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When a coin is tossed, it does not necessarily fall heads or tails;

it can roll away or stand on its edge.

William Feller, An Introduction to Probability, vol. I.
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CHAPTER

1
Introduction

All organisms experience fluctuations in their environment. In response they use regu-

latory mechanisms, either to attempt to maintain a status quo, or to achieve an appro-

priate change. Regulation has a broad range of manifestations: from the maintenance

of constant body temperature in warm-blooded animals, timing and spatial control of

embryo morphology, to circadian rhythms which are found across all domains of life.

Clearly, regulation is not just superimposed on organisms. It is a product of evolution

and itself shaped by fluctuating selective pressures. Therefore a regulatory system is

not only a ’device’ that realizes its present function, but also a reflection of its evolu-

tionary history. In fact, neither aspect of it can be fully understood in isolation. In

this thesis we focus on the evolution of a functionally well-studied bacterial regulatory

system that allows Escherichia coli to respond to fluctuating levels of a metabolizable

sugar. Regulation in this case, as for many bacterial responses, is achieved at the level of

gene expression. We addressed issues concerning its (non-)optimality and the specific

selective conditions that favor or disfavor regulation. Under artificial fluctuating se-

lective pressures we investigated adaptation towards novel regulatory phenotypes at a

quantitative and molecular level. This introduction will give a brief, sometimes histor-

ical, overview of the main approaches and concepts used throughout this thesis, such

as laboratory evolution experiments and fitness landscapes. The text outlines some of

the current questions in the field and the progress that is being made toward answering

them.

1.1 Laboratory experiments on evolution

The main advantage of laboratory experiments (or at least controlled experiments) on

evolution is that the selective pressures at work are known to a much greater extent

than they are in nature. For many evolutionary questions this considerably simplifies
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1. INTRODUCTION

Figure 1.1: Image of the thermostat in which W.H. Dallinger performed his heat-adaptation ex-
periments in the 1880s, taken from the original report [1]. The device consisted of three glass
containers (B) kept in a water bath heated by a gas burner (P). A glass tubing containing mer-
cury (F) was located in the water bath and ended in a vertical tube near (H). When the mercury
expanded due to heating of the water bath, the mercury meniscus rose and decreased the gas
supply (via O) to the burner. The required temperature could be set by screwing the plunger (K)
into a mercury reservoir (J). Dallinger reported the temperature to be stable within 0.1oC.

matters: one does not have to make a ’deconvolution’ of the influence of unknown se-

lective conditions. Of course, this implies that important classes of evolutionary issues

– specifically those investigating natural selective pressures, but also in general systems

that are too large, too slow, or too complex to experiment on – are out of reach. Still,

experimental evolution has proven a powerful approach to understand evolutionary

processes: short-term experiments can yield estimates for genetic variation and her-

itability, whereas long-term experiments are a powerful tool to uncover the potential

and limits of evolutionary adaptation.

One of the first and at the same time one of the most extraordinary selection ex-

periments was reported by the reverend W. H. Dallinger in 1887 in his address to the

Royal Microscopical Society [1]. In the preceding years Dallinger had built an inge-

nious apparatus (fig. 1.1), which contained three glass vessels kept in a thermostat that
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Laboratory experiments on evolution

was stable to within almost a tenth of a degree centigrade. The three vessels contained

"putrefactive fluids and organisms" that at the time were a rewarding object of study

for microscopists. During a six year experiment in which he focused on three species

of unicellular flagellate eukaryotes that were most familiar to him, Dallinger raised the

temperature of the thermostat by small increments from its initial 16oC to an astonish-

ing 70oC. Although at that point a not further specified catastrophic event destroyed his

device, Dallinger’s intent "to observe critically how far changes in the organisms led to

responsive adaptations and successive survival" had been fulfilled to a surprising level.

Even just prior to the destruction, Dallinger had managed to perform the appropriate

’reciprocal transplants’: not only did the non-heat-adapted organisms die at elevated

temperatures, but also the organisms that could survive 70oC were killed when placed

in a nutritive liquid at 16oC.

