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Many bacteria are propelled by flagellar motors that stochastically switch between the clockwise
and counterclockwise rotation direction. Although the switching dynamics is one of their most
important characteristics, the mechanisms that control it are poorly understood. We present a
statistical–mechanical model of the bacterial flagellar motor. At its heart is the assumption that the
rotor protein complex, which is connected to the flagellum, can exist in two conformational states
and that switching between these states depends on the interactions with the stator proteins, which
drive the rotor. This couples switching to rotation, making the switch sensitive to torque and speed.
Another key element is that after a switch, it takes time for the load to build up, due to
conformational transitions of the flagellum. This slow relaxation dynamics of the filament leads, in
combination with the load dependence of the switching frequency, to a characteristic switching
time, as recently observed. Hence, our model predicts that the switching dynamics is not only
controlled by the chemotaxis-signaling network, but also by mechanical feedback of the flagellum.
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Introduction

Flagellated bacteria, such as Escherichia coli, are propelled by
flagellar filaments. Each flagellar filament is under the action
of a rotary motor, which can rotate either in a clockwise (CW)
or a counterclockwise (CCW) direction (see Box 1; and
Thomas et al, 2006). When all motors run in the CCW
direction, the flagella form a helical bundle and the bacterium
swims smoothly. When one motor switches direction to run in
the CW direction, however, the connected flagellar filament
disentangles from the bundle, and the bacterium performs a
so-called tumble. These tumble events randomize the cell’s
trajectory, and it is the modulation of their occurrence that
allows these bacteria to chemotax.

A cartoon of the bacterial flagellar motor is shown in panel A
of Box 1. It consists of a protein complex called the rotor, and a
number of stator proteins that are fixed in the inner membrane
and the peptidoglycan layer. Interactions between the stator
proteins and a ring of FliG proteins of the rotor protein
complex drive the rotation of the rotor, and thereby the
rotation of the flagellum, which is connected to the rotor. The

rotation direction depends on the concentration of the
phosphorylated form of the messenger protein CheY, which
binds to the ring of FLiM proteins of the rotor protein complex.
The concentration of CheYp is regulated by the intracellular
chemotaxis network, which transmits the ligand signal from
the receptor cluster to the motors.

Recent experiments suggest that the switching dynamics of
the bacterial flagellar motor is not only under the control of the
intracellular chemotaxis pathway (Korobkova et al, 2004;
Tu and Grinstein, 2005), but is also sensitive to mechanical
feedback. Fahrner et al (2003) showed that the average
motor switching frequency depends on the torque and rotation
speed of the motor. Moreover, Korobkova et al (2004, 2006)
studied the motor switching statistics in mutant cells in
which the switching dynamics is no longer modulated by the
chemotaxis signaling network. To this end, they measured
power spectra of the switching dynamics, which reflect the
time scales on which the motor switches direction, by
monitoring the rotation of a 0.5-mm latex bead connected to
a flagellum (Korobkova et al, 2004, 2006). Interestingly,
the power spectra are not consistent with a two-state Poisson
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process, in which the switching events are independent, and
the CWand CCW intervals are uncorrelated and exponentially
distributed (Korobkova et al, 2006). They show a distinct
peak at around 1 s�1 (Korobkova et al, 2006), which means

that there is a characteristic frequency at which the motor
switches. Moreover, the peak implies that switching is coupled
to a non-equilibrium process (Van Kampen, 1992; Tu, 2008; Van
Albada, 2008). This is intriguing, because this observation,
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Box 1 The bacterial flagellar motor consists of a number of stator proteins embedded in the membrane, which drive the rotation of a protein complex called the
rotor, which in turn is connected to a flagellum (see panel (A)). The interactions between the rotor and one stator protein are modeled through the energy surfaces
shown in panels (B, C). Panel (B) shows the energy surfaces corresponding to two conformational states of the stator for a given conformational state of the rotor.
The thermodynamic driving force is the proton motive force denoted by DG. Panel (C) shows the energy surfaces of the motor that correspond to the CCW and CW
states of the rotor, for a given conformational state of the stator protein; the two surfaces are assumed to be each other’s image plus a shift, and an energetic offset
that is given by the CW bias. In total, each stator–rotor interaction is characterized by four surfaces, corresponding to the 2� 2 conformational states of the stator
and rotor proteins. Panel (D) shows the energy surfaces of the flagellum. The left-most curve (m¼1) corresponds to the normal state, the right-most curve (m¼N)
corresponds to the curly state, whereas the intermediate states correspond not only to the semi-coiled state but also to hybrid filaments consisting of different
sections of these polymorphic forms (Darnton and Berg, 2007). The polymorphic transitions are modeled as stochastic jumps between these surfaces. They are most
likely to occur at the positions given by the arrows. Panel (A) is courtesy of DJ DeRosier (Thomas et al, 2006).

