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ABSTRACT

Soft organisms in nature rely on rhythmic patterns of motion that are
often distributed across their bodies rather than centrally controlled.
Inspired by this principle, this thesis investigates how decentralized
coordination and embodied computation can be harnessed in soft
robots to generate purposeful, adaptive locomotion. Instead of rely-
ing on a central controller, we explore how feedback from local body-
environment interactions and minimal computation can produce robust,
goal-directed behaviors. Across design, simulation, and experiments,
we demonstrate how oscillatory sequences, when physically embod-
ied in the system, can guide locomotion in unstructured and dynamic
environments.

We begin by studying limbed soft robots inspired by echinoderms.
Each limb operates as a self-contained module with limited sensing,
memory, and computation, and through repeated rhythmic actuation,
coordinated motion toward a stimulus (phototaxis) emerges. The inter-
action of limbs with their environment allows the system to dynamically
re-coordinate movement in response to changing conditions or damage,
without any central controller.

To deepen the understanding of this decentralized coordination, we
then study a system of immobile modules that act through expansion
and contraction of their connections in a two-dimensional grid. Despite
their local limitations, the modules collectively break symmetry to
achieve locomotion, similar to peristaltic motion in worms. Simulations
and experiments show how physical connections implicitly mediate
communication, enabling the system to adapt its sequences to different
configurations and dynamic environments. These results highlight how
morphology and coordination strategies are fundamentally linked.

Next, we remove electronics entirely and instead realize rhythmic
actuation sequences using fluidic circuits. By designing soft relaxation
oscillators with directional coupling, we emulate biological central pat-
tern generators in hardware. These circuits allow for reprogrammable
sequences and timings, providing a physically embodied control archi-
tecture that eliminates the need for electronic coordination.

vii



Finally, we explore how minimal controllers and body morphology
can co-evolve. Using simulations of coupled oscillator networks inte-
grated with evolving soft robotic bodies, we demonstrate how even
simple networks can, when co-designed with morphology, produce
context-dependent behaviors such as running or climbing. This synergy
between morphology and control underscores the potential of embod-
ied computation to embed complex behaviors into relatively simple
systems.

Altogether, this work advances the vision of soft robots with dis-
tributed intelligence. By leveraging rhythmic oscillations, minimal local
computation, and morphology, we show how directed, adaptive behav-
iors can emerge without central coordination. These findings pave the
way for autonomous soft robots that exploit their mechanical intelli-
gence to operate effectively in real-world environments.
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1.1 SOFT ROBOTS: BENEFITS AND CONTROL CHALLENGES

Robots made out of soft, deformable materials (e.g., rubbers or plastics)
have started to become an alternative to traditional rigid machines
made from metals. Soft robots offer several benefits due to their in-
trinsic compliance and flexibility. Unlike rigid robots, soft robots can
safely interact with fragile objects and humans, as their soft bodies
deform upon contact rather than generating large impulsive forces [59,
104]. This makes them ideal for tasks in close proximity to people (for
instance, wearable or biomedical robot [70]) and for handling delicate
items [30]. Soft robots are also highly adaptive: they can conform to
irregular surfaces and squeeze through constrained spaces that would
be inaccessible to rigid robots [105]. Their deformability allows loco-
motion over complex terrain by morphing their shape to grip or brace
against the environment. For example, a vine-like soft robot (Fig. 1.1a)
can grow and navigate through cluttered environments by extending its
body and bending around obstacles [42]. This adaptability translates to
versatility in function. Soft robots have been developed for applications
ranging from pipeline inspection to search and rescue operations in
rubble, where navigation through tight voids is necessary [66].

Soft robotic designs often draw inspiration from the natural world.
Many living organisms (such as octopuses, worms, and plants) achieve
remarkable movement and manipulation without rigid skeletons. Imi-
tating these, engineers have created soft actuators and structures that
mimic biological strategies [59]. Pneumatic network actuators (Pne-
uNets) are a prime example. By embedding air chambers in an elas-
tomer that inflate like muscle tissue, they produce bending and crawling
motions reminiscent of octopus arms or inchworms (Fig. 1.1b) [81]. Like-
wise, the plant kingdom provides ideas for rapid movement using soft
materials. The Venus flytrap, for instance, rapidly closes its leaves by
storing elastic energy and releasing it using a snap-through instability
[33]. This principle has inspired soft robotic mechanisms that achieve
fast locomotion through the clever use of material elasticity and ge-
ometry (Fig. 1.1c) [137]. Owing to such bioinspired design, soft robots
are achieving capabilities previously unheard of for soft materials, like
jumping based on snap-through instabilities, as depicted in Fig. 1.1d
(analogous to the flytrap) [39]. These results show that softness can
be compatible with explosively rapid motions. Engineers have even



demonstrated that they can take these compliant materials beyond the
jumping capabilities of biology and approach the theoretical limit of
what is possible [43], demonstrating how engineering can go beyond
the examples provided by nature.

Soft robots also tend to be remarkably resilient. Because they deform
under impact rather than shatter, they can survive collisions and other
physical stresses that might disable a rigid robot. Researchers demon-
strate this resilience by driving cars over small four-legged robots made
from silicone or 3D-printed from plastic (TPU) in Fig. 1.1e, and after-
ward they continue to operate [20, 126]. Furthermore, both physical and
chemical approaches have been used to construct self-healing polymers,
which give the material the ability to recover from physical damage
(Fig. 1.1f) [124]. Such robustness is inherent to soft construction materi-
als, as energy from impacts is dissipated through deformation.
Despite their numerous advantages in interaction, adaptability, and
resilience, controlling soft robots remains an immense challenge. Soft
structures have virtually infinite degrees of freedom, since any point
on a continuum body can, in principle, deform in complex ways. This
high-dimensional, continuously deformable state makes it not straight-
forward to model and control soft robots with conventional techniques
[23, 104]. The dynamics of soft materials are nonlinear and often in-
volve coupling between solid deformation and fluidic actuation (in the
case of pneumatic or hydraulic soft robots) [64]. As a result, creating
accurate mathematical models for planning and feedback control is
non-trivial; even simplified models lead to complex, high-order systems.
Traditional rigid-body robots typically have a limited number of joints,
allowing well-established control algorithms to manage their motion. In
contrast, a soft robot’s “joint” is essentially distributed along its body:.
Furthermore, soft actuators (such as air-filled elastomeric chambers) ex-
hibit latency, hysteresis, environment-induced deformations, and other
nonlinear behaviors. Sensors that work well on rigid robots (such as
encoders) are more challenging to integrate on soft, stretchy substrates,
resulting in incomplete state feedback. All these factors contribute to
control strategies for soft robots, often relying on heuristics or open-loop
control, where precise feedback regulation is challenging to achieve

[23].
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Fig. 1.1: Soft robots coupled to the environment. a, A soft robot that navigates
its environment through growth from [42]. Reprinted with permission from
AAAS. b, Pneumatic networks for soft robotic actuators, with the intercon-
nected chambers displayed in their inflated state from [81]. Reproduced with
permission from Wiley. ¢, Untethered soft robotic crawler that uses an elastic
instability to generate a cheetah-like galloping gait for fast locomotion. From
[137], Copyright © 2023 IEEE. Reprinted with permission. d, A soft jumper that
harnesses snap-through instability (analogous to the flytrap). From [39] and
reprinted with permission from AAAS. e, A fully 3D-printed soft walker with
integrated fluidic circuits that still functions after being driven over by a car.
From [20], reprinted with permission from AAAS. f, Actuator made out of a
self-healing polymer that self-heals after being cut with a surgical knife. From
[124], reprinted with permission from AAAS.

Researchers are actively exploring advanced techniques, such as ma-
chine learning and reduced-order modeling [24], to enhance soft robot
control, but it remains a frontier of the field. The challenge is not merely
to control a single bending actuator, but to coordinate many continu-
ously deformable degrees of freedom in a way that yields a desired
global behavior (like locomotion). In summary, soft robots promise
unmatched interaction capabilities and robustness due to their compli-
ance, but their very softness introduces a complexity in control that is
currently a significant barrier [24]. Unlocking the full potential of soft
robotics will require new paradigms of actuation and control that can
handle high-dimensional, nonlinear dynamics.

1.2 ALTERNATIVE APPROACHES TO AUTONOMY FOR SOFT ROBOTS

One promising direction is to directly embed physical intelligence (de-
centralized intelligence) into the materials or body, thereby mimicking
single-cell behavior in sensing and actuating without a central proces-
sor, a concept known as embodied intelligence [12]. By leveraging the
materials and inherent dynamics of the robot itself to contribute to
control, we may cope with complexity in a more distributed fashion.

In nature, living organisms respond, react, and adapt to external stimuli
based on their biological intelligence, which enables them to exhibit



goal-directed behavior necessary for survival in the real world. Highly
evolved organisms typically interact with their environment via com-
plex neural networks, such as the central nervous system and the
brain. Conversely, other life forms, such as fungi, microorganisms, and
cephalopods, achieve goal-directed behaviors without relying on ner-
vous systems or centralized commands. Their responses are directly
encoded into their physical structure [12].

Empowering soft robots with similar autonomy, enabling them to
achieve goal-directed behaviors without human intervention, is a cur-
rent frontier in soft robotics research. Nature provides valuable insights
into self-sensing, self-decision-making, and self-regulation across vary-
ing levels of complexity.

Out of equilibrium

A fundamental principle observed in natural systems is that most natu-
ral systems are out of equilibrium when subject to external influences
[135]. These deviations from equilibrium cause the system to react with
distinct responses based on external signals, enabling natural systems
to adapt and respond to their environment. Soft robots are a prime
candidate for embedding goal-directed behavior through this principle,
as their soft bodies inherently deform in response to external inputs. A
soft swimming robot constructed from photoresponsive hydrogel illus-
trates this principle. Exposure to light causes morphological changes
that push the robot out of equilibrium, allowing it to steer toward
the light stimulus [48]. Leveraging continuously changing or cyclic
environmental conditions, these responsive deformations can also fa-
cilitate goal-directed actuation. An example is bio-inspired artificial
seeds (Fig. 1.2a) capable of digging themselves into the soil by utilizing
deformation driven by natural humidity cycles in the environment [69].

Oscillations

In certain special cases, deviations from equilibrium can persist under
continuous stimuli, generating sustained oscillations. For example, shin-
ing light at the pupil’s edge causes the pupil to contract, blocking the
incoming light. Due to a 300 ms response delay, it continues to contract
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Fig. 1.2: Oscillation in soft robotics. a, An artificial bio-inspired seed that digs
itself into the ground from [69]. Reproduced with permission from Springer
Nature. b, A twisted soft ribbon that crawls and redirects its crawling when it
hits an obstacle from [141]. Published by PNAS, distributed under the terms of
the Creative Commons License (CC BY-NC-ND 4.0). ¢, Soft sheet ring oscillator.
A schematic of the transistor configuration and the pressure outputs for a con-
stant input pressure [67]. d, Snapshots of the walking soft sheet ring oscillator
corresponding to ¢ [67]. ¢ and ¢ are reproduced from [67] and reprinted with
permission from AAAS.



even after the light is blocked, then expands again once darkness is
sensed, perpetuating the cycle [139]. While typically undesirable in
engineered systems due to instability, such delay-driven oscillations
form the basis for rhythmic motion in many natural systems and soft
robots alike [12]. Oscillatory deformations induced by continuous sun-
light or heat inputs enable locomotion in small liquid crystal elastomer
(LCE)-based soft robots, as depicted in Fig. 1.2b [141, 142]. These robots
exploit stimulus-shadowing (light or heat) to maintain oscillations sim-
ilar to the pupil—a strategy highly effective for individual actuators
yet challenging to scale to more complex systems comprising multiple
actuators.

Alternatively, self-sustaining oscillations in soft robotic systems can also
arise from interactions between fluidic components and the nonlinear
mechanical properties of their compliant materials. The hysteresis of
a fluidic transistor can produce a fixed sequence of actuation when
connected in a ring [67, 101]. In these cases, the transistors themselves
cannot sustain the oscillation. Still, the connected network at a system
level produces self-sustaining oscillations. Because these ring oscillators
(Fig. 1.2¢) produce multiple oscillating outputs in a fixed sequence, they
can be used to produce locomotion gaits for more complex soft systems.
A notable example is the soft sheet ring oscillator system depicted in
Fig. 1.2d, which can walk and climb under various system configura-
tions, all driven by a single constant input pressure and without the
need for electronics.

Coupling

Lastly, natural systems exhibit high degrees of coupling. Effective co-
ordination of rhythmic muscle activations necessary for adaptive loco-
motion arises from coupling not only among muscle groups but also
between the organism and its environment [52]. Although the rhythmic
sequence of soft ring oscillators is inherently fixed, these systems can
still be coupled to the environment. In Fig. 1.3a, this is achieved by
creating a sensor that switches which actuator is connected to which
oscillator when touched [25]. Although the sequence of the oscillators
remains unchanged, the resulting behavior of the system switches in
response to an environmental input. The drawback of this approach
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Fig. 1.3: Soft robots coupled to the environment. a, A soft robot with a gait
that mimics a turtle, driven by a fluidic ring oscillator. A sensor rearranges
the connections from the oscillators to the actuators through touch, switching
the behavior to cause the robot to walk backwards. From [25] reprinted with
permission from AAAS. b, a Self-oscillating valve that oscillates for a constant
flow input [63]. ¢, Multiple valves depicted in b integrated into a walking soft
robot [63]. b and ¢ reprinted from [63], distributed under the terms of the
Creative Commons License 4.0 (CC BY-NC-ND 4.0).



is that it requires every change to the system to be pre-programmed
with additional fluidic circuitry, limiting its adaptability for greater
autonomy in unstructured and unknown environments.

In nature, we find that the networks that drive the rhythmic patterns
used for locomotion, swimming, and flying arise from interconnected
neurons that can sustain oscillations by themselves when subjected to a
stimulus. These self-sustained oscillations at a component level result
in highly adaptive patterns when coupled in networks [52]. Fig. 1.3b
demonstrates an example of such a self-oscillating component in flu-
idics. When subjected to a constant input flow, this valve, inspired
by a ketchup container, produces an oscillating output caused by the
hysteretic buckling of the soft dome with a slit. When multiple of these
oscillators are coupled to the same input, they produce a sequence
similar to that of the soft ring oscillator (one after the other), which can
be used to generate a walking gait for a soft robot (Fig. 1.3¢c). However,
this sequence is no longer fixed, as interactions with the environment
can alter the order in which they are activated without the need for
additional circuits [63].

1.3 EXAMPLE OF SELF-SUSTAINED OSCILLATIONS VIA THE NON-
LINEARITY OF THE SOFT MATERIALS.

In summary, the soft materials of soft robots provide both challenges
and opportunities for creating systems that can execute goal-oriented
behaviors without human intervention. While many traditional control
approaches might fail, the complex mechanical responses of the mate-
rials can also be harnessed to generate complex but controlled output
behaviors. In all of the examples above, we find that the behavior is
not generated or controlled by a single element. Instead, it is a constant
interplay between all components and the environment that makes
a desired behavior emerge. Therefore, to achieve greater autonomy
and adaptability in soft robots, we should consider the combination of
the robot’s sensors, body, environment, and brain as a single, coupled
dynamical system, where one cannot be designed without considering
the others.

To better illustrate how control can emerge for the nonlinear mechanics
of everyday objects, we dive deeper into an example of a self-oscillating
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Fig. 1.4: A soft robotic “limb” can oscillate on its own when airflow is applied
through a bent soft tube. a, With a constant air inflow, the tube spontaneously
switches between configurations, as seen in a long-exposure image capturing
its motion. Directed behavior arises in a range of morphologies from a similar
decentralized nervous architecture, highlighted in orange. b and ¢ show the
two static stable states of the bent tube with one kink vs. two kinks (without
airflow). These kinks are localized collapses in the tube’s curvature. d, High-
speed snapshots (times in milliseconds) from one oscillation cycle illustrate how
the tube transitions from a one-kink state to a two-kink state and back again.
The alternating kink formations cause the tube’s free end (tip) to move in a
periodic, asymmetric path. e, A soft robot configured with four self-oscillating
limbs that runs by supplying constant airflow from a single source. f, Overview
of a minimal mechanical model that explains the self-oscillation.
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limb constructed from a single silicone tube®. When both ends of the
tube are constrained and a constant airflow is applied to one side, the
tube exhibits self-oscillating behavior that can be utilized as an actuator
for locomotion due to its asymmetric deformations. Fig. 1.4a represents
a long-exposure image of the self-oscillating tube. A kink, the local
collapse of a tube’s inner area, travels down the length of the tube and
reinitializes itself, causing the oscillation.

These kinks result from the tube’s nonlinear mechanics; once the tube’s
curvature and bending torque exceed a threshold, a section suddenly
collapses inward, forming a kink. Importantly, the bent tube has mul-
tiple stable configurations (e.g., one kink vs. two kinks) due to this
nonlinear torque—curvature response, as depicted in Fig. 1.4b—c. When
a constant airflow is introduced into the tube, the system begins to
self-oscillate, continuously and spontaneously alternating between the
one-kink and two-kink states. In each cycle, a kink forms or vanishes
in an alternating sequence, causing the tube to whip back and forth
(Fig. 1.4d). This oscillation is self-sustained, as it requires only a constant
flow of air and no external timing or control input. The mechanism can
be understood as a limit-cycle oscillation arising from the interplay of
flow-induced pressure and the tube’s kinked deformations: as one kink
collapses and opens, the other forms, producing a repeating pattern
of motion. The tube’s tip follows an asymmetric closed-loop trajectory
(with distinct “forward” and “return” strokes akin to a stance and swing
phase of locomoting legs in nature), highlighting that the motion is
hysteretic and biased by the directed airflow (the air causes the limb to
move faster in one direction). In essence, the airflow through the kinked
soft tube exploits the tube’s nonlinear buckling behavior to generate
spontaneous periodic motion without any active control (Fig. 1.4d).
Assembling four of these limbs in Fig. 1.4e yields a lightweight, fast,
and soft robot that requires only a single constant input to function,
highlighting how nonlinearities of soft materials can be used to gener-
ate complex and adaptive behaviors in soft robots [18]. To explain the
self-oscillation mechanism, we consider a minimal mass-spring model
composed of a chain of point masses connected with tensile and tor-
sional springs (Fig. 1.4f). The complete mathematical description can be

Alberto Comoretto, Harmannus AH Schomaker, and Johannes TB Overvelde. “Physical
synchronization of soft self-oscillating limbs for fast and autonomous locomotion.” In:
Science 388.6747 (2025), pp. 610-615.
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found in [18]. We demonstrate that this minimal representation, with
only three fundamental assumptions—each reflecting a physical aspect
of the system—gives rise to the self-oscillating behavior.

Three assumptions that enable self-oscillation

These three assumptions are based on physical experiments of the
silicone tube and can be found in [18]. Firstly, the importance of non-
linear behavior, a nonlinear kink-forming torque response of a tube, is
presented in Fig. 1.5a. The torque required to bend the tube increases
initially, as expected from a material under stress, until a critical curva-
ture (31) is reached. As soon as one of the torsional springs surpasses
this angle, the torque drops as a function of the angle (negative stiff-
ness), causing it to collapse (much like a straw buckling). The curvature
stabilizes around (3, where the torque builds up again as the angle in-
creases. As a result, when starting with angles below (31, the stable state
of the system at the start is a dome with a uniform curvature (Fig. 1.5b,
left image). But when we drive the left end of the tube towards the right,
one of the torsional springs suddenly buckles, and a kink is formed,
as depicted in Fig. 1.5b (right image). This assumption captures the
tube’s tendency to form discrete kinks rather than bend smoothly, and
it provides the starting point for the oscillation by allowing sudden
state changes (from unkinked to kinked and vice versa).

Secondly, flow resistance is concentrated at kinks: A kink in the tube
acts like a valve or constriction, significantly increasing fluid resistance
at that specific spot (e.g., a kinked garden hose blocking the water
flow). As a consequence, most of the pressure drop from the airflow
occurs across the kinked segment of the silicone tube. Physically, when
a kink forms, it pinches the tube’s cross-section, impeding flow. In
the model, we assume that the presence of a kink sharply raises flow
resistance, causing the air pressure upstream of the kink to build up
(Fig. 1.5¢). Conversely, if a kink disappears (or if the tube straightens
at that point), the flow experiences significantly less resistance, and
the upstream pressure drops. This means that the internal pressure
dynamically depends on the kink state and position. It is higher when
a kink is present (due to blockage) and lower when the tube is open.

13
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Fig. 1.5: Minimal Nonlinear Tube Model: Three Key Assumptions. a, The
nonlinear bending stiffness of the torsional springs. b, The resulting kink
behavior when the two ends of the tube are driven together. ¢, The airflow
comes in from one side and is blocked by the kink, producing pressure on
the inlet side of the kink. d, The pressure inside the tube stiffens the torsional
springs by a factor .
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The kink effectively toggles the pressure in the segments of the tube,
linking the fluid dynamics to the tube’s deformation state.

Lastly, pressure-dependent stiffening: The tube’s internal pressure feeds
back into its mechanical response. When the tube is pressurized by
airflow, it becomes more resistant to bending. In other words, it requires
a higher torque to produce the same curvature. This is caused by the
internal pressure that balloons the tube outward, opposing collapse.
In the model, this effect is captured by scaling the curvature-torque
response of the torsional springs by a factor k. The orange vs. green
curves in Fig. 1.5d illustrate this stiffening of the torsional springs. The
green curve (pressurized) lies above the orange curve (unpressurized),
indicating that under higher internal pressure, the tube needs more
bending force to kink. This assumption reflects the experimental obser-
vation that pressurization “inhibits” kinking and increases the torque. It
introduces a crucial feedback loop: as pressures of the segments change
during the oscillation cycle, it alters the tube segments” preference to
kink or unkink in real time. These three ingredients work together to
produce self-oscillation.

Self-oscillation in the minimal model

This minimal model reproduces the self-oscillating behavior observed
in the real soft limb. The simulation starts with an unkinked tube, as
depicted in Fig. 1.5a (top left), with equal curvature throughout the
nodes of the chain. In the first phase of the simulation, we drive the first
two nodes on the left side of the tube (inlet) toward the right. As soon
as the threshold curvature (37 is reached, one of the torsional springs
collapses, reducing the required torque to further bend that torsional
spring. As the distance between the two ends of the chain decreases, up
to t’ = start, the kink is further increased, showing a clear distinction
between the angle of the kinked node and the rest of the tube (Fig. 1.5a
heatmap and the image of the chain at the top center). At t’ = start, the
distance between the two ends is fixed, and the simulated air inflow
starts, stiffening the upstream (left) section of the chain. In the heatmap,
we see that the kink then starts to travel and reinitialize. These global
oscillations emerge solely from the three assumptions implemented at
a local level.
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Fig. 1.6: Self-oscillation in the minimal model. a, For a single oscillating tube,
the heatmap shows the spatiotemporal pattern of the deviation of the rest angle
of the torsional springs. The heatmap and corresponding images above describe
the two stages of the simulation, as the left inlet side of the tube is driven
to the right up to t’ = start. The heatmap depicts the tube’s state over time
(red indicating a kink at a given location and time, gray indicating no kink).
At t’ = start, the start of the air inflow, the pressure starts to build. The tube
switches between one-kink and two-kink states in each cycle, and the kink
position moves (travels) along the tube before a new kink forms upstream (as
indicated by the diagonal streaks in the heatmap). b and ¢ show a zoomed-
in view of the oscillation. Snapshots of a single oscillation in the model are
depicted in b, with a pink star indicating the formation of the second kink. ¢
represents a zoomed view of the same heatmap depicted in a.
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To interpret the oscillatory behavior, Fig. 1.5b—c shows a zoomed-in view
of the oscillations with simulation snapshots. When airflow is applied,
the system evolves as follows: a kink forms (Assumption 1), thereby
raising the upstream pressure (Assumption 2), By assumption 3, this
stiffens the tube upstream, The elevated pressure also pushes the kink
open, driving it downstream (Fig. 1.5b, first half of snapshots). As the
kink moves closer to the inlet, a new kink eventually forms upstream
(assumption 1), marked with a pink star in Fig. 1.5b. The upstream
pressure then decreases, lowering stiffness (assumption 3 in reverse),
which destabilizes the initial kink, causing it to disappear. The new
kink restricts flow again (assumption 2), raising pressure, and the cycle
repeats. Thus, kink formation, flow resistance, and pressure feedback
create a self-sustained limit-cycle oscillation, a repeating pattern of kink
appearance, motion, and disappearance. This collective behavior follows
directly from the three assumptions governing local tube dynamics.

Coupling with the environment

Building on the single-limb oscillation mechanism, we now examine
how synchronization and adaptation emerge when multiple limbs are
integrated into a robot. Figure 1.7a shows that the updated pouch limb
undergoes cyclic full-step oscillations, similar to the single-tube but
with higher resistance upon kinking, enabling operation at much lower
input flows, e.g., a small onboard pump. Mounting two such limbs
on a lightweight untethered platform powered by individual pumps
and a LiPo battery (Fig. 1.7b) results in a robot that can autonomously
locomote without external circuitry or centralized control.

When placed on solid ground, implicit mechanical interactions with the
ground surface couple the two independently powered limbs, leading
to in-phase synchronization and robust cyclic hopping (Fig. 1.7¢c, 0-7 s).
However, when the robot dives into water, the environmental coupling
fundamentally changes: buoyancy forces and hydrodynamic resistance
promote anti-phase oscillations between the two limbs. Within seconds,
the gait transitions from synchronized in-phase hopping to stable anti-
phase swimming (Fig. 1.7¢—d).

This behavior illustrates how the identical physical oscillators can pro-
duce distinct locomotion modes depending solely on their environment.
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Fig. 1.7: Coupling-induced synchronization and environmental gait tran-
sition. updated pouch limb a, cyclically performs full-step motions b, Two
self-oscillating pouch limbs mounted on an untethered robot that carries a LiPo
battery and two pumps. Overview of the robot’s components, including pumps,
battery, on/off switch, balance limb, and self-oscillating limbs. ¢, Transition
sequence from in-phase hopping on ground (o7 s) to anti-phase swimming
after diving into water (11-15 s), enabled by buoyancy pouches and implicit
coupling with the environment. d, Phase shift between the two limbs during
the dive, switching from ~ 0° (in-phase) on ground to ~ 180° (anti-phase) in
water. Scale bars: 1 cm a,b, 2 cm c.
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The ground stabilizes an in-phase gait, whereas immersion in water
stabilizes an anti-phase gait, highlighting the role of body—environment
feedback in determining locomotion strategies. In essence, coupling
through the environment allows the robot to autonomously adapt its
gait to new conditions, without sensing, computation, or explicit con-
trol.

In summary, the nonlinear tube model not only mimics the behavior
of a single limb’s self-oscillation but also provides insight into the in-
teractions that enable the self-oscillation to persist. The mechanism of
self-sustained oscillation, in which alternating kinks are governed by
internal pressure and tube elasticity, underpins both the emergence of
complex behaviors from everyday soft objects and the utilization of
these dynamics in robots that do not require electrical circuits or con-
trollers to operate. Extending beyond the single-limb model, coupling
and environmental interactions play a crucial role in shaping collective
dynamics. As shown in Fig. 1.7, multiple self-oscillating limbs synchro-
nize through environmental interactions, and the environment itself
can induce transitions between distinct gaits, such as in-phase hopping
on land and anti-phase swimming in water. These findings highlight
how robust and adaptive locomotion can arise naturally from the same
minimal physical ingredients, suggesting pathways toward autonomous
soft robots where locomotion emerges from local interactions rather
than centralized control.

1.4 OBJECTIVES

How can soft robots coordinate complex, goal-directed behaviors with-
out relying on centralized electronics and rigid computation systems?
This overarching question guides this thesis, resulting in the demon-
stration of robust, decentralized control paradigms that leverage the
embodied mechanical intelligence of soft robotic systems.

A foundational principle in soft robotics is embedding computational
functionality into physical structures themselves, which naturally leads
to the resilience and adaptability observed in biological organisms. Yet,
a significant gap remains between artificial soft robots and their natural
counterparts, particularly in the autonomous coordination of rhythmic
behaviors.
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What constitutes decentralized autonomy in soft robotics, and how
does it relate to biological systems?

Soft robotics inherently offers compliance and adaptability due to its
elasticity. Still, achieving truly decentralized, goal-directed behavior
requires embedding sensing, computation, and actuation locally, thereby
minimizing the computational overhead of central controllers. Inspired
by distributed natural systems such as echinoderms, plants, and fungi,
this research investigates how minimal localized sensing, memory, and
actuation can yield globally coordinated behaviors.

How can we design soft robots that achieve complex goal-directed
behaviors through localized sensing and minimal processing?

A core challenge is understanding and characterizing the dynamic
behaviors of soft robotic systems that emerge from decentralized in-
teractions and decision-making. Unlike centralized rigid robots with
predictable behaviors, decentralized soft robots exhibit multiple co-
existing modes as they are affected by their environment. Therefore,
understanding the interplay between physical structure, environmental
interactions, and resulting emergent behaviors is essential for reliable
goal-directed behavior.

Can we characterize and understand the emergence of phototaxis in
decentralized soft robots, with minimal and local sensing, memory,
and actuation?

Many biologically inspired behaviors, such as animal locomotion, de-
pend on rhythmic oscillatory motions. Achieving autonomous, rhyth-
mic, and repeatable motion without the use of electronics is a critical
milestone for soft robotics. We propose embedding rhythmic patterns
directly within the robot’s physical and fluidic structure, exploring
how local couplings between soft oscillators can lead to coordinated
rhythmic patterns.

Can we create controllable self-sustaining rhythmic patterns and
coordination in soft oscillators, through local fluidic coupling and
without electronic control systems?
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Finally, inspired by biological evolution, we explore the co-evolution of
robot morphology and embedded control strategies for given environ-
ments and tasks. Using coupled oscillator networks embedded within
evolving soft robot morphologies, we demonstrate how minimal struc-
tural complexity can spontaneously yield distinct adaptive behaviors
responding dynamically to environmental feedback.

How does co-evolutionary design of morphology and embedded
computation enhance autonomous adaptability in soft robotics?

Collectively, this research contributes to the realization of autonomous
soft robots capable of exhibiting goal-oriented behaviors that emerge
from embodied intelligence, thereby paving the way for soft robotics
in complex, real-world applications that do not rely on or offload
computation from centralized electronics.

1.5 OUTLINE

In living organisms, directed behavior arises from repeated rhythmic (os-
cillatory) motions whose sequence and timing are robustly coordinated.
This coordination is typically in part or even fully distributed through-
out the organism: animals employ central pattern generators within
their nervous systems, plants utilize distributed mechanoreceptors, and
fungi leverage expansive mycelial networks. Such decentralized orches-
tration offloads computation from a central brain to the body, allowing
behaviors to emerge naturally through interactions between the body
and its environment.

This thesis explores alternatives to centralized control inspired by de-
centralized systems in nature. It identifies sequences and timing of
oscillations leading to directed locomotion in soft robots. We aim to
embody directed behavior in the physical system so that purposeful
actions emerge from local body-environment interactions and feedback.
Through an exploratory study spanning design, simulation, and hard-
ware, we demonstrate how soft robotic systems can leverage their em-
bodied mechanical intelligence using embodied computation to achieve
complex autonomous behaviors without a centralized processor.