After Dallinger’s experiment, whose clarity of approach and conclusions seem al-

most like an anachronism, selection experiments have been performed on organisms

throughout all domains of life. For instance, extensive selection for morphological

changes in water fleas was performed by Woltereck [2], and around 1910 Drosophila

became established as an important organism to study evolution (e.g. [3]). In the early

days (see [4]) one of the main questions was whether selection is able to produce per-

manent changes outside the ranges of naturally occurring variation. Somewhat later,

studies focused on what changed under selection – the gene under consideration it-

self or genes at other loci that determine whether it is expressed. A third important

area of exploration were the limits of the response to selection [5]. One study should

be mentioned here for its sheer duration and its remarkable results: the current record

holder for duration, the Illinois Long-Term Selection Experiment for grain protein and

oil concentration in maize (Zea mays) started in 1896 and is still running [6]. Even after

about 110 generations, lines selected for high protein and high oil contents have not

yet plateaued, while selection for low oil content has hit the 0% limit. As this study has

made it into the genetics era, it is a rich source of information on plant evolution. This

experiment has an obvious relevance not only for evolutionary adaptation itself, but

also for studying a key event in early human civilization.

Surprisingly, after the initial selection experiments on microbes, the combination

evolution and micro-organisms (particularly bacteria) has been unpopular for most of

the twentieth century. One of the main causes was their small size and relative lack

of features, which hampered the creation of a microbial phylogeny [7]. Microbiology

became a field that was almost void of evolutionary thinking. It was not until an appre-

ciable level in nucleic acid sequencing technology [8, 9] was reached by the 1980s that

renewed consideration was given to microbes in evolution, and that the advantages of

working with organisms whose "cycle of life is so relatively short, and [whose] genera-

tions succeed each other so rapidly", as Dallinger had put it [1], were re-realized. Apart

from their short generation times, bacteria are small (up to 109 in a ml), clonal, easy

to grow (which also creates possibilities for parallel lines), easy to store (many years in
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1. INTRODUCTION

a -80oC freezer) and amenable to artificial mutation. This explains their rise as model

systems in evolutionary studies, in which their adaptation to artificial environments

and population dynamics [10, 11] were explored, as well as the influence of mutation

rates [12], and the interactions with bacteriophages [13], to name a few. The rigorous

control the researcher can exert over the environment is a reason for the more recent

popularity of microbial systems in the study of ecological questions [14]: for example

diversification [15, 16], predator-prey dynamics [17], and the maintenance of genetic

variation [18] are studied, often in a mathematical framework.

Clearly, micro-organisms, and especially bacteria, being unicellular haploid and

mainly reproducing asexually, are in many aspects different from sexual multi-cellular

’higher’ organisms. The differences play out even in a very conceptual way: think e.g.

about the distinction between lifetime versus generation time that is problematic in a

bacterium, or the concept of the individual. But in many other aspects the evolutionary

processes are similar and the understanding of mechanisms at work in bacteria must

turn out fruitful for the study of higher organisms too. In the words of C. R. Woese:

"[Bacterial evolution] holds the key to the evolution of the eucaryotic cell." [7]. And

this is of course apart from the value of studying them for their own sake. An addi-

tional important benefit of studying bacterial evolution is their relative (!) biochemical

simplicity, which facilitates our access to the molecular level.

1.2 The functional synthesis

Apart from microbiology, a second element that was conspicuously lacking in the study

of evolution up until the mid-1980s was the explicit link between the genetic level and

the level of phenotype and fitness. Evolutionary biology on one hand focused on the

genetic level where polymorphisms were studied, phylogenetic relations constructed,

and where statistical inferences were made about the contribution of positive selec-

tion and neutral drift to the observed genetic variation. On the other hand, phenotypic

evolution and influences on fitness were mostly approached in a comparative and de-

scriptive way. It was a major problem that often even for related species many genetic

differences had accumulated over evolutionary time, of which it was hard to assess the

importance for phenotype and adaptation. With the advent of novel molecular tech-

niques and catalyzed by the return of microbiology to the evolutionary stage, attention

was directed to the biochemical and structural basis of adaptation [19]. This integration

between evolutionary biology and experimental molecular biology has recently been

labeled ’the functional synthesis’ [20], reminiscent of the earlier ’modern synthesis’ of

evolution and genetics.