Box 1 Model of the bacterial flagellar motor
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combined with the observation that the switch is sensitive to
torque and speed (Fahrner et al, 2003), suggests that switching is
coupled to the non-equilibrium process of rotation.

We argue that to explain the switching dynamics of the
bacterial flagellar motor, we have to integrate a description of
the switching dynamics of the rotor with a description of both
the flagellum dynamics and the dynamics of the stator proteins
that drive the rotation of the rotor (see Box 1). In our model,
the proteins of the rotor complex collectively switch between a
CW and a CCW conformational state, corresponding to the
respective rotation directions of the motor. Interactions
between the stator proteins and the rotor do not only drive
the rotation of the rotor, but also continually change the
relative stability of the two conformational states of the rotor.
This couples switching to rotation, making the switch sensitive
to torque and speed. Our model also predicts that the
probability for the rotor to switch increases strongly with the
load at low load, in agreement with recent experiments (Yuan
et al, 2009). This property, in combination with the conforma-
tional dynamics of the flagellum, is key to understanding the
switching dynamics of the bacterial flagellar motor.

Bacterial flagella can exist in different conformational or
so-called polymorphic states (Calladine, 1975; Macnab and
Ornston, 1977; Hotani, 1982; Darnton and Berg, 2007), which
are either left-handed or right-handed helices. When the motor
runs in the CCW direction, the flagellum adopts a left-handed,
normal state, whereas if the motor runs in the CW direction, the
flagellum adopts a right-handed, semi-coiled or curly state
(Turner et al, 2000). By pulling on a single flagellum using
optical tweezers, Darnton and Berg (2007) recently observed
that transitions between these polymorphic forms occur in
discrete steps, during which elastic strain energy is released. We
argue that the change in the torque upon a motor reversal
induces a polymorphic transition that proceeds through a similar
series of discrete steps. As in each of these steps strain energy is
released, the torque on the motor, and hence the switching
propensity, remains low. Only when the flagellum has reached
its final polymorphic form, and the strain energy can no longer
be released, does the torque on the motor, and hence the
switching propensity, increase. This mechanical feedback of the
flagellum on the switching propensity of the rotor leads to
the characteristic switching time of the motor, as observed
(Korobkova et al, 2006). Our results thus show that the
switching dynamics of the bacterial flagellar motor is not only
controlled by the dynamics of the intracellular signaling path-
way, but also by mechanical feedback of the flagellum. As the
characteristic switching time due to mechanical feedback is on
the same time scale as the response time of the intracellular
chemotaxis network (Korobkova et al, 2004), the mechanical
feedback of the flagellum on the switching frequency of the
motor is expected to have an important role in modulating the
run and tumble times of chemotacting bacteria.

Results

The stator–rotor interaction

We consider the switching of a single motor, consisting of eight
stator proteins that drive the rotation of the rotor protein
complex, which is connected to a single flagellum (see Box 1).

In a given conformational state, the rotor protein complex
interacts with the stator proteins according to a model that is
inspired by that of Meacci and Tu (2009), and that of Xing et al
(2006), which is based on the description by Kojima and Blair
(2001). According to this proposal, the motor cycle of each stator
protein consists of two ‘half strokes’. During the first power
stroke, two protons bind the stator protein (Kojima and Blair,
2001; Xing et al, 2006). This leads to a thermally activated
conformational transition of the stator protein, allowing it to
exert a force on the rotor protein complex. During the second
stroke, the recovery stroke, the two protons are released to the
cytoplasm, triggering another conformational transition of the
stator, allowing another part of the stator to exert a force on the
rotor (Kojima and Blair, 2001; Xing et al, 2006).

The torque exerted bya stator protein on the rotor is modeled as
a constant force along an energy surface, and the conformational
transitions of the stator proteins are described as hops between
the two respective surfaces (panel B of Box 1). The rotation
dynamics of the rotor is modeled according to the overdamped
Langevin equation, and, following Meacci and Tu (2009), the
hopping rates are assumed to depend on the torque exerted by the
stator (see Materials and methods). Supplementary Figure S1
shows that this model accurately describes the torque–speed
relation of the flagellar motor of E. coli, with its characteristic
‘knee’ (Ryu et al, 2000) and the maximum speed that is
independent of the number of stators (Yuan and Berg, 2008).

The rotor switching dynamics

In E. coli, the fraction of time the motor rotates in the
CW direction, the so-called CW bias, is controlled by the
concentration of the intracellular messenger CheYp. This
protein modulates the CW bias by binding to the ring of FliM
proteins. This ring is connected to the ring of FliG proteins,
which interact with the stator proteins (see Box 1).

The molecular mechanism of the switch is unknown. Yet, it
is widely believed that the binding of CheYp to FliM tends to
change the conformation of FliM, and thereby the direction of
rotation. Following earlier work, we assume that each FliM
protein can exist in either a CW or CCW conformational state
and that binding of CheYp shifts the relative stability of these
two conformational states (Scharf et al, 1998; Turner et al,
1999; Duke et al, 2001). Moreover, we also assume that each
FliG protein can exist in either a CW or CCW conformational
state. In the spirit of a Monod–Wyman–Changeux (MWC)
model (Monod et al, 1965), we assume that the energetic cost
of having two rotor protein molecules in two different
conformational states is prohibitively large. We can then
speak of the rotor being in either the CW or the CCW state.

When the rotor complex switches from one state to another,
the interactions between the FliG proteins and the stator
proteins change, due to the new conformational state of the
FliG proteins. In our model, each stator–rotor interaction
is described by four energy surfaces, corresponding to the
2� 2 conformational states of the rotor and stator protein,
respectively (see Materials and methods). We assume that
the two rotor surfaces corresponding to a given state of the
stator are simply each other’s mirror image plus a shift, but
offset by an energy difference given by the CW bias (panel C of
Box 1). Importantly, the instantaneous switching rate depends
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on the rotation angle of the rotor, but not on the load (see
Materials and methods).

Figure 1 shows the switching dynamics of the motor in the
absence of the flagellum. This corresponds to the switching of
a bead connected to a filament stub (Fahrner et al, 2003) or a
bead directly connected to the hook (Yuan et al, 2009). As
expected, the average CCW-CW switching rate increases as
the CW bias increases (Figure 1A). More interestingly, it
increases with the external load. As we describe below, this is
key to understanding the bump in the power spectrum. The
average switching rate increases with the load, because that
brings the rotor more often to positions in which its inter-
actions with the stator proteins favor the alternative con-
formation of the rotor (see Supplementary Figure S2). This
mechanism differs fundamentally from that commonly used to
explain the force dependence of processes, such as protein
unfolding and molecular dissociation (see Supplementary
information; Howard, 2001). Interestingly, recent experiments
by Yuan et al (2009) confirm the prediction of our model that the
switching rate increases with the load in the low-load regime.

Figure 1B shows the power spectra of the switching
dynamics. It is given by a Lorentzian, which shows that the
switching of the rotor without a flagellum can be modeled as a
random telegraph process.

Flagellum dynamics

In the model discussed above, after a switching event the
torque on the motor immediately changes sign and instanta-
neously reaches its steady-state value. However, in the
experiments by Korobkova et al (2004, 2006), the switching
of the motor was visualized through a bead that was attached
to the flagellar filament. We argue that the flagellum dynamics
is critical for understanding the switching dynamics of the
flagellar motor.

Darnton and Berg (2007) recently studied polymorphic
transitions of a single filament using optical tweezers. The
following three observations were made: (1) The transitions
occur in discrete, rapid steps that are stochastic in nature,
suggesting that they are activated processes during which an
energy barrier is crossed; (2) In between the steps, the filament
behaves as a linear elastic object that accumulates elastic
strain energy that is released during the next transformation;
(3) During a step, it is not the whole filament but micrometer-
long sections that are converted.

On the basis of these three observations, we have
constructed the filament model shown in panel D of Box 1. It
consists of a number of harmonic potentials as a function of
the winding angle y, corresponding to different conformational
states of the filament. The left-most well corresponds to the
normal state, which is the polymorphic form of the filament
when the motor runs in the CCW direction. The right-most
well corresponds to the curly state, which is one of the
polymorphic forms that the filament adopts when the motor
runs in the CW direction. The states in between correspond to
an ensemble of polymorphic forms that includes not only the
coiled and semi-coiled states, but, according to the third
observation above, also states in which different filament
sections have different polymorphic forms. According to the
second observation, and by following the earlier studies
(Goldstein et al, 2000; Darnton and Berg, 2007), we assume
that the free energy of a filament in a given state m is quadratic
in the curvature and torsion. This leads to a quadratic potential
in y under the assumption that the bead position quickly
relaxes to its steady-state value (see Materials and methods).
Motivated by the first observation, we assume that the
transition from one conformational state to another is an
activated process. The dynamics of the bead connected to the
flagellum is assumed to obey overdamped Langevin dynamics
(see Materials and methods).

Figure 2 shows the switching characteristics of the motor in
the presence of the flagellum. They agree remarkably well with
those observed by (Korobkova et al, 2006). First, the waiting-
time distributions (Figure 2A) are not exponential, as would be
expected for a random telegraph process: they exhibit a clear
peak at around 0.4 s. Second, the waiting-time distribution for
the forward (CW-CCW) transition changes from a narrow
distribution at CW bias¼0.1 to a broad distribution at CW
bias¼0.9. Moreover, the power spectra show a distinct peak at
oB1 s�1 (Figure 2B), with the peak being most pronounced
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Figure 1 Switching dynamics in the absence of a flagellum. The load is
constant in magnitude, but instantaneously changes sign upon a rotation
reversal. (A) Switching rate as a function of the load tL in the forward CW-
CCW (kf) and backward (CCW-CW) direction (kb) for CW bias¼0.1, 0.5, and
0.9. Note that because of the symmetry of our model, the switching dynamics in
the forward (backward) direction for CW bias¼x, equals the switching dynamics
in the backward (forward) direction for CW bias¼1�x. (B) Power spectra S(o)
for CW bias¼0.1, 0.5 and 0.9.
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when the CW bias¼0.5. All these features are in near
quantitative agreement with experiment (Korobkova et al,
2006). The peak in the waiting-time distributions (Tu, 2008)
and power spectra (Van Kampen, 1992; Van Albada, 2008)
imply that the motor shows a characteristic switching time.

Our model predicts that the characteristic switching time
arises from the interplay between the conformational dy-
namics of the flagellum and the dependence of the switching
rate on the load (Figure 1A). The idea is illustrated in Figure 3.
After a switching event of the rotor, the torque is initially in the
original direction, but decreases rapidly in magnitude
(Figure 3A) as the filament approaches its optimal winding
angle (corresponding to the bottom of the outer potential
wells, panel D of Box 1); in this regime, the load on the motor is
negative, and the elastic strain energy in the filament
decreases. As the rotor drives the filament beyond its optimal
winding angle, the torque changes direction and increases in

magnitude; the load on the motor becomes positive, and the
strain energy in the filament builds up. This strain energy can,
however, be released through a polymorphic transition,
leading to a sudden change in the direction of the torque. This
process repeats itself until the filament reaches its final
polymorphic form, upon which the strain energy can no
longer be released and the torque increases to reach a plateau
when the viscous drag on the bead balances the motor torque.
The characteristic switching time can now be understood by
combining a time trace of the load (Figure 3A) with the load
dependence of the switching rate (Figure 1A), yielding to a
good approximation the switching propensity as a function of
time (Figure 3B). After a switching event, the torque flip-flops
around zero and the switching propensity is therefore low
(Figure 1A). However, when the flagellum has reached its final
polymorphic form, the strain can no longer be released, and
the torque and hence the switching propensity increase
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pulls on the rotor in the forward rotation direction until the load crosses zero when
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function of time after a switching event, for CW bias¼0.1, 0.5, and 0.9.
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strongly. The characteristic switching time is precisely caused
by the fact that the probability to switch is not constant in time,
as for a Markovian Poisson process, but is initially low and
then rises strongly (Figure 3B).

Coarse-grained model

Our calculations suggest that a useful coarse-grained model for
understanding the switching dynamics is one in which the
system stochastically flips between two states with time-
dependent propensity functions (Figure 3B):

CW Ð
kfðtÞ

kbðtÞ
CCW; ð1Þ

where the propensity functions are given by the following
piece-wise linear functions:

kaðtÞ ¼ kmin
a to t1 ð2Þ

kaðtÞ ¼ kmin
a þ ðkmax

a � kmin
a Þ

t � t1
t2 � t1

t1 o to t2 ð3Þ

kaðtÞ ¼ kmax
a t4 t2 ð4Þ

The important parameters of this model are the lag time,
Ta¼(t1þ t2)/2, the minimum and maximum propensity, ka

min

and ka
max, respectively, and to a lesser extent the sharpness of

the transition sa¼(ka
max�ka

min)/(t2�t1). For this model, the
waiting-time distribution and power spectrum can be obtained
analytically (see Supplementary information).

The maximum propensity function ka
max is determined by

the maximum load tmax and the switching rate at that load,
which depends on the CW bias (Figure 1A). The maximum
load is set by the balance of the drag force and the motor
torque, which can be obtained from the intersection of the
torque–speed curve and the drag coefficient of the load times
the speed (the load line) (Xing et al, 2006). The minimum
propensity function ka

min depends on the torque tmin at which
the flagellum undergoes a polymorphic transition—the poly-
morphic transitions release the elastic strain energy before
the maximum load is reached—and the switching rate at
that torque tmin, which also depends on the CW bias. The
emergence of a peak in the power spectrum and waiting-time
distribution requires that ka

minoka
max. Recently, Tu (2008)

showed that a peak in the waiting-time distribution implies
that the system is out of equilibrium. We find that the peak in
the waiting-time distribution emerges for smaller values of
Dka�(ka

max�ka
min) than the peak in the power spectrum; this

supports the idea that a peak in the waiting-time distribution is
a more sensitive measure for the non-equilibrium nature of the
process (Tu, 2008). The position of the peak is determined by
Ta, which is given by the difference in winding angle between
the normal and curly state divided by the average speed at
which the rotor drives the systems between these two states.
Interestingly, polymorphic transitions of filaments of swim-
ming bacteria occur on time scales of 0.1 s (Turner et al, 2000),
close to the peak of the waiting-time distribution (Korobkova
et al, 2006), supporting our idea that they set the characteristic
switching time.

The dependence of the difference Dka on the CW bias
explains the change in the waiting-time distributions when the
CW bias is varied. The plateau load tmax and the load tmin at
which the flagellum undergoes a polymorphic transition are
independent of the CW bias. However, the magnitude by
which the switching propensity rises as the load increases
from tmin to tmax does depend on the CW bias (Figure 1A),
such that Dk�¼k�

max�k�
min increases with the CW bias. When

the CW bias and hence Dk� is large, the rotor typically
switches to the CW state before the switching propensity can
reach its plateau value. This explains the narrow distribution
of CCW intervals when the CW bias is large, as observed in
both the model (Figure 2A) and experiment (Korobkova et al,
2006). For the reverse transition the situation is qualitatively
different. When the CW bias is large, Dkþ is small, which
means that the system can enter the regime in which the
switching propensity is constant before it switches to the CCW
state. This constant propensity leads to an exponential tail in
the distribution of CW (CCW) intervals when the CW (CCW)
bias is large, as observed in both the distributions of the model
(Figure 2A) and those measured experimentally (Korobkova
et al, 2006).

Discussion

We have presented a statistical–mechanical model that
describes the switching dynamics of the bacterial flagellar
motor. Its foundation is the assumption that the rotor protein
complex can exist in two conformational states corresponding
to the two respective rotation directions, and that switching
between these states depends on interactions with the stator
proteins, which also drive the rotation of the rotor complex.
This naturally couples the switching dynamics to the rotation
dynamics. The load does not directly change the relative
stability of the rotor’s conformational states, but it does change
how often the stator proteins during their motor cycle favor
one conformational state of the rotor over the other. This,
according to our model, is the principal mechanism that makes
the switch sensitive to torque and speed. Another central
element of our model is that after a switch, it takes time for the
motor load to build up, due to polymorphic transitions of the
filament. This time dependence of the load leads, in combina-
tion with the load dependence of the switching propensity of
the rotor, to the characteristic switching time of the motor.
Hence the flagellum, by providing mechanical feedback on
the rotor’s switching propensity, has an integral role in the
switching process.

Interestingly, the torque generated by a motor of a
swimming bacterium is close to the maximum motor torque
(Darnton et al, 2007), which is larger than the torque needed to
induce a polymorphic transition of the flagellum upon a motor
reversal. Our model thus predicts that the characteristic
switching time is an intrinsic property of the motor and not
an artifact of the viscous drag of the bead used to monitor the
motor rotation (Korobkova et al, 2006). The prediction that the
characteristic switching time is due to mechanical feedback
from the flagellum could have important implications for the
switching of multiple motors of swimming bacteria, which
mechanically interact through their flagella.
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The origin of the non-equilibrium character of our model is
the coupling between switching and rotation, which is driven
by a proton motive force. The binding of CheYp obeys detailed
balance and has been integrated out. Our model thus differs
markedly from that of Tu (2008), in which the non-equilibrium
nature is due to the interplay between switching and CheYp

binding, creating a new, non-equilibrium mechanism for
ultrasensitivity.

Several predictions emerge from our model that could be
tested experimentally. One is that the change in the torque
on the filament on a motor reversal leads to a series of
polymorphic transitions, which could be tested by applying a
torque to a single filament using magnetic tweezers. Moreover,
our model predicts that the magnitude of the characteristic
switching time depends upon the position at which the bead is
attached to the flagellum and the maximum speed of the
motor, because these factors determine the lag time Ta. As the
maximum motor torque decreases with decreasing number of
stators, our model also predicts that the peak may disappear
when the number of stators is reduced. Finally, our model
predicts that the switching dynamics of the rotor without the
mechanical feedback of the flagellum is that of a two-state
Poisson process, in contrast to the model proposed by Tu
(2008). This prediction could be tested by measuring the
rotation dynamics of a bead that is connected either directly to
the stub, or to a very short filament.

Materials and methods

Stator–rotor dynamics

In our model, each stator–rotor interaction is described by four energy
surfaces, Ur

sj
, with the subscript sj¼0 or 1 denoting the conformational

state of stator protein j and the superscript r¼0 or 1 denoting the
conformational state of the rotor (CW or CCW) (Box 1). We assume
that the stator proteins remain fixed due to the peptidoglycan layer and
that only the rotor complex moves. The equation of motion of the rotor
is then given by

gR

dyR

dt
¼ �

XNS

j¼1

qUr
sj
ðyjÞ

qyR
� FLðyR � yLÞ þ ZRðtÞ: ð5Þ

Here, gR is the friction coefficient of the rotor; Ur
sj
ðyjÞ are the free energy

surfaces shown in panels B and C of the Box 1, where yj ¼ yR � ySj
,

with yR the rotor rotation angle and ySj
the fixed angle of stator protein

j; ZR(t) is a Gaussian white noise term of magnitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTgR

p
; NS is

the number of stator proteins, which, for the results presented here, is
taken to be NS¼8. The torque FL denotes the load with rotation angle yL