In Chapter 2, we draw inspiration from the physiology and decentral-
ized nervous system of echinoderms (e.g., sea urchins, brittle stars,
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feather stars, and sea cucumbers) to examine how decentralized feed-
back can facilitate directed locomotion towards a light source (photo-
taxis) in limbed soft robots. We build a modular system where each limb
is a self-contained module that stochastically optimizes its behavior
with a feedback loop based on limited sensing, short-term memory,
and computation. By harnessing the inherent mechanical intelligence
of soft pneumatic actuators, cyclic on-off inputs to a pump at a fixed
frequency are converted into complex bending and stepping motions.
By physically connecting multiple limbs and letting each limb indepen-
dently learn the phase of its oscillating motion, coordination between
the limbs emerges. We show that, similar to echinoderms, such as
sea stars, interactions of the individual limbs with the environment
guide the robot toward coordinated movement patterns without relying
on comprehensive full-body representations or complex algorithms.
The soft robot dynamically re-coordinates its movement in response
to changing conditions (changes in actuators and damage) without
any central controller. Resilient, whole-body locomotion thus emerges
from the interplay of many basic units, each with limited memory and
no body awareness, demonstrating a route of adaptable goal-directed
movement sequencing in soft robotics through embodied computation.
In Chapter 3, to gain a better understanding of how this coordination
emerges, we build a second modular system of self-contained units.
In this system, the modules use the same strategy for sensing and
processing, but we limit the actuation, making them immobile on their
own. Instead, they expand and contract their connections to the other
physically connected modules on a two-dimensional plane. When in-
terconnected in two-dimensional grid configurations, the system as a
whole can break the symmetry of the friction to achieve locomotion,
similar to earthworms that expand and contract segments. By combin-
ing simulations and experiments, we gain an understanding of how
this decentralized strategy can follow locally optimal sequences solely
from the implicit communication facilitated through their physical con-
nection (as the system moved toward the light, the connected units all
increased their light intensity). The simulations also provide insight into
how the sequences that the system produces are linked to the potential
behaviors of the system and how these change with different configu-
rations and in dynamic, unstructured environments. These results not
only demonstrate that robust, directed locomotion in soft robots can
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emerge entirely from local environmental interactions but also show
the profound link between the coordination strategy and the body mor-
phology. They also illustrate the dynamic nature of the learning process
as it adapts to changing, partially observable environments.

In Chapter 4, we explore control without electronics. While the work
mentioned above focuses on reducing the hardware and complexity of
algorithms needed to coordinate the sequences of movements starting
from random behaviors, it still requires many electronic components
to make the individual modules. Therefore, we next aim to embody
sequences without relying on electronics by harnessing soft fluidic
circuits with integrated magnetic components. By designing a fluidic
relaxation oscillator that produces an oscillating output for a fixed input
flow, we can encode the rhythmic inflation-deflation cycles into a single
component. We implement directional air-driven coupling between the
relaxation oscillators to emulate biological central pattern generators,
orchestrating the rhythmic motions without electronics. By altering the
fluidic coupling between them, we demonstrate rapid and reversible
reprogramming of the oscillation sequences and timings. Such physi-
cally embodied control paves the way for soft robotic systems equipped
with decentralized locomotion primitives, eliminating dependence on
complex electronics and centralized controllers.

In Chapter 5, we explore the synergy between soft minimal controllers
and soft bodies. The approaches above start with predetermined mor-
phologies, whereas natural organisms demonstrate how body morphol-
ogy and embodied computation evolve synergistically over longer time
scales. Inspired by this co-evolutionary principle, we simulate coupled
oscillator networks as mentioned above, integrated within evolving soft
robotic morphologies. We show that oscillator networks with minimal
complexity (number of oscillators and number of connections), when
co-designed with the body morphology, can enable robots to transition
spontaneously between distinct behaviors, such as climbing or run-
ning, in response to environmental feedback. These findings emphasize
how thoughtful morphological and feedback co-design can embed rich,
context-specific behaviors into relatively simple physical structures.

In Chapter 6, we conclude on the research objectives, discuss the limita-
tions and achievements, and provide an outlook on possible directions
for future work.
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Collectively, this work contributes to the broader vision of autonomous
soft robots with distributed intelligence, where sophisticated, goal-
directed behaviors emerge from the continuous interplay of body and
environment rather than explicit centralized command. These results,
using embodied computation, pave the way towards soft robots that
harness their mechanical intelligence to complete tasks autonomously
in real-world scenarios.
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Abstract. Soft robots harness their built-in mechanical intelligence to respond
directly to their environment. However, they typically still depend on prede-
fined sequences to coordinate their limbs, and external centralized hardware is
often used for coordination in changing circumstances. In contrast, in nature,
invertebrates like echinoderms distribute behavioral control throughout their
body. Inspired by this decentralized computation strategy, we present a modular
soft robotic system in which each limb independently adjusts the timing of
its actuation to achieve phototaxis via entirely local, stochastic feedback with
limited memory. Through this embodied computation approach, coordination
emerges from the interaction of the body and the environment. We show ro-
bust phototaxis for soft robots that have different morphologies, that undergo
damage, and that exhibit highly nonlinear leg behavior, all without an internal
body representation. These results, therefore, offer a blueprint for designing
resilient, autonomous soft robots that exploit the potential intelligence of their
soft adaptive bodies.

H.A H. Schomaker, J. de Vries, ].T.B. Overvelde. “Echinoderm-inspired auton-
omy for soft-legged robots.” submitted.
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2.1 INTRODUCTION

Living organisms have evolved to exploit mechanical interactions with
their environment to achieve function and to delegate computational
tasks to their body. Researchers have started to take inspiration from
nature to harness such embodied mechanical intelligence (hereafter
mechanical intelligence) in the field of soft robotics [51], for example,
by developing soft actuators that passively adapt their shape when
interacting with their environment. This makes soft devices currently
especially suitable for applications that require adaptability, safety, or
delicacy [56, 771, such as soft end-effectors for medical and agri-food
applications. However, most soft robotic devices to date require external
control signals, which limits their autonomy required in applications
where the soft robots need to operate independently. As such, we
have not seen a soft robot perform and complete an active search task
autonomously with all its hardware onboard, which is essential to
harness the adaptability of soft robots in the real world. Hence, there is
a need for an alternative approach to enable autonomous behavior in
soft robots.

The philosophy of soft robotics and its embodied mentality does not
end here [51, 104], as nature provides countless examples of achiev-
ing autonomous behavior without needing a central brain and using
only limited computational power. For example, invertebrates exhibit
astounding coordinated behaviors despite missing a skeleton that limits
the freedom of motion of the limbs. These creatures utilize what biol-
ogists refer to as embodied cognition, which distributes computation
from the central brain to other body parts. Besides harnessing their soft-
ness, invertebrates employ a localized sensory-motor system to offload
computation to their body. For example, an octopus uses its peripheral
nervous system to articulate an elbow joint to bring food to its mouth
[31, 47], or the camouflage of a catfish, which is largely controlled by
organs near the skin [16].

Even though these examples demonstrate the potential of autonomy
emerging from embodied cognition, such advanced functionality still
seems out of reach. Yet, it does demonstrate key insights that we want
to explore further in this work to enable some level of autonomy in soft
robotic systems: autonomy does not require full awareness of the body
or the environment. This is particularly clear for lower invertebrates
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(echinoderms like sea urchins, sea cucumbers, starfish, brittle stars,
and feather stars) as they do not have a central brain. Yet, they can
navigate a multitude of degrees of freedom and environments to exhibit
active foraging behaviors [34]. Echinoderms achieve such behavior
by primarily performing computations through a minimal radially
symmetric nervous system, with a neural ring often centered around
the mouth and radial nerves extending to the limbs (depicted in orange
in Fig. 2.1a) [15, 144, 145].

By using such embodied computations that trigger muscle behavior,
echinoderms show remarkable adaptation and robustness, both to vari-
ations in their environment and to (permanent) changes in their body
shape. Even with their limited and distributed nervous systems, echin-
oderms can perform short-term memory learning [34] and display a
wide range of locomotion modalities and behaviors through local action
planning and information processing [34]. For example, sea stars, sea
urchins, and sea cucumbers utilize similar circular nerve net architec-
tures to achieve different gaits such as peristaltic motion, swimming,
and limbed locomotion in various species (Fig. 2.1a) [3, 34, 38, 83]. More-
over, similar neural architectures are capable of controlling a diverse
range of body plans [32], from worm-like sea cucumbers to limbed
brittle stars and spherical sea urchins with hundreds of feet, and even
when undergoing damage (Fig. 2.1a) [11, 133]. They also show diversity
within species through phenotypic plasticity, where their morphology
changes in response to environmental factors and predators [6, 28, 49].
To move towards harnessing such embodied computation to enable
echinoderm-like autonomy in soft robots, we implement a distributed
short-term memory learning approach in soft-legged robots in the
current work. Through a modular platform, we aim to explore how
a specific and computationally limited implementation of embodied
computation can leverage the existing nonlinear mechanical behavior
of various soft actuators (i.e., leverage the mechanical intelligence of
the soft actuators) to achieve phototaxis without a central controller.
Similar to echinoderms’ abilities, our implementation of embodied
computation can result in robust behavior for a range of differently
assembled body plans, environments, and damage, which we will
demonstrate by performing a range of experiments.
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Fig. 2.1: Inspiration from Echinoderms a, Echinoderms are classified into five
main classes. Directed behavior arises in a range of morphologies from a similar
decentralized nervous architecture, highlighted in orange. b, Cyclic actuation
of soft limbs (PneuNet actuators) for the modular platform.
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Fig. 2.2: Modular platform inspired by Echinoderms to study directed loco-
motion without a central brain. a. b, Each limb of the assembled robot is a
self-contained entity capable of actuation, sensing, and computation. ¢, Each
limb independently undergoes Nac actuations before adapting its behavior.
d, Phototaxis observed for a four-module configuration during 180 learning
cycles. The modules are initially positioned on the left with a planar light source
on the right side of the image. Black and white background images represent
snapshots of the experiment taken every 30 learning cycles.
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2.2 A SOFT MODULAR PLATFORM TO STUDY EMBODIED COMPUTA-
TIONS

To study how autonomy can emerge from the interaction between em-
bodied computations and mechanical intelligence, in this work, we focus
on an active search task with the aim of having soft robots move toward
the area of the highest light intensity (phototaxis). To that end, we in-
troduce modules that each consists of a soft actuator, pneumatic pump,
light sensor, and processor (Fig. 2.2a). These modules are assembled
in a radially symmetric body (Fig. 2.2b), mimicking the morphology
of the echinoderms (Fig. 2.1a). In our implementation, all modules are
only mechanically connected, so that there is no explicit communication
between them, and computation is fully distributed and embodied.
Even though no explicit information is exchanged between the mod-
ules, coordination could emerge from the implicitly shared information
constituted by their physical connection (Fig. 2.2b). As an example, if
the assembled system moves in the direction of the light, all modules
will sense an increase in the light intensity.

Each soft actuator acts as a limb that transforms a cyclic on-off input
signal from the pump into a bending motion (Fig. 2.1b). The defor-
mation of the actuator depends both on its design and its interaction
with the environment [143], which together define its mechanical in-
telligence. Additionally, we use the processor to embody computation
in each module. We implement an identical algorithm in each mod-
ule that aims to increase the light intensity measured by the sensors,
where we use a basic stochastic updating rule previously studied in
a one-dimensional and two-dimensional framework [87, 108]. In this
computationally limited algorithm, the pump oscillates between on and
off at a fixed frequency at a specific phase that is kept in the module’s
short-term memory for four actuation cycles. After these actuation cy-
cles, the module evaluates the difference in the change of the measured
light intensity and adapts its phase that is kept in memory accordingly
by accepting it or returning to its previous phase. It then randomly
perturbs its phase for the next set of actuation cycles. This process is
repeated separately in each module, where each complete cycle of eval-
uating a specific phase is regarded as a learning cycle. This process is
repeated then for Ny learning cycles. The full algorithm can be found
in the supplementary information.
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Algorithm

Each module contains a soft actuator, a microprocessor, an air pump,
and a single light sensor. Each module goes through actuation cycles of
tac &~ 45 s during which it activates and deactivates its pump to inflate
and deflate its soft actuator. The behavior of a module is defined by its
phase ¢, which determines the timing of periodic motion at a fixed
frequency.

Each module’s phase ¢; is changed over time depending on a stochastic
learning algorithm. All modules independently run a stochastic up-
dating rule to try to achieve phototaxis. Following a module’s own
clock, each module goes through a number of learning cycles nic to
evaluate and consecutively alter its phase. A learning cycle spans six
actuation cycles Nac, during which a module maintains and evaluates a
fixed phase ¢/ that has at the start of the learning cycle been perturbed
by a random amount € AS with respect to the phase ¢; that is stored
in memory, i.e. ¢{ = i + € AS. Here, € is sampled uniformly from
[—1,1] and AS = 0.1. Each learning cycle ends with a phase-adjustment
actuation cycle that implements the “decision” of the unit to accept the
new phase ¢/, or reject the new phase by restoring the system to the
phase ¢; kept in memory.

To determine whether the temporary phase ¢/ should be accepted,
each module compares its performance during the current learning
cycle with the previous learning cycle. It does so by comparing two
independent light measurements (based on its own light sensor) from
a specific actuation cycles (I; and I) to compute a difference in light
intensity Al/. This value is then compared with the previously stored
difference Al;. If Al > Al;, the new phase is accepted; otherwise it
is rejected. As such, at the end of the learning cycle and to prepare
for the next learning cycle each module implements a phase shift Ad;
according to:

A = bi— bl +eAS, if AL < AL, (21)

eAS, ¢ =0/, if Al > AlL.
Note that, according to previous results, we implement the “flaky”
algorithm by updating Al; independent of acceptance or rejection [108].
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Because each module adjusts its phase independently, relying on lo-
cal hardware and measurements, there is no explicit communication
between the units to synchronize their behavior. Every module pro-
cesses its own light-intensity feedback and stochastically updates its
phase without requiring any simultaneous or centralized coordination.
Over time, these local adjustments collectively give rise to emergent
phototactic behavior. The pseudo-code for the algorithm can be found
below.

Algorithm 1 Stochastic Phase Update for Module i

for{ =1 tonyc do
Run Nc actuation cycles using fixed phase ¢{ and
measure light intensities 1y, I, to compute Al =1, — I,
if Al{ < AL; then
Adi + by —P{+€AS
else
bi — ¢f
Ad; + €AS
end if
where € ~ Uniform(—1,1)
Al; + AL{
adjust the last AC by Tac
end for

Module actuation protocol

Fig. 2.1b and Fig. 2.9a schematically show how each module inflates
and deflates its silicone actuators. The actuation cycle (AC) is defined
by Tac = 455, during which the air pump remains activated for an
« fraction of the cycle (here, « = 0.25) and then is switched off for
the remainder. Air continuously leaks out through a resistive needle,
causing the actuator to deflate when the pump is off.

Every learning cycle (nyc) spans six identical actuation cycles (Nac = 6),
plus one additional “adjustment” cycle (ACq). During this adjustment
cycle, we alter the time the actuator stays in the deflated state by an
amount A, effectively changing the time that the system remains in
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its deflated state. This modification shifts the total duration of AC,
and enables the module to begin the next (n;c) with an updated phase
¢i. For the experiments with the full-step actuator, we reduced the
number of actuation cycles to (Nac = 4), as initial tests with the system
indicated that the displacement was too large to perform experiments
on the experimental setup.

Light intensity measurements, Iy and I, are taken at designated points
within the (nyc) to compute Al Spacing the measurements by multiple
actuation cycles smooths out noise and simplifies camera tracking. At
the end of each learning cycle, every module sends its recorded data
to the central computer. Note that there is no direct communication
about phase changes among the modules; each module executes its
own learning process asynchronously based on local measurements.

Phototaxis experiment

To illustrate the platform, we perform a phototaxis experiment on a flat
planar surface where we mount two LED panels on the right side of the
rectangular surface (Fig. 2.2d, Fig. 52.1). An assembled robot consisting
of four modules is placed on the surface. Note that the assembled
system does not have any prior knowledge of its actuator behavior,
morphology, and orientation, and starts with random phases. If we
then run the experiments for 180 learning cycles, we can observe from
Fig. 2.2d that the assembled robot first moves randomly and starts
to move away from the light. Yet, at nyc ~ 20, the system reverses its
direction to move toward the light. At nyc =~ 110 we see a steep increase
in the displacement towards the light, until the system reaches the end
of the canvas at nyc ~ 135. Therefore, this initial experiment shows
that, in this case, our system learns to coordinate its limbs to achieve
phototaxis without a central brain and without explicit communication
between the modules. As such, directed behavior at the system level
appears in this single experiment to emerge from local sensory feedback
without knowing the assembled body plan.
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Fig. 2.3: Observed phototaxis behavior of a four-module system single exper-
iment. a, Light measurements, I, from the experiment shown in Fig. 2.2d. b,
Difference in light measurements between learning cycles, AL ¢, Displacement
of the assembled robot during a learning cycle, AX, obtained from image trac-
ing. d, Actuation phases, ¢, for each module. e-i, Fastest observed phototaxis
behavior of the assembled system during the experiment in Fig. 2.2d.
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Fig. 2.4: Observed phototaxis behavior of a four-module system, multiple
experiments. a, Trajectories of five repetitions of the previous experiment, for
150 N c. Circles and stars indicate the start and end positions, respectively. b,
Distribution of X positions of the system over time during the repeated experi-
ments. The experiment with a broken module at the start of the experiment is
excluded from the distributions. This experiment can be found in Fig. S2.2. The
position is measured from the side of the canvas closest to the light. The dotted
line marks the distance with the highest light intensity on the canvas. ¢, Similar
phototaxis experiment conducted on an irregular surface.
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2.3 ANALYZING THE PHOTOTAXIS BEHAVIOR OF A FOUR-MODULE
CONFIGURATION

To understand how the assembled system learns to perform phototaxis,
we analyze four different metrics from the single experiment of the
four-module configuration. The first metric is given by the data from the
four light sensors inside the modules, and is shown in Fig. 2.3a. These
sensors all measure an initial decrease in light intensity (I), followed by
only small increases in the light intensity up to nyc ~ 110. The following
steep increase in light intensity I indicates an apparent behavior switch
and increase in performance. Another behavior switch is observed
starting from nyc ~ 130, where we observe a plateau with only minor
fluctuations in 1.

However, it is important to note that the modules do not directly use
the absolute value of I for learning. Instead, each module’s behavior
depends on the difference in light intensity as a result of moving. From
this second metric (Fig. 2.3b), we see that Al starts negative as the
system moves away from the light. It transitions to positive Al within
nic ~ 10 learning cycles. Al slowly increases up to nic ~ 122, where
we find the fastest increase. This is followed by a drop in the change in
light intensity at nyc ~ 130 to around zero as the system reaches the
end of the canvas and is not increasing light intensity anymore.

We should mention that the inverse exponential relationship between
light intensity and distance means that these results do not reflect the
assembled system’s actual speed. Therefore, we introduce in Fig. 2.3¢
the third metric that indicates the global movement speed AX of the
assembled system (change in X-position per learning cycle). While the
overall trend with the individual measured light intensity is the same,
we can observe that between 115 < nyc < 130 the movement speed of
the system reaches a stable maximum of AX ~ 10 cm/cycle, indicating
that it is capable of exploiting stable and relatively fast movement in
the direction of the light source.

The observed behaviors are also reflected in the final fourth metric
in Fig. 2.3d, which indicates the individual phases of each module
throughout the experiment. Initially, for n;c < 20, the phase order
continually switches as the system explores different gaits. From 20 <
nic < 100, the front limb (the limb closest to the light source) is actuated
first, followed by the other three. Beyond nic > 100, a relatively fast
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gait emerges where the back limb is actuated later than the center
two (Fig. 2.3e-i, Movie 52.1), a change that drastically influenced the
behavior. For nyc > 130 the phases start to quickly change again, as the
system is learning how to stop moving to stay close to the light source.
These results demonstrate how the system learns to utilize the variable
contact friction of its limbs with the ground for locomotion without
needing a central brain or a model of its behavior.

To assess the repeatability of this experiment and the learned behav-
ior, we run the experiment five times, each time randomizing the ini-
tial phases. The trajectories of all five experiments are depicted in
Fig. 2.4a. We found that in four of the experiments, the system learned
to move towards the light and reach the location with maximum inten-
sity (Fig. 2.4b). However, in one experiment, the system did not move
(2cm over 150 learning cycles), which can be attributed to a pump
failure at the start of the experiment, resulting in one paralyzed limb
(Fig. 52.2).

2.4 ROBUSTNESS THROUGH EMBODIED COMPUTATION

Even though one could consider the experiment in Fig. 2.4a with the
paralyzed limb a failed experiment, it underscores an interesting dy-
namic between embodied computation (learning in the modules) and
mechanical intelligence (the mechanical behavior enabled by the as-
sembled soft actuators and their interaction with the environment): the
mechanical behavior of the system can influence the ability to learn.
Apparently, the potential behavior of a four-module system with only
three active legs limits the capabilities of the embodied computation.
Similarly, when we place a fully functioning four-module system on a
thin layer (2 cm) of gravel (see Fig. S2.2 for a detailed explanation of
the setup), we observe that the system is also incapable of moving as it
starts to dig itself into the gravel (Fig. 2.4¢c, Movie S2.1). In other words,
in both scenarios the system exhibits limited mechanical intelligence as
no gait seems to exist that allows it to displace. Hence, the system is
not able to learn any directed behavior.

In contrast, Echinoderms are robust to changes in the environment
and body morphologies. For example, researchers have shown that
echinoderms can adapt to changes in morphology, such as a reduced
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number of legs [57]. This points towards introducing redundancy as an
aid to increase the potential mechanical behavior that our system can
exhibit. Therefore, we begin by increasing the number of modules in
the system and changing the body architecture by replacing the type
of PLA connectors between the modules (Fig. 2.5). From phototaxis
experiments, we find that systems with five and six modules learn to
move toward the light in a manner comparable to the four-module
system (Fig. 2.5a-b).

Interestingly, the fastest observed gaits that emerge for both systems
are different (Fig. 2.6a-e). For the five-module system, the two middle
limbs inflate, as seen in Fig. 2.6a, followed by the inflation of the two
back limbs in Fig. 2.6b, causing the tips of the inflated actuators at the
back to creep toward the center of the system. Subsequently, the front
limb is actuated to propel the system forward, as it completely lifts the
two middle limbs off the ground and causes the back limb tips to stick
in place as they deflate. Instead, for the six-module system we find a
gait similar to the four-module system, a propagating wave (Fig. 2.6{).
Initially, the three back limbs are actuated as seen in Fig. 2.6g, followed
by the three front limbs in Fig. 2.6i. Note that we do observe a significant
reduction in displacement when comparing the six-module system (~
2.5 cm/cycle) to the five-module system (= 4 cm/cycle), which is likely
due to the increased system weight and distance of each actuator to the
center of gravity so that it becomes more difficult for each actuator to
lift the system.

In addition to these results, which demonstrate how the system har-
nesses its embodied computation to learn specific gaits that would be
challenging to predict and optimize a priori, embodied computation
also enables adaptability to unpredictable environmental influences.
For example, upon closer inspection of the trajectory of the five-module
system (Fig. 2.5a) we observe that at approximately Nyc = 50 the
system briefly loses track of its phototaxis, as it trips over its power
line, which causes a relatively quick rotation (Movie S2.2). Since the
system’s short-term memory only retains the change in light intensity
(and not its orientation), the modules do not directly notice this rotation
through their light measurements (Fig. 52.3a). After this interaction, the
system adjusts its phases within 50 learning cycles Ny, and redirects
its displacement towards the light.
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Fig. 2.5: Observed phototaxis behavior of (damaged) five- and six-module
configurations. Trajectories of experiments with a a, five-module configuration
b, six-module configuration, and ¢ five-module configuration with damaged
light sensor. Trajectory of the experiment can be found in Fig. S2.3c.

This adaptivity can also be seen in a five-module system where we
intentionally damage one of the light sensors, such that it does not give
any reading. As shown in Fig. 2.5¢ and Fig. S2.3¢, this damage does
not limit the ability of the system to perform phototaxis. Note that the
damaged module exhibits random phase changes as a result of the zero
light intensity reading, so that the other four modules constantly have
to adapt to the damaged module’s random behavior (Fig. S2.3d).

2.5 ADAPTABILITY TO MORPHOLOGICAL CHANGES

Based on the evidence of the observed robust behavior in previous
experiments, we continue to test the ability of our proposed embod-
ied computation strategy to adapt to morphological variations. We
first focus on the six-module system, and deliberately simulate dam-
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Fig. 2.6: Observed gaits five- and six-module configurations. a-e, Fastest
observed phototaxis behavior of the assembled system during the experiment
in Fig. 2.5a. f-j, Fastest observed phototaxis behavior of the assembled system
during the experiment in Fig. 2.5b.
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age to change its morphology by removing limbs. Fig. 2.7a illustrates
how limbs can be detached, rendering modules without actuators non-
operational. Yet, as the system does not have a central brain, the embod-
ied computation remains functional, such that the remaining modules
try to adapt their behavior to the new morphology.

Fig. 2.7b-c demonstrates that even with limbs missing, the system learns
to perform phototaxis in two different tested morphologies. Analyzing
the emergent behavior can teach us about the interaction between
embodied computation and mechanical intelligence. For example, we
see that the configuration of Fig. 2.7b is capable of moving in the
direction of the light initially. However, the new morphology seems
susceptible to rotation, exemplified by the event that occurs around
nic ~ 150, where a relatively quick rotation causes the system to enter
a dynamic learning process that overshoots, causing it to rotate back
and forth in a semi-circle. Additional information on these experiments
is provided in Fig. 52.5.

Keeping the number of active modules that learn constant (i.e., keeping
the computational potential identical), we next explore the system’s
response to more diverse and heterogeneous morphologies. We intro-
duce inverted bending actuators and a longer bending actuator that
are 130 % of the original length (Fig. S2.4), and establish four distinct
body configurations in Fig. 2.8a-d. Fig. 2.8e shows the trajectories of
the learning experiments for these configurations, indicating that all
configurations perform phototaxis.

Yet, we also find clear differences between the results of the original
four-module configuration shown in Fig. 2.1-2.4. Firstly, we find that the
configuration with inverted actuators (Fig. 2.8a) is clearly slower than
the original configuration, where a gait emerges (Fig. 2.8f-j) that appears
to be reversed (back to front propagation of actuation) compared to
the gait observed in Fig. 2.3e-i (Movie S2.3). Secondly, we see that the
configurations in Fig. 2.8b and Fig. 2.8d at some point rotate away from
the light source. Similar to the results of Fig. 2.7b-c, these results show
that different morphologies can be susceptible to rotation. Lastly, the
fastest movement occurs in a configuration where half of the actuators
are flipped (Fig. 2.8¢c), potentially using the additional friction from
the flipped actuators as anchor points (details in Fig. 52.6 and Movie
52.3). Yet, the same morphologies also demonstrate clear and sudden
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Fig. 2.7: Adaptability of embodied computation approach to removing limbs.
a, Six-module configuration with two limbs removed. b-c,

behavior switching as seen by abrupt trajectory changes, indicating
more unstable behavior.

Therefore, these results indicate that even though the embodied com-
putation is capable of handling various morphologies, the emerging
behavior that the system shows is the result of the interaction between
the embodied computation and mechanical intelligence. Designing soft
robots that demonstrate robustness to damage requires redundancy
in the design of the system’s mechanical intelligence, to which the
embodied computation can effectively adapt.
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actuators, and e the observed trajectories during phototaxis experiments. f-j,
Gait during the best phases of a.
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2.6 INCREASING THE MECHANICAL INTELLIGENCE POTENTIAL

Changing morphology is not the only way to increase the redundancy
embodied in the system. Based on the learned behaviors in the pho-
totaxis experiments performed so far, we find that one of the primary
limitations of the PneuNet bending actuators is the reciprocal nature
of their inflation-deflation cycle. As a result, several actuators need to
interact to enable the friction symmetry to break down at the surface,
which is the basis of all the gaits observed so far. Moreover, this also con-
strains the speed of the system and the variety of terrains it can traverse
(Fig. 2.31). Therefore, we next increase the potential of the mechanical
intelligence in each module by leveraging more complex nonlinear
behavior in each actuator, allowing it to undergo non-reciprocal (i.e.,
full-step) motion.

To explore the capabilities of our embodied computation approach,
we have developed an actuator that leverages the nonlinear mechanics
of thin shells to embed a full-step motion during the inflation and
deflation cycles, relying on similar mechanics as [8]. The actuator is
shown in Fig. 2.9a, where we show how it goes through four phases
during a single actuation cycle. (1) the shell starts fully deflated. (2)
The sequence begins with the inflation of the thinner top half of the
shell, which pushes a pillar (i.e., the foot that will be in contact with the
surface) downward. (3) This is followed by the inflation of the thicker
bottom half of the shell that extends the pillar outward. (4) In contrast,
during deflation, the circumferential stiffness of the shell maintains
the inflated state of the thicker bottom side while the thinner top side
deflates. (1) This is concluded with the collapse of the thicker bottom of
the shell to reset the actuator to its initial state. The full-step behavior
of this actuator can be seen from the hysteresis of the actuator’s tip
location as depicted in Fig. 2.9b, which clearly differs from the behavior
of the PneulNet. As a result of the shell buckling that underlies the
hysteretic behavior, we also find that these full-step actuators are more
susceptible to interactions with the environment, which complicates
feed-forward control without embodied computation (Fig. 52.7b).
Next, the modules are interconnected using the same connectors as
previously used to create radially symmetric morphologies. When per-
forming a phototaxis experiment with a four-module configuration, we
also observe the phototactic behavior (Fig. 2.9c), where the traveled
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distance between consecutive learning cycles appears to be significantly
increased compared to experiments with PneulNet actuators. Moreover,
as expected, the light measurements appear noisier over time, likely
due to the actuators’ increased stroke and tilting that move the sensors
out of plane (Fig. 2.9d). Repeated experiments shown in Fig. S2.7d-h
reveal that trajectories vary widely and often appear erratic. Still, in
all trials, the system can handle the increased (erratic) movement and
achieve movement towards the light source (Fig. S2.7d-h).

The full-step nonlinear motion also opens up the opportunity to traverse
more diverse terrains, as the motion is now characterized by the lifting
of the limbs instead of the friction-dominated moments we found with
the PneuNet actuators. Fig. 2.9e shows how a four-module system
comprised of the full-step actuators can learn to achieve phototaxis
on an uneven terrain comprising a thin layer of gravel, which was not
possible for a four-module system comprised of PneuNet actuators
(Fig. 2.3i). All three repetitions of the experiment can be found in
Fig. 52.8. When comparing the fastest gait of a four-module assembly
of full-step actuators on a flat surface and on gravel, we find a similar
gait (Fig. 2.10f-g) in which the system initially lifts off the ground due
to inflation of all actuators, after which it propels forward by deflating
the two front modules.

These observations underscore the profound synergy between the sys-
tem’s ‘body” and brain,” emphasizing that modifications of the body
can enhance task performance. Yet, they must not interfere with the
predictability of system behavior. Even though phototaxis can still be
achieved for these systems comprising nonlinear and non-reciprocal
behavior, current shell actuators seem to push the complexity of the sys-
tem to its limits, and we expect that at some point, short-term variations
become too large for the embodied computation to keep up.
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Fig. 2.9: Phototaxis capabilities of four-module systems comprising nonlinear
full-step actuators. a, Experiments and schematic of the inflation-deflation cycle
of the “full-step actuator.” b, Reciprocal behavior of the PneuNet actuator and
non-reciprocal behavior of the full-step actuator, illustrated by the trajectory
of the actuator’s tip normalized to the minimum and maximum positions. ¢,
Trajectory of a phototaxis experiment for a four-module configuration with
full-step actuator, for 8o Nic. d, Light measurements in each module obtained
during the same experiments. e, The same phototaxis experiment on an irregular
gravel surface. More details on the gravel setup are provided in Fig. S2.2.
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Fig. 2.10: Observed gaits of four-module systems comprising nonlinear full-
step actuators. f, Fastest observed phototaxis behavior during the experiment
in c. g, Fastest observed phototaxis behavior during the experiment in e.

2.7 CONCLUSIONS

In this work we demonstrated how “embodied computation” can lever-
age the potential of the mechanical intelligence present in soft-limbed
robots to achieve a dedicated goal (i.e., phototaxis). In contrast to most
approaches to control soft robots that, e.g., depend on predefined or
manual sequencing or centralized model representations of the robot’s
behavior, our developed modular soft robotic platform can achieve
emergent directed locomotion without a central brain, a-priory system
knowledge, or explicit communication.

We demonstrate that such an embodied computation approach can pro-
vide robustness against changes in body morphology, actuator behavior,
dynamic environments, or damage. This is illustrated by the various
gaits learned in a range of different circumstances (Fig. 2.6a-e, 2.6f5,
2.8f+, and 2.10f and g), without requiring any user interference. While
we mostly focused on online learning in this work, our platform can
also be used to find gaits for a wide variety of soft robots. For example,
the same embodied computation strategy can even be put on inflat-
ing cubes where the locomotion modality changes to peristaltic-like
crawling (Fig. 52.11).