Two elegant early examples are the so-called gene resurrection [21] studies [22, 23],

in which phylogenetic analysis provided the sequence of extinct biological molecules,

an ancient lysozyme and a ribonuclease, which were reconstructed and assayed in the

laboratory. Remarkably, this approach had already been foreseen by Pauling and Zuck-
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The functional synthesis

erkandl [24], but in a time that the appropriate molecular methods were not yet avail-

able. The functional synthesis opens new perspectives on old questions and allows

new questions to be posed. For example, in what order have the molecular alterations

taken place during adaptation? How many mutations are needed to produce new phe-

notypes, and does adaptation proceed by many mutations of small effect or few muta-

tions of large effect [25–27]. And also: what is the biochemical or physical ’paleoenvi-

ronment’ that ancient molecules experienced [28]?

Important to note is that the benefits of the functional synthesis go both ways: the

historical perspective of evolutionary biology is also essential for the mechanistic un-

derstanding of bio-molecules in a reductionist field as molecular biology. The review

by Golding and Dean [19] contains clear examples where phylogeny has pointed at spe-

cific residues that were key for molecular function, but had been overlooked by other

approaches. Even more so, as often multiple solutions exist for performing the same

molecular task, evolutionary analysis could reveal the reason why a certain solution

is picked. Similarly, constraints on the evolutionary process and neutral drift (to both

of which we will devote some attention later) could have co-shaped the present-day

molecules.

Not to be omitted in the discussion of the functional synthesis is the emergent field

of synthetic biology [29, 30]. A reductionist science par excellence, the prospects for

the role of this discipline in evolutionary study should be favorable. The power of the

synthetic approach is the necessity of a precise functional understanding of the sys-

tems under investigation: one is not allowed to overlook details, otherwise the sys-

tem simply does not work. Synthetic biology provides a bottom-up perspective that

makes it possible to single out specific biological components for evolutionary or mu-

tational analysis [30]. Another niche for synthetic biology is the exploration of early

life [31, 32]. What are the minimal biochemical requirements for replication, what bio-

chemical characteristics of DNA and RNA make it suitable for carrying genetic infor-

mation and replication [33]? Here again, the answers to evolutionary questions have

consequences not only for evolutionary biology; they should also foster biotechnology

and bio-engineering.

Most of the discussion sofar has addressed adaptive changes in organisms. A brief

caveat is in order here. In the second half of the twentieth century the adaptionist pro-

gram took a double blow. First, when confronted with the high amount of sequence

difference between related species, it was proposed that many of the observed genetic

changes should be neutral with respect to fitness (or also with respect to phenotype)

[34,35]. Provocatively, the phenomenon was labeled "non-darwinian evolution" in one

of the two initial papers [35]. The issue of how much change at the genetic level is neu-

tral and how much is selected for is still actual today [27]. Addressing it satisfactorily

will not be possible without explicitly taking into account protein structure and func-

tion. Secondly, a seminal paper by Gould and Lewontin [36] argued that not all changes

need to be adaptive, even when they do have effect on the phenotype or the fitness.
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Apart from pointing to random drift, they argued that traits of organisms could for ex-

ample be imposed by their developmental program, or when a part of an organism

acquires a new function, by the former function of that part (cooption). These limits

to adaptation, or constraints (as they are excellently discussed in [37]), became a pop-

ular concept in evolutionary reasoning. However, a lack of solid quantitative basis also

surrounded it with an aura of vagueness [38,39]. With the rise of the functional synthe-

sis more quantitative inferences can be made about the origin and extent of adaptive

constraints. It is, in fact, essential to our understanding of natural selection to know

whether it is limited by genetic or functional constraints [40], and what is the role of the

specific selective pressures [41, 42].

1.3 The fitness landscape

A concept that is married very naturally to the functional synthesis is that of the fit-

ness landscape, adaptive landscape, or adaptive topography. Introduced by Wright in

1932, it served as a metaphor to think about the effects of mutation, selection and drift.

Wright’s landscape (fig. 1.2) depicts organismal fitness as a function of its ’gene combi-

nations’ (whose high-dimensionality is reduced to two dimensions as a simplification).

Well-adapted combinations are located on the peaks of the landscape, while valleys

indicate poorly adapted combinations. When there are multiple peaks present, this

implies that there are multiple solutions to the same evolutionary challenge. To give a

well-known example, the gaits of ostrich, antelope, and kangaroo are different solutions

to the same problem of animal locomