density was not considered in existing theories.
Hence, our work poses a challenge to experimentalists and theoreticians alike. We should also
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note that our calculations for the kinetic prefactor are in good agreement with a simple classical
estimate. Finally, we study the structure of critical nuclei. It is known that the stable crystal
structure is face centered cubic (fcc). However we find that our critical cluster constitutes a
random stacking of the (111) planes of the fcc and the hexagonal closed packed (hcp) structure.
This is in agreement with experimental observations and in contrast to a theoretical prediction
that a fluid always crystallizes via a body centered cubic (bcc) intermediate. It can be seen as a
manifestation of Ostwald’s step rule, that a liquid first nucleates in a metastable structure and
only later transforms to the stable one.

In practice, the colloidal particles used in the experiments have a distribution of particle radii
(referred to as polydispersity) which is rarely less than 2− 3% of the average radius. In order to
compare our measured nucleation rates with experiments we already needed to study the effect
of a small polydispersity (up to 5%) in the previous chapter. The result was that within numer-
ical error the monodisperse and polydisperse suspensions have the same nucleation barrier at
constant supersaturation ∆µ. However, experiments on hard-sphere colloids indicate that crys-
tallization is suppressed if the polydispersity exceeds 12%. So far this has been attributed to
kinetic reasons as crystallization of highly polydisperse suspensions is not excluded on thermo-
dynamic grounds. This observation was the motivation for our second project where we further
studied the crystallization kinetics for polydispersities up to 10% (chapter 6). Our calculations
of the crystal nucleation barrier show that when polydispersity is increased beyond 5%, the bar-
rier height increases rapidly at constant ∆µ. This means that the probability for the formation
of a critical nucleus is decreased and crystal nucleation is suppressed. According to CNT this
increase in the barrier height is attributed to an increase of γ with polydispersity. Even more
surprising is that the variation of the barrier height with supersaturation at the same polydisper-
sity is non-monotonic. With increasing ∆µ the barrier height first decreases then goes through
a minimum and starts to increase again. Again, using the equation for the barrier height from
CNT, this observation is attributed to an increase of γ with ∆µ. The minimum of the barrier
height increases rapidly with polydispersity. Our estimate for the minimum barrier height of a
system of hard-sphere colloids with a polydispersity of 10% is about 30kBT . This implies that
for a suspension of colloids with a radius of 500nm we expect to see less than one crystallite
per cubic centimeter. This has important implications for the morphology of polycrystalline
colloidal materials. Vitrification at high supersaturations should yield colloidal glasses that are
truly amorphous, rather than nano-crystalline. Finally we propose how our observation of the
minimum in the nucleation barrier can be tested experimentally. Using a simple analysis we
show that the minimum barrier height causes a minimum in the typical crystallite size at the
end of a nucleation experiment. By visual inspection one can test if crystallites formed at high
supersaturation are larger than those that form at lower supersaturation.

During the course of the work described above a new experiment was reported, where nucle-
ation and growth in colloidal crystallization were studied by real-space imaging. The reported
nucleation rates are much higher, and an estimate for the surface tension was much lower than
the values we found in our simulations. The difference between this system and ours is that
the particles were weakly charged. This inspired our next project, the crystallization of weakly
charged colloidal spheres (chapter 7). We model the interaction between the charged colloids
with a repulsive hard-core Yukawa potential. We study the dependence of the crystal nucle-
ation rate as a function of supersaturation on the range and the contact value (charge on the
sphere) of the interaction potential. We find that at the same volume fraction crystallization of
the weakly charged spheres is much faster than for hard-spheres. This is partly due to the fact
that the fluid-solid coexistence of the charged spheres occurs at lower volume fractions, which
implies a higher supersaturation. In addition, we find that the charge has a strong direct effect
on the nucleation barrier by lowering γ. This effect is strongest when only a weak charged is
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added. Furthermore we find that the functional dependence of the barrier height as a function of
supersaturation does not change considerably for different charges. This is in contrast to the ex-
periment where only a slight dependence of the nucleation rate on supersaturation is observed.
Our simulations indicate that one possible explanation is a strong density dependence of the
interaction potential. Moreover, we study the structure of small crystal nuclei. All simulations
are performed in a region of the phase diagram where fcc is the stable phase. However in all
cases we find that the initial crystal nuclei have a bcc structure. We attribute this effect to the
fact that the liquid/bcc surface free energy is lower than that of the liquid/fcc interface.