Even though we were inspired by the capabilities of echinoderms that
originate from their decentralized architecture, the implementation of
the learning strategy we embodied differs from the exact computations
performed by echinoderms. As such, our approach only represents one
of the many possible ways to implement embodied computation, and
future research is needed to explore alternative approaches that can lead
to different and perhaps more robust behavior. Similar to how natural
systems have also co-evolved their body and brain to achieve useful
emergent behavior, key in future explorations will be the co-design of
both the mechanical intelligence (i.e., body) and embodied computation
(i.e., brain). For example, in our system we observed two situations for
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which the system stopped performing phototaxis. The first case is rather
obvious, as it seemed to be the result of the system not being capable
of locomotion at all, e.g., due to damage as shown in Fig. 2.4a or due
to interactions with the environment as shown in Fig. 2.4¢c. The second
case is less obvious and is the result of the interaction between body
and brain, where the system got stuck in a dynamic limit cycle due to a
delay in sensory observation of the environment (e.g., Fig. 2.7b). Note
that in nature, similar unwanted emergent behavior can be observed,
such as death spirals in army ants.

We believe that the implications of our research reach beyond the exist-
ing platform, promising significant insights on how to incorporate more
autonomous behavior in the fields of soft robotics, swarm intelligence,
and micro- and nano-robotics [10, 80, 89]. The fact that our algorithm is
fully decentralized and only requires a few lines of code makes it espe-
cially suitable in those applications where computational resources are
limited by size, cost, and weight, or where behaviors and interactions
are difficult or impossible to model a priori. Future research could also
explore hierarchical approaches similar to the “sub-brain architecture”
of the octopus and further diversify the tasks the system can perform.
As such, we believe our insights on the interaction between embodied
computation and mechanical intelligence could lead to a new gener-
ation of soft robots that are not only inspired by nature, but are also
capable of matching its versatility, robustness, and autonomy.
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This Chapter provides additional details to support the Chapter 2. It
includes comprehensive descriptions of the fabrication methods, experi-
mental setup, and protocols used in this study, as well as information
on the gravel surface employed in the experiments. Supplementary
figures and captions for Movies S2.1-52.5 are also provided.

Other Supplementary Material for this Chapter includes the following:

§2.1 SUPPLEMENTARY MOVIES S2

Movie S2.1. Introduction of the system architecture and individual mod-
ules. During a phototaxis experiment, a four-module configuration
harnesses its embodied computation to learn to move towards a light
source. We also show the fastest-moving walking gait that was ob-
served for the four-module configuration. The assembled robot does
not locomote on a granular terrain.

Movie S52.2. During a phototaxis experiment, a five-module configuration
learns to move towards a light source. We also show the fastest-moving
walking gait that was observed for the five-module configuration. A
phototaxis experiment for a six-module configuration shows similar
results, yet the fastest-moving gait is different from that for a five-
module configuration.

Movie S2.3. An alternative four-module configuration where the actu-
ators are flipped upside down also achieves phototaxis, yet learns its
own unique walking gait.

Movie 52.4. To increase the potential mechanical intelligence, we intro-
duce a full-step actuator module. These actuators are more suscepti-
ble to changing their behavior based on environmental influences, as
demonstrated by manually interacting with the actuator. The same em-
bodied computation implementation also allows a configuration with
four of these full-step modules to learn how to perform phototaxis,
even on granular terrains.

Movie 52.5. The same embodied computation approach can also be used
on different platforms, such as inflatable cube actuators that we intro-
duce here. Phototaxis experiments with a four-module configuration of
these inflatable cubes show that phototaxis is learned over time.
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§2.2 FABRICATION OF THE MODULES

Each robot module is composed of several custom structural parts: A
3D-printed body printed from VeroClear (Stratasys), on a PolyJet 3D
printer (Eden260VS, Stratasys), custom PCB (see Fig. S52.11), airpump
(YYPo32, Huizhou Yingyi Motor Co.), LDR light sensors (NSL-19M51,
Luna Optoelectronics) with a 3D-printed PLA holder (printed on an
Ultimaker 3 with BASF Ultrafuse PLA filament, color black, 2.85 mm),
various soft actuator (see below) and a needle that is used as a fluidic
resistance that leaks air from the actuator to atmosphere.

In each module the algorithm runs on a microcontroller (ESP8266),
placed on a rectangular custom PCB. The PCB is connected to the
LDR sensors that are mounted on a PLA holder above the PCB. Each
PCB is connected to its own 3.2 v air pump, which is press-fit into the
3D-printed body. A 5mm silicone tube (3mm inner diameter, 5mm
outer diameter, from Rubbermagazijn) and silicone grease seal the
interface between the pump and its enclosure. The pump is secured
by the PCB and its LDR holder, bolted into place with M3x6 inbus
screws. A resistive needle (Metcal) is also press-fitted into the Veroclear
Body enclosure, sealed with another short silicone tube (0.1 mm inner
diameter, 1 mm outer diameter) and silicone grease.

Soft PneuNet actuators are cast using two-part silicone (Smooth-On
DS20 in opaque white and Elite Double in green) injected into custom
Veroclear 3D-printed molds sprayed with Ease release 200 (Smooth-
On). The fabrication follows a two-stage process: first casting the white
elastomer for the actuator chambers, letting it cure, and then pouring
the green silicone to form a stiffer layer on the bottom of the actuator.
Finally, the water-soluble inner mold (BVOH printed on an Ultimaker)
is dissolved by flushing with pulsating water pressure. A detailed
description of the manufacturing process is given in previous work
[99]. The PneuNet actuators are press-fitted in their body, making them
airtight using silicone grease.

Full-step hysteretic actuators are cast using two-part silicone (Smooth-
On DS20 in opaque white) injected into a custom Veroclear 3D-printed
mold sprayed with Ease release 200 (Smooth-On). Next, the silicone
shell is placed in the body, and an airtight seal is created by bolting
down the holder ring (see Fig. 52.7).
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Individual modules are linked together by employing 3D-printed PLA
(BASF Ultrafuse PLA filament) connectors with embedded magnets
to facilitate attachment. A different type of connector is used for each
morphology of the assembled system.

§2.3 EXPERIMENTAL SETUP

We follow the same overall procedure as previously reported [108].
Experiments take place on a 195cm x 155cm white multiplex plat-
form, surrounded by a black multiplex frame (Fig. Sgb). Once powered,
each module is wirelessly initialized via a master-slave protocol using
an ESP32 configured in a one-to-many network with the ESP-NOW
library. After this one-time synchronization, every module operates
autonomously and transmits local measurements at the end of each
learning cycle. These data packets are collated by the ESP32 master,
which then writes them to a text file on a connected laboratory com-
puter. While this logging process helps us visualize the results, it does
not influence the phase updates happening within each module’s PCB.
A camera (GoPro Hero 4) is positioned 1.11 m above the center of the
white platform and records overhead images at the end of each learning
cycle. The camera is controlled wirelessly from the same computer
that gathers the sensor data. To accurately determine the modules’
positions, we first correct for optical distortion and camera perspective
using the OpenCV Python library. Four ArUco markers placed at the
corners of the platform serve as reference points, enabling us to map
pixel distances to physical dimensions. Next, we track a single marker
(approximately 4 cm wide) in the center of the robot assembly.

§2.4 EXPERIMENT PROTOCOL

The experimental procedure ensures the reproducibility and reliability
of the experiments while minimizing errors due to misalignment of
components or system failures. The protocol follows a structured
sequence of assembly, testing, and data collection, which is detailed
below. Such an approach has proven to be essential in this study, given
the relatively long time (up to 17.5h) that each phototaxis experiment
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takes.

Assembly of the Experimental Configuration. The setup of the experiment
involves assembling the modules and their associated components
according to the predefined configuration. This includes assembling
modules, sensors, and structural components, ensuring that all elements
are correctly positioned and securely fastened. Particular attention is
given to the alignment of the full-step actuator membranes in their
holder, as misalignment in their membrane holders can introduce
unintended rotational bias in a predefined direction.

Pre-Experimental Testing Outside the Experimental Area. Before introducing
the system into the experimental arena, a preliminary test phase is
conducted in a separate environment to verify the proper functioning
of all components. This includes checking the operation of the system'’s
actuators (not leaking), sensors (working and collecting data), the PCB
(operating correctly and connecting to the central computer), and the
inflation-deflation cycle functions (no broken pump, leakage, or clogged
leakage needle). Any malfunctioning components are identified and
corrected at this stage to prevent failures during the main experiment.

Test Phase in the Experimental Arena. Once the preliminary testing is
completed, the assembled robot is introduced into the designated
experimental area for an initial functional test of around 20 learning
cycles. This phase ensures that the assembled configuration operates as
expected in the controlled environment. Special attention is given to
experiments that include the full-step actuator modules, as improper
alignment of the membranes within their holders is found to induce
excessive rotation in a predefined direction, affecting the accuracy
of the experiment. If such misalignments are detected, necessary
adjustments are made before proceeding.

Execution and Data Collection. After confirming the stability of the setup,
the main experimental phase starts. In the case of repeated experiments,
the experiment is repeated multiple times in succession, with data
recorded for each iteration. At the start of each experiment, the robot is
placed in a random orientation at a specific location in the arena. The
experiment is only excluded from the reported dataset if a significant
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component failure or a crash of the experimental setup occurs. Each
valid repetition is documented in the article. In case of a component
failure, we return to step one of the experimental procedure. If the
component can be replaced without disassembling the modules, we
continue directly and restart the experiment.

Post-Experiment Video Selection and Recording. Following the experiment,
the phases that resulted in the highest displacement towards the light
are selected for a repeated experiment where the movement is recorded.
To maintain consistency in the videos and for lighting purposes, this
process is conducted outside the experimental area by placing the
system on a table and running a script that repeats the selected phases
for ten actuation cycles. It is important that no modifications are made
to the configuration, as variations between pumps, actuators, and
other system components can introduce behavioral differences in the
generated phases. This ensures that the recorded video accurately
reflects the experimental conditions.

By following this protocol, we aim to maintain the robustness and
reproducibility of the experimental results, minimizing errors due to
misalignment or inconsistent component performance.

§2.5 DETAILS ON THE GRAVEL SURFACE

To conduct experiments on an irregular surface, we designed a dedi-
cated gravel setup. A 1 m x 1 m multiplex wooden plate is used as the
base, surrounded by 20 mm x 20 mm aluminum extrusions to form a
containment box. The interior is lined with a 1 mm thick plastic sheet
to prevent gravel loss. As a support layer, a steel mesh grid (as shown
in Fig. 52.2d) is placed at the bottom. On top of the mesh, we distribute
a 2 cm thick layer of gravel with grain sizes ranging from 6 to 10 mm,
sourced from Cobo Garden (see Fig. S2.2b). This gravel setup is then
placed in the same experimental setup for the other experiments. We
align the gravel box with the light gradient so the system is tasked to
move along the diagonal in order to maximize the distance towards the
light within the box.
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Fig. S2.1: Experimental setup. a, Light measurements of the experimental arena
[108]. b, Photo taken during a phototaxis experiment using the GoPro Hero
4 that is used for data collection. The four ArUco markers in the corners of
the arena are used to correct for the perspective of the camera and to convert
the pixel distances to cm. The ArUco marker on top of the robot is used
to track its position over time. The cable attached to the robotic modules is
connected to a power source. The cable is only used to provide power, since
experimental data used to interpret the behavior of the modules is transmitted
over WiFi. Black curtains surrounding the arena are used to block any parasitic
light from entering the experimental arena, keeping the lighting conditions
consistent throughout the experiment. ¢, Components of the module used for
the initial experiments that use PneuNet actuators. d, Assembled module, and
a 3D-printed connector piece from PLA (using an Ultimaker) used in the four-
module assembly. Similar connectors with different angles are used to configure
different numbers of modules in the radially symmetric circle configuration.
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Fig. S2.2: Additional information corresponding to Fig. 2.3 and Fig. 2.4. a,
Experimental result of the failed phototaxis experiment that was left out of
the batch experiment repetitions in Fig. 2.4a-b. During the startup of this
experiment, one of the modules restarted, causing the pump to be on for two
cycles without intermediate deflation. As a result, the actuator pressure reached
significantly higher levels, likely causing the actuator to reach the ballooning
stage of its pressure-volume curve. This resulted in an actuator that was not able
to deflate sufficiently during its deflation stage and instead remained inflated
throughout the entire experiment. Due to this, the two closest actuators lifted
off the ground, such that the system was not able to move for any of the tested
phases. b, photo of the gravel used in the experiments.c, Still images from
a learning experiment in the gravel pit with a four-module configuration as
depicted in Fig. 2.4¢c. From these results, we find that the system is not able to
find phases that displace its center of mass. The reciprocal motion, as a result of
the same inflation and deflation, slowly digs the system into the gravel instead
of moving it. d, The steel rooster is used as the base to layer the gravel on.
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Fig. S2.3: Additional information corresponding to Fig. 2.5 and Fig. 2.6. a,
Light measurements of the phototaxis experiment for a five-module experiment,
corresponding to the trajectory depicted in Fig. 2.5a. b, Light measurements of
the phototaxis experiment for a six-module experiment, corresponding to the
trajectory depicted in Fig. 2.5b. ¢, Trajectory of the phototaxis experiment with
the five-module configuration with one broken light sensor, corresponding to

Fig. 2.5¢
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Fig. S2.4: Additional information corresponding to Fig. 2.7 and Fig. 2.8. a,
Length difference of the longer (used in Fig. 2.7) and shorter (used in Fig. 2.1-
2.7) actuators. b, Highlight of the location during the phototaxis experiment of
Fig. 2.7¢c where the robot pulls the ArUco marker from the experimental arena.
¢, Demonstration of how the ArUco is pulled from the experimental canvas.
As shown, one of the limbs drags the ArUco along. The detached ArUco has
little friction with the canvas, making the limb on top of the ArUco slip. As a
result, the system with only three effective limbs remaining is unable to direct
its motion. g, Phases of the same experiment as depicted in f.
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Fig. S2.5: Additional information corresponding to Fig. 2.7 and Fig. 2.8 part
2. a, Light measurements from the phototaxis experiment depicted in Fig. 2.7c.
The orange line indicates the first contact with the ArUco. b, Phases of the same
experiment show that there is a transition in the behavior before and after the
system hits the ArUco. During the first half of the experiment, we observed
little change as the system moved to the light. After the system pulls the ArUco
from the ground, we observe how the system is still varying its phases. Still,
as the resulting behaviors are disturbed by the ArUco, the system is not able
to steer the phases in any particular direction, leaving the phase differences
relatively equal for the remainder of the experiment. ¢, Light intensity for the
modules during the phototaxis experiment depicted in Fig. 2.8a. d, Phases of
the same experiment as depicted in f.
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Fig. S2.6: Additional information corresponding to Fig. 2.8. a-d, Light intensity
data of the phototaxis experiment for the four-module systems with various
actuator lengths and arrangements. Note that during the experiment in b we
only obtained 50 learning cycles both for the data transmitted from the modules
and for the photos of the GoPro, as the central lab computer that collects and
stores the data experienced a crash four hours after the experiment was started.
The actual modules remained functional, and continued the experiment without
collecting any data. A similar problem occurred for the experiment in d, where
we were only able to collect data for 8o cycles. Note that for the study presented
in this article, these were the only two experiments where such a crash occurred.
For both experiments only the available data is presented in Fig. 2.7d.
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Fig. S2.7: Additional information corresponding to Fig. 2.9 and Fig. 2.10. a,
Module components for the full-step actuator. The body and bottom holder are
printed on a Stratasys with Veroclear. The flow resistor (Metcal needle gauge
22) constantly leaks air to the atmosphere so that the module deflates when
the pump is off. b An interaction with the environment (for the demonstration
represented by an interaction with a pen) can change the trajectory of the
tip during deflation. d-h, Trajectories of all five repetitions of the phototaxis
experiments with the full-step actuators in a four-module configuration. The
tracking of the modules is done with the same algorithm as for the experiments
in Fig. 2.9. Note that as the modules in these experiments tilt the system more
out of the plane, they caused reflections from the light source, making the ArUco
undetectable. In those cases, we manually detect the corners in the image. i,
Distribution of the light intensity measurements from the four modules of all
five experiments, the average light intensity is depicted with a black line. As the
learning cycles increase, we see how the distribution moves upwards, indicating
the average increase in light intensities as the system moves towards the light.
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Fig. 52.8: Additional information corresponding to Fig. 2.9 and Fig. 2.10 part
2. a, Overview of the gravel experiment, as seen from the GoPro Hero 4 camera
that is used to track the robot. The full-step four-module configuration is placed
on the gravel for size reference. b-d, All three conducted phototaxis experiments
on the gravel surface, for the four-module dome configuration.
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Fig. 52.9: Additional information corresponding to Fig. 2.9 and Fig. 2.10 part
3. e, A single actuation step (of the phases found during the experiment).
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Fig. S2.10: Electrical schematic diagram of the PCB design used throughout
the Chapter. The schematics show the ESP module that is used for processing
the pump circuit and the circuit that establishes the power to the module and
power distribution to the other modules.
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Fig. S2.11: Phototaxis experiment with inflating cubes. a, Components of the
inflating cube modules. The body is 3D printed on a Stratasys with Veroclear.
The body contains four channels that distribute the air from the pump to the
four sides of the cube. The membrane is a two-step cast using DS20 (white) and
Elite Double 32 (Turquoise). The difference in stiffness between the DS20 and
Elite Double 32 causes the sides to expand while the corners remain in place,
resulting in a large stroke of the connection points for relatively small volume
change. For this reason, the current system can have a faster inflation-deflation
cycle of 4s compared to the 45s of the PneuNet and Full-step actuators used in
this study. Four magnets are placed into the sides of the module during casting,
to allow easy connection to the other modules. The bottom plate is laser-cut
from POM and holds the membrane in place from the bottom side of the body,
ensuring an airtight seal. On the top, the PCB has the same sealing effect. The
flow resistor (needle with gauge 20) has the same purpose as for the other
module designs. b, Assembled module. Note that the module still uses the same
PCB, light sensor, and pump compared to the other modules with PneuNet and
Full-step actuators, only its body has changed. ¢, Light measurements for an
experiment with a four-module configuration. d-g, Snapshots of the experiment
with the four-module configuration that correspond to the data in c.
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Abstract.

In robotics, achieving adaptivity in complex environments is challenging. Tra-
ditional robotic systems use stiff materials and computationally expensive
centralized controllers, while nature often favors soft materials and embodied
intelligence. Inspired by nature’s distributed intelligence, this study explores
a decentralized approach for robust behavior in soft robotic systems without
knowledge of their shape or environment. We demonstrate that only a few basic
rules implemented in identical modules that shape the soft robotic system can
enable whole-body phototaxis, navigating on a surface towards a light source,
without explicit communication between modules or prior system knowledge.
Our results reveal the method’s effectiveness in generating robust and adaptive
behavior in dynamic and challenging environments. Moreover, our approach’s
simplicity makes it possible to illustrate and understand the underlying mecha-
nism of the observed behavior, paying particular attention to the geometry of
the assembled system and the effect of learning parameters. Consequently, our
findings offer insights into the development of adaptive, autonomous robotic
systems with minimal computational power, paving the way for robust and
useful behavior in soft and microscale robots, as well as robotic matter, that
operate in real-world environments.

H.A.H. Schomaker, S. Picella, A. Kiing Garcia, L.C. van Laake, ].T.B. Overvelde.
“Robust Phototaxis by Harnessing Implicit Communication in Modular Soft
Robotic Systems.” Advanced Functional Materials, 2024.
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3.1 INTRODUCTION

Unlike living systems that are comprised primarily of soft tissues that
adjust their shape during interactions with the environment, robotic
systems generally use stiff materials [51]. As a result, these conventional
robotic systems exhibit well-defined motion and excel in precision and
speed within controlled environments. In contrast, natural systems have
evolved a focus toward robustness to survive in our complex world.
These natural systems have inspired researchers to create soft robots
that deform when interacting with the environment, increasing the
potential for improved performance in more complex and unstructured
real-world environments [104].

Inspired by the many invertebrates that exist in nature (e.g., sea stars,
octopuses, sea urchins), we aim to explore how distributing the robot’s
“brain” over the body could result in more robust behavior [46, 58,
88]. For example, sea urchins have hundreds of tube feet, spines, and
pedicellaria with locally integrated perception and motor control. They
can sense and process information independently while still leading
to whole-body locomotion, and robust behavior emerges without a
central brain and only a limited central nervous system [118]. There
has been a growing effort to understand such distributed systems
in biology, in part due to their potential applications in autonomous
robotic systems [46, 58, 91]. In the field of robotics, distributed control is
mostly studied in modular and swarm robotics, which utilizes synergy
and redundancy to improve the system’s adaptability, functionality,
reliability, and robustness [74, 119, 134]. Importantly, these systems
typically have reduced complexity of their controllers since behavior
emerges from interactions between agents [37, 84]. These systems show
that similar to out-of-equilibrium systems in nature, global behavior
can emerge from non-reciprocal interactions [36, 120]. More application-
driven robotics examples include adaptation to mechanical stimuli [97,
106], construction [5] and locomotion [68, 103, 107, 112].

Previous research has found inspiration in emergent natural systems
like amoeboids [112] and collective migration phenomena in cell
biology [68], to create more resource-efficient and adaptive systems
(able to achieve complex tasks with minimal computational resources)
[08]. These systems often rely on coupled oscillators to adapt their
behavior based on external stimuli [55]. While this continuing line
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of research shows that autonomy and adaptivity can be achieved
with minimal computational requirements, it remains intrinsically
dependent on sensitive parameters that have to be a priori optimized
(e.g., through evolutionary algorithms) to produce their desired
emergent properties. Instead, we focus on embodying a basic and
stochastic learning algorithm throughout the robot that allows it to
adjust to its environment and situation within limits specified by the
robot’s design and functional capabilities. This embodied computation
is realized with active and identical modules constituting a single robot
body.

Importantly, rather than optimizing the physical system for the specific
task, we focus on a physical platform with minimal functionalities
in order to understand to global behavior that arises from the local
interaction. Therefore, we focus on the general principles involved
in decentralized whole-body phototaxis in the hope of making the
outcomes more generally applicable to other physical platforms.

To constrain the information in the system to be strictly local, we exploit
a form of implicit communication facilitated by sensing changes to a
shared environment, similar to the implicit communication of stigmergy
in nature [9, 13, 132]. Our approach demonstrates that a decentralized
system can optimize its behavior without explicit communication be-
tween its modules in various situations and environments.

Our previous research on a distributed stochastic learning algorithm
showed great promise for emergent decentralized locomotion control
in a one-dimensional framework [88] (the robot was constrained to a
circular track), illustrating the value of a short-term memory algorithm
in changing environments, as well as demonstrating the system'’s ability
to resist damage [88]. Here, we move from a one-dimensional to a two-
dimensional domain (the robot can freely move on a surface), which
considerably increases the system and task complexity, e.g., due to com-
petition. Importantly, even though we use exactly the same algorithm as
in previous work, the fact that rotation is not directly controlled (only in-
directly through competition) results in a dynamic learning process that
is more complicated than in one dimension. From a physics perspective,
transitioning from a one-dimensional to a two-dimensional transforms
the state space from fixed to dynamic. In a one-dimensional setting, the
phase space is static, and the optimization problem is relatively straight-
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forward because the system’s orientation does not change. Conversely,
in a two-dimensional environment, the optimization problem becomes
dynamically evolving. The system’s orientation, and consequently its
interaction with the environment, changes over time. This introduction
of rotational dynamics that individual units cannot directly control
enables a much richer set of behaviors and emergent phenomena that
were not possible in the one-dimensional case. In this novel setting
with increased complexity, we focus on three fundamental questions:
(i) Does the modular robot exhibit robust learning behavior? (ii) How
general is the implemented distributed stochastic approach, and how
does geometry or configuration impact the system’s ability to perform
a task? (ii)) How adaptable is the system? Can it robustly adapt to the
environment and damage?

3.2 EXPERIMENTAL SETUP

We start by introducing the modular robotic platform that we developed
(Fig. 3.1a-b) to try to answer these questions. Our robotic platform
consists of physically connected modules that can move on a plane
and can be assembled in square lattice configurations. Each robotic
module in the lattice is identical and has its own microprocessor to
control a stepper motor, measure the light intensity, and run a stochastic
algorithm to change its behavior. Importantly, we aim to employ a
stochastic algorithm in each unit such that the system as a whole
performs phototaxis (i.e., moves to a light source). An individual unit is
programmed to periodically expand and contract its four connection
points every 2s (Fig. 3.1a), where the only parameter that each module
can tune is the phase of actuation ¢, corresponding to the phase of unit
i. Note that an individual unit cannot displace itself if it is not connected
to other units. By physically connecting multiple units (Fig. 3.1¢c) by
their soft elastomeric arms, the system as a whole starts to move and
rotate depending on the phase differences between the units (Movie
53.1). As each unit can only sense the light intensity from its own
sensor, it is unaware of what the other connected units are doing. Each
unit can only change ¢; and operates on this one-dimensional search
space. However, the corresponding collective behavior changes when
the connected units change their phase or when changes occur in the

77



LDR

da.
PCB
Stepper
Soft connectors
C. d.
C1 T
k]
s A¢
50 1€ /AC) AC 'ACH AC__<€>)
- LC- <
Time
135 300
e.
—= Powerline 250
200
Y
<
= ®
5 150 S
> 5
o
o
100
5 50
® Unit1 Unit 2 Unit 3
20 0
20 X [em] 170

Fig. 3.1: Robotic unit design and learning experiments for an assembled
system. a, Realization of a unit and its corresponding extended (red outline)
and contracted state (black outline). b, Side view of a robotic unit. ¢, Robot
assembled from three units. d, Schematic representation of a learning cycle LC
that occurs in each unit. e, Evolution of a single learning experiment with a
three-unit system (d) during Ny ¢ = 300, given by overlapping images of the
experiments at every 50 npc. The colored line indicates the position of the
center of mass at every learning step nyc. For this experiment, the robot starts
on the left, and a planar light source is placed on the right.
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Fig. 3.2: Learning experiments for an assembled system in two different
configurations. a, The measured light intensity I in each unit. b, Orientation
in degrees (0°) of the three-unit system during the single experiment. ¢, Ab-
solute phase ¢; for every learning cycle. d, The measured difference in light
intensity Al e, Distribution of the average X positions of the assembled robot
for ten experiments with the three-unit configuration. f, Robot assembled in a
configuration with four units. g, Evolution of a single learning experiment with
the four-unit system during 300 learning cycles, under similar experimental
conditions as in the three-unit experiment (Fig. 3.1e). h, Distribution of the X
positions for ten experiments with the four-unit configuration.



environment. Due to the change in collective behavior, each unit must
continuously re-evaluate its performance in its one-dimensional search
space. In a way, these units, therefore, can also change the environment
for the other units in the assembly.

We implement the same stochastic learning algorithm that we previously
studied in one-dimensional experiments, where the robotic system
was constrained to a circular track to limit its movement to a single
dimension [88]. In this learning algorithm, each unit performs random
experiments by perturbing its phase and only conditionally accepts
these phases by comparing the difference in light intensity with its
previous step. Specifically, units individually undergo learning cycles
(nrc) as shown in Fig. 3.1d, each consisting of a total of Nc regular
actuation cycles (AC) with a constant phase. Each actuation cycle has a
duration of toc = 2s and consists of an extension of the soft connector
arms with a duration of 0.6, followed by contraction of the arms with
the same duration, where it remains in its contracted state for the
remainder of the actuation cycle. At the end of every learning cycle, the
unit perturbs its phase ¢; to explore a new phase ¢:. The perturbation
is performed according to ¢! = ¢p™ + eAS. Here, ¢/ is the phase that is
evaluated the next nac, ¢{™ is the previous phase kept in memory, €
represents a uniformly distributed random variable between the interval
[—1,1], and the parameter AS = 0.1 describes the maximum difference
between two phases of consecutive learning cycles.

To implement the phase change, each learning cycle is followed by a
phase adjustment actuation cycle (ACq). Only the last part of the cycle
is altered during the phase adjustment cycle as the unit implements a
new phase for the next step. The amount of adjustment conditionally
depends on the acceptance or rejection of the current phase. If the
current phase is accepted, phase difference A¢; between the current and
the next learning cycle is given by AS. In case of rejection, we perturbed
the phase in memory to find a new phase for the next learning cycle,
resulting in a Ad; that is a combination of the difference between these
two phases and new perturbation AS for the next learning cycle. This
results in a new (1){ by extending or shortening tcycle according to:

m_ ' .
A — { G — ) +eAS, for AL < Al -

€AS, i = b} for AL, > AlL.
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Here, each unit approximates the quality of its current ¢ 1 by evaluating
the difference AI{ between two independent light measurements I ;
and I, ; measured during AC; and ACy, respectively. Therefore, the
units evaluate the rate of change in light intensity rather than only
looking at the absolute light intensity. The units accept the current
phase d); if the difference in light intensity AI; is larger then Al; stored
in memory. Finally, in previous work, we established that to achieve
adaptive behavior Al; should change to AI{ after every learning cycle
[88]. Note that every unit independently changes its ¢;. Therefore, the
units are not synchronized, resulting in asynchronous timing between
the units for measurements and phase adjustment. More details on the
learning are provided in the method section (Fig. S1).

3.3 PHOTOTAXIS IN EXPERIMENTS

To determine if a system of coupled units can perform phototaxis while
moving on a surface, we first conduct experiments with the smallest
two-dimensional configuration (i.e., with units that do not only lie on
a line) as shown in Fig. 3.1c. We place the assembled system on the
left side of a flat rectangular surface with two LED panels on the right
side (Fig. 3.1e) and observe the system’s behavior during Nyc = 300
learning cycles (Movie S3.2). Even though the units operate entirely
independently and asynchronously (the only electronic connection is
the power supply), Fig. 3.1e shows how the assembled units rotate
and move while getting closer to the light source on the right. This is
clearly demonstrated in Fig. 3.2a, where we show that the average light
intensity I increases for all units during the experiment.

Looking closer at the behavior of the assembly in Fig. 3.1e, we can
roughly distinguish four regimes. (i) During approximately the first
nyc = 50 learning cycles, the measured Al does not seem to increase for
all units (Fig. 3.2a). Yet, we do observe a change of orientation ©° of the
assembled system. This orientation is represented in degrees and mea-
sured with respect to the experimental canvas (Fig. 3.2b). (ii) Between
approximately 50 < nyc < 150 learning cycles, the units start to move
towards the light source while also undergoing significant rotation. (iii)
We find a straight trajectory for the last nyc = 50 learning cycles, along
with a stabilization of the orientation of the system (Fig. 3.2b). While the
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phases of the individual units still vary over time, the phase differences
between the units stabilize (Fig. 3.2c). It appears that the assembly has
reached stable behavior. (iv) Around nyc = 300, the units reach a peak
of their change in light intensity Al as presented in (Fig. 3.2d). This
indicates that they arrived at the position of highest light intensity, as
also revealed by the drop in Al shown in Fig. 3.2a. In general, Fig. 3.2a-d
demonstrates the emergence of robust global phototaxis of the system.
To investigate the robustness of the observed phototaxic behavior, we
repeat the experiment of Fig. 3.2a-d ten times, where we start from
initially random phases and random orientations. Fig. 3.2e shows the
position distribution for all experiments for progressing learning cycles.
Note that in this figure, the position of the light source is at x = 165,
and a black line indicates the place with the highest light intensity I as
measured in separate experiments (Fig. S3.2¢). Fig. 3.2e demonstrates
that the distributions converge to the location with the highest light
intensity, thereby indicating that all assemblies move towards the point
of highest light intensity and thus achieve robust phototaxis.

Next, to explore if phototaxis is also achievable for a robot with a
different geometry, we assemble a robot by adding an additional unit
(Fig. 3.2f). We place the assembly on the left side of the test setup to
repeat the same experiment as before and observe the first Ny c = 300
learning cycles in Fig. 3.2g. Similar to the three-unit system, we find
robust directional motion towards the light source, with considerable
rotation during the first part of the experiment and convergence to
stable behavior for the second part.