(see below).
The transition (or hopping) rate for a stator protein to go from one

stator energy surface to another depends on the rotation angle, in a
manner that obeys detailed balance. It is given by

kr
sj!s

0
j

ðyjÞ ¼ k0ðyjÞMIN 1; exp½DUr
sjs
0
j

ðyjÞ�
� �

; s; s
0

j ¼ 0:1: ð6Þ

Here, DUr
sjs
0
j

ðyjÞ ¼ Ur
s
0
j

ðyjÞ � Ur
sj
ðyjÞ. Inspired by the observations of

Meacci and Tu (2009), the prefactor is given by k0(yj)¼k� for
d1þmdoyjod2þmd, where m is an integer and d1 and d2 are the
minimum and maximum of the periodic potential with periodicity d¼2p/26
(Box 1); k0(yj)¼0 for d2þmdoyjod3þmd; k0(yj)¼kþ for
d3þmdoyjod1þ (m¼1)dd1. As shown by Meacci and Tu (2009), the
maximum speed becomes independent of the number of stators when
k�4kþ ; this allows the ‘lagging’ stators, which tend to drive the rotor
backwards by exerting a negative torque on it, to catch up with the other
stators that drive the rotor forward.

The rotor complex is modeled as an MWC model (Monod et al,
1965), which means that all the rotor proteins switch conformation in
concert. The instantaneous switching rate depends on the difference
between the free energy of the initial state and that of the transition
state. As the free energy of the transition state is not known, we assume
it is independent of the rotor’s rotation angle and that the
instantaneous switching rate depends on the free-energy difference
between the two conformational states of the rotor. This leads to the
following expression for the instantaneous switching rate:

kr!r
0
ðfyjgÞ ¼ ~k0 exp½DUrr

0
ðfyjgÞ=2�; r; r

0 ¼ 0:1; ð7Þ

where DUrr
0
ðfyjgÞ ¼

PNS

j¼1 Ur
0

sj
ðyjÞ � Ur

sj
ðyjÞ

� �
.

Load dynamics

The dynamics of the load is given by

gL

dyL

dt
¼ FLðyR � yLÞ þ ZLðtÞ; ð8Þ

where gL is the drag coefficient of the load and ZL is a Gaussian white
noise term of magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTgL

p
. For the switching dynamics of a

motor without a flagellum, the load dynamics has been integrated out;
this corresponds to a load that is coupled to the rotor through an
infinitely stiff linker (Meacci and Tu, 2009). For the switching
dynamics of a motor to which a flagellum is attached, a more refined
model of the flagellum is needed.

Following the earlier studies (Goldstein et al, 2000; Darnton and
Berg, 2007), we assume that the free energy UF of a flagellum in a
given polymorphic state m is quadratic in curvature and torsion
(see Supplementary information). The curvature k and torsion t are
functions of the height of the bead connected to the filament, z, and the
winding angle y. We assume that at each instant, the height has relaxed
to its steady-state value, which means that UF becomes a quadratic
function of the winding angle only:

UF
mðyÞ ¼

1

2
kyðy� ymÞ2; ð9Þ

where the torque constant ky is given by the Young’s and shear moduli
and the contour length of the filament; the value chosen is consistent
with the measurements carried out by Block et al (1989) and Darnton
and Berg (2007) (see Supplementary information). For simplicity, we
assume that the potentials are equally spaced, and have the same
torque constant and well depth, although under neutral pH the normal
state is the most stable one (Darnton and Berg, 2007). The total
difference in winding angle between the normal (left-most) and curly
(right-most) state is about 80 rounds, which is the correct order of
magnitude determined on the basis of elastic properties of the filament
(see Supplementary information). This is an important parameter, as it
directly affects the characteristic switching time. The other parameters
are less important; for instance, agreement with experiment (Kor-
obkova et al, 2006) could be obtained by increasing or decreasing the
number of wells (and simultaneously changing the spacing between
them such that the average change in winding angle upon a switching
event is unchanged) by, at least, a factor of 2 from the baseline value
(see Supplementary information).

The transition from one conformational state of the flagellum to
another is assumed to be an activated process, with a rate constant

km!m 0 ðyÞ ¼ k̆0 exp½ðUF
mðyÞ � UF

m 0
ðyÞÞ=2�: ð10Þ

The load dynamics is given by equation (9) with the force given by
FLðyR � yLÞ ¼ �kyðyL � yR � ymÞ.

The parameters and the algorithm to simulate our model are
described in the Supplementary information.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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