Colloids that consist of a polymethylmethacrylate (PMMA) core coated with a thin layer of
poly-12-hydroxystearic (PHSA) are commonly used as a model system for hard spheres. How-
ever, due to the coating, the particles are slightly soft. In chapter 8 we study the effect that such
a softness has on the phase behavior and the crystallization kinetics. In our simulations we use
an interaction potential extracted from surface force measurements on that system. This poten-
tial is characterized by two parameters, the thickness and the density of the PHSA layer. We
find that the freezing density measured in the experiments corresponds to a layer thickness that
is about a factor two larger than the thickness measured in the surface force experiment. We
suggest that this discrepancy might be due to a slight charge on the particles. Based on a com-
parison between the experimental and numerical results we can estimate the magnitude this
charge would need to have. The charge is indeed very small (less than one electron per sphere).
For the crystallization kinetics we find that the nucleation rate is increased by two orders of mag-
nitudes at constant ∆µ. While this is significant, it cannot account for the discrepancy between
the nucleation rates observed in experiments and simulations (chapter 5).

Finally we apply our techniques to study crystal nucleation in a heterogeneous system. We
simulate a system of hard spheres that are confined between two plane hard walls. We find that
the presence of the walls narrows the density regime where the liquid is metastable with respect
to the solid. Already at volume fractions less than 1% higher than coexistence spontaneous
crystallization occurs, compared to about 4% in the homogeneous system. We see that the wall
induces the crystal formation. First a (111) face crystal plane forms at the wall. Then it prefers to
grow laterally rather than in the third dimension. The calculated barrier height of such a nucleus
is about two orders of magnitude lower than an estimate based on CNT in the corresponding
homogeneous system. Our simulations support arguments based on the values of the surface
free energy densities which suggest that a crystal should partially wet the wall with the (111)
plane. We propose that the fact that crystal formation happens at volume fractions less than
1% higher than coexistence can be used for a precise determination of the freezing point in the
experimental system.





Samenvatting (Summary in Dutch)

Dit proefschrift gaat over kristalnucleatie in colloı̈dale dispersies van bolvormige deeltjes met
repulsieve interacties. Het grootste probleem bij de bestudering van nucleatie, zowel in exper-
imenten als in computersimulaties, is dat nucleatie een geactiveerd proces is. De eerste stap in
dit proces is het spontaan vormen van een kleine kiem in de oververzadigde oplossing. Wan-
neer deze kiem kleiner is dan een bepaalde kritische grootte zal de kiem oplossen in plaats van
groeien. De nucleatiesnelheid is het product van de kans dat zich een kritische kiem vormt
en een kinetische factor die de snelheid beschrijft waarmee de kritische kiem groeit. Met be-
hulp van de in dit proefschrift beschreven computersimulaties is het mogelijk dit probleem op
te lossen en zo de absolute nucleatiesnelheid te berekenen. Daarnaast is het mogelijk om het
mechanisme waarmee een kritische kiem groeit te bestuderen.

In hoofdstuk 2 wordt een algemene manier besproken om reactiesnelheden met behulp van
computersimulaties te bepalen. Deze methode maakt gebruik van lineaire respons theorie. In
de beschrijving hiervan wordt met name gekeken naar de berekening van de reactiesnelheid en
naar de praktische aspecten van de numerieke berekening. Deze methodologie wordt toegepast
op het speciale geval van een diffusieve reactie, hetgeen ons in staat stelt om de absolute nucle-
atiesnelheid te berekenen.