Subsequently, we repeat the experiment 10 times (Fig. 3.2h) with ran-
dom initial phases. Similarly, we find a displacement towards the light
source for all ten experiments. Interestingly, we find slower average
velocities for the four-unit system compared to the three-unit system
and a smaller variance between experiments. These results emphasize
the importance of previously raised questions on how general the im-
plemented distributed stochastic approach is and what the impact is of
the geometry or geometry on the system’s ability to perform a task.
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3.4 UNDERSTANDING THE OBSERVED BEHAVIOR

Before answering how geometry affects the ability to perform photo-
taxis, we first return to the first question raised in the introduction
and try to better understand how the system can achieve its behavior
without explicit communication between modules. To get a better visu-
alization and understanding of the underlying dynamic behavior from
both the perspective of the individual units and the assembled system,
we implement a coarse-grained mass-spring model that qualitatively
captures the system’s behavior.

To reduce the computational requirement for the model, we build single
units using four masses and four springs, as shown in Fig. 3.3a. Two
additional diagonal springs actively drive the extension and contraction
of the unit by varying their rest length periodically in time. The behavior
over time is found by numerical integration of the equations of motion
using RK45. Within the numerical integration, we perform a discrete
event model to capture the decentralized nature of the learning behavior
in experiments. A block diagram of the event model can be found
in Fig. S1. Further information on the model can be found in the
method section. Fig. 3.3a presents the model representation of the three-
unit configuration as depicted in Fig. 3.1c. Similar to the experiments
performed in Fig. 3.1, we place a planar light source on the right side
of the two-dimensional plane and model the light source as a two-
dimensional scalar light intensity field, where the intensity has an
inverse square relation with the distance to the light source I é.
Simulating the three-unit assembly, we find that the system starts to
move in the direction of the light within njc ~ 10 learning cycles
(Fig. 3.3b-c). In agreement with the experiments, the assembled robot
initially behaves in a regime dominated by large rotations that occur
while learning to move toward the light, followed by a more consistent
orientation and movement.
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Fig. 3.3: Course-grained mass-spring model to numerically study the qual-
itative behavior of the system. a, Mass-spring representation of a three-unit
system as depicted in Fig. 3.1c, with the active springs in the diagonal of the
squares and passive springs around the edges. b, Orientation over nyc for a
single simulation of the three-unit system for a thousand learning cycles. ¢,
Trajectory of the same simulation, with a planar light source placed on the
right side of the two-dimensional plane. The system’s state is depicted every
hundred nyc. d, Evolution of the potential velocity mapped to the phase space
from a system perspective measured in V(I) [mm/LC] at three-time instances
during the simulation of c. The color map indicates the velocity in the direction
of the light for all possible phase combinations of the system. The colored dots
indicate the phase combination during the simulation of ¢ colored by njc. e,
The rotation (A8) of the system for all phase combinations. The dots indicate
the phases at the nyc snapshots of d. f, a projection of the local optima of
the V(I) [mm/LC] in the phase space for all system orientations. Obtained by
rotating the reference frame of Fig. S3a and numerically extracting the local
optima for each orientation. The dashed vertical lines indicate the slices as
represented in d. The color of the optima indicates the change in angle A9 for
the phases that correspond to the local optima as can be found in e. g, The
same projection as represented in f with the optimal V(I) [mm/LC] for each
orientation represented in an increased size compared to the local optima. The
trajectory of the single simulation (c) is mapped onto this projection to visualize
the long-term phototaxic behavior.

System Perspective

To find an accurate representation of how the system with the learning
algorithm performs phototaxis, we evaluate the system displacement
towards the light for all possible phase combinations as presented in
Fig. S3a. Now, a change of reference frame is applied to obtain the
search space for a specific system orientation during the simulation.
Fig. 3.3d presents this rotated search space for three different snapshots
of the simulation presented in Fig. 3.3b-c, at different learning cycles.
Furthermore, the respective rotations of these three phase combinations
are represented in Fig. 3.3e. We can make four main observations from
the perspective of this system. First, the search space drastically changes
due to the system’s rotation, meaning it must continuously reevaluate
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its behavior. Second, we see that the maximal achievable displacement
towards the light changes over time due to the rotation of the system,
from V ~ 1.0 [mm/cycle] at 450 npc to V ~ 0.6 [mm/cycle] at 950 nc.
Third, the assembly finds the area close to optimal phototaxis in the
phase space, demonstrated by these three orientations. Note that due
to the stochastic nature of the optimization, the behavior inherently
fluctuates rather than fixates on the optimal position in the phase space.
Fourth, depending on the phases, the assembly unintentionally (without
being observed by the light intensity sensor) changes its orientation.
These changes in the search space indicate that the assembly can not
sustain a specific, and maybe faster, behavior over extended periods due
to the inevitable rotation that coincides with the displacement towards
the light source. These results raise the question of whether the system
can stabilize its behavior over a longer time scale and what the effect of
the stabilization is on the phototaxic behavior.

Orientation Perspective

Of course, as each unit can only sense a single light intensity and there
is no inter-unit communication, neither the system nor the units have
any notion of their orientation. However, Fig. 3.3d reveals that the max-
imum speed heavily depends on the system’s orientation. In fact, the
system stabilizes at an orientation for which the maximum velocity
in the direction of the light is lower than what this specific assembly
can potentially achieve at different orientations (Fig. 3.3d). This dif-
ference in maximum directional velocity for different orientations can
be more clearly seen by looking at the fastest velocities for any given
orientation, as shown in Fig. 3.3f. This figure depicts the amplitude
of phototaxis (displacement towards the light) for all the local optima
in each orientation, obtained by rotating the global reference frame of
Fig. S3a and numerically finding the local optima for each orientation.
The color indicates how much the system rotates during a learning
cycle. A more detailed view of how this projection is created can be
found in Movie 53.3 Note that Fig. 3.3f solely resembles the potential
(locally) optimal displacement of the assembly without considering any
behavior related to the learning, but it helps us to visualize the potential
optimal behavior the system could exhibit. From this perspective, we
find a reflective symmetry between 45 ° and 225 ° and the existence of
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only two local optima for which the assembly doesn’t rotate with peaks
at45° and 225°.

To better understand how the system moves through this three-
dimensional search space (consisting of two A¢ and the 0 Fig. 3.3d-e)
and how close the behavior is to a (local) optimum, we project the
displacement and orientation of the single simulation of the three-unit
system into Fig. 3.3g. We observe that the assembly seems to find the
general areas of optimal phototaxis and tracks them over time as its
orientation changes. Stability occurs when the units reach an orienta-
tion for which no rotation occurs, in this case, at approximately 45 °.
Interestingly, the assembly spends most of its learning cycles on the two
optima with minimal rotation at the respective 45° and 225° angles.
Moreover, the assembly seems to move away from one to the other
and stabilize its orientation around 45 °. These results could indicate
stable orientations that emerge on longer timescales, dominated by the
geometry of the assembly.

Long-term stability

With this improved understanding of the system’s behavior from differ-
ent perspectives, we explore the dynamic stability of the system over
longer timescales. We repeat the simulation performed in Fig. 3.3g a
hundred times for different initial conditions and starting orientations
of the assembly. In Fig. 3.4a we present the distribution of the orien-
tations of the assembly after at npc = 1000. In line with the results
presented in Fig. 3.3g, almost all simulations converge towards 45 °
(with only two outliers around 250 °). Therefore, we conclude that the
45° angle serves as an “attractor” for the three unit configurations. In
contrast, the 225 © angle is an “unstable fixed-point” for the long-term
behavior. Although stable in the short term, the stochastic nature of the
algorithm will eventually push the system away from the 225 ° angle.
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Fig. 3.4: Effect of geometry on the long-term behavior of the system. Orienta-
tion perspective for a (a) three-unit robot and two four-unit robots with (c) skew
and (e) square shape. The distribution underneath the orientation perspective
indicates the final orientation after a thousand Ny ¢ for a hundred simulations.
The corresponding evolution of the velocity V(I) [mm/LC] for the first 600
learning cycles are shown in b, d and f.

To further investigate the influence of these long-term dynamics on
phototaxic behavior, in Fig. 3.4b, we show a distribution of the average
displacement of the system for all hundred simulations while moving
towards the light source. Considering the analysis from Fig. 3.3, we
can identify the same three distinct regimes in the assembly’s behavior
as we have observed in experiments in Fig. 3.1, but with additional
insights. Firstly, for approximately 0 < nyc < 50 learning cycles, the
system quickly changes phases to improve its velocity in the direction
of the light (V(I)). Next, between approximately 50 < nic < 250, the
system reaches a peak in V(I) due to changing orientation, where higher
velocities are still possible as the system is still changing its orientation.
Note that although these orientations allow for phase combinations
with a high V(I), these phases also result in large rotations A® and
are therefore unstable and can’t be maintained for longer time periods.
Finally, for nyc > 250, the variance of the distribution becomes smaller,
and the V(I) converge across all simulations. This convergence occurs
because more simulations reach the 45 ° angle, approaching the same
stable orientation and phase combination.

Unit Perspective

It is important to consider that so far, we have visualized the potential
behavior from the assembled system perspective. Yet, the individual
units do not directly communicate. To understand the dynamics from
the perspective of the individual units, we use the mapped search space
as shown in Fig. S53.3a of the three-unit system to visualize the one-
dimensional search space of every unit over time in Fig. S3.4. Each
unit operates in a different one-dimensional search space, depending
on its position in the assembly. Note that the units do not see the
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Fig. 3.5: Overview of the effect of geometry on the long-term behavior of the
system. a, Schematic representation of the different types of local optima in the
orientation projection. b, Overview of the simulation results obtained for all
robot shapes up to four units. The distribution (black line) of the average velocity
(V(I) [mm/LC]) for 100 simulations at the 60ooth learning cycle, compared to
the maximum and minimum velocity of the global optimal behavior.

full search space of the whole system and can only probe the local
one-dimensional search space by varying their phase. Importantly, the
search space’s mapping from phase to behavior fluctuates over time due
to the rotation of the assembly and the continuously changing behavior
of the surrounding units. Fig. S53.4 demonstrates how all three units can
adapt their phase ¢; to maintain the desired phototaxis behavior of the
assembly. Surprisingly, the individual units stay close to the optimal
behavior in their constantly changing search space.

3.5 EFFECT OF GEOMETRY ON THE LONG-TERM BEHAVIOR OF THE
SYSTEM

With this more explicit understanding of the long-term dynamics for a
three-unit configuration, we now focus on getting a better idea of how
the system’s geometry influences long-term behavior. We, therefore,
perform the same analysis for two distinct four-unit configurations. In
Fig. 3.4c-f, we show the learning behavior of the two four-unit config-
urations (skew- and square-shape) that, together with the three-unit
system, can describe the main similarities and differences between
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geometries. First, Fig. 3.4¢ describes the trajectory and global optima
of the skew-shape configuration with one-fold rotational symmetry.
Due to the one-fold rotational symmetry of the configuration, we find
a repeating pattern in the global optima projection. If we follow the
optima that cause counter-clockwise rotation (in blue) to the left and
the optima that cause clockwise rotation (in red) to the right, we find
two intersections at approximately 50 © and 230 °. These intersections
lead to the preferential orientation of the system in these two orienta-
tions, as seen from the distribution in Fig. 3.4c. However, where the
three-unit configuration has one stable optimum without rotation that
all simulations converge towards, this four-unit geometry constantly
transitions from rotation in one direction to the other, as there is no
global optimum with zero rotation. This differs from the “convergent”
behavior, as the phases must be “dynamically” adjusted to maintain
phototaxis. This could also lead to a wider distribution of velocities, as
observed when running multiple simulations (Fig. 3.4d).

In contrast to the skew-shape that does not have stable convergent
orientations, the optimal behavior of the square-shape is characterized
by relatively little rotation (Fig. 3.4e). The combination between this
observation and the four-fold symmetry of the unit leads to a nearly
flat projection of the local optima. Apparently, for any given orientation
of the square geometry, an optimal phase combination exists that leads
to a relatively stable and fast phototaxis. As a result, the square-shape
also doesn’t exhibit the initial overshoot in velocity that is the result
of stabilization of orientation (Fig. 3.4f) that is observed for both the
three-unit (Fig. 3.4b) and skew-shape (Fig. 3.4d).

In summary, from the results in Fig. 3.4, we find three characteristic
transitions between global optima that govern the long-term behavior
of the system. We define the global optimum from the perspective
of the system as the set of phases that result in the highest V(I) at a
fixed orientation (as the system has no notion of orientation) (Fig. 3.5a).
First is the convergent behavior, where the geometry drives the system
towards a global optimum without rotation, thereby stabilizing the
behavior (i.e., no phase changes are required to maintain phototaxis).
Secondly, a divergent transition is presented in Fig. 3.4a. Although
the system can maintain this orientation for extended periods, the
stochastic nature of the control will eventually drive the system out of
this orientation. Thirdly, a dynamic behavior, as presented in Fig. 3.4c,
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leads to persistent orientation fluctuations (i.e., constant phase changes
are required to maintain phototaxis). Different geometries can yield
combinations of the optima transitions mentioned above.

Fig. 3.5b provides an overview of the difference between the maximum
V(I) in the fastest and slowest orientation for all three and four unit
configurations, along with the V(I) distribution at nyc = 1000. From
this overview, we can conclude that the phototaxic potential of the
system heavily depends on its geometry. This difference can also be
observed in their trajectories presented in Fig. S3.5. Furthermore, we
find that the system’s V(I) distributions, in general, do not stabilize
around their maximum V/(I) because these orientations are accompanied
with rotations of the system.

36 EFFECT OF LEARNING PARAMETERS ON THE LONG-TERM DY-
NAMICS OF THE SYSTEM

Previous simulations on multiple shapes teach us that shape has an
important role in the behavior of the assemblies and that the shape
directly influences the short- and long-term behavior the system can
exhibit. However, the learning parameters can also affect the stability of
the system’s long-term behavior. In this section, we will further explore
the effect that the learning step AS has on the potential to perform
phototaxis.

The current minimal approach to learning is designed with generality
in mind and is dominated by only two parameters, AS and the number
of actuation cycles (Nac). Both relate to the rate at which the system
can adapt its behavior to the changing environment. On the one hand,
the number of actuation cycles dominates the signal-to-noise ratio of the
light measure by controlling the number of actuation cycles between the
first and second light measurements. However, it also determines the
amount of rotation between consecutive learning cycles, as the rotation
scales linearly with the number of actuation cycles. On the other hand,
the amplitude of the phase change between consecutive learning cycles,
AS, directly controls the algorithm’s adaptability (i.e., stochasticity).
For this parameter, we predict that there is a direct trade-off between
exploration and exploitation, given by high and low AS, respectively.

92



-0.4 -0.2 0.2 04 0 1000 2000
| ] A6° ] | L Nc 1 |
d.
= 1 8
SR A g
= == i
8 &
0
=14 wnl=—
> S
\\.‘f‘/ <
0 B ST
C.
= 14 oM
>3 o
b 5
0 T - T WI T
0 45 90 135 180 \/
90
d. 360 e. j .
2 0.0 ‘
% =
= 0.001
0 |
0
£ 360 - g 0.01 |
. . ’
v\ 2 0.05 |
@ s 4
0 - 0.1 -
0
h 360 i 0.3 |
. ©,
. - 0.5
@ > ‘
0 0.8
0 -1 T T T ‘
0 2500 0 2500 0.9 ' !
n 0 90 180 270 360
Lc Nc g

Caption on next page.

93



Fig. 3.6: Effect of the learning step size on the behavior of the system Evolution
of the velocity V(I) [mm/LC] of a T-shape robot in the orientation perspective,
for (a) AS = 0.01, (b) AS = 0.1 and (c) AS = 0.3. The evolution of the robot’s
angle for each simulation is given in d, f and h. The evolution of the robot’s
average velocity V(I) [mm/LC] for each simulation is given in e, g and i. j,
Distribution of the angle at the 1000th learning cycle, for hundred simulations
and for a range of learning step sizes AS.

To demonstrate the influence that AS has on the system’s behavior,
Fig. 3.6a-i shows three simulations of a T-shape configuration with
AS = 0.01, 0.1, and 0.3. Having mapped the optima in Fig. 3.6a-c, we
find one convergent stable orientation at 90° and two dynamically
stable orientations at 220° and 320°.

First, for the relatively small learning step AS = 0.01 (Fig. 3.6a), we find
that the system remains in the local optima and does not jump between
local optima as the pay-off declines due to rotation. Fig. 3.6d shows
that the assembly keeps rotating until settling in a convergent local
optimum around 225 °. Apparently, the small values for the learning
step suppress the stochastic exploratory nature of the algorithm. Second,
in Fig. 3.6b we find the V for AS = 0.1 to be more scattered, resulting
in global behavior that jumps over the local optima to reach the global
optima. As a result, we find less change in the orientation (Fig. 3.6f)
and a global behavior that settles around one of the dynamic global
optima with a similar orientation as Fig. 3.6a, but considerably higher
V (Fig. 3.6g). Third, for the simulation with AS = 0.3 in Fig. 3.6c we
observe even more scattered behavior. With this value of AS, the system
seems unable to follow any specific optima and rather moves around
the entire phase space. This results in an inability to track the dynamic
global optima. Yet, the systems still slowly drift towards the convergent
behavior at 90 ° (Fig. 3.6h and i).

Looking at the long-term behavior of the T-shape configuration for
different values of AS (Fig. 3.6j), we find that for AS = 0, the end
distributions are randomly spread out over all possible orientations.
From AS > 0.01, we start to see clear peaks in the end distribution,
with centers around the convergent point at 90 ° and the two dynamic
points around 220° and 320°. Between 0.1 < AS < 0.3, we find the
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distribution peaks of the dynamic points disappear, resulting in only a
single stable orientation at 90 °. Lastly, starting from a AS > 0.8, we find
the onset of the disappearance of any stable orientations as the system
starts to approach a state where it always chooses new random phases.
Although we observe phototaxis for all three AS, the rate at which
phototaxis is achieved and the V(I) after the behavior converges are
considerably different. Furthermore, we investigate the scalability of
the system in lattice configurations with increasing size (Fig. S3.5a).
Fig. 53.5b demonstrates that the AS significantly impacts the system
effectiveness of the phototaxis for larger systems. We see that for both a
AS = 0.1 and a AS = 0.05 the lattice configurations perform phototaxis
in a system with up to at least 49 units. However, we do find that for
the AS = 0.1, the V(I) declines more quickly with increasing system
sizes compared to the AS = 0.05. When evaluating the evolution of
the V(I) distributions for a lattice of 49 units (Fig. S3.6¢), we find that
the AS = 0.1 learns more quickly. However, Fig. 53.6¢ also shows that
around nyc = 8o the smaller AS = 0.05 starts to outperform AS = 0.1.
From nj¢ = 100 onwards AS = 0.1 simulations stop improving while
the smaller AS simulations keep on improving their V().

These results indicate that the phase space of the physical system
becomes more complex as the number of units increases. Therefore, the
larger AS simulations are less effective in exploiting the local optima
than the smaller AS simulations. While we did not test configurations
larger than 49 units due to computational and practical constraints, we
have no evidence to suggest that phototaxis would not occur in larger
systems, albeit becoming less effective. However, we acknowledge that
the efficiency, as indicated by the speed of movement towards the light,
may vary with system size and the learning AS parameter, which is an
important consideration for scalability. Further research is needed to
test how the current algorithm would work with an even larger system.
Thus, we find the long-term behavior of our system not only emerges
from its geometry but is also heavily dependent on the chosen learning
parameter. Furthermore, we find that phototaxis remains feasible for
a wide range of the AS parameter (Fig. S3.7), but that its value does
influence the equilibrium behavior. These results further strengthen the
claim of robustness in the current learning approach.

95



96

d. 135 300
end
=3
S 145
>
e_nB
Unit 1 Unit2 e Unit3 e Unit4
20 0
170 X [em] 20
b- 1100 T 103
&8 e
i [N_—
1 10 1
z J i
= 10° 1 ;
125 175
1
1
—”
O T T
0 100 200 300
LC
C 135 — 300
80 Unit 1 Unt2 e Unit3
start end
=5
S
> ) | -
) . 130
start L ) end
= /= : ORr. O =
Z, QR =
! % O -4 ﬁo
\":\;-/J
20 L o
170 X [om] 20
d. 1100 T
s
k=
0

T T
100 200

Caption on next page.

300

Position at n ¢

Position at n ¢



Fig. 3.7: Response of an assembled robot to a sudden change in light direction
in experiments. Experiment of (a) a four-unit square robot with 350 Ny c. The
light source is initially placed on the left side of the canvas and is switched to
the right side of the canvas at the 145th learning cycle. The image consists of
6 overlapping photos of the experiment, each 50 Ny ¢ apart. The dashed circle
indicates the position of the robot when the light source is switched from left
to right. The light intensity measured by the individual units is shown in b. ¢,
present the same experiment as a for a three-unit assembly. The light source
is switched at nyc = 130, with the light measurements presented in d. The
vertical dashed line indicates the switching of the light source.

3.7 EXPERIMENTAL VALIDATION

Having gained insights into the dynamic learning behavior of our soft
modular system using simulations, we next turn to multiple experi-
ments backed up by simulations that demonstrate the main charac-
teristics and, specifically, the robustness of our approach that we also
observed in simulations. We do this by (i) changing the direction of light
during an experiment, (ii) increasing the complexity of the environment
by adding obstructions, and (iii) changing the geometry during the
experiment by cutting the assembled robot in two.
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Fig. 3.8: Response of an assembled robot to a sudden change in light direction
in simulations. Trajectory of simulations a four-unit square (a) system and a
three-unit (b) system for 2000 Ny c. Out of the 30 simulations performed for
each configuration, the trajectories of the first 10 are represented in the figure.
For each configuration, the first trajectory is highlighted along with snapshots
of the system for every 200 nyc. c-f, The distributions of the orientations 6 for
all 30 simulations of both configurations. Change of orientation A® for all 30
simulations in d and f respectively.

Suddenly changing the direction of light

As the first experimental demonstration, we change the light direction
during an experiment, which will require each unit to update its phases.
The change in light direction is accomplished by mounting LED panels
on both sides of the experimental setup and turning them on and off
during the experiment. In Fig. 3.7a, we show a single experiment of the
square configuration for Ny c = 400 learning cycles, where we manually
change the direction of the light from left to right approximately halfway
through the experiment at nyc = 23. We can clearly observe how
the robot first moves to the left, after which the direction changes to
accommodate displacement in the opposite direction (Movie S3.4). The
sudden change can be clearly seen in the discrete jump in the measured
light intensity of the four units, which reduces to a value close to zero
as shown in Fig. 3.7b. As expected, the system requires some learning
steps to adjust its behavior and reach a steady motion in the direction
of the light.

Similarly, for a three-unit geometry (Fig. 3.7c-d) we also observe that the
system adapts its motion to the change in light direction. It is interesting
to note that in this specific case, at least one of the units measures no
light intensity (I = 0) after the manual change in light direction (see
insert in Fig. 3.7d), which means the sensor of this unit is outside of the
range of the light source. However, it appears that the other units can
compensate for this unit and move the system back to a measurable
distance of the light.

Furthermore, Fig. 3.7¢c demonstrates how the system orients itself to-
wards its preferred orientation (Similar to Fig. 3.3e and Fig. 3.4a) (with
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the middle unit pointing in the direction of the light) and turning
180 ° when the light is switched. For the square-shape of Fig. 3.7a we
do not observe a clear switch of orientation as the light is changed.
Next, we turn to simulations to find a more quantitative evaluation
of the reorientation due to the switching of the light direction. From
Fig. 3.8a, we see that, in general, the trajectories of the square-shape
seem to find a straight line back and forwards, whereas the three-unit
system (Fig. 3.8b) makes wide loops while rotating. Fig. 3.8c indicates
that throughout the simulation, all orientations are used by the square-
shape in contrast to the thee-unit configuration where we find that the
orientations converge to 45° on the first half of the simulation and
to 125° of the second. Fig. 3.8e provides additional insights in the
lack of reorientation compared to the converging behavior found in
Fig. 3.8f. Hence, it demonstrates the influence of the more symmetric
square-shape geometry as opposed to the three-unit geometry, as also
demonstrated by the orientation perspective in Fig. 3.4e

Because the current system only has short-term memory and the units
have no notion of orientation, we find similar learning behavior between
the start of the experiment and the behavior after the light has switched.
Therefore, switching the light can be viewed as nothing more than
kicking the dynamical system out of its equilibrium, after which we
find robust recovery to phototaxic behavior.

100



135 - 340 1.5 7 H
8 [
/ 5| o 1
P | s i
/"% (s \ well s 1
M o [ 1
o= xe 2 1
= g I
Unit 1 e Unit3 D a I
Unit 2 e Unit4 1
20 ~ Lo L
170 [cm] 20 0 100 200 300
C. Nic
ml F — t.
135 , -350 d. ree Qbs
0(8 £ 1.50
/ e D 9 i
f _,'.-.I\ P v = y 1.25
B ®g) o! O ® |§ 1.00
R P T s g
= 'g = 0.75
Unit 1 e Unit3 = o >
| ) 0.50 -
Unit e Unit4
20 L o 0.25 -
170 20 y !
X [cm] % 8
e.
135 - 150 £ o8 8
: 9
— < 0.6
£ - = © =
S e | I
g 2 0.4 -
Unit 1 e Unit3 ~ o
Unit 2 e Unit4
20 -0 02 T T T
170 X [ecm] 20 Free Obst. Const.

label

Caption on next page.

101



Fig. 3.9: Adaptive behavior of assembled robots in a more complex environ-
ment in experiments. a, Single experiment of a square-shape robot moving
through circular obstacles. The circular obstacles restrict the motion of the robot,
but do not block the light source that is placed on the right. The first five images
indicate the moment of contact with an obstacle, and the last image represents
the end of the experiment, as indicated by the dashed lines in b. b, The average
velocity V(I) [ecm/LC] of the system during the experiment performed in a. c,
an experiment with an L-shape robot under the same conditions as in a. d, Dis-
tribution of the V(I)[cm/LC] for both the square-shape and L-shape robot, with
and without obstacles, and normalized by the average V(I)[cm/LC] without
obstacles, each distribution contains 8 experiments of 230 Ny ¢ (at nyc = 230
the first free experiments reaches the end of the canvas). e, A single experiment
with the L-shape robot in a confined environment restricted by two bars. f,
Average V(I)[cm/LC] for the L-shape robot in experiments without obstacles,
with circular obstacles, and in the environment constrained by the two bars.
Each distribution consists of 8 experiments with the same Ny as d.

Operating in a more complex environment

So far, we have demonstrated the system’s ability to generate robust
phototaxic behavior, irrespective of the system’s configuration. However,
we have not considered more complex environments that can obstruct
the motion and rotation of the system. As the second experimental
demonstration of our approach’s robustness, we will explore the sys-
tem’s behavior in more challenging environments. We achieve such
environments by fixing impassable circular perspex disks with a height
of Tcm and a diameter of 25cm to the surface, as shown in Fig. 3.9a.
These barriers restrict the system’s movement while leaving the light
measurements undisturbed.

We next perform a learning experiment using a square assembly
(Fig. 3.9a-b). Even though the system is capable of moving past the
obstacles, the observed behavior is considerably affected by the ob-
struction. The effect on the phototaxic behavior is clearly visible by
considering the V(I) in Fig. 3.9b, which decreases every time the system
hits an obstacle. For example, we find five interactions with the barriers
in this single experiment. As a result, we observe sharp changes in
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Fig. 3.10: Adaptive behavior of assembled robots in a more complex environ-
ment in simulations. g, Distributions of the covered distance (in the direction
of the light) [m] divided by the covered distance without obstacles for both
the square-shape and the L-shape in simulations with obstacles (circles with a
diameter of 20 cm). The simulations last 1500 Ny ¢, and the x-axis represents the
minimal distance between the outer edges of the obstacles in cm divided by the
minimal length of a single unit (5 cm). h-k, Trajectories of the simulations of g
for 2 different configurations and three different obstacle distances. The square
shape with an obstacle gap distance of 20 cm is shown in h with the obstacles
in yellow, the 30 trajectories in gray, and a single simulation highlighted with
the colormap for the nyc. i-j, follow the same representation as h but for the
L-shape with an obstacle gap distance of 20 and 15, respectively.
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the trajectory of the configuration. Still, for this specific environment,
the system is capable of adjusting the behavior after each interaction
(Movie S3.5).

The ability of the system to adjust to more complex environments will
likely depend on the geometry of the system. To test this, we also run
experiments with an L-shape assembly operating in the same environ-
ment (Fig. 3.9c). For the L-shape, we observe that the system requires
more learning cycles Nic to reach the position with the highest light
intensity. To evaluate the influence of the obstacles on both the square
and the L-shape geometries, in Fig. 3.9d we compare the distribution
of the velocity over a learning cycle normalized by the average speed
of experiments without obstacles for that specific shape. We find that
this more complex environment influences the L-shape less. One ex-
planation could be the difference in the symmetry between the two
geometries, as we know from Fig. 3.4e that the maximum V(I) of the
square unit is less affected by rotation. The results from Fig. 3.9d could
indicate that the obstacles constrain the system into orientations with
higher maximum V(I), as Fig. 3.4 already indicated that geometries
often stabilize in orientations with sub-optimal V().

Although in the previous case, the environment has a negative effect
on the average V(I) of both assemblies, to test if the L-shape assembly
can also benefit from its surroundings, we next perform an experiment
in an environment that contains two parallel placed bars (Fig. 3.9e). In
Fig. 3.9f, we compare the average V(I)[cm/LC] of the system in the
direction of the light between no obstacles, circular obstacles, and the
two bars, and interestingly observe that the velocity of the system is, on
average higher when constrained by the two bars. These results show
that, in some cases, the system could even utilize its environment to
increase its displacement toward the light. This can be explained by
the fact that the system’s rotation is constrained, such that the modular
robot can sustain otherwise unstable orientations with higher velocities.
In addition, the friction from the bars could aid in an additional contact
point.

To further extend our studies of the impact of geometry on the ability to
maneuver the obstacles presented in the experiments above, we emulate
the experiments with the implemented course-grained simulations. We
specifically focus on how the distance between the obstacles influences
the behavior. Fig. 3.10a demonstrates how sparsely placed obstacles
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result in a better relative performance compared to no obstacles in the
L-shape as opposed to the square-shape, similar to the results of the
experiments in Fig. 3.9d. Interestingly, we find that, on average, the
L-shape experiences more speed degradation due to smaller obstacle
distances compared to the square-shape. This is likely because the L-
shape has to reorient to fit through the narrow opening between the
obstacles, whereas the square-shape still fits through in most of its
orientations and only has to change phases without the need to rotate.
When evaluating the trajectories for the obstacle distance of 20 cm (equal
to the size of 4 units), we find more deviating trajectories for the L-shape
(Fig. 3.10c) compared to the square-shape (Fig. 3.10b). Furthermore, the
L-shape seems to have a preferred direction to surpass the obstacles
as we find more trajectories following the top-left part compared to
the bottom-right in Fig. 3.10c, which could potentially be explained by
the asymmetry in the orientation perspective (Fig. 53.8a). In Fig. 3.10d,
we can clearly see this reorientation of the L-shape geometry as it
maneuvers in between the obstacles.

From these experiments and simulations, we conclude that the system
can adapt to its environment to move in the light source direction,
emphasizing the robust nature of the control strategy (Fig. 53.38). Here,
the obstacles can be viewed as changes to the equilibrium behavior of
the dynamical system, which is different to the effect of changing the
light direction. Where the changing direction of the light slowly changes
the dimension of the orientation in the search space, the obstructions
actually change the search space as a whole. Note that we have only
considered a very limited number of environments, where in both
cases, there were possibilities to increase the light intensity even after
hitting an obstruction. It could be possible for systems to get stuck
in environments, similar to how flies sometimes get stuck behind the
glass when trying to fly outside. We expect this to occur when the light
intensity decreases in all possible movement directions (even though
there is still some stochasticity in the movement that could help escape
these situations).

Changing the geometry by damaging the robot

In previous sections, we observed that our system could adapt its
behavior to changing objectives and more complex environments. As a
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Fig. 3.11: Separating a robot in two during an experiment. a-d, depicts the
system’s time evolution for a single experiment for an 8-unit configuration
that is cut in half during the experiment at the 5oth learning cycle. e, Light
measurements at each learning cycle for two units that are each in a separate
part of the robot. The red dashed line indicates the moment the robot is

separated in two.
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final demonstration of robustness, we run an experiment with a larger
rectangular assembly comprised of 8 units that we damaged during
the experiment (Fig. 3.11a-d). At nyc = 50 we split the system in two
by manually breaking the physical connection between the units. As a
result, both geometries have to adapt their behavior independently to
the change in geometry and relearn to move toward the light source
(Movie S3.6). We observe in Fig. 3.11e that the system is able to increase
its light intensity before and after the damage. When comparing the
light readings between two units that are in a different section after
the cut, we observe how the units can perform phototaxis separately,
without any input, and overcome sudden damage, clearly highlighting
the robustness of our decentralized approach.