Hoofdstuk 3 bevat een samenvatting van de klassieke nucleatie theorie (CNT: Classical Nu-
cleation Theory). Deze theorie wordt het meest gebruikt voor de berekening van nucleatie-
snelheden. We laten zien dat de CNT dezelfde formule oplevert voor de berekening van de
nucleatiesnelheid als de formule die in hoofdstuk 2 is afgeleid. Tevens wordt een beschrijving
gegeven van de CNT in het geval van een systeem dat bestaat uit meerdere componenten.

Het eerste deel van dit proefschrift word afgesloten met een beschrijving van de numerieke
technieken die gebruikt worden bij de berekening van de nucleatiesnelheid. De simulatie bestaat
uit twee componenten: de eerste component is de berekening van de nucleatiebarrière en de
tweede component is de berekening van de kinetische factor. Beide berekeningen worden uit-
gevoerd met behulp van Monte Carlo simulaties waarbij gebruik wordt gemaakt van local bond
order analyses om een kristal kiem te identificeren. Omdat de vorming van deze kiemen maar
zelden plaats vindt tijdens een simulatie, gebruiken we umbrella sampling. De kinetische factor
wordt berekend in een aparte, kinetische Monte Carlo simulatie.

In het tweede gedeelte van dit proefschrift worden deze nieuwe technieken toegepast op
colloı̈dale dispersies van bolvormige deeltjes met repulsieve interacties. In eerste instantie
hebben we ervoor gekozen te kijken naar een harde bollen systeem, omdat kristallisatie van
harde bollen al uitgebreid bestudeerd is (hoofdstuk 5). Deze computersimulaties zijn de eerste
waarmee nucleatiesnelheden direct kunnen worden vergeleken met experimentele waarden.
Tot onze verrassing kwamen de berekende waarden niet overeen met de CNT en met experi-
mentele waarden. Bovendien zijn de berekende nucleatiesnelheden, volgens onze afschattingen,
tot op ordegrootte nauwkeurig. Het verschil met de experimentele data moet dan ook worden
toegeschreven aan problemen bij het analyseren van de experimenten. Tevens voorspelt de CNT
een nucleatiebarrière die 50% lager is dan de door ons berekende waarde. Met behulp van de
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grootte van de nucleatiebarrière en het verschil in chemische potentiaal tussen het kristal en de
vloeistof (oververzadiging) is de oppervlaktespanning tussen vaste stof en vloeistof berekend.
Het bleek dat de oppervlaktespanning veel hoger is dan in het geval van chemisch evenwicht
tussen de twee fases. Bovendien hing de oppervlaktespanning sterk af van de dichtheid. In
de bestaande theorieën over kristalnucleatie is geen afhankelijkheid van de dichtheid op de
oppervlaktespanning opgenomen. Onze resultaten zijn daarom ook voor experimentatoren en
theoretici interessant. Een ander belangrijk punt is dat de berekende kinetische factor wel goed
overeenstemt met het klassieke resultaat. Tenslotte hebben we ook de structuur van de kritische
kiem bestudeerd. Het is bekend dat de meest stabiele kristalstructuur fcc (face centered cu-
bic) is. Echter, onze bevinding is dat de kritische kiem bestaat uit willekeurige stapelingen van
zowel het (111) vlak van de fcc structuur als de hcp (hexagonal close packed) structuur. Dit is in
overeenstemming met experimenten maar in tegenspraak met eerdere theoretische voorspell-
ingen dat een vloeistof altijd stapsgewijs kristalliseert met een bcc structuur als tussenfase. Dit
kan worden gezien als een voorbeeld van de Ostwald step rule die voorspelt dat een vloeistof
eerst een metastabiele toestand vormt alvorens te kristalliseren tot een stabiele structuur.