Apart from cutting the system in two, one could also inflict damage to
the extent that the system remains connected, but any number of units
become inactive. To study the resilience to failure in the system, we also
perform simulations with a 5x5 (25 units) square lattice. Interestingly,
Fig. 53.5d shows that the performance first slightly increases for a
system with four inactive units. These results indicate a redundancy in
the system. Although it has four non-actuating units (dead weight), the
search space becomes less complex; therefore, the system can exploit
a better solution in the phase space. Furthermore, we find that even
though the V(I) gradually decreases with the increase in the number of
inactive units, the system remains functional until there is only a single
unit left.

3.8 CONCLUSION

In this work, we introduced a modular robotic platform to further study
decentralized learning algorithms that allow them to adapt to more
complex dynamic environments and configurations without needing
a centralized controller or electrical connections between units. The
current system relies on a form of “collective memory" where each unit
explores its own behaviors (the one-dimensional phase parameter). The
units evaluate these behaviors using their respective light sensor (LDR)
to form a notion of their “environment" (the mapping of the behavior
to the phototaxis of the unit). By adjusting its phase, each unit in our
modular robotic system influences the collective state of the assembly.
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The resulting phototaxis depends on a distributed form of memory
and coordination. This indirect communication mechanism is based on
the partially shared environment, which is facilitated by the physical
connection between units and affects the individual decision-making
process in subsequent cycles. While this process bears a resemblance
to stigmergy that also depends on decentralized behavior and indirect
communication, it does not involve altering the terrain. Instead, it relies
on the dynamic interplay of local memory and partially shared sensory
inputs across the collective. This is exemplified by the partially shared
environment that is constantly changing, as observed for our individual
units in Fig. 53.4.

In the current study, we increased the complexity of the task by moving
from one-dimensional experiments [88] to a two-dimensional modular
system. Even though different phase behavior is needed for different
geometries to achieve phototaxis, no information or model was a priori
needed. We demonstrated that the current short-term memory approach
allows the system to adapt to changes in its objective, environment,
and geometries. Furthermore, we discovered that relying on short-
term memory in this two-dimensional task inherently gives rise to
preferential orientations and rotations, thereby strongly influencing the
long-term phototaxis of the system. Moreover, we found that these
preferential states depend solely on the geometry but can be traversed
differently by adapting the learning parameters. Because each unit is
identical (both in mechanical behavior as well as in algorithm) and the
system does not have any centralized brain, the ability of the system to
adjust its behavior to the environment and assembled shape could be
viewed as a material property of the system as a whole, which is often
referred to as “robotic matter” [62, 73, 88, 106, 110].

Here, the simplicity and universality of the algorithm make it suitable
for a wide range of future applications on the interface of soft robots,
swarm intelligence, and nanorobotics [10, 80, 89], where computational
power is limited due to size and weight restrictions or for which the
behavior and interactions are difficult to model a priori. Our algorithm
could be transferred to the fluidic domain to create more autonomous
electronics-free soft robotic systems [25, 44]. Furthermore, the algorithm
could be beneficial for micro- and nano-systems in medical applications,
where the following chemical gradients aid in site-specific drug delivery
[1]. Groups of aggregates can be deployed to explore environments
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where fault tolerance is of the utmost importance (e.g., space explo-
ration and exploration of underground oil reservoirs) [7]. However, to
reach these applications, more knowledge needs to be gained on how
decentralized behavior can be embedded in such systems and how
specific objectives can be incorporated and emerge. It should be noted
that current work focused mostly on gaining a better understanding of
how implicit communication and collective memory can lead to robust
behavior. Potential applications will likely bring about compromises,
and additional work and redesign of the algorithm are likely needed
to make our approach applicable to these different physical implemen-
tations. Our study provides a platform to study these principles, both
numerically and experimentally.
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This Chapter provides additional material to support Chapter 3. It details
the fabrication of the robotic units, the experimental setup and data-
acquisition/processing pipeline, and the unit actuation and learning
protocols. We further present the numerical mass—spring model, includ-
ing the force balance with friction and the time-dependent actuation,
together with the parameters used. Supplementary figures and captions
for Movies S3.1 to S3.6 are included below.

Other Supplementary Material for this Chapter includes the following:

$3.1 SUPPLEMENTARY MOVIES S3

Movie S3.1. Experimental units. The video on the left side of the frame
depicts a top view of a single unit while actuating its four connector
arms. The video on the right side of the screen displays a single unit
from the side view at two different angles.

Movie S3.2. Phototaxis without any explicit communication. Time-lapse of
a single experiment of a three-unit geometry for 350 learning cycles.
A planar light source is positioned on the right side of the screen.
During the experiment, each immobile light-seeking unit continuously
adapts its behavior to increase its sensed light intensity I [mV] without
explicit communication between the units. As a result, the three physi-
cally connected units coordinate their behavior to achieve phototaxis
collectively.

Movie 53.3. Simulation of the long-term behavior of the three-unit system.
Simulation of a three-unit geometry for 1000 learning cycles. The top
figure presents the local optima of displacement towards the light for
each orientation of the system with the displacement and the orientation
of the single simulation projected into it. The bottom figure presents
the position and orientation of the system during the simulation.

Movie S3.4. Experiment with switching objectives. An experiment of 350
learning cycles where the objective is switched by moving the light in
the opposite direction. At the start of the experiment, the light is placed
on the left side of the screen. At learning cycle 144, the light is moved
to the right side of the screen. The figures on the bottom display the
measured light intensity I at the first measurement and the difference
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between this value and the second measurement (used to evaluate the
behavior).

Movie S3.5. Experiment with physical obstacles. In this experiment, physical
obstacles are placed on the surface of the experimental area. These
obstacles only restrict the system’s movement and do not impact the
light intensity measurements. In the bottom figure, we display the
displacement in the direction of the light (the longitudinal component
of the displacement obtained from the processed images) for every
learning cycle. The moment of the first impact with an obstacle is
indicated both in the trajectory and in the figure below.

Movie 53.6. Eight-unit system split in two during the experiment. In this
video, we experiment with an eight-unit geometry. At learning cycle
50, we cut the geometry in two, creating two square geometries. The
system adapts its behavior to the new geometry to continue moving in
the direction of the light.

Link to the Movies.
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$3.2 METHODS

Fabrication of units

The individual robotic units consist of structural components custom
designed and 3D printed in polylactide (PLA). An overview of the
assembly can be viewed in Fig. 53.10. Two 3D-printed geared disks are
positioned on a base disk. A top segment is designed to accommodate
a stepper motor (28BY]-48) and support the electronic components
(Custom designed PCB). The robotic units have a 2.1 cm radius, stand
8.5cm tall, and weighs 75g when fully assembled. The “brain” of
each unit consists of a mico-controller (ESP32) mounted on a custom
circular PCB. A second triangular PCB containing three symmetrically
positioned Light Detector Resistors (NSL-19M51 Luna Optoelectronics)
placed in series connects to the first PCB with 2mm PCB spacers in
between. The PCB is connected to the stepper motor through a stepper
driver (ULN2003), all encased in a 3D printed body and attached with
inbus bolts (M2X16 and M3X12). The 3D-printed body consists of four
printed segments. The first is the top frame which houses the PCB,
stepper driver, and stepper motor and sensors. A centrally placed brass
axle (6 mm) connects the top frame to the bottom frame. A 3D printed
gear connects the stepper motor to two 3D printed disks (top and
bottom) aligned by the central brass axle and held in place by the top
body and a 3D bottom body piece. The bottom frame also houses a
metal bearing (NMB, Radial Ball Bearing) 10x4x4 to keep the 3D stepper
gear in place. The rotation of the stepper translates into the bottom
and top disk rotations in opposite directions to each other. A Micro-
switch (Omron Ultra Subminiature Basis Switch) verifies the starting
orientation of the disks mounted to the top frame and a notch in the
top disk.

Physical connections between the units are needed to let the units in-
teract with each other, allowing the system to displace its center of
mass. We use soft connectors to bind units with each other. We cast the
soft connectors using custom-designed molds 3D printed out of PLA
(Ultimaker 3). The connections are fabricated with two-component sili-
cone (Smooth-on DS30,in opaque white). The soft connectors have two
arms, each fixed to one of the disks of the units. The total length of the
soft actuator is L = 25 mm. The radial position of the soft connectors is
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dictated by the poses of the two counter-rotating geared disks actuated
by the stepper motor. Using this design, we can connect each unit to a
maximum of four neighboring units using a 3D-printed pin connector
shown inFig. 53.3d.

Experimental setup

The phototaxis experiments are performed under controlled light con-
ditions on a white multiplex surface (190x155cm) encased by a black
multiplex frame, as presented in Fig. 53.2¢c. At the beginning of each
experiment, all units are updated and turned on using a master-slave
protocol over WiFi, coordinated from a master ESP32 connected in a one-
to-many configuration using the esp-now library. After the initiation of
an experiment, every unit gathers sensor and learning data individually.
At the end of every learning cycle, the unit sends its collected data back
to the master ESP32 connected to the lab computer. The master unit,
therefore, collects the gathered data for all the units and writes this data
to a .tsv file in real-time. Note that the data only needs to be gathered
to visualize the results but is not needed to update the phases of the
units. The visual and positional data of the experiments are collected
using a GoPro (hero 4) positioned at the center of the white multiplex
surface at a height of 1.11 m. The GoPro is controlled remotely from the
computer that collects the unit’s sensor data. The GoPro is prompted to
take a photo every time the units have completed a learning cycle.

We synchronize the position data obtained with the GoPro with outputs
from the agents to fully reconstruct the dynamics of the system. For
example, in the experiments where we map the behavior of a three-unit
assembly in phase space (Fig. 53.3b), pictures are collected every ten
actuation cycles per phase combinations. This allows for averaging
unwanted biases in the actuation and having a large enough displace-
ment to validate the magnitude and direction of locomotion. For all
other experiments, instead, we collect one image every learning cycle of
the system. In order to take accurate data while inferring the position
of the units over time, we correct for optical distortions and camera
perspective. On top of that, the visual data is processed using python
3.8 and the OpenCV package in three stages. First, we correct the cam-
era’s perspective using four arucos in the corners of the canvas. By
measuring the distance between the outer corners of the arucos we can
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map the pixel distance to the actual distance on the canvas. Secondly,
a color mask and circle detection are used to detect the positions of
two 3D-printed discs with d = 5cm and d = 2.5cm that are placed
on top of two of the units in the configuration. Lastly, the positions of
the two discs are used to infer the center of the configuration and its
rotation. We follow the following protocol to ensure the validity of our
data. First, we define the working range of the canvas to be 20 cm from
every edge of the canvas to avoid the influence of the borders during
the experiment. Experiments are, therefore, cut off if the units surpass
this boundary. As a consequence, in Fig. 53.11 and Fig. S53.12, we find
that not all experiments are of equal duration, as the experiment is
stopped when the units reach the end of the canvas. Furthermore, we
do not accept more than one consecutive missing data point. In the case
of a single missing data point, we perform linear interpolation to fill the
gap. Measured over all the performed experiments, linear interpolation
is used for 0.059% of the position data points.

To automate the repetition of the experiments, we implement a mecha-
nism to consistently restore the initial position of the units at the end of
each experiment. The solution consists of a physical connection between
the assembly and a pulling system positioned above the working area.
We position a dedicated servo motor (DFROBOT DF15RSMG) above
the experiment and connect it to the units using a nylon thread with
d = 1mm. When an experiment is over, a flag signal is detected, and
the servo motor is activated using the Python interface. As a result,
units are pulled to a position approximately beneath the servo.

Unit actuation protocol

As displayed in Fig. 3.1a, the experimental units extend and contract
their silicone connectors by rotating the two PLA discs in opposite
directions. In the contracted state, the distance between the center of the
unit and the outer point of the connector measures ~ 3.5 cm, while in
the fully extended state, this distance becomes =~ 3.85 cm. The actuation
cycle (AC) comprises two stages.

To compare experiments and simulations, we use a parameter called «,
which is set to 0.3. Alpha represents the fraction of the total actuation
cycle time (Tac), which is 2s. During this time, the unit extends its
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connection arms for approximately 0.58 seconds (we denote this time
as D).

The remaining part of the actuation cycle (1 — ) has two components.
First, the unit contracts its four connection arms, which takes roughly
the same time as the extension. Second, the unit stays stationary in the
contracted state for a duration denoted as D».

The last actuation cycle is called the adjustment cycle (AC4) and differs
from the other cycles. In this cycle, we modify the time the unit stays
in the contracted state (D;) to be Dqdj = Dy — Ad;. This adjustment
changes the total duration of the adjustment cycle (AC,), enabling the
unit to start the next learning cycle (LC) with a new phase ;.

In between the two light intensity measures I; and I, there are Naoc =6
regular actuation cycles to reduce the noise measured in Al and to
make the camera tracking feasible. Therefore, there are seven exten-
sions and contractions during a single learning cycle (LC). At the end
of every learning cycle, the unit sends its data related to the current
learning cycle back to the central computer. Note that every unit op-
erates completely independently from the other units and without
synchronization.

$3.3 MODEL

Mass-spring system

To qualitatively capture, and to gain more insight into, the behav-
ior observed in experiments we modeled the soft modular robot as
a minimal mass-spring system. Our aim is to develop a model that
is simple enough for quick computation, yet comparable enough to
qualitatively capture the observed behavior. We do not aim for a perfect
quantitative comparison. To achieve this, the system is modeled as a
two-dimensional structure consisting of one-dimensional linear elastic
elements connected by joints of a certain mass, that interact with the
environment through friction. This system decomposes all forces in x
and y directions, resulting in a system with n,, nodes connected by
en elements in a two-dimensional space with 2n,, degrees of freedom,
where n is the number of units in the assembled robot.

Figure Fig. 3.3a illustrates the nodes and elements represented as masses
and springs. Each unit in the assembled robot consists of four nodes
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and six elements, where an element connects every pair of nodes. The
diagonal elements of the module are periodically actuated to achieve
symmetric expansion and shrinking. These elements are referred to as
the active elements.

Force balance

A multi-module system couples the sides of individual blocks together.
Each block has four sides that can be connected to another module. Two
connected modules share the two nodes and the connecting element of
the linked side, thereby reducing the number of nodes and elements.
The mass of the units is equally distributed over their four adjacent
nodes.

Let the system consist of N nodes in two dimensions. The position of
node i at time t is

ri(t) = ["i(t)] cR2.
yi(t)

We define the global displacement vector as

ut)=| ° | e R?M

N (1)

Taking the force balance, we find for each node

Mii(t) = Fe(t) — Fe(u(t)) — Fi(u(t),
Assuming lumped masses per node:
M = diag(my, my, my, my,..., mn, MmN).

Each elastic bar connects a node pair (i,j) € €. Let di; = ; —; be the
relative distance vector. Define the unit direction vector and stretch as:
A di;
dij = —r,
[[di; |

8li; = [|dyj |l — Lo,i5-
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Then, the force on node i is given by:

p— d - IJ
fiy = Ksdligdy = Ks (Il ~Logs) - -

Alternatively, using the projection matrix Py;:

T
L dydy R2%2
1y 7
T a2
we can write:
fij =Ko (dj ]| —lo,i5) Pijdss-
Let Bi; € R?*2N be the difference operator extracting dy; from u:
dij = Biju.

Then, the global internal elastic force is:

Z B KS HBUuH lo’ij)PijBiju.
(1j)ee

The friction force F¢ acting on each node is based on a general nonlinear
friction model [88].

Because friction always acts in the direction opposite to velocity, a
direction-preserving scaling is used via the unit velocity vector. A
smooth approximation of the sign function (via tanh) ensures numerical
stability around zero velocity.

Given the empirical model from [88], the friction force acting on node i
becomes:

F—— <FC -tanh (”ul) 4w 1I) (S3.1)
t VCoul H 1”

Here, 11; € R? is the velocity of node 1, and the direction of friction is
aligned opposite to this velocity vector. For nodes with zero velocity,
this equation can be regularized or evaluated in a limiting sense.

The total global friction force vector is then:

Few) = | 7| eR™N,
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Symbol | Description Value
Fc Coulomb friction 0.172
VCoul Coulomb velocity threshold | vy, /10
f Viscous friction coefficient 4

Table S3.1: Friction model parameters based on [88].

To solve the system numerically, we convert it to first-order form. Define
the state vector:

(o) = M) e RN,
u(t)

Then the time derivative is:

M~ (Fe(t) — Cu(t) — Fy(u(t)))
u(t)

The current system has individual modules that can expand and shrink
back to their original shape. These deformations are achieved by simul-
taneously activating the diagonal elements in each unit. The current
model implements actuation by redefining 1y as the time-dependent
variable preferred spring length L, (t) in every diagonal element. The
preferred spring length L, (t) of the diagonal elements is divined as
the sum of the initial spring length 1y plus the time-dependent actua-
tion length 1,(t + ¢). In order to make the differential equation of the
force balance less stiff and speed up the simulation, we implemented
a smooth version of the actuation function for 1,(t + ¢) based on the
actuation used in the experimental units. By making use of a piece-wise
sine function, we qualitatively approximate the extension-contraction
cycle of the experimental units. The active spring length during an
actuation cycle is given by Eq. 53.2 with the parameters of Table S3.
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Furthermore, we implement the same learning cycle (LC) as used for the
experimental units apart from the number of regular actuation cycles
between the two light measurements Iy and I, as there is no noise in the

light measurements

during the simulations and because we only aim to

capture the qualitative behavior of our system we reduce the number of
regular actuations Nac to three. Thereby the learning cycle LC of the
system in the simulations consists of four expansion-contraction cycles.
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Fig. S3.1: Learning algorithm schematic. Schematic of the numerical model
describing the steps in each learning cycle following a discrete event model.
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Fig. S3.2: Measurement setup for phototaxis experiments. a, Components of
the experimental setup, with the power supplies for the Gridbot units and
the restart protocol servo (highlighted in red), the restart protocol apparatus
(yellow), the GoPro camera (blue), the LED source (green), and the curtains for
shielding the experiment from environmental light (blue). b, Light intensity (I)
in mV measured by the LDR of a single unit placed on a grid over the canvas. c,
A picture from the GoPro taken during the measurements of the light intensity
of the full canvas. d-f, Picture from a single experiment with the three-unit
system during the first step in the data processing in which we detect the outer
corners of the canvas using the four Arucos ((d), the second step of the data
processing where the two markers on the units are detected using a color filter
and circle detection (e), and the last data processing step where we correct the
distortion and position of the camera and locate the detected circles to find the
position of the small and large unit markers (f).
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Fig. S3.3: Experiments vs. simulation for the three-unit geometry. Comparison
of the observed velocity and rotation between simulations and experiments
for the three-unit system, depicted in the phase space. a, Simulation results
for the longitudinal displacement, transversal displacement, and the change in
rotation A® per actuation cycle, respectively. b, Experimental results of the same
quantities as for the simulation. These experimental results are the averages over
three repetitions of the same experiment. Although we find similar qualitative
behavior between the thee-unit system in the experiments and the simulations,
we can also see apparent differences. Firstly, we find the same general areas in
the phase space of positive and negative displacement as well as for the rotation.
However, we find a clear difference between the rotation and displacement
amplitudes. One explanation for these differences in amplitude could be the
differences in the friction between the experiments and the simulations. In the
experiments, the units also have four contact points with the ground, but their
distances remain stationary, while the simulations treat each friction point as an
independent entity. Also, in the experiments, the friction points are positioned
closer to the central axis (center of mass) of the unit. Which could explain
the differences in the amplitude of the rotation. Lastly, the expansion and
contraction of the connection arms likely differ between the experiments and
the simulations, as they represent the exact geometry of the experiment and
simplify them to one-dimensional springs. Although we implement the same
actuation function for both experiments and simulation, the simulations have
additional passive springs. These springs result in additional stiffness that limits
the expansion and, therefore, limits the velocity of the system.
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Fig. S3.4: Visualization of the unit-perspective of a single simulation for
the three unit configuration. Perspective of the individual unit in the single
simulation presented in Fig. 3.3b-c. Each of the three vertically aligned heatmaps
depicts the perspective of a single unit. The x-axis presents the learning cycle,
and the y-axis presents the plausible phases for that single unit normalized
between o and 1. Within the heatmap, each vertical slice indicates the phototaxic
behavior for each possible unit phase at a specific time instance during the
simulations, obtained by remapping the system behavior found in Fig. 53.3a
to the individual units. The blue dot indicates the chosen phase of the unit
at that time instance (every 20 nyc). The vertical slice of the heatmap can be
viewed as the "environment” of a single unit, which changes continuously over
time as the system rotates and the other units change their phases. Through the
implicit communication of their physical connection, the units manage to find
the general region of phototaxis. From this Figure, we observe that all three
units probe a radically different "environment" but manage to keep up with the
continuous change in order to move to the light continuously (Fig. 3.3¢).
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Fig. S3.6: Simulations on the scalability and robustness of the system a a
graphical representation of the square lattice configurations with an increasing
number of units. We performed simulations of up to 49 units due to com-
putational and practical constraints. b presents simulations of square lattice
configurations with an increasing number of units for 360 Nic. The distri-
butions present the V(I) of the last nyc each for 100 simulations. The color
indicates the AS used during the simulations. First, b demonstrates that the
stepsize AS has a significant impact on the scalability of the system. We see that
although both for a AS of 0.1 and for a AS of 0.05 the lattice configurations per-
form phototaxis in a system with up to 49 units. However, we find that for the
AS of 0.1, the V(I) declines more quickly with increasing system sizes compared
to the AS of 0.05. When evaluating the time evolution of V(I) for the 7x7 (49)
units lattice in c¢. We find that the AS of 0.1 learns more quickly. However, ¢ also
shows that around nj ¢ = 8o the smaller AS of o.05 starts outperforming the AS
of 0.1. From ny ¢ = 100 on-wards the AS = 0.1 simulations stop improving while
the smaller AS simulations keep on improving there V(I). These results could
indicate that the search space of the physical system becomes more complex as
the number of units increases. Therefore, the larger AS simulations are less able
to narrow down on the local optima compared to the smaller AS simulations. d
presents different simulations of a lattice of 5x5 (25) units for 360 Ny ¢c. During
these simulations Njpactive (presented on the x-axis) units are picked randomly
at the start of the simulation. These units are "broken" by turning their active
diagonal springs into passive springs. Therefore, these units remain passive
and do not actuate. Each distribution depicts the V(I) of the final nc over 10
simulations.
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Fig. S3.7: Additional information on the performance of the system for dif-
ferent AS values. a, Score distributions of the triangle shape simulations cor-
responding to the results of Fig. 3.6j, measured in V(I) [mm/LC]. b, Total
displacement of the system for the simulations in Fig. 3.6j at np ¢ = 1000.
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Fig. S3.8: Simulation data of the projections for two additional geome-
tries.Projection of the global and local optima for each orientation of (a) the
L-shape and (c) the T-shape assembly. The color of the line corresponds to the
change in rotation A for that respective phase combination. The orientation
distribution of 100 simulations at nyc = 3000 is depicted underneath. The score
distributions for V(I) [mm/LC] of (b) the L-shape and (d) the T-shape assembly
for every 3oth learning cycle.
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Fig. S3.10: Unit manufacturing. a,Exploded view of the unit components and
assembly, listing the parts for the units and showing a top view, side view, and
cross-section of the units. b, three-dimensional view of the mold used to case
the soft connection arms, printed with PLA. ¢, side view of the connection arms
mold. d, top view, side view, and three-dimensional view of the PLA connection
pins that are used the connect the soft arms of multiple units.

134



135 135
5 5
> >
20 20
170 X [em] 20 170 X [em] 20
135
C.
=5
S
>
20 20
170 X [em] 20 170 X [em] 20
135 400
e.
=3 0
KEN g
>
20 0

X [cm] 20

Fig. S3.11: Overview of experimental results for all the tested geometries. a-e,
Trajectories of the experimental results for all five of the tested configurations.
For each of the tested configurations, we show ten trajectories. The geometry of
the configuration is depicted in the upper left corner of the canvas. The results
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Ks Spring constant 100

A Adjacency binary

c Damping coefficient -

L0, | Equilibrium spring length border elements | 5 cm

[ diagonal Equilibrium spring length diagonal elements V2% 5cm

Table S3.2: Model parameters used to model the individual springs.

Te Time of a single actua- | 2s
tion cycle

f Frequency of the sin 0.85

T ]? Total movement time

Ts | Te—Tm Total static time

o Time in extension 0.3

D; | max ([T(1 o) -, O) Waiting time at fully ex-
tended pose

D, | Ts—Dq Waiting time at fully con-
tracted pose

w Stroke of the units 3.5 mm

la Additional length of the
diagonal springs

Table S3.3: Model parameters used to model the actuation of the units.
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Abstract. Soft robotic systems benefit from electronics-free control strategies
that integrate actuation and coordination directly into their physical structure.
While fluidic oscillators have enabled decentralized and repetitive motion
patterns, their sequences have thus far been limited to fixed traveling waves,
restricting adaptability. In this work, we introduce a tunable fluidic relaxation
oscillator and a bio-inspired coupling framework that draws from central
pattern generators (CPGs) in nature. We demonstrate that the oscillator can
synchronize with external control signals and, when coupled, can achieve
robust phase locking, including both in-phase and anti-phase coordination.
This electronics-free approach enables controllable, reprogrammable patterns
that are resilient to fabrication imperfections and scalable through localized
interactions powered by a single, constant pressure source. By bridging the
gap between fluidic circuits and adaptive CPG-like architectures, our findings
pave the way for soft robots capable of richer, more flexible, and autonomous
locomotion, while remaining simple, robust, and inexpensive to manufacture.

H.A.H. Schomaker*, L. Huntjens*, ]J.T.B. Overvelde. “Fluidic oscillators as
neurons for soft robots.” in preparation.
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4.1 INTRODUCTION

Soft robots exhibit unique intrinsic adaptability and compliance, making
them suited for interactions within uncertain and dynamic environ-
ments [111]. Practical implementations of soft robots have already found
applications as end effectors in robotic arms for tasks such as pick-and-
place operations [113], medical rehabilitation [100], and even as implants
[93]. Soft robotic systems have also demonstrated effective locomotion,
navigating unpredictable terrain with less control complexity compared
to traditional rigid robots [111, 126]. Nonetheless, fully autonomous
and mobile soft robots remain challenging to realize [65].

One critical barrier hindering autonomous soft robots is the complexity
associated with controlling multiple actuators simultaneously [63]. Typ-
ically, each actuator demands an individual electronic pump or control
channel, complicating the design and reducing scalability [26, 130].
To simplify these systems, recent developments have introduced soft
circuits, notably fluidic systems, which minimize or eliminate electronic
components by embedding the control directly into the robotic structure
[79, 121, 131].

These electronics-free approaches have advantages over electronic cir-
cuits for soft robot integration. Firstly, they reduce the number of
components, as there are no transitions from electronics to the actuation
principle (e.g., fluidics) [72]. Making them cheaper and potentially more
reliable due to a decrease in the possible failure points. Secondly, unlike
electronics, they are unaffected by radiation, making them suitable
for harsh environments where regular electronics fail [114]. Thirdly,
they often combine power sensing and actuation in the same circuitry
(e.g., the powerline is also the control line); because of this reason,
the electronic-free circuits are commonly distributed and integrated
throughout the body, making them highly decentralized [72], heaping
the benefits of decentralized systems like modularity, robustness to
external perturbations and damage [72].

Such fluidic oscillators frequently rely on oscillators to achieve the or-
chestrated, repetitive -yet adaptive- actuation patterns essential for com-
pleting tasks. Existing electronics-free soft robotics have demonstrated
control for a limited number of actuators (e.g., using ring oscillators).
The sequence of the control circuit has, thus far, always generated a
traveling wave (actuating one after the other)[20, 63, 67, 101]. These
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can be very useful for peristaltic motion, and with innovative circuit
design around the oscillators, they can also be transformed into gaits
for limbed locomotion [20, 63, 101]. By building additional circuitry
around the oscillators that rewire the oscillators to different outputs,
soft robots can even make a one-time switch in their behavior[26]. The
one drawback of the systems using ring oscillators is that the sequence
and phase shifts of the oscillators are intrinsically fixed to a traveling
wave in one direction. Research has also been done on soft relaxation
oscillators, which, in contrast to ring oscillators, can oscillate without
the need for a circuit [63]. They showed that in their circuit, the se-
quence of the oscillators can be switched by relaying on accurately
timed inputs to switch the order [63]. While fluidic relaxation oscillators
have successfully embedded repetitive and useful sequences without
electronics, they still exhibit limited flexibility in the timing of actuation
and switching between predetermined actuation patterns [63, 102]. Cou-
pling the relaxation oscillators through the environment can also lead
to more adaptive sequences [19]. However, in this case, the possible
sequences are highly limited by body morphology and hard to scale to
higher numbers of oscillators.

Nature provides valuable insights into achieving adaptive and control-
lable sequences through central pattern generators (CPGs), biological
neural circuits that orchestrate rhythmic and adaptable sequences of
muscle activation during locomotion [52]. These CPGs are key in the
control of animal locomotion, providing a feedforward signal for robust
and rhythmic muscle activation, which allows for a fast dynamics syn-
chronization of limbs [27]. By providing a physical coupling between
the different muscles and the body, animals can partially offload efforts
of the central brain to the nervous system [18, 52]. Control strategies
inspired by neuronal oscillators, as seen in animal locomotion, have the
potential to be more robust, efficient, and adaptable [52]. These neuronal
oscillators not only produce robust and predictable sequences but can
also dynamically adapt the behavior to environmental feedback [27,
60]. The integration of CPG-inspired principles into soft robotics could,
therefore, significantly enhance adaptability and reduce the complexity
of controlling.

Research in biomechanics and robotics has demonstrated that coupled
neuronal oscillators can switch between different locomotion modes,
adapting robustly to changes in environmental conditions [54, 90, 125].
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Translating such bio-inspired coupling strategies into fluidic soft robots
represents an important step toward enhancing their autonomous capa-
bilities.

This work aims to bridge the gap between soft robotic actuation prin-
ciples and bio-inspired neuronal oscillator systems, focusing on im-
proving physical control strategies for adaptive and reprogrammable
sequences. We introduce a fluidic relaxation oscillator that is, by design,
straightforward to adapt to fit the demands of the soft robotic actua-
tors. Next, we propose an implementation to couple these oscillators in
predetermined sequences. To this end, we first demonstrate its ability
to follow and synchronize with a control signal. Finally, we present
the coupling between two oscillators that allows for switching between
multiple patterns, including in-phase and anti-phase synchronization.
This work sets the stage for implementing this approach in bio-inspired
soft robots with CPG-like electronics-free controllers capable of adaptive
and controllable locomotion.

4.2 FLUIDIC RELAXATION OSCILLATOR DESIGN

The design of the fluidic relaxation oscillator that mimics the neuron’s
behavior consists of a soft silicone membrane, two permanent magnets,
and a 3D-printed housing to enclose the membrane (Fig. 4.1a-c). The
oscillator can be in two states that alternate to self-sustain an oscillatory
output for a constant input flow. In the first state, referred to as the
‘closed state,” the constant input flow (Qin,) at the inlet slowly builds up
pressure, which acts on the area (A1) of the inlet depicted (Fig. 4.1d-1
in orange) to generate an upward force on the membrane (F,1). This
upward force on the membrane is counteracted by the force of the
magnets on the membrane (Fy,) that creates an airtight seal around
the inlet of the oscillator (Fig. 4.1d-1). As long as Fi, > F1, the os-
cillator remains closed, but when F;;, < F,q at the opening pressure
(Popen), the membrane snaps to the “open state” (Fig. 4.1d-2) where the
membrane is lifted.

Two factors contribute to the system’s bistability within the oscillator’s
operating range. Firstly, the attractive force of the magnets F,, has an
inverse-squared relation to distance, resulting in a rapid decrease of
Fin as the magnet is lifted. Secondly, as soon as the membrane is lifted
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Fig. 4.1: Fluidic relaxation oscillator design. a, Photo of a single fluidic oscillator.
b, Exploded view of the oscillator’s components. ¢, Schematic demonstrating
the inlets and outlets of the holder. d, Schematic representation of the two
stages of the oscillator with the magnetic (dark gray) forces (black), the area on
which the air is pressing (orange), along with a force vector (orange), and the
trajectory of the incoming air (green). e, Oscillating pressure at the inlet for a
constant input flow Q = 1.8 and a capacitance parallel to the oscillator’s input
of 45ml
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slightly, the pressure Popen pressurizes the chamber between the in-
and outlet and acts on a larger area (A;) depicted in Fig. 4.1d-2 in
orange, which increases the upward force sz on the membrane. The
interplay between these forces results in a rapid transition from the
closed to the open state of the system when the critical limit is reached.
The result is a hysteresis loop in the pressure-flow behavior of the
oscillator.

In the open state, the air can flow freely to the outlet of the oscillator,
thereby continuously reducing the pressure at the inlet. Importantly,
the increase of the area between A; and A results in an increase of Fp,
which means that the oscillator remains open for much lower pressures.
When Fy, > Fp2 at (Peose), the force of the magnet is able to pull
down on the membrane, increasing its force as the distance decreases
and closing the seal at the inlet. This resets the system to its initial
configuration, where the process starts over. The hysteresis between the
opening and the closing of the membrane is what drives the oscillations
of the system and prevents an intermediate state where the membrane
is partially open and slowly leaking air. The time evolution of the inlet
pressure (Pi,,) for a flow rate of 1.8 SLPM (standard liters per minute, a
measure of the volumetric flow rate of gas under standard conditions
of temperature and pressure) is depicted in Fig. 4.1e and Movie 4.1 for
Qin = 1.8 SLPM. At T = 15s, the flow regulator starts with the constant
flow input. From that moment, we see the pressure building up at the
oscillator inlet. At 18 seconds, the membrane opens, and the pressure
starts to decrease as the air escapes through the outlet, up to P.i¢se
where the membrane snaps back, and the cycle repeats. Interestingly,
we see that in the initial three cycles, Popen decreases until it settles at a
stable value of 108 kPa. It is likely that in the initial transient cycles, the
membrane is still shifting around until it stabilizes its closed position,
while there could also be some limited softening of the material often
observed for large deformations.
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Fig. 4.2: Fluidic oscillator model. a, Pressure at the inlet vs. the flow at the
inlet during 100 oscillation cycles. b, Schematic representation of a neuronal
cell. ¢, Fit of the adapted LIF model (gray dashed line) and the experimental
data (purple). d, In-phase synchronization of two oscillators in the model with
mutual additive coupling k = 0.08. e, Out-of-phase synchronization of the same
oscillators for mutual additive coupling k = —0.08. f-g, Limit cycle colored by
time for the positive and negative coupling of d and e, respectively. The x =y
diagonal is presented with a dashed gray line.

4.3 MODELING THE FLUIDIC OSCILLATOR AS A NEURON
Single neuron

In Fig. 4.2a, we observe that for over 100 cycles the behavior of the
fluidic oscillator remains remarkably consistent. Driven by the build-up
and abrupt release of pressure across a membrane valve, these systems
can be effectively described using threshold-reset models reminiscent of
neuronal dynamics. These natural cells (depicted in Fig. 4.2b) are also
relaxation oscillators that function by electrical and chemical signaling.
The dendrites close to the cell’s nucleus sense the surrounding elec-
trical potential, and when the potential surpasses a specific threshold,
it “fires,” during which the voltage drops and the process starts anew.
Here, we adapt the leaky integrate-and-fire (LIF) neuron model to cap-
ture the essential features of a fluidic relaxation oscillator, incorporating
a smooth recovery phase that plays a pivotal role in orchestrating phases
between coupled oscillators.

The classic LIF model ([116]) describes the sub-threshold dynamics of a
membrane potential V by:

av

TE =—(V—=Viest) +Rinl,
where T denotes the membrane time constant, Viest is the resting poten-
tial, Ry, is the membrane resistance, and I is the input current. Once the
potential reaches a threshold Viyyes, it is reset to a lower value Viyeset and
the cycle starts again. While the LIF model captures integrate-and-fire
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behavior, it lacks a realistic description of the repolarization (recovery)
process following threshold crossing.

In our adaptation, we treat the membrane pressure in a fluidic oscilla-
tor as analogous to the membrane potential in excitable systems. Air
continuously flows into the oscillator, building up pressure until the
membrane opens once the threshold pressure is reached. This opening
slowly releases the pressure until it drops below a reset target, closing
the membrane and restarting the cycle.

We, therefore, reformulate the LIF model as follows:

dpP

TE = —(P —Prest) + RQin,

where P is the pressure at the inlet of the oscillator (analogous to
membrane voltage), Qi is the input flow (analogous to input current),
Prest sets the amount of leakage (analogous to Viest), R (analogous to
membrane resistance), Popen is the pressure at which the membrane
opens (analogous to Vipres), and Pjgge is the pressure to which it resets
when the membrane opens (analogous to Vieset). The term —(P —Prest)
most closely resembles leakage of the air over time through a resistor.
In our current coarse-grained model, however, this term, together with
R and 7, also represents the compression of the air in the combined
volume up to the oscillator’s inlet (connection tubes, potential actuator,
or capacitor).

To capture the membrane’s abrupt opening and smooth repolarization,
we introduce a “recovery phase” immediately after threshold crossing.
During recovery, the system experiences a leak. During the recovery
phase (when P > Popen and recovering flag is True), the dynamics for
each oscillator are given by:

@ _ _(P_Prest) +RQin
dt T

- (Y(P - Prest))/

Where v is a recovery-phase leak coefficient. Recovery continues until
the pressure P drops below Pjos. This dynamic replicates the release
of pressure followed by the rapid closure of the membrane.

We simulate the system using Euler forward integration with a time
step At = 0.001s. The fit of the model with the experimental data is
presented in Fig. 4.2c for the parameters in Table 4.1. The fit is made by
setting Pejoses Popen and Qj, to the values found in the experimental data.
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The other parameters are optimized using the least squares method.
These fitted parameters are used throughout this chapter unless stated
otherwise.

Table 4.1: Model parameters

Parameter Value

T 100

Prest —30kPa
Pstart 0kPa
Popen 116 kPa
Pose 8 kPa

R 200

Qin 2SLPM
Y 1.9

The recovery phase is crucial for coordinating the phases of multiple
coupled oscillators. The standard LIF model has a Type 1 PRC (Phase
Response Curve), which means that all inputs result in a forward
phase shift [61]. With the addition of the recovery phase, where inputs
have a negative influence on the phase, the oscillator becomes more
similar to continuous oscillators like FHN, known for their Type 2 PRC.
This biphasic PRC in the current oscillator promotes not only in-phase
synchrony but also stable phase lags, characteristic of Type II oscillators
[92].

Consequently, our fluidic oscillator model transcends the purely spiking
behavior of LIF neurons and approaches the continuous phase dynamics
observed in nonlinear oscillators while maintaining ease of use with
fixed opening and closing pressures.

Coupling between neurons
To investigate the coupling, we opt for additive coupling, as it is widely

used in CPGs. For the current oscillator, this implementation means
that pressure at the inlet of one oscillator couples to the inflow of
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another oscillator. We extend the model to two mutually coupled fluidic
oscillators:

dp

T = (Pt~ Prest) + R(Qin, 1 +k1P2),
dp

Tt = (P2 Prest) + R(Qin, 2 + k2P1),

where ki and k; are coupling strengths. Each oscillator independently
undergoes recovery dynamics upon threshold crossing:

if Pi > Popen : recovery activated until Py < Pgpge-

The recovery phase in each oscillator serves as a phase “reset,” facilitat-
ing robust synchronization or stable phase differences in the presence
of coupling. Fig. 4.2d demonstrates the effect of mutual positive cou-
pling, where two identical oscillators start out of phase with mutual
positive coupling of a somewhat arbitrarily chosen value k = 0.08. We
find in-phase synchronization within the first five oscillations, after
which the phases are locked. In contrast, for mutual negative coupling
presented in Fig. 4.2e, we find that it takes longer for the phases to sta-
bilize, roughly 23 cycles. Fig. 4.2f shows the limit cycle for the positive
coupling presented in Fig. 4.2d, where we see that indeed the phases
are locked in clear in-phase synchronization, as seen from the linear
line following the xy-axis. In Fig. 4.2g, we observe the pressures over
time for the negative coupling. Also, in this case, we find a transient
followed by a stable limit cycle. The limit cycle demonstrates a clear
negative coupling, which is asymmetric on x = y.

This adapted LIF framework, with its recovery phase and associated
negative PRC dynamics, provides a robust and computationally efficient
model for the fluidic relaxation oscillators. Including recovery dynamics
bridges the gap between purely spiking neuron models and continuous
nonlinear oscillators, enabling the exploration of rich collective behav-
iors such as phase synchronization, phase lags, and noise resilience
in networks of fluidic oscillators and bringing the oscillator closer to
the framework of CPGs. With this framework, we can start to use the
experimental oscillators in networks to drive the rhythmic actuations
of pneumatic soft actuators. These results demonstrate that if we can
implement a the directed positive and negative coupling, we are able to
program the actuation rhythms for the experimental oscillators.
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Fig. 4.3: Characterization of a single oscillator a, Influence of the resistance
at the outlet for 13 mm needles with diameters of 0.61, 0.84, 1.60 mm, colored
light green to purple, respectively. For all the results in the current figure, each
color represents roughly 50 cycles overlaid by the start and end of the cycle. b,
Influence of the capacitor parallel to the oscillator inlet for 15ml (dark purple),
45 ml (light purple), and 170 ml (green). ¢, Influence of the inflow set by the flow
regulator for Qi,, equal to 0.9 SLPM (dark purple), 1.8 SLPM (light purple),
and 2.7 SLPM (green). d, Effect of the thickness of the membrane for a thickness
of 0.8 mm (purple) and 1.1 mm (green).
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4.4 OSCILLATOR CHARACTERIZATION

Having demonstrated the potential of the fluidic oscillators to generate
phase-locking and synchronization, we next characterize the oscillator
and show the adaptability of the fluidic oscillator’s oscillations. Firstly,
Fig. 4.3a demonstrates how we can tune the recovery phase of the
oscillator by changing the resistance at the outlet. By increasing the
outlet resistance, we increase the recovery phase, as the air escapes
the oscillator less quickly. Secondly, Fig. 4.3b demonstrates that we can
tune the duration of the loading phase of the oscillator by changing
the capacitance at the inlet of the oscillator. Note that driving a soft
actuator with the oscillator will have a similar effect, as this will act
as a volume of air placed at the inlet of the oscillator. Hence, using
pneumatic actuators with more internal volume at inflation will result in
a more extended loading phase of the oscillator. These two variables can
be tuned together to obtain the desired PRC for the actuator-oscillator
combination.

Fig. 4.3c demonstrates the influence of the constant flow input. We find
that for Q;n, = 0.9, the oscillator stalls close to the Pypen, where it
seems to find an intermediate state. Although the oscillator still oscil-
lates, the frequency F becomes erratic. This is an undesired behavior of
the oscillator, and as such, when designing the networks of the oscilla-
tors, it should be taken into account that we provide enough input flow
to the oscillator to obtain stable oscillation cycles. Lastly, in Fig. 4.3d,
we demonstrate how tuning the stiffness of the membrane can directly
control the Popen of the oscillator. This is a useful property because
it enables us to adapt the oscillator to the required pressures of any
pneumatic actuator one would like to connect to the oscillator. Further-
more, the model can be used to guide the experimental realization of
the coupled networks.
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Fig. 4.4: Characterization of a single oscillator a, 100 oscillation cycles for
five different oscillators with the same manufacturing parameters, attached
directly to the flow regulator at Q;;, = 1.8 SLPM. b, Average opening pressures
for the 5 oscillators presented in a. ¢, Time it takes for the phases to lock for
simulations of 500 s for mutual positive coupling values. Measured as the first
phase difference that is repeated for 10 cycles within a five percent error margin
from the first measure. For the black entries in the heatmap, phase locking did
not occur within the simulation time. d, Phase shifts for the same simulations as
¢, measured as the average phase shift over the last 10 cycles of the simulation
if phase locking occurred. e-f, The same simulation results as c-d for negative
mutual coupling values.

4.5 OSCILLATOR VARIABILITY

One of the main challenges of working with experimental oscillators
in a network configuration is the variability and repeatability of the
oscillator fabrication process. To test this, we fabricated five of the fluidic
oscillators with identical parameters. Fig. 4.4a shows the oscillation cycle
for each of these oscillators. The main variability that we find is the
difference in Popen between the oscillators depicted in Fig. 4.4b.

To test the effect of this variability on the coupling of the oscillators,
we turn to the model where we can more easily investigate the general
effect of these differences in the oscillators. Firstly, we run the model
with the same parameters as described earlier, varying both the coupling
strength for mutual positive coupling and the difference in Popen. The
difference in Pypen is created by increasing the Popen for only one of
the oscillators by a specific percentage. Fig. 4.4¢ presents the time it
takes to lock the phases, measured by the first phase difference where
the 10 following phase differences are the same within a five percent
error margin. We find two interesting trends in Fig. 4.4c. Firstly, we
find that, in general, both the higher APypen and higher coupling
result in faster phase locking. Secondly, we find that for higher APopen,
more coupling is needed to lock the phases, as seen by the blank areas
at the bottom of the heatmap. In Fig. 4.4d, we find the A after the
phases have locked. Interestingly, we observe a similar trend where for
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higher AP,pen, more mutual positive coupling is needed to drive the
oscillators to in-phase synchronization. At the border between phase
locking and no phase locking, we find that although the phases are
locked, they lock into a phase shift somewhere between in-phase and
anti-phase.

Next, we repeat the same simulations for mutual negative coupling
in Fig. 4.4e-f. In Fig. 4.4e, we find an opposite effect of the coupling
strength k on the lock time. Also, we do not find an apparent impact
of APopen on the time required to lock the phases. We do find a
clearly similar trend where higher differences in the opening pressure
require stronger mutual coupling to lock the phases. For the phase
difference while locking, depicted in Fig. 4.4f, we find that for most
of the combinations where phase locking occurs, the phase difference
is anti-phase. In the top row, we see some deviation from the anti-
phase synchronization, where the negative coupling is likely so strong
that it is overpowering one of the oscillators. Furthermore, we find
some phase shifts at the boundary between locking and not locking,
but these are less apparent compared to the positive coupling. From
these results, we conclude that the deviations that we are finding in
the experimental fluidic oscillators are within the margin that can still
be coupled successfully, assuming we can implement strong enough
coupling.
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Fig. 4.5: Characterization of a single oscillator a, Effect of the y parameter
in the oscillation curve in simulation. b, Phase shift for the different values
of v and k using the same criteria as presented in Fig. 4.4, starting with one
starting pressure of zero and one of 30 kPa. ¢, Phase differences over time for
three individual simulations presented in b by dots in their respective colors.
d-f, Pressures over time when the phase difference has stabilized for the three
simulations represented with the same colors in b and c.

46 IMPORTANCE OF THE RECOVERY VARIABLE

As described earlier, the recovery of the oscillator is hypothesized to
play a crucial role in finding predictable phase locking for the coupled
oscillators. To test this theory, we investigate the influence of the variable
v in the model that controls the duration of the recovery phase. Fig. 4.5a
shows how increasing v decreases the duration of the recovery phase of
the oscillator. In Fig. 4.5b, we perform the same phase locking simulation
as in Fig. 4.4c-f, but instead of changing the APypen, we vary vy for
both oscillators while keeping Popen the same. Fig. 4.5b shows that we
find phase locking for all values of y. However, we find a trend at the
lower diagonal (higher y and lower coupling) where the phase shift
between the oscillators becomes more erratic. The colored dots represent
three individual cases that are presented in Fig. 4.5¢c. Interestingly, from
Fig. 4.5¢, we see that all three lines first shift their relative phases to lock
at a specific phase offset. Furthermore, although the line in dark gray
for a y of 2.5 is still close to anti-phase, the other two lock the phases at
phase shifts somewhere between in- and anti-phase. The time evolution
of the oscillators for the three simulations presented in Fig. 4.5¢, after
the phase difference has stabilized, can be found in Fig. 4.5d-f. We find
that for Fig. 4.5f, the curve seems to be more affected due to the recovery
phase effectively making the oscillator maintain higher pressures for
longer.

Fig. 4.6a presents the same simulations for positive coupling, where we
find a similar effect. For higher values of vy, there is a stronger coupling
needed to obtain a predictable phase offset. Fig. 4.6b shows that for the
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purple line, the positive coupling actually increases Adp, moving it away
from in-phase synchronization.

4.7 COUPLING THE EXPERIMENTAL FLUIDIC OSCILLATORS

For the coupling of the experimental oscillators, we aim for a framework
that closely resembles the formulation of Kuramoto oscillators and
CPGs with additive coupling. As with those oscillators, it is known
that they can have rich phase locking with predictable patterns. There
are three critical factors to consider when coupling the experimental
fluidic oscillators in a similar fashion to additive coupling. Firstly, since
we focus on additive coupling between the oscillators, there should
be no flow interaction between the oscillators. Secondly, the coupling
has to be nonreciprocal, meaning that pressure from the first oscillator
has to have the same effect on the second oscillator, irrespective of the
second oscillator’s pressure. Thirdly, the coupling mechanism has to
be simple enough to fabricate many of them, as the maximum number
of couplings that can be used in the network scales with N2. Taking
these three design restrictions into account, we opt for the fluidic circuit
presented in Fig. 4.7a, where the air coming from the wall pressure
can flow in two directions: either past a resistance to the atmosphere
or through another resistance toward the oscillator. By placing two
normally open and continuously closing fluidic transistors (analogous
to depletion-mode MOSFETs), we can apply a pressure (voltage) to the
transistors to steer the flow towards (pressure on the blue transistor) or
away from (pressure on the orange transistor) the oscillator. This creates
a form of non-reciprocal additive coupling, which can be both positive
and negative in nature.

The design of the coupling mechanism (fluidic transistor) consists of a
larger flexible silicone tube (outer diameter 3.6 mm and inner diameter
3 mm), a smaller stiff silicone tube (outer diameter 1.8 mm and inner
diameter 1 mm), and a thin PVA plate (1 mm thick) sandwiched between
the tubes (Fig. 4.7b-c). Two thick 3D-printed plates encapsulate the
structure to keep it in place and confine the space for the tubes. The
pressure in the larger tube drives coupling. The smaller tube acts as
the driveline. The PVA interface plate serves as the weight (k) that
determines how much force the thick control tube can exert on the
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Fig. 4.6: Characterization of a single oscillator a, The same simulation results
as Fig. 4.5b for positive values of k, starting with one starting pressure of zero
and one of 60 kPa. b, Phase over time for three individual simulations presented
with dots in a in their respective colors.

smaller driveline tube, in other words, how strong the coupling is
(Fig. 4.7¢).

To achieve the desired Qi = 1.8 SLPM, we use an analogy between
fluidic systems and electronic circuits. We do this by using the physical
similarities between Hagen-Poiseuille’s law (see Equation 4.1a) for
fluidic systems and Ohm’s law for electronic circuits (see Equation 4.1b)
[85]. The equation (4.1c) for hydraulic resistance (Ryy) shows that we
can tune the resistance in a fluidic system by modifying the length (L)
and radius (r) of the tubes. Additional fluidic resistances in the form of
silicone tubes with a small lumen (i.e., an inner area that is at least an
order of magnitude smaller compared to the other connection tubes)
are used as a replacement for the flow regulator that controls the input
flow, making the entire system softer and more compact. Instead of
setting the Q;,, using the flow regulator, we tune the silicone tubing
from the wall pressure source to get the desired Qiy, value for actuating
the oscillator (Fig. 4.7a). As the wall pressure is much higher than the
rest of the system, we expect this silicone tubing to act as a resistance

159



that transforms the constant wall pressure into a constant flow. The
effect of the length of the silicone tubing can be found in Fig. 4.8a.

AP =Q - Ry (4.12)

AV =1-Rg (4.1b)
il L

RHZSH'ﬁZSH'ﬁ (4.10)

The coupling mechanism uses this same analogy to increase the resis-
tance by manipulating the inner diameter (r) of the small tube. Initially,
the flexible large tube is not inflated and wraps around the interface
plate (i.e., weight). This leaves the inner diameter of the stiffer small
tube intact, allowing air to flow through the small tube. When the large
tube inflates, it presses the weight down into the small tube, reducing
the inner diameter. By increasing the resistance, the coupling manipu-
lates the amount of flow that is directed toward the oscillator, which
influences the overall dynamics of the system. Although the effect of
the weight on the inner diameter of the small tube is comparable to a
variable resistor, the entire coupling mechanism shows more similarities
to a normally open transistor. The coupling mechanism has a gate (the
flexible tube) and an inlet and outlet (the small tube going in and out
of the mechanism). For a transistor, this is equivalent to the base (B),
emitter (E), and collector (C) pins.

The final setup consists of the following four elements (Fig. 4.7a). Firstly,
the source connection is a 150 cm tube going from the pressure source
to the oscillator system used to generate a constant input flow.
Secondly, the negative coupling (Fig. 4.7a in orange) is a 30 cm tube
connected to the 150 cm tube and the tubing that goes towards the
valve inlet. A coupling mechanism is connected to this tubing, thereby
establishing the negative coupling. This coupling increases the resis-
tance towards the inlet of the valve, thus restricting the flow. The flow
gets restricted when the coupling is activated, as can be seen from
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Fig. 4.8b. We find a close-to-linear slope for the negative coupling up
to 100 kPa, where the control pressure completely closes the driveline
tube. This is not ideal, as the oscillator used for the final experiments
has a Popen = 148 kPa, which means that it will have a weakened effect
during these higher pressures.

Thirdly, the positive coupling is a 200 cm tube with an additional needle
resistor connected to the 150 cm tube (parallel to the 30 cm tube) that
serves as a “leaking” resistor that allows the flow to escape towards the
environment. We find that the leaking increases the loading phase of the
oscillator as depicted in Fig. 4.8c. A coupling mechanism is connected
to this tubing, thereby establishing the positive coupling. This coupling
increases the resistance towards the environment, thereby increasing the
flow that goes towards the inlet of the valve. The flow towards the inlet
is amplified when the coupling is activated. The effect of the positive
coupling on the flow towards the oscillator can be found in Fig. 4.8d.
We see that the relative change in flow is much less compared to the
negative coupling, meaning that the constructed positive coupling has
a lower coupling strength. Also, we see that the transition between the
maximum and minimum flow is much quicker, which means that there
is a larger area where the coupling has no effect. From these results, we
expect that it will be harder to find in-phase synchronization using the
positive coupling compared to finding anti-phase synchronization with
the negative coupling. Lastly, we have the oscillator and the capacitance,
where the capacitance could be interchanged with an actuator to achieve
the actuation of the soft robots.

48 PHASE-LOCKING TO A PRESSURE CONTROL SIGNAL

Using the circuit described in the previous section, we first focus on
a controlled case where we aim to test if the oscillator can be phase-
locked with a control signal generated by a pressure regulator. Instead
of providing a constant pressure that increases stepwise, the pressure
regulator mimics the oscillatory behavior to see if phase locking can
occur in a controlled setting. We control the coupling signal in both
frequency and pressure to isolate the dynamics of the single oscillator
and analyze the response of the coupling on the oscillator.

161



interface
plate

. . -
drive line
pressure

input

interface plate

Fig. 4.7: Coupling a single oscillator to environmental input a, Schematic
representation of the circuit for a single oscillator with the positions of the
positive (blue) and negative (orange) coupling devices. The wall pressure with
its dedicated resistance is presented in green. The capacitance used for the
experiment with this circuit has a volume of 15ml. b, Photo of the coupling
device. ¢, Zoomed side view of the coupling device. Indicated the PVA interface
plate between the pressure input and the drive line.
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Fig. 4.8: Effect of the coupling in the oscillator circuit a, Effect of different
lengths of tubing for the P, 411 resistance, measure in purple for tubing with
an inner diameter of 1 mm with lenght 100 cm (light purple) and 200 cm (dark
purple). Measured for tubing with an inner diameter of 0.3 in green with length
94 cm (light green) and 34 cm (dark green). b, Effect of pressure applied at the
negative coupling element on Q;,, measured at the oscillators inlet, for the
circuit described in Fig. 4.7a. ¢, Effect of the parallel resistance that vents the air
to the atmosphere (added in Fig. 4.7) on the curve of the oscillator. Measure
with (dark purple) and without (light purple) the parallel resistance. e, Effect
of pressure applied at the positive coupling element on Q;,, measured at the
oscillators inlet, for the circuit described in Fig. 4.7a.
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In Fig. 4.9, we connect the pressure regulator (presented in orange in
Fig. 4.9a) to the negative coupling element. For the three consecutive
experiments with the same oscillator and different starting conditions,
we find phase locking in all three experiments. Fig. 4.9a shows that
the phases lock in a phase shift where the oscillator closes when the
pressure regulator is at its highest pressure and opens when the pressure
regulator is at its lowest pressure (Movie 4.2). Furthermore, we find
that for all three experiments, the phases are locked within the first
four cycles of the pressure regulator, or 5s. From Fig. 4.9b, we find that
also the frequency of the oscillator adapts to match the frequency of the
control signal. By maintaining the same frequency, the phases are able
to lock and prevent phase drift with respect to the pressure regulator.
As soon as the pressure regulator stops, the frequency returns back to
its original value.

Fig. 4.9c presents the same experiments, but now the pressure regulator
is connected to the positive coupling. We find that after 60s, the phases
lock at an in-phase synchronization where the peak of the pressure reg-
ulator aligns with the peak of the oscillator pressure at the point where
the oscillator opens. Furthermore, the closing event of the oscillators
aligns with the moment the pressure regulator stops depressurizing.
From Fig. 4.9a-b, it is clear that the negative coupling is much stronger
compared to the positive and is, therefore, able to lock the phases more
quickly (Movie 4.3). This is likely due to the difference in how much
they can influence Q;,, where the negative coupling has a larger range
of flows compared to the positive coupling (Fig. 4.8b and d, respec-
tively). For the frequencies depicted in Fig. 4.9d, we find similar results
where the frequency of the oscillators adapts to the frequency of the
pressure regulator.

The behavior observed in Fig. 4.9 is in line with the hypothesis of the
coupling mechanisms given by the model (Fig. 4.2). When the negative
coupling is activated, meaning the pressure regulator is in the loading
phase, it inhibits the inflow going to the valve. This increases the loading
phase of the valve. When the pressure regulator is in the recovery phase,
the negative coupling is not activated. Inflow can now go to the valve,
which allows for faster pressure build-up and brings the membrane
into the fully open state. For the positive coupling, the loading phase of
the pressure regulator increases the inflow to the valve, decreasing the
loading phase of the valve, which leads to in-phase locking (Fig. 4.2).
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Interestingly, the negative coupling currently does not lock the oscilla-
tors fully anti-phase (i.e., with a phase shift of the peaks equal to ), but
rather somewhere between in-phase and anti-phase (Fig. 4.10a). This
is attributed to limitations in the pressure regulator inflow toward the
coupling, which is unable to fully mimic the pressure outputs of the
oscillators and remains longer at a pressure value of zero during the
recovery phase. During this zero-pressure phase of the pressure regula-
tor, there is effectively no influence of the coupling, and we suspect that
this enables the phases of the oscillators to shift slightly out of phase, as
observed in Fig. 4.10a. Furthermore, for the positive coupling, we find
that the experiment presented in green switches its trajectory towards
in-phase synchronization at around 37 s, causing it to phase lock much
later compared to the other two experiments. Lastly, we found the
phase locking to be sensitive to the frequency of the pressure regulator.
Only pressure regulator frequencies within roughly five percent of the
frequency of the oscillator showed phase locking.

These experiments demonstrate that the current framework can follow a
control signal and phase lock, given a non-reciprocal coupling with the
environment. This means that the oscillator is coupled to the pressure
regulator’s input and not vice versa, thereby confirming the effect of
the negative and positive one-direction coupling in the experimental
system.
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Fig. 4.9: Experiment of a single oscillator following a control signal a, Three
separate experiments with the circuit described in Fig. 4.7, where the positive
coupling element remains at zero pressure and a pressure controller controls
the negative coupling element. The control signal is depicted in orange, and
the pressure at the inlet of the oscillator is presented in three colors: purple to
green. b, Frequencies of the oscillator during the three experiments in a along
with the control signal (orange). ¢, Three experiments with the same setup as
a, but with the pressure controller connected to the positive coupling element
(blue) and the negative coupling element fixed at zero pressure. d, Frequencies
of the oscillator during the three experiments in ¢ along with the control signal
(blue).

4.9 MUTUAL COUPLING OF TWO OSCILLATORS

Having confirmed the effect of the experimental negative and positive
coupling framework, the next step is to perform experiments on a
network consisting of two oscillators without the need for pressure
and flow regulators to control the phases of the oscillators. To perform
these experiments, we constructed the circuit schematically depicted in
Fig. 4.11a. Importantly, all inputs come from the same pressure source
P,y q11, meaning that even if the number of oscillators increases, it would
still only require a single constant pressure to operate. This is possible
because the large resistances connected to the wall pressure decouple
the system’s inputs. In this circuit, we integrate the positive and the
negative coupling for both oscillators with a manual valve in front of
each so that they can be turned on and off individually during the
experiments (Fig. 4.11b).

For the first experiment, we turned off all the couplings in the system to
verify that the system does not phase lock without active coupling. This
could occur due to parasitic coupling that could potentially be generated
by the vibration of the table or backpropagation of pressures to Py, q11-
The results from this experiment are presented in Fig. 4.12a, where the
pressure in the tank is set to 200 kPa at 14 s into the experiment. We
find a slight difference in the loading phase during the first oscillation
of both oscillators, which might be due to slight differences in leakage
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Fig. 4.10: Characterization of a single oscillator a, Phase differences over time
for the experiment of Fig. 4.9a. b, Phase differences over time for the experiment
of Fig. 4.9c. Both a and b use the same color indication as Fig. 4.9, and the gray
dashed line indicates the start of the cycle activations of the pressure controller.
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or a difference in the resistances. More importantly, we also find a slight
difference in the opening pressures of the two oscillators, which results
in a difference in frequency. Over time, this difference in frequency
results in phase drift between the oscillators that is not reconciled by
any potential parasitic coupling. These results confirm the absence of
phase locking within the first 30 s of the experiment.

Next, we only turn on the negative coupling for both oscillators and
repeat the experiment (Fig. 4.12b and Movie 4.4). We observe that
although the loading of both oscillators starts equally, imperfections
combined with the strong negative coupling drive the oscillators out
of phase within the first cycle. For the remainder of the experiment,
we observe clear anti-phase locking, confirming the hypothesis from
the simulations. Furthermore, we find that the negative coupling is
so strong that it seems to temporarily completely repress the loading
of the other oscillator. This results in almost constant pressure in one
oscillator while the other is close to opening.

Lastly, in Fig. 4.12¢, the same experiment is presented where only the
positive couplings are active. Although the start of the experiment
loads both oscillators equally during the first oscillation, it seems like
the difference in the initial opening pressure drives the two oscillators
slightly out of phase during the first cycle. Over time, we see that this
phase shift disappears due to the positive coupling, confirming results
found in the simulation (Movie 4.4).