De colloı̈dale deeltjes die gebruikt worden in experimenten hebben een verdeling in de
straal van de deeltjes die meestal meer is dan 2 − 3% van het gemiddelde. Om onze berekende
kristalgroeisnelheid te kunnen vergelijken met experimenten is het belangrijk om het effect van
lage polydispersiteit (kleiner dan 5%) te bestuderen. Het bleek dat voor deze lage polydis-
persiteit de nucleatiebarrière gelijk is aan die voor harde bollen bij identieke oververzadiging.
Echter, experimenten met colloı̈den duiden erop dat kristallisatie onderdrukt wordt wanneer
de polydispersiteit groter is dan 12%. Tot nu toe werd dit toegeschreven aan de kinetische fac-
tor aangezien deeltjes met een hoge polydispersiteit volgens de thermodynamica wel degelijk
kunnen kristalliseren. Dit motiveerde ons om de kristallisatiesnelheid voor deeltjes met een
polydispersiteit groter dan 5% te onderzoeken (hoofdstuk 6).

Onze berekeningen laten zien dat de nucleatiebarrière als functie van de oververzadiging
snel groter wordt zodra de polydispersiteit toeneemt boven de 5%. Dit betekent dat de kans
op vorming van een kritische kiem afneemt en dat kristalnucleatie onderdrukt wordt. Volgens
de CNT moet het groter worden van de nucleatiebarrière worden toegeschreven aan het groter
worden van de oppervlaktespanning. Nog spectaculairder is dat de nucleatiebarrière als functie
van de oververzadiging niet monotoon is. Bij toenemende oververzadiging wordt de barrière
in eerste instantie lager om vervolgens weer te stijgen. Ook dit moet volgens de CNT worden
toegeschreven aan een veranderende oppervlaktespanning. De minimale hoogte van de nu-
cleatiebarrière neemt snel toe met de toenemende polydispersiteit. De minimale barrière voor
systemen met een polydispersiteit van 10% is ongeveer 30 kBT . Dit betekent dat voor colloı̈dale
suspensies met een gemiddelde deeltjesdiameter van ongeveer 500nm er gemiddeld minder
dan 1 kristalliet is per kubieke centimeter. Dit heeft belangrijke gevolgen voor de morfologie
van polykristallijne colloı̈dale materialen. Vitrificatie bij hoge oververzadiging zou moeten re-
sulteren in colloı̈dale glazen die volledig amorf zijn in plaats van nano-kristallijn. Tenslotte
voorspellen we hoe het minimum van de nucleatiebarrière experimenteel zou kunnen worden
waargenomen: Met een simpele analyse laten we zien dat de minimale barrière resulteert in een
minimum van de kristalliet grootte aan het einde van een nucleatie-experiment. Vervolgens kan
men met optische methoden testen of de kristallieten die gevormd zijn bij hogere oververzadig-
ing groter zijn dan die die gevormd zijn bij lagere oververzadiging.

Tijdens het in dit proefschrift beschreven onderzoek werd in de literatuur een experimentele
studie gerapporteerd, waarin nucleatie en groei van colloı̈dale kristallen in de reële ruimte werd
bestudeerd met behulp van confocale microscopie. Vergeleken met de computersimulaties was
de gemeten nucleatiesnelheid veel hoger en de oppervlaktespanning veel lager. Een essentieel
verschil met de simulaties was dat de deeltjes in het experiment een kleine lading hadden.
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Dit inspireerde ons om het gedrag van geladen colloı̈dale deeltjes te onderzoeken (hoofdstuk
7). Het model dat we hiervoor hebben gebruikt is de repulsieve harde-bollen Yukawa poten-
tiaal. Hiervoor hebben we de kristallisatiesnelheid bestudeerd als functie van de mate van
oververzadiging en de lading van de colloı̈den. Het blijkt dat bij dezelfde volumefractie zwak
geladen colloı̈den veel sneller kristalliseren dan harde bollen. Dit komt gedeeltelijk doordat het
vaste stof/vloeistof evenwicht van zwak geladen colloı̈den plaats vindt bij lagere volumefrac-
ties. Dit impliceert een hogere oververzadiging. Een ander effect is dat de lading direct van
invloed is op de nucleatiebarrière door een verlaging van de oppervlaktespanning. Dit effect is
vooral aanwezig wanneer slechts zwak geladen colloı̈den worden gebruikt. Bovendien blijkt de
vorm van de barrière als functie van de oververzadiging vrijwel onafhankelijk van de lading.
Dit is in tegenspraak met het eerdergenoemde experiment waarin slechts een kleine afhanke-
lijkheid van de oververzadiging op de nucleatiesnelheid werd waargenomen. Onze simulaties
suggereren dat in het experiment de interactiepotentiaal sterk afhankelijk is van de dichtheid.
Tevens is de kristalkiem in de simulatie erg klein. Alle simulaties zijn uitgevoerd in het gebied
van het fasediagram waarin de fcc structuur de stabiele fase is. Echter, in alle simulaties heeft
de initiële kristalkiem een bcc structuur. Dit kan worden toegeschreven aan het feit dat de vrije
energie van een bcc/vloeistof oppervlak lager is dan die van een fcc/vloeistof oppervlak.

Colloı̈den bestaande uit een polymethylmethacrylaat (PMMA) kern gecoat met een dunne
laag poly-12-hydroxystearic (PHSA) zijn een veel gebruikt experimenteel modelsysteem voor
harde bollen. Echter, door de coating zijn deze deeltjes niet geheel hard. In hoofstuk 8 be-
studeren we het effect van een zachte potentiaal op de kristallisatiesnelheid. In de simulaties
hebben we een interactiepotentiaal gebruikt die afkomstig is van oppervlakte-kracht metin-
gen. Deze potentiaal kan worden gekarakteriseerd met twee modelparameters: de dikte en de
dichtheid van de PHSA laag. Uit deze experimenten volgt dat de dichtheid bij de kristallisatie-
overgang overeenkomt met een laagdikte die een factor twee groter is dan de laagdikte geme-
ten in het oppervlakte-kracht experiment. Een mogelijke oorzaak hiervoor is dat de deeltjes
een kleine lading hebben. Door de experimentele en numerieke resultaten te vergelijken is het
mogelijk een ruwe schatting te maken voor de grootte van deze lading. Het blijkt dat de lading
per bol kleiner is dan een enkele elektron per bol. De kristallisatiesnelheid is twee ordegroottes
groter bij een constant verschil in chemische potentiaal tussen de vloeistof en vaste fase. Hoewel
dit een significant verschil is, is het niet mogelijk om hiermee het verschil in kristallisatiesnel-
heid tussen experiment en simulatie te verklaren (hoofdstuk 5).

Tenslotte hebben we onze technieken toegepast op kristalnucleatie in een heterogeen sys-
teem, te weten harde bollen tussen twee harde wanden. Onze bevinding is dat de aanwezigheid
van harde wanden het regime waarin de vloeistof metastabiel is ten opzichte van de vaste stof
verkleint. Reeds bij een volumefractie die minder dan 1% hoger is dan de evenwichtswaarde
vindt spontane kristallisatie plaats, in vergelijking met 4% voor een homogeen systeem. Het
is duidelijk dat de harde wand kristallisatie bevordert. Tijdens kristallisatie word allereerst
een (111) kristalvlak op de wand gevormd. Vervolgens heeft het systeem een voorkeur om
in de laterale richting te groeien in plaats van loodrecht op de harde wand. De berekende
nucleatiebarrière is twee ordegroottes lager dan een schatting gebaseerd op de CNT voor het
corresponderende homogene systeem. Deze simulaties vormen een ondersteuning voor argu-
menten die gebaseerd zijn op de waarden voor de oppervlakte vrije energie dichtheid welke
suggereren dat het kristal de harde wand gedeeltelijk met een (111) vlak zou bedekken. Wij
stellen dat de waarneming dat kristalvorming optreedt bij volumefracties die 1% hoger zijn dan
de evenwichtswaarde kan worden gebruikt voor een precieze bepaling van het vriespunt van
een experimenteel systeem.
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