To obtain more conclusive evidence of the phase locking over longer
time scales, we show the inlet pressures of the two oscillators with re-
spect to each other for all three experiments in Fig. 4.13a-c. In Fig. 4.13a,
we see that without any of the couplings activated, the pressure relation
between the two oscillators keeps changing without a clear sign of a
recurring pattern. Hence, a clear limit cycle is absent, and there is no
sign of phase locking. For the positive coupling in Fig. 4.13b, we do find
a clear limit cycle along the diagonal, similar to the simulation result
(Fig. 4.2f), confirming the in-phase synchronization of the oscillators.
Interestingly, the start of the trajectory (light green) also shows that
indeed the oscillators were initially pushed out of the in-phase syn-
chronization during the initial cycles. Furthermore, for the final limit
cycle, at lower pressures up to 70kPa, there is relatively little deviation
from the diagonal. At the same time, we find that at roughly 70 kPa, the
trajectory of the limit cycle deviates from the diagonal (Fig. 4.13b). This
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Fig. 4.11: Ciruit for a network of two oscillators. a, Schematic circuit diagram
for a network of two oscillators operating from a single pressure source (green).
Both are integrated with both positive coupling (blue) and negative coupling
(orange) that can be turned on and off with a valve individually. b, Photo of
the experimental setup for the network of the two oscillators. Schematic icons
highlight the position of individual components in a.
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Fig. 4.12: Characterization of a single oscillator a, Experimental data of the
pressures for the two oscillators presented in Fig. 4.11, measured at the inlet of
the oscillators. At 14 s the pressure tank P, q11 is set to 200 kPa which starts the
oscillators. During the experiment, all the valves that control the couplings are
turned off. b Repeats the experiment of a, but before the experiment has started,
both valves linked to the negative coupling elements are turned on, activating
the negative coupling. The positive coupling elements remain inactive during
the experiment. ¢ Repeats the experiment of a, but before the experiment has
started, both valves linked to the positive coupling elements are turned on,
activating the positive coupling. The negative coupling elements remain inactive
during the experiment.
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could be a result of the sharp transition in the coupling device for the
positive coupling, as presented in Fig. 4.8d. If one of the oscillators is
slightly in front of the other in the phase space, it will boost the other
oscillator earlier, resulting in a slight deviation from the diagonal.

Fig. 4.13¢c depicts the limit cycle from the mutual negative coupling
between the oscillators. These results confirm that within the first three
cycles, the phases are locked into the limit cycle, and once the limit cycle
is reached, we find almost no deviations in its trajectory. These results
are coherent with previous findings on the strength of this negative
coupling. Importantly, the overall shape of the limit cycle differs from
the results obtained in the simulations (Fig. 4.2g). In the simulation
results, we observed a shape for the limit cycle best described as an
hourglass, which was axisymmetric along two axes. In contrast, the
results from the experiments present a shape that is more reminiscent
of the outline of a butterfly. Apart from the slight asymmetry on the
xy-axis, which is likely due to differences between the oscillators, we
find slender, stretched corners when one of the oscillators is at high
pressure. We found that these results could be replicated with the model
when we make the negative coupling stronger and set it to k = 0.3 in
the model. The resulting limit cycle is presented in Fig. 4.13d, where the
increased coupling strength stretches the corners for high pressures as a
result of inhibiting the loading of the other oscillator. The time evolution
of the simulation is presented in Fig. 4.13e. Indeed, the loading of the
second oscillator is repressed at high pressures.

In conclusion, the results from the experiments are coherent with the
simulation and show that solely by changing the coupling between
the oscillators, we can start to program the phase differences between
the oscillators. Furthermore, we find that we can match the qualitative
behavior of the oscillators with our relatively simple model.

4.10 CONCLUSION

In line with the bio-inspired philosophy of soft robotics, this work
draws inspiration from the bio- and neuromechanics found in nature to
enrich the behavioral patterns we can encode in soft robots. We show-
case the design of a fluidic relaxation oscillator with a highly tunable
flow response. Along with this oscillator, we introduce a framework
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Fig. 4.13: Characterization of a single oscillator a, Pressures presented in
Fig. 4.12a colored by time for t = 0 to t = 112 seconds. b, Pressures presented
in Fig. 4.12c color by the same time range. ¢, Pressures presented in Fig. 4.12b
color by the same time range. d, Simulation as presented in Fig. 4.2g with the k
changed from -0.08 to -0.3. d, Time evolution simulated pressure in d.
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inspired by the behavior of neurons in nature to couple these fluidic
oscillators for richer and more programmable behavioral encoding. This
coupling strategy allows for robust phase locking and both in-phase
and anti-phase synchronization of the oscillators without the need for
any electronics (Movie 4.5). The system shows promising results for
better understanding and controllability of the emerging behavioral pat-
terns, irrespective of small fabrication defects in the design. The current
framework also enables the system to scale by keeping interactions local
and driving the system from a single constant pressure source. Overall,
with this work, we hope to move electronic-free circuits towards more
adaptive and controllable outputs. This work thereby addresses the
earlier defined gap between the limiting propagating waves observed
in soft robots with fluidic oscillators and the rich, adaptive behavior
exhibited in CPG models and nature.

Although the current experimental setup is not small compared to the
average size of pneumatic soft robots, most of the current elements
can be scaled down and integrated (e.g. using microfluidics [86]). In
future work, it would be interesting to focus on integrating the indi-
vidual elements and coupling into the oscillators and start expanding
the networks to more oscillators. Once integrated into soft robots with
pneumatic actuators, the actuators could function as a coupling with the
environment through forces applied to the actuator. Studying these envi-
ronmental couplings could result in programmed behavioral switching
in response to environmental changes, as known in nature and CPG
models [109].

Overall, future research on control based on soft logic and biomechanics
would support the development of these alternative control strategies
for soft robots. These alternative strategies reduce the need for complex
hardware and electronics and show potential in their increased robust-
ness, inexpensive manufacturability, and responsiveness in soft robotic
systems.
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4.11 SUPPLEMENTARY MOVIES 4

Movie 4.1. Single oscillator. Oscillatory behavior of a single oscillator for
a constant input flow.

Movie 4.2. Negative coupling. Single oscillator coupling connected to a
constant flow input. The oscillator has a negative coupling to an external
pressure controller facilitated by the fluidic coupling device.

Movie 4.3. Positive coupling. Single oscillator coupling connected to a
constant flow input. The oscillator has a positive coupling to an external
pressure controller facilitated by the fluidic coupling device.

Movie 4.4. Coupling of two oscillators. In-phase and out-of-phase synchro-
nization of two fluidic oscillators. The movie shows that the fluidic
coupling between the oscillators can achieve phase locking between the
oscillators in a system powered by a single constant pressure source.

Movie 4.5. Switching between positive and negative coupling. Switching the
coupling between positive and negative shows the transition between
in-phase and out-of-phase synchronization and phase locking.

Link to the Movies.
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Abstract. In biological systems, central pattern generators (CPGs) produce
robust yet adaptive rhythmic patterns by tightly coupling morphology, sensors,
and oscillatory neural circuits. Translating these principles into soft robotics
has proven difficult, as most fluidic oscillator networks generate only fixed
sequences and rely on external supervision for task execution. Here, we nu-
merically investigate how adaptive behavior can emerge from the co-evolution
of soft morphologies and minimal networks of relaxation oscillators. Using
voxel-based simulations, we demonstrate that just three coupled oscillators are
sufficient to generate diverse gaits, enable task switching, and achieve behav-
ioral switching from a single input. Importantly, the same oscillator network
can settle into distinct behaviors depending on environmental interactions,
highlighting the role of body-environment coupling as an additional mode of
computation. These findings suggest that morphology and controller should
be treated as a single dynamical unit, whose interaction yields scalable and
multifunctional behavior. By demonstrating that complex locomotion and en-
vironmental adaptation can emerge from minimal oscillator networks, this
work lays the groundwork for fluidic soft robots that leverage co-designed
body-brain architectures for electronics-free adaptive control.

H.A H. Schomaker, ].T.B. Overvelde. “Adaptive behavior in minimal oscillator
networks through coevolution of body and brain.” in preparation.
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5.1 INTRODUCTION

In nature, central pattern generators (CPGs) are specialized circuits
comprised of networks of oscillating neurons that produce rhythmic
motor outputs with minimal input from higher-level control centers
[41]. Such networks are crucial for locomotion in a wide array of species,
ranging from simple invertebrates to complex vertebrates (Fig. 5.1a).
They can be modulated by sensory inputs (Fig. 5.1a-b in green) to
accommodate environmental or physiological constraints [35, 53, 138].
In practice, CPGs exemplify how rhythmic motions (Fig. 5.1c), such
as those needed to walk or swim, can be reliably generated while
maintaining enough flexibility to cope with changing conditions [53,
94, 96]. Though capable of generating basic rhythmic patterns on their
own, local sensory input is crucial for CPGs [94]. This interplay between
central networks and peripheral feedback mechanisms enables animals
to react almost instantaneously to perturbations in their environment,
whether they face uneven terrain or unexpected obstacles, without
the intervention of the brain [2, 29, 53]. Sensors in muscles, joints, or
skin further modulate the ongoing motor program to maintain stability
and efficiency [50, 76, 95]. Especially in animals with a more minimal
neural architecture, it is speculated that the CPGs take the primary
role in executing actions [53]. In this way, sensory-driven regulation
exemplifies the "closed-loop" control that biologists and engineers alike
strive to replicate in artificial systems.

Fluidic actuators have gained traction for their ability to produce com-
pliant, programmable motion using fluidic circuits. These systems
increasingly rely on fluidic oscillators to produce repetitive motions
from continuous inputs, in an attempt to make the entire soft robot
electronics-free [25]. These electronics-free soft robots have the advan-
tage that they reduce cost because they do not require electronics [25].
Furthermore, the reduction of components (e.g., number of pumps)
has the potential to reduce failure and make the system scalable to
smaller sizes [64]. Coupling these oscillators together has demonstrated
potential for encoding locomotion primitives into soft robots [25, 82,
101]. Nonetheless, existing fluidic oscillator systems, such as ring oscilla-
tors, are constrained by fixed sequential motion patterns, offering little
capacity for reconfiguration or tuning based on sensory information or
higher-level inputs [25, 82, 101]. Consequently, these devices often re-
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quire additional circuits or external supervision to perform tasks of any
complexity [25]. This limitation restricts the development of soft robotic
systems that can autonomously adapt, learn, or refine their behavior
in real-world settings [122, 136]. The development of soft relaxation
oscillators has shown that coupling self-oscillating fluidic oscillators
can lead to sequence changes within the same circuit based on external
inputs [64]. These findings bridge the gap between reflex neural circuits
in living systems and current soft robotics designs.

In biological organisms, form and function evolve in tandem. The de-
sign of limbs or body segments, tissue elasticity, and the placement of
sensors all shape and are shaped by their neural control architectures
[40]. A prominent example in humans is the heart, whose character-
istic pumping arises from closely coupled electrical and mechanical
processes. Research in electromechanical cardiology demonstrates that
understanding one aspect, the electrical or the mechanical, cannot fully
explain the emergent behavior without accounting for their continu-
ous interaction [127]. Translating these findings to soft robotic designs
suggests that computational and physical aspects must co-develop to
produce robust and adaptable behavior.

On the one hand, the evolution of soft robots has led to the development
of voxel-based soft robotic simulations. These numerical simulations
place square pixels in a grid to form and evolve the body of a soft robot.
Using a minimal variety of different voxels, including stiff voxels (bone),
periodic inflating voxels (muscle), and passive voxels (soft tissue), robots
evolve complex walking gaits solely due to their soft morphology [14].
Previous work demonstrates that for fixed periodic inputs, both 2D
and 3D morphologies can evolve to swim and run [14, 21, 22, 128]. The
behavior, however, remains fixed to a single gait as the actuation timing
is prescribed beforehand.

On the other hand, to achieve adaptive behavior for completing more
complex tasks, reinforcement learning and neural networks have been
applied to fixed morphologies to control the behavior of these soft
voxel-based robots [75, 115]. This demonstrates how complex tasks
can be performed with systems comprising only a limited number of
voxels. Even neural controllers in a decentralized architecture show
great potential when optimized for fixed geometries [123]. However,
the morphologies in these cases are predefined.
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Research on the co-evolution of a voxel body in tandem with a
reinforcement-learning policy controller shows the importance of sen-
sory feedback and the synergy between a body and its controller. While
this work highlights the complexity of tasks that can be executed when
the body and the brain are optimized together (e.g., picking up objects
and transporting them to a new location), it requires a highly sensitive
and complex centralized controller.

In the current work, we aim to numerically explore the gap between
experimental electronics-free soft robots based on fluidic oscillators
and the adaptive behavior found in both CPG controllers and neural
networks using numerical voxel-based simulations. Drawing inspiration
from biology’s example of co-evolution, where body morphologies
evolve in tandem with their underlying neural oscillator networks and
sensors, this work aims to investigate how a similar process can be
replicated in a simulated environment to design adaptive behavior in
soft robots using minimal oscillator networks (using a similar number of
oscillators as in current experimental soft robots). By iteratively refining
both physical designs and oscillator architectures, we aim to investigate
how a close interaction between body, brain, and sensors can lead to
more robust locomotion as well as multifunctional task execution within
the same minimal oscillator architecture. With this work, we hope to
pave the way for more adaptive behavior in soft robots that can be
experimentally implemented in fluidic networks due to their minimal
architecture.

5.2 METHODS

We pose the problem of co-designing a soft robot’s body and its os-
cillator network that controls actuation, to generate task-level motion
on a static terrain. The body is discretized as a 5 x 5 grid of square
pixels (size limit), where each pixel is absent, passive, or an actuator
coupled to one of the relaxation oscillators (Fig. 5.2a shows an example
for two oscillators). By coupling the oscillators directionally in networks,
we can enforce phase-locking with predictable phase offsets between
the oscillator outputs (Fig. 5.2b). Actuation of the non-passive pixels
is produced by directly coupling the oscillators to the homogeneous
expansion and contraction of the pixels (Fig. 5.2c). Given the terrain
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Fig. 5.1: Central pattern generator (CPG)-based locomotion control. a,
Schematic representation of the signal flows involved in locomotion control. b,
framework of the signal feedbacks involved in the control of a. ¢, Schematic
representation of the oscillator network and oscillator outputs.
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Fig. 5.2: Problem setup and example for a two oscillator system. a, The soft
robot morphology is encoded on a 5 x 5 pixel grid (size limit). Each pixel is
either absent, passive, or active (blue/orange). The dark region indicates the
static object that forms the terrain on which the robot moves. b, Schematic of
the directional coupling between the two oscillators. ¢, Directional coupling can
yield phase locking with a specific phase offset, which then drives coordinated
expansion/contraction of the actuated pixels.

(static object) and the size constraint, our objective is to find the mor-
phology and coupling parameters that maximize task performance (e.g.,
forward displacement or climbing height) while keeping the controller
minimal and the simulation computationally efficient. Keeping the sim-
ulation computationally low-cost enables us to use a genetic algorithm
to co-evolve the body morphology and oscillator network in tendam,
generating solutions with synergy between body and brain.

Mechanical Model

We model the mechanical system as a network of point masses (nodes)
interconnected by linear springs, forming deformable square pixels.
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Our model and parameter choices are designed to make the simulation
computationally efficient, enabling its use in evolutionary optimization.
Each square pixel comprises four nodes linked by six springs: four along
the edges, which remain passive with fixed rest lengths, and two diago-
nal springs that are active (Fig. 5.3a-b). These diagonal springs undergo
periodic changes in their rest lengths, driven by FitzHugh-Nagumo
oscillators (Fig. 5.3c), causing each square to expand and contract rhyth-
mically. This coupling leads to synchronized expansion and contraction
of the square’s diagonals, Fig. 5.3a-b, while the edge springs provide
passive structural integrity. The rhythmic actuation drives deformation
and, when assembled into larger lattices, can induce locomotion or
coordinated shape change. All baseline parameters for the model are
listed in Table 5.1 and were chosen to optimize simulation speed while
maintaining rich dynamics for the structure.

More specifically, we model a planar structure composed of N point
masses (nodes) connected by E linear springs. A square pixel consists of
four nodes connected by six springs: four passive edge springs with fixed
rest lengths and two diagonal springs whose rest lengths are actively
modulated in time. Let

.
Qt) =|x7 y1 -+ xN YN € RN, q(t), 4(t) € R?N,

denote positions, velocities, and accelerations, respectively. The diagonal
mass matrix is

M = diag(my, my,..., my, my) € RZNXZN - [ko],

Bulk viscous drag is modeled as an isotropic, piecewise-constant dash-
pot,

06, t<15s,
02, t=>15s,

C(t)=c(t)Ion  [Ns/m], c(t) =

chosen to suppress initial transients while preserving steady actuation
dynamics.
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Spring Kinematics and Matrix Assembly

Springs are indexed by e =1,..., E, with endpoints (ie,je), stiffness ke
[N/m], and rest length L. (t) [m]. For each spring we define a selection
matrix Se € R2*2N such that

re(t)

X; — T
max (£e(t), €)

e T Xi
4

re(t) =Seqt) = l ] ER?, Le(t) = [re(t)]|2, me(t) =
Yje —VYie

with a zero-length regularization ¢ = 10~7 m to prevent division by
zero. Concretely, Se has nonzero values only in the four columns corre-

sponding to (Xi,, Yi.,Xj., Yj.):

el =1 0 - 41 0 .-
Se = .
e 0 =1 e 0 4T ..
The Hookean force contributed by spring e and assembled to the global
DOFs is
fe(q(t) 1) =S¢ ke (Ce(t) —Le(t)) ne(t) € RN,

which automatically applies equal and opposite forces to nodes i and
je. Summing over springs yields

E
fine(q(t),t) = ) fe(q(t),t) € R*N.
e=1

Equivalently, the stored elastic energy is

£ 2 ou
Ugt) =73 ) ke(lelq) —Le(t)",  finelqt) =—=—.
e=1

Actuation via FitzHugh—Nagumo Oscillators

Each pixel p = 1,...,P is actuated by a FitzHugh-Nagumo (FHN)
oscillator with states (Vp,, W;,) (dimensionless),
3
vp = vp - ?p _Wp + Ibase,p/ (51)

_ Vp+ap—bpW,

W, 5 5 >0 [s], (5.2)
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where Ip,eep is a constant input. The oscillator modulates the two
diagonal springs in pixel p through

Lreste(t) = Lo base + O(Vp(t), ec 'Dpl (5-3)

with « [m] and Ly pase [m]. For O(1) excursions of Vj,, « sets the diagonal
stroke amplitude (m). Edge springs retain fixed rest lengths.
For compactness, we define disjoint index sets €eqge and Egiag = Up Dp,
and let V. = [V;,...,Vp]'. With a diagonal-incidence matrix Adiag e
{0, 11EXP that has exactly two nonzero values per column (the two
diagonals of pixel p), the assembled rest-length vector reads

L(t) = Ledge + Adiag(LO,baseIP + O(V(t)) S ]RE-

Environment, Contact, and Friction

Static obstacles are given as polygons via axis-aligned bounding boxes
(broad-phase culling), vertex lists, and edge connectivity. For node i, we
compute the closest point p} on the polygon boundary by orthogonal
projection onto edges; outward normal orientation is enforced consis-
tently by reference to the polygon centroid. Let n; be the outward unit
normal at p}. The signed penetration depth (positive when the node is
inside) is

= —nl (x; —p* =
d; max{O, n; (xq pl)} [m], Xi L;J

We apply a linear penalty in the normal direction and a linear tangential
dashpot,

fpen,i =kcdini — Cu<12 - nin;r) Vi € RR? [N} ’ (5-4)
with k¢ [N/m], ¢ [Ns/m], and v; = x;. Contact handling is applied to
a designated subset of nodes (mass threshold) to determine which parts

of the structure interact with the substrate. A uniform gravitational
body force acts in —y,

N
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Equations of Motion in Assembled Matrix Form

To minimize the computations, contact is only checked for the nodes
on the boundary of the structure. Let J denote the set of nodes that
participate in contact handling, and let P; € R2%ZN gelect the (xi, Y1)
block:

.10 ... .
o [ ] foen(9,9) = ) P{ fpen,i-
o001 - =

The coupled mechanical-actuation system is

Mg(t) + Ct) q(t) + fine(q(t), t) + fpen(q(t), q(t)) = fg | (5.5)

coupled to (5.1)—(5.2) for each pixel. Unless otherwise stated, all nodes
are free; any kinematic constraints (if used) are specified where results
are presented.

Numerical Integration and Stability Considerations

Equations (5.2)-(5.5) are integrated using an adaptive Dormand-Prince
explicit Runge—-Kutta scheme of order 5(4) (Boost.Odeint). Unless stated
otherwise, the second-order system is expressed as a first-order ODE
in [q, ] for numerical integration. Absolute and relative tolerances are
10~%, the initial trial step is 0.1 s, and simulations run to T = 300 s. State
snapshots are recorded every 0.1 s for analysis. Spring-force evaluations
are vectorized with AVX (batch size 8) to accelerate large lattices without
altering the continuous model.

As k. increases, the contact stiffness shortens the fastest time scale; we
verified that the tolerance and step settings in Table 5.1 keep accepted
steps within stability bounds for the explored parameter ranges.

Initialization and Boundary Data

Initial node positions, velocities, spring data (connectivity, stiffnesses,
edge rest lengths), oscillator states and parameters (ap, by, Tp, Ipase,p),
and environment geometry (polygons) are loaded from external files.
Transient environmental inputs Ieny,p (t) are activated when a pixel’s
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Table 5.1: Baseline simulation parameters.
Mechanical network

Quantity (symbol / config key) Value Units / Notes

Edge spring stiffness (ks / spring_constant) 300 N/m

Diagonal spring stiffness (kdiag / diag_spring_constant) 300 N/m

Node mass (m; / mass) 0.073 kg

Edge rest length (Leqge / rest_length) 0.025 m

Height offset (hyfgser / hight_offset) 0.01 m (initial vertical offset)
Gravity (g) 9.8 m/s? (acts in —y)
Contact normal stiffness (k) 1000 N/m

Tangential dashpot (c,.) 100 Ns/m

Actuation (FitzHugh-Nagumo)

Quantity (symbol) Value Units / Notes

FHN parameters (a, b, T) (0.7,0.8,12) Tins; V, W dimensionless

Bias; environmental input (Ipase; lenv)  const.; impulse on contact ~ Applied for one accepted step then reset
Diagonal actuation map Lyest Lo pase + V(1) Both diagonals share this rest length
Diagonal base rest length (Lo pase) Ledge * V2 m

Actuation gain («) 0.04 m per unit V

Damping / drag

Quantity (symbol) Value Units / Notes

Bulk viscous drag c(t) 0.6 fort<15;0.2fort>1.5 Ns/m;isotropic dashpot on all DOFs

Time integration and output

Quantity Value Units / Notes

Integrator Dormand-Prince RK 45 (adaptive, Boost.Odeint) Explicit, error-controlled
Absolute / relative tolerances 104 /104 —

Initial step / final time / log interval 0.1 / 300 / 0.1 s/s/s

Environment specification polygons (bbox, vertices, edges) Loaded from external files
Output metrics COM displacement; pixel strains; oscillator traces ~ Recorded every 0.1 s

node(s) enter contact and are applied for one accepted integrator step,
after which they are reset to zero.

Computational Setup

Simulations are coded in C++ for the core solver, using Eigen for matrix
operations and SIMD for efficient batched spring force computation.
Data analysis and visualization are handled in Python using Jupyter
notebooks, matplotlib, and OpenCV. Computations run on a Windows
workstation (Intel iy, 8 cores).
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Fig. 5.3: Minimal mass-spring model of a body with actuation coupled to
a FHN oscillator. a, Mass-spring representation of a single pixel consisting
of four nodes and six springs, with two active springs represented in blue. b,
Changing the rest length of the active springs causes symmetric inflation of the
cube. ¢, The equilibrium length of both active springs coupled to the output of
the FHN oscillator.
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Geometry and Oscillator Coupling Optimization Approach

We conducted geometry optimization of our pixel-based mass-spring
system using a Genetic Algorithm (GA). Genetic algorithms are stochas-
tic optimization methods inspired by the process of natural selection
and evolution. They iteratively improve a population of candidate so-
lutions through operations such as selection, crossover, and mutation,
guided by an objective (fitness) function. Each candidate in the GA
represents a unique pixel structure, defined by a float-valued matrix
where each entry specifies pixel presence and oscillator coupling status.
The GA begins by initializing a diverse population of candidate ge-
ometries. Each candidate undergoes mechanical simulation, and its
fitness is quantitatively evaluated based on mechanical performance
metrics, such as stability, efficiency of locomotion, structural integrity,
and compliance. Candidates with superior fitness scores have higher
probabilities of being selected for subsequent breeding (crossover) and
mutation processes, enabling progressive improvement of geometries
over successive generations.

Geometry Parameters and Constraints

The geometry parameters are encoded as a 5x5 float-valued matrix.
Each matrix element defines the properties of a pixel in the following
way:

* Positive values represent a pixel.
¢ Negative values indicate the absence of a pixel.

¢ For the positive floats, the range [0,1] is equally divided over the
active and passive roles the pixel can play. For a system with a
single oscillator, values smaller than or equal to 0.5 are considered
passive, while those larger than 0.5 couple to the oscillator.

To ensure mechanical feasibility, constraints are explicitly enforced
before each simulation of a new specimen is executed. The critical
constraint is structural connectivity: all present pixels in an individual
specimen structure must form a connected unit without isolated ele-
ments. Connectivity is determined using an eigenvector analysis of the
mass-spring stiffness matrix, computed as follows:
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1. The stiffness matrix of the structure is assembled based on pixel
presence and spring connections.

2. Eigenvalue decomposition is performed to obtain eigenvalues and
eigenvectors.

3. Structures displaying eigenvectors corresponding to zero or near-
zero eigenvalues indicate mechanical disconnection or trivial de-
formation modes.

4. Candidates failing the connectivity test are subject to targeted
mutations (mutations on the mechanism and its direct neigh-
bors) designed to reconnect isolated or loose pixels with minimal
geometric changes.

This rigorous eigenvector-based connectivity analysis ensures that the
structures created from cossovers and mutations are mechanically mean-
ingful and feasible for physical realization. Moreover, this constrains
and speeds up the optimization process as a large portion of the low-
quality specimens are filtered out and replaced in each generation.

Numerical Implementation

The genetic algorithm was implemented in Python, leveraging libraries
such as NumPy for numerical computations, SciPy for mathematical
optimization routines, and multiprocessing for parallel execution. Cus-
tom scripts were developed to handle specific genetic operations and
constraint evaluations.

Genetic Algorithm Parameters:

¢ Population size: 500 individuals per generation, balancing genetic
diversity and computational manageability.

¢ Number of generations: 100 generations, chosen empirically to
achieve convergence within computational constraints.

* Mutation rate: 0.6, a high mutation rate selected to maintain
genetic diversity and avoid premature convergence.

* Elitism fraction: 0.2, ensuring the top 20% highest-fitness individ-
uals are directly preserved to subsequent generations.
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Crossover and Mutation Methods:

¢ Single-point crossover: Selects a random crossover point within
the candidate matrices, combining rows or columns from two
parent matrices to generate offspring.

* Two-point crossover: Uses two randomly selected crossover points
to combine segments of parent matrices.

¢ Uniform crossover: Randomly combines elements from parent
matrices based on probabilistic masks.

¢ Random float mutation: Adds uniformly distributed random
values to elements of candidate matrices within specified mutation
bounds.

* Row-column mutation: Randomly selects entire rows or columns
and applies uniform random perturbations to those segments.

¢ Block mutation: Randomly selects sub-blocks within matrices,
perturbing multiple elements simultaneously to encourage struc-
tural diversity.

Candidates were initialized with random matrices drawn uniformly
from the range [—1, 1], ensuring broad initial genetic variability. The
bounds for all elements were strictly enforced within the same range
during mutation and crossover operations to maintain numerical stabil-
ity. Once the candidates are selected for crossover, one of the crossover
methods is selected with an equal probability for each; the same holds
for the mutations.

The genetic algorithm utilized tournament selection to pick candidates
for reproduction, with tournament sizes of 3, ensuring balanced selec-
tive pressure towards higher fitness individuals without overly dimin-
ishing genetic diversity.

Stopping criteria were based on completing a predefined number of
generations (100), with interim convergence monitored through fitness
score distributions.
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Computational Efficiency and Performance

Optimization efficiency was enhanced through parallelization using
Python’s multiprocessing library, enabling simultaneous evaluation
of multiple candidate geometries. Additional computational improve-
ments included caching intermediate simulation results to avoid re-
dundant calculations, strategic serialization of data for quick access,
and real-time monitoring and visualization of optimization progress to
promptly identify convergence or stagnation.

5.3 EVOLVING A BODY FOR LOCOMOTION

As a first optimization and demonstration, we start with a single os-
cillator (Fig. 5.4a) and optimize the morphology of a soft voxel-based
design with three options for each voxel in a 5x5 lattice. Each voxel
can be a passive unit where the diagonal springs are passive and not
coupled to an oscillator. It can be an active unit where the diagonal
springs are coupled to the oscillator and the rest length of the diagonal
springs is modulated by the output of the oscillator. Lastly, a unit can
be absent in the voxel. The system is tasked with moving towards the
right, and the fitness function is the distance it covers over 60 seconds
of simulation time. Fig. 5.4b shows how the morphology of the best
specimen develops over the generations. We observe clear signs of con-
vergence in the solution as the change in morphology decreases for
later generations. In Fig. 5.4c, we observe snapshots of the walking gait
over time for the best specimen of the first generation. As we start from
a random population, we find that even for a randomly drawn set of
500 samples, we already see movement in the target direction.

The same snapshots for the optimal morphology after 100 generations
are displayed in Fig. 5.5a. Here, we observe an apparent increase in
displacement over the same time interval. Furthermore, we find the
absence of a voxel in the middle of the structure. Interestingly, it appears
that the system uses this absent voxel as a hinge to increase deformation.
We find that the maximum fitness of the solutions doubles throughout
the 100 generations, as depicted in Fig. 5.5b. For the average fitness,
we find that although it improves over generations, it converges to a
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value lower than the maximum fitness, indicating that even after 100
generations, there is still considerable diversity in the population.
Next, we repeat the same evolutionary optimization process four times.
The trajectories of the maximum fitness show that three of the four
simulations converge to fitness values around 2. Only a single opti-
mization significantly outperforms the others, achieving a final fitness
value of nearly 3. This could be an indication of the presence of many
local minima, which make it harder for individual runs to find a global
maximum. This is expected, as even this seemingly simple problem has
323 solutions. Fig. 5.5d compares the morphologies of the best solutions.
We find that all solutions use this hinge mechanism to increase the
amplitude of the actuation. Interestingly, for the best performer overall
(top right), we observe a half-circle with an inner layer of active voxels
and an outer layer of inactive voxels, which vaguely resembles the
actuation of a bi-layer material to increase the stroke.

5.4 MULTIPLE OSCILLATORS

To increase the complexity of the possible solutions and behaviors,
we next perform simulations with more than one oscillator. Similar to
CPG controllers, we couple the oscillators using directional additive
coupling. This means that the coupling of the oscillators can exhibit
both excitatory (positive coupling) and inhibitory (negative coupling)
interactions. By coupling multiple oscillators together in a coupled
network, the coupling dictates the phase offset or the sequence between
the oscillators.
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Fig. 5.5: Outcome of the geometry optimization with a single oscillator. a,
Walking gait of the best-performing specimen of the last generation (100). The
size of the blue circle on the right indicates the amplitude of the oscillator at
the moment of the snapshot. b, Fitness over the generations. ¢, Results of four
repetitions of the same optimization. In green, the best fitness over time for
the individual optimizations. In blue, the average of the best fitness among the
optimizations. In light blue, the range of the best fitness for all the optimizations.
d, The optimized structures of the initial optimization and the best over the
four optimizations.

We consider a system of n FitzHugh-Nagumo oscillators with additive
coupling. The state of each oscillator 1 € {1,2,...,n} is defined by a
voltage-like variable Vj(t) and a recovery variable W;(t), governed by:

3 n
Vi=V;— ?1 — Wi + Ipasei +Y Z AV, (5.6)
=1
. Vi+a—bdW;
W; = %, (5.7)

with parameters:
a=07, b=08 T=12, yveR.

The matrix A € R™*™ defines the coupling topology, where Ay; = 1 if
oscillator j influences oscillator i, and Aj; = 0. Each oscillator’s voltage
V;(t) remains linearly mapped to the rest length of both diagonal
springs:

Lrest,i(t) = Lopase + aVi(t), (5-8)

where Lj 1,45 is the base rest length and o is a scaling factor.

Assuming a fully coupled network of three oscillators, equal positive
coupling between the oscillators will result in in-phase synchronization
of the oscillators, as depicted in Fig. 5.6a, regardless of the starting
conditions of the oscillators. The effective coupling matrix for this
simulation is presented in Fig. 5.6b, where we use the same positive
value for all the couplings (0.05), and because we do not consider

197



coupling of an oscillator to itself, the diagonal remains zero. Similarly,
if we start with the same initial conditions and equal negative coupling
(—0.05) between the oscillators, Fig. 5.6c-d show how the oscillators
drive each other out of phase, resulting in phase-locked oscillators
with equal phase differences between the oscillators. The behavior
becomes more interesting when we assign random couplings between
the oscillators in Fig. 5.6e-f. Now we find a combination of negative
and positive couplings that can steer the phase differences and slightly
adjust the amplitudes of the oscillators.

Whereas, for a single oscillator, the evolutionary algorithm only op-
timized the morphology of the structure, the addition of multiple
oscillators poses a vast increase in the complexity of the search space.
For more than one oscillator, we now optimize both the structure and
network architecture of the oscillators. As an example, for two oscilla-
tors, each voxel now has four possible states (absent, passive, oscillator
1, oscillator 2). In tandem with the morphology, the initial state and the
two couplings between the oscillators are optimized to find a control
sequence that aids in the displacement of the system.

To investigate how the evolutionary algorithm handles the additional
complexity of the optimization problem, we repeat the same optimiza-
tion task of moving towards the right for increasing numbers of oscilla-
tors in Fig. 5.7a. We observe that the first increase in fitness occurs when
the system transitions from a single oscillator to two oscillators, roughly
doubling the average maximum fitness achieved during optimization.
Overall, we observe an asymptotic trend where the increase from three
to four oscillators yields only a minimal increase in fitness. Fig. 5.7b-c
depict the maximum fitness trajectories of the optimizations for three
and four oscillators, respectively. Interestingly, we find very similar vari-
ance between the three- and four-oscillator systems. This could suggest
that the asymptotic convergence for the increasing number of oscillators
in Fig. 5.7a is not caused by a search space that is too complex for the
optimization, but rather a saturation of complexity needed for the task.
This is a key insight, as it suggests that there is a limit to the extent to
which system complexity is beneficial to the fitness outcome, given a
specific task and geometry size.

Evaluating the outputs produced by the best-performing two- and
four-oscillator networks in Fig. 5.7d-e, we find that the evolutionary
process is both modulating the amplitude and the phases. Even for
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the four-oscillator system, we see a coupling matrix that diversifies the
outputs by phase-locking the oscillators at different phase differences
and different amplitudes. In the snapshots of the system over time, we
observe similar behavior to that of the single-oscillator system, where
a rear limb with a hinge mechanism is used to increase deformation
in Fig. 5.7f-g. For the four-oscillator systems, we find that although
they often utilize all the different voxels, an additional diversification of
the fourth oscillator often appears to be redundant. As exemplified in
Fig. 5.7g, where the diversification of the voxel coupled to the oscillator
in blue appears to be redundant, as it is only used once in a position
that seems to have little effect on the global deformation of the system.
Taking these results and the aim of exploring architectures for future
experimental systems into account, we focus further simulations and
results on three-oscillator systems. An example of the evolutionary
process of three oscillators is illustrated in Movie 5.1.

5.5 TWO DIFFERENT GAITS APPEAR

In total, we performed eight simulations for the three-oscillator system.
Two qualitative observations are worth noting: in six of the eight cases,
we find a gait transition during the optimization. In these cases, the
system finds a two-limb solution within the first ten generations. These
limbs are used to develop a gait in which the weight constantly shifts
back and forth between the front and rear limbs. There is minimal or
no flight, with the body in contact with the ground most of the time,
similar to a canter or walking gait.
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Fig. 5.7: Locomotion with varying numbers of oscillators. a, Optimization
results for increasing numbers of oscillators. Each distribution consists of four
repetitions of the same optimization. b-c, Optimization trajectories of the four
repetitions for three oscillators and four oscillators, respectively. d-e, Optimized
oscillator outputs for the optimizations with two and four oscillators, respec-
tively. f-g, Optimized structures and gaits for the two (f) and four-oscillator (g)
optimizations.

Fig. 5.8a shows an example of this gait with snapshots of the best-
performing optimization at generation 50. The hindlimb and forelimb
both contribute to propulsion. In contrast, the gait illustrated in Fig. 5.8b
more closely resembles a gallop, bound, or hop. This is a faster gait: the
hindlimb strikes the ground, followed shortly by little or no contact for
the forelimb. A clear aerial phase follows, during which all limbs are
off the ground. This gait emphasizes speed and dynamic movement,
characterized by pronounced extension and flexion of the spine, as well
as a more forceful push-off by the hindlimb (Movie 5.1). Compared to
the first gait in Fig. 5.8a, the gallop-like gait in Fig. 5.8b shows greater
stride length, reduced ground contact time, and increased reliance on
the hindlimb for propulsion. The convergence towards this gallop-like
locomotion can also clearly be observed in the best-scoring morpholo-
gies for each evolutionary optimization. Fig. 5.8c shows five examples,
where, for all five examples, we find an interconnected section of the
same type of voxel that reaches from the hindlimb up to the spine.
By expanding and contracting these sections in synchrony, the body
generates the spinal extension and push-off by the hindlimb, similar to
the gallop of the cheetah.
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Fig. 5.8: Gaits for three-oscillator geometries. a, Canter gait found as the best
specimen at generation 50 for the optimization with three oscillators. b, Gallop
gait found as best specimen at generation 100 of the same optimization as a. ¢,
Best five specimens over eight optimizations with three oscillators. The black
outline indicates the observed similarity between the specimens: a diagonal
arrangement of the same oscillator that controls the rear limb and mid-body.

56 CLIMBING IN A CONFINED SPACE

To build towards adaptive behavior, we next investigate the three-
oscillator system for a different task, climbing in a confined space. For
this task, we apply the same parameters as for the previous task, but
change the environment by adding two walls spaced 0.15 m apart. The
fitness function is changed to the average position of the system on the
y-axis after 60 s of simulation time. Fig. 5.9a depicts the best-performing
first-generation specimen out of four repetitions of the optimization. In
contrast to the running task, where we already found walking specimens
in the random initial generation, we find that the initial generations
of the climbing optimization are barely able or unable to climb. An
example of the evolutionary process is illustrated in Movie 5.2.
Nonetheless, the optimization is able to adapt the structure and oscil-
lator architecture to achieve climbing after 100 generations (Fig. 5.9b).
From the optimization trajectories in Fig. 5.9c, we observe that in the
first generation of all four repetitions, the average position of the system
after 60s of simulation time does not exceed the height of the structure.
Despite this steep increase in task complexity, we find that for all four
optimizations, the system evolves to climb, increasing its fitness by 15
to 20 times over 100 generations. The outputs of the oscillators over
time for the first and last generations in Fig. 5.9d and Fig. 5.9c, respec-
tively, show how the evolution has both shifted the phase lag between
the oscillators and used the coupling to increase the amplitude of the
oscillator in blue. These results indicate that the system can handle
the increase in task complexity, enabling us to test its ability to switch
between tasks of climbing and running.
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5.7 ENVIRONMENTAL FEEDBACK

For the system to adapt its behavior to the task, it needs a way to
sense changes in its task. Inspired by how CPGs in nature process
sensory information, we aim to couple the network of oscillators di-
rectly to the environment. We directly couple the input current of the
oscillators to the environment, similar to how the coupling between
oscillators modulates their input current. Although there are numerous
ways to implement this coupling, our primary consideration is that
the implementation must be as computationally inexpensive as possi-
ble to maintain the feasibility of running these large, computationally
intensive optimizations.

During simulations, we model the environmental coupling to each oscil-
lator using a simple heuristic. Specifically, when a voxel associated with
a given oscillator comes into contact with the environment (interpreted
as penetration or sustained contact), the oscillator’s input current is in-
creased from a baseline value of 0.4 to 0.8 for the duration of the contact.
This modulation serves as a computationally inexpensive substitute
for mechanical interaction with the environment. In an experimental
setting, this would be analogous to mechanically kinking or unkinking
a tube that leaks air parallel to the oscillator’s inlet Chapter 3. Fig. 4.7a.
Fig. 5.10a shows the results of four repetitions of the climbing task for
the adaptive oscillator network. We find significantly more variance in
the fitnesses of the four repetitions. Although the average best fitness is
relatively similar between the adaptive and the non-adaptive networks,
Fig. 5.10b also demonstrates that the overall best specimen after 100
generations of the adaptive oscillator network significantly outperforms
the non-adaptive counterpart. Snapshots of this specimen are presented
in Fig. 5.10c. When we compare the limit cycles of the best non-adaptive
and adaptive solutions in Fig. 5.10d and e, we find that both solutions
find a stable limit cycle. However, we observe that the adaptive oscillator
network follows a trajectory with small deviations, whereas the non-
adaptive network exhibits no deviations once the limit cycle is reached
(an example of a stable limit cycle for the non-adaptive oscillators is pre-
sented in Movie 5.3). Lastly, we find that the adaptive network reaches
its limit cycle after a single oscillation, while the non-adaptive network
needs three cycles to reach its limit cycle. These results demonstrate that
the coupling with the environment makes the optimization problem
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more complex, as seen by the variation in the quality of the solutions.
However, they also demonstrate that it is capable of finding solutions
that outperform the non-adaptive oscillators, which could be the result
of increased robustness.

To further investigate the quality of the solutions found in Fig. 5.10, we
investigate the robustness of the solutions to perturbations to the initial
conditions of the oscillators and the coupling between the oscillators
by repeating the simulation of the best result for each optimization
repetition (four in total). For each repetition, we draw 100 perturbations
from a normal distribution with a mean of zero and a fixed standard de-
viation. This process is repeated for increasing standard deviations, and
the average fitness within each standard deviation is then normalized
by the original fitness of the solution. We first compare the adaptive
networks with the non-adaptive networks in response to perturbations
in the initial conditions, for both the climbing task in Fig. 5.11a and the
running task in Fig. 5.11b. We find that the adaptive networks are more
robust to initial conditions. The same simulation setup is also used to
test robustness against perturbations in the coupling network for climb-
ing and running, as shown in Fig. 5.11¢c-d. We observe a similar effect,
where adaptive networks exhibit greater overall robustness and become
even more robust during the task with increased interaction with the
environment. One explanation for this difference is that, in the case
of the adaptive network, the environment acts as additional coupling,
making the system more strongly coupled overall. This also supports
the results found in Fig. 5.10d and e, where an adaptive network re-
sulted in a shorter transient before reaching the limit cycle. Overall,
these results demonstrate how sensory feedback from the environment
leads to more robust behavior, even in this minimal network with a
fixed objective.

58 ADAPTATION TO THE TASK

While the adaptive networks in running and climbing tasks show that
the adaptive networks are capable of finding higher-performing so-
lutions, the system still settles in stable limit cycles (Fig. 5.10e). This
is likely because the interactions with the environment are relatively
stable. To explore the system’s capabilities, we next perform multiobjec-

207



Indv. Best === Avg. Best Non adaptive
==== adaptive

o
I

Fitness [m]
N
1
Fitness [m]
N
1

0 T T T 0 1 T 1 T
0 25 50 75 100 0 25 50 75 100
Generation Generation

15 0s 15.4s 15.8s 16.2s 16.6s 17.0s

L

‘e 50 ‘€ 50 A

g E .

2 - N

£ 07 £ 07 > ==

| / | =

7 > iy e— ]

£ -504 Z £ 50 ——

T T T T T T

-50 0 50 -50 0 50
|rest,2 - Irest,l [mm] Ires'c,2 - |rest,1 [mm]

Fig. 5.10: Making the oscillator network adapt to the environment. a, Fitness
over the generations for adaptive oscillators in the climbing optimizations
over four repetitions of the optimization. b, Comparison of the average best
fitness over four repetitions for 100 generations for the adaptive and non-
adaptive oscillators. ¢, Snapshots of the best specimen for the adaptive oscillator
optimizations. d-e, Comparison of the oscillator limit cycles for the best non-
adaptive (d) and adaptive (e) climbing optimizations.

208



non adaptive === zdaptive

a. b.
1.0 —
a % 0.9 - .
(] (V] —
5 S 0.8
= = Y N
° ° TN\ T
I & 0717
F Z 061
2 2 0.5+
0.4 T T T 0-4 T T T
0 20 40 0 20 40
Std as % of parameter range Std as % of parameter range
C d.
1.0 1.0
% 0.9 - ¢ 0.9 -
(] ()
C C
= 0.8 A £ 0.8 A _
gl ko] —
_g 0.7 A _&J 0.7 A
£ 0.6 £ 0.6
2 0.5 1 2 0.5 1
0.4 1 1 T 0-4 T T T
0 10 20 0 10 20
Std as % of parameter range Std as % of parameter range

Fig. 5.11: Robustness of adaptive and non-adaptive networks. a-b, Robustness
against perturbations in the initial conditions for the climbing task (a) and
the running task (b). c-d, Robustness against perturbations in the coupling
network for the climbing task (c) and the running task (d). For each optimization
repetition (four in total) as presented in earlier figures, the best solution was
resimulated under 100 perturbations drawn from a normal distribution with
zero mean and increasing standard deviation. The original fitness of the solution
normalized the average fitness within each standard deviation.

209



tive optimizations while switching tasks and environments. During the
first stage of the optimization, the climbing task is active (as described
in Fig. 5.9). When the system has climbed 0.8 m, the environment is
switched to stage two, as depicted in Fig. 5.12a. The side wall disap-
pears, and a horizontal floor appears at 0.6 m. The fitness function
during optimization is set to the sum of the y-axis and x-axis displace-
ments of the system. Effectively, the system optimizes for climbing
during the first stage and running during the second stage of optimiza-
tion. We perform four optimizations, both with the non-adaptive and
adaptive oscillator networks, with the results presented in Fig. 5.12b
and c, respectively. We find that the average best fitness score for both
non-adaptive and adaptive oscillators is similar. Furthermore, similar
to the climbing experiments, we see a larger variation in the results
for the adaptive oscillator networks. The best-performing simulation
of the adaptive networks has a fitness that is 1.5 times higher than
that of the best-performing simulation of the non-adaptive networks.
More interestingly, we observe vast differences in the limit cycles of the
non-adaptive (Fig. 5.12d) and the adaptive (Fig. 5.12e) networks (Movie
5.4). The non-adaptive phase diagram exhibits a clear, stable limit cycle
with a short transient of roughly four cycles, as shown in Fig. 5.12d.
The adaptive oscillator simulation results in a phase diagram without a
stable limit cycle, as shown in Fig. 5.12e, indicating that the oscillators
change their respective behavior over time.

Fig. 5.13a and b show the climbing and running behavior of the single
adaptive oscillator simulation corresponding to Fig. 5.12e. Although we
can observe a difference in deformations between the two environments,
this difference becomes much clearer when examining the oscillator
outputs during these time intervals in Fig. 5.13c and d. We find that
both the phase differences between the oscillators and the amplitudes
have changed in response to the environmental change. Fig. 5.13e shows
the gradual transition between the gaits as the environment is switched,
around the 40 s mark. Reevaluating the phase diagram of the oscillators
for the two isolated time intervals in Fig. 5.13f reveals two distinct
limit-cycles for the two environments. Importantly, the system remains
the same, and the change in behavior is solely due to the change in
environment.

These results demonstrate that coupling oscillators to the environment,
in conjunction with a co-evolved morphology and oscillator network,
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can lead to task-dependent behavioral switching, even for networks
with a minimal number of oscillators. Moreover, the intrinsic stability
of the FHN oscillators facilitates smooth transitions between the limit
cycles.

5.0 BINARY INPUTS FOR CONTROL

As a last demonstration, we show how the behavior of these minimal
oscillator networks can also be controlled by higher-order control, as de-
picted in Fig. 5.1a-b. For this demonstration, we add a control oscillator
to the network that can be turned on and off by setting its base current
Ipase from 0.8 to zero; the network is depicted in orange in Fig. 5.14a.
Our goal is to have the system move to the left when the oscillator is
off and to the right when the oscillator is on, thereby emulating how
the system could be controlled by a sensor or higher-order brain (e.g.,
MCU) from a single input (oscillator on or off). To evolve the system
for both tasks, we run the simulation twice for every specimen, once
with the control oscillator on and once off. To force equal priority for
both tasks, we employ a geometric mean (emphasis on balance) of the
two simulations.

We define the fitness function as

F=+/(d_+¢)d; +¢), £€>0
where
d— =max(0, —Axn), dy = max(0, Axg).

Here, d_ is the distance moved in the negative x-direction in simula-
tion A (oscillator off), and d. is the distance moved in the positive
x-direction in simulation B (oscillator on). The small constant ¢ pre-
vents the fitness from becoming zero when either distance is zero. This
geometric mean formulation ensures that both d— and d4+ must be
large to achieve high fitness, thereby rewarding a balance between the
two simulations. Fig. 5.14b shows the best-performing specimen after
100 generations of optimization. We find that the control oscillator is
only used in a single pixel, likely because it is turned off for the first
simulation and is therefore considered less useful. Fig. 5.14c-d show
the oscillators over time for simulations A and B, respectively. These
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show clear phase differences between simulations A and B. Specifically,
the relation between the blue and dark gray oscillators changes dras-
tically from anti-phase to nearly in-phase when the control oscillator
is turned on. From the snapshots of the simulations in Fig. 5.14e-f, we
can observe how the minimal network can move both left and right in
response to a single input (Movie 5.5). These results demonstrate that
with a well-suited morphology, minimal oscillator networks can switch
between different behaviors in response to a single higher-order input,
thereby demonstrating how these minimal oscillator networks could
offload computation from higher-order controllers.

5.10 CONCLUSIONS

This chapter shows that adaptive behavior does not require large neural
controllers or dense sensor networks; it can emerge from the coevolution
of a soft body and a minimal network of coupled oscillators. By co-
evolving morphology and a relaxation oscillator network with only a
handful of nodes, we obtained robust gaits, task switching, and single-
input higher-order control, which, in principle, can be mapped to fluidic
implementations. The key insight is that morphology and controller
are not independent modules, but a single dynamical object whose
potential appears when both are allowed to shape one another.

A practical implication emerging from these results is that, for the tested
environments and design space, three oscillators may be sufficient
to generate the required phase—amplitude diversity, while adding an
oscillator offers only marginal benefits. These insights yield significant
benefits for future experimental work. Direct coupling between the
environment and the oscillators appears to potentially enhance fitness,
reduce transients toward stable limit cycles, and increase robustness,
allowing the body—environment interaction to act as an additional
coupling edge in the network. Notably, behavioral switching occurs
without reprogramming: the same hardware can settle into distinct limit
cycles under different environmental conditions, and a single gated
“control” oscillator could toggle locomotion direction. Taken together,
these observations suggest that sequencing and part of the sensing
could be offloaded from central processors to body mechanics and
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local oscillators, indicating a path toward electronics-free or minimal
electronics soft robots that adapt to their environment.

On the experimental side, a three-oscillator fluidic network with tunable
coupling could be used to reproduce these behaviors, with minimal
sensing implemented as a contact-based inflow or simple “kinked tube”
[17]. While the present model employs idealizations (linear springs,
penalty contact, simplified damping and sensing, and a planar lattice)
to make it computationally feasible to explore many directions, the
overall trends, however, appear robust enough to motivate experimental
work in this direction. Follow-up work could include hardware-in-the-
loop optimization to account for manufacturing tolerances and pneu-
matic dynamics ([78]), the incorporation of sparse yet richer sensors to
shape oscillator inputs ([45]), and manufacturability-aware constraints
embedded directly into the optimization.

More broadly, these minimal oscillator networks coupled to morphology
and environment have the potential to extend beyond legged locomo-
tion. Similar principles could be applied to peristaltic pumps with re-
configurable wave orders, timing-aware grippers, and medical crawlers
that adapt to changing substrates. In this view, these minimal networks
with co-evolved bodies that “compute as one” show a practical route to
scalable, adaptive soft robotics.
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5.11 SUPPLEMENTARY MOVIES 5

Movie 5.1. Evolution of the morphology over time for the running task. The
movie depicts the behavior of the best-performing candidate over time
at different generations of the evolution, during one evolutionary op-
timization of the running task. The colors indicate to which oscillator
each voxel is coupled.

Movie 5.2. Evolution of the morphology over time for the climbing task.
The movie depicts the behavior of the best-performing candidate over
time at different generations of the evolution, during one evolutionary
optimization of the climbing task. The colors indicate to which oscillator
each voxel is coupled.

Movie 5.3. Oscillators and limit cycle over time for a running structure. Three
windows show the morphology, oscillators, and the limit cycle of the
oscillators over time, from left to right, respectively.

Movie 5.4. Change in behavior for the adaptive oscillator network during an
environmental switch. Three windows show the morphology, oscillators,
and the limit cycle of the oscillators over time, from left to right, re-
spectively. During the experiment, the environment is switched from
climbing to running, and the system adjusts its behavior accordingly.

Movie 5.5. Binary inputs for control. The movie demonstrates how a single
structure can change the orientation of locomotion by switching a single
oscillator on and off.
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6.1 CONCLUSIONS

This thesis asks how computation can be embodied for emergent, goal-
oriented behavior in soft robots. Embodied computation in the context
of this thesis refers to the capacity of the body, local controllers, and
environment to work together, much like biological systems that dis-
tribute control across tissues and internal networks. These complex,
decentralized interactions within biological systems of all scales grant
them the autonomy to survive in the real and unstructured world. This
remains a significant challenge in robotics to this day.

What constitutes decentralized autonomy in soft robotics, and how
does it relate to biological systems?

Across design, simulation, and experiment, we show that coordination
of locomotion can be distributed across compliant bodies, local con-
trollers, and environmental interactions such that purposeful motion
in soft robots arises without the need for central control or a full-body
representation.

The main difference between natural systems and the design of soft
robots is that nature has had billions of years to evolve, resulting in a
seemingly limitless level of complexity. This is unattainable for robotics
today; however, there are key principles we can learn from. By using
local sensing, computation, and processing in each limb, Chapter 2
shows how goal-directed behavior can emerge even without explicit
communication or central control.

How can we design soft robots that achieve complex goal-directed
behaviors through localized sensing and minimal processing?

The algorithm proposed in Chapter 2 and Chapter 3 teaches us that
designing and optimizing for an emergent behavior using a minimal
form of decentralized learning results in complex dynamical systems
where behavior is not predefined as in inverse kinematics for rigid
robots but instead emerges from the combination of environmental
input, the soft deforming body, and the algorithm. These results lead us
to view soft robotic systems and their surroundings as one closed-loop
dynamical system in which materials, morphology, and the environment
affect and thus contribute to the composition of system-level behavior,
much like their biological counterparts.
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Can we characterize and understand the emergence of phototaxis in
decentralized soft robots, with minimal and local sensing, memory,
and actuation?

The characterization clarifies both strengths and limits. The decentral-
ized algorithm proposed in Chapter 2 and Chapter 3 produces robust
goal-directed behavior when the learning rate matches the morphology
and actuation time scale of the system. From Chapter 3, we further learn
that the system-level behavior is primarily dictated by body compo-
sition and that the optimization, due to its limited form of memory,
merely follows locally optimal behavior. This gives rise to structured
trajectories through the behavioral search space of the system, which
can be utilized and designed for a given specific task or environment.
Yet, the discrete-time updates and stochastic perturbations make direct
hardware realizations in analog or fluidic circuits costly because con-
tinuous signals must be quantized, gated, and randomized. Although
possible, this approach results in integrated circuits with considerable
additional components, as it requires converting continuous electrical
signals into discrete and stochastic processes. This top-down approach,
which starts with an algorithm on a computer and works toward a
hardware implementation, therefore introduces overhead that is at odds
with embedding computation to reduce the complexity of components.
By contrast, nature builds coordination from continuous dynamics at
the component level, for example, through self-oscillatory elements.
Framing locomotion as an emergent property of such continuous dy-
namics explains why bottom-up designs can achieve similar functions
with fewer resources.

Can we create controllable self-sustaining rhythmic patterns and
coordination in soft oscillators, through local fluidic coupling and
without electronic control systems?

Chapter 4 adopts a bottom-up approach by designing a self-oscillating
component that directly regulates the pressures in the soft actuators,
thereby minimizing the overhead posed by electronics entirely. Using
directional coupling, inspired by biological networks of neurons, shows
that we can coordinate the phases of the oscillators solely through
fluidics.
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The transition to this bottom-up approach, combined with the need
to design for the system as a whole, also poses the question of how
a coupling between oscillators can be learned to produce a desired
goal-directed behavior at the system level. In Chapter 3, the system
can learn and adapt its phases freely during the task, which would be
challenging to implement directly in an oscillator network due to the
nonlinear relationships between oscillator couplings and their emerging
phases.

Using the limited short-term memory of the proposed algorithm yielded
great benefits for its ability to adapt. However, this approach also has
limitations, as the absence of long-term memory causes it to quickly
forget and prevents learning from past experiences on longer time
scales. Natural systems learn from past experiences on many different
time scales. The most fundamental and universal is evolution, where
specimens that perform well pass on their genes to the next generation.

How does co-evolutionary design of morphology and embedded
computation enhance autonomous adaptability in soft robotics?

By co-evolving the morphology of a soft robot and its oscillator network
that controls its actuation in different task settings with simulations
in Chapter 5, we can optimize the synergy between morphology, em-
bedded computation, and environment in a closed loop. Co-evolution
of morphology with a small relaxation oscillator network produces
robust gaits, task switches, and direction toggling via a single gated
input. Importantly, for the tested environments, three oscillators often
suffice to span the required phase and amplitude diversity, and direct
coupling through the environment shortens transients to stable limit
cycles, thereby improving robustness. These findings point the way
toward compact physical implementations with minimal sensing that
retain adaptability. The main drawback of this approach is that it is not
trivial to realize the simulated system as a physical counterpart. First, it
is notoriously hard to model all the physics and nonlinearities of soft
robots in detail. Second, non-gradient-based stochastic optimizations,
such as evolutionary algorithms, are computationally costly. However,
as evidenced in both Chapter 3 and Chapter 4, coarse-grained qualitative
simulations can provide meaningful insights and give engineers design
directions for physical implementations.
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Returning to the central question of how computation can be em-
bodied for emergent, goal-oriented behavior in soft robots, this work
demonstrates that modules with minimal computation and limited
memory can, through repeated oscillatory actuation and environmen-
tal coupling, yield goal-oriented locomotion that adapts to changing
conditions. The body’s compliant mechanics do not merely execute
commands; they compute by filtering, shaping, and synchronizing local
actions into system-level trajectories, aligning with biological strate-
gies that distribute control across material and morphology to offload
central processing. Because the approach relies on the design of the
dynamical system that consists of the entire body together with its
environment, it scales to domains where modeling is impractical and
computational resources are scarce, including swarm, micro, and nano
robotics [140]. By unifying mechanical intelligence with minimal com-
putation, the thesis charts a path for soft robots to approach biological
versatility, robustness, and autonomy while maintaining a minimal
design approach.

6.2 OUTLOOK

Building on these conclusions, this section translates the central lesson of
this thesis into a research agenda: task, environment, body, and control
should be designed and studied as a single dynamical system, allowing
compliant materials to share the work of sensing, computation, and
control. Insights from Chapter 2 and Chapter 3 on decentralized learning
and environment-mediated feedback, from Chapter 4 on electronics-free
rhythmic control, and from Chapter 5 on co-evolution of morphology
and minimal oscillator networks, motivate concrete questions and future
experimental work. The following section proposes a direction for
investigating these questions.

How can we combine implicit and explicit forms of communication
in decentralized systems to gain adaptability?

Chapter 4 and Chapter 5 demonstrate that explicit communication be-
tween oscillators, facilitated by their fluidic coupling, can produce
robust and versatile phase patterns between the oscillators. However,
Chapter 1, Chapter 2, and Chapter 3 show that explicit communication
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is not strictly required to produce phase locking and achieve a desired
system-level behavior. Although it is more complex to design for, be-
cause the phase locking and desired behavior are solely environment
dependent, it has the benefit of reducing component complexity, as no
coupling is required, as seen in the example in Chapter 1. An interesting
direction is to explore how we can combine the predictable design
and network scalability of explicit coupling with the adaptability and
tolerance to fabrication variance of implicitly coupled systems. For limb
systems, one could explicitly couple more local sections within each
limb while retaining implicit coupling between the limbs, thereby re-
ducing the overhead of extensive wiring between limbs. In this example,
the implicit coupling could also be used to switch between limit cycles
in response to a changing environment, as seen in Chapter 1, while the
more local explicit coupling could be of use to increase the number of
actuators and generate more complex and reliable gaits.

Can we combine these decentralized emergent forms of control
with existing central controllers?

Throughout the thesis, we have seen that these decentralized systems
are capable of goal-oriented behavior. However, due to their minimal
design approach, these systems lack a form of long-term memory or
action planning. Achieving true autonomy in more complex tasks and
real-world scenarios appears to require hierarchical control. There is
a vast literature on central controllers and computer algorithms. A
promising research direction could be to combine these central con-
trollers, which facilitate high-level thinking such as action planning and
decision-making, with decentralized networks that can filter sensory
information and construct actuation gaits locally. As an example, Chap-
ter 5 demonstrates how a single binary input can switch the limit cycle
of the oscillator network to change the direction of locomotion. By de-
signing binary switches for different system-level behaviors, the central
controller will have a set of behaviors that require minimal inputs for
action planning. At the same time, the oscillator network handles gait
formation and the transition between gaits. This way, we offload control
from the central controller to the body, analogous to the relationship
between the central nervous system and CPGs in natural systems.

The implicitly coupled algorithm from Chapter 2 and Chapter 3 could
find similar use in larger, more complex robotic systems, performing
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local sensing and computation to carry out tasks away from the central
controller, such as adapting tactile skins based on surface composition,
similar to the camouflage of cuttlefish, which arises from local sensing
and actuating in the skin.

Do these fluidic oscillators scale in size, and how do we design for
large networks?

The principles of the fluidic relaxation oscillator proposed in Chap-
ter 4 could be scaled down significantly. Currently, these oscillators are
centimeter-scale, which limits their practical implementation in larger
networks. However, in theory, one could implement these same princi-
ples into printed microfluidic networks [4], opening up the possibility
to scale the network sizes to hundreds of fluidic neurons. This would
be in the same order of magnitude as simple natural life forms, like
C. elegans [129]. Scaling the networks to larger numbers of oscillators
increases both the number of potential sensory inputs and the number
of potentially stable limit cycles within the system. Already, with the
present oscillator system, we must start designing for soft robots that
incorporate a number of behavioral primitives, where probability or
environmental cues can switch the system to a different limit cycle
and adapt its behavior. This way, the system-level behavior starts to
emerge and adjust based on local sensing, similarly to the minimal
algorithm proposed in Chapter 2 and Chapter 3. Therefore, we can begin
to develop systems that can adapt their behavior and accomplish tasks
in real-world scenarios.

Even though this would grant soft robots a vast increase in their poten-
tial complexity, it also poses a fundamental question: how do we design
for such complex behavior with potentially thousands of degrees of
freedom? Computer simulations and reinforcement learning could pro-
vide a potential solution, as research on physics engines is progressing
quickly and has shown the ability to train large neural networks for
robotics [71]. Combining these with the ability to print microfluidic
chips could give rise to a domain of scalable, bio-inspired systems that
do not require electricity and that actuate, sense, and compute using
the same medium.

Is it possible to translate short-term and long-term memory learn-
ing into coupled oscillator networks?
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The oscillator networks introduced in Chapter 4 and Chapter 5 show
great potential for making robotic systems that have the adaptability
and robustness of their biological counterparts. One crucial difference,
however, is that in biology, the neuronal connections do not merely
change over generations but also within the lifetime of a single specimen.
It is this ability that enables natural systems to adapt and learn and
gives them memory. Although ambitious, the emerging field of physical
learning has started to bridge the gap between learning in computers
and their physical and biological counterparts [117]. By creating fluidic
oscillator networks with adjustable directional couplings, behaviors can
be trained directly on the physical system itself. In this way, principles
of reinforcement learning and physical learning could be applied to
give the soft robots a sense of memory and learning.

A long-term goal for soft robotics and robotics in general could therefore
be to envision networks of neural elements distributed throughout a
robot’s body, acting as a biological nervous system and brain that learns
throughout its life cycle.

In conclusion, designing the task, environment, body, and control as a
single closed-loop dynamical system achieves robustness not by mod-
eling everything in detail, but by combining emergence with minimal
tunability and soft bodies. This is the main takeaway: decentralized,
emergent forms of coordination offer a minimal and scalable way to
steer soft-robot behavior toward a goal robustly while retaining the
adaptability to bring future soft robots outside the lab.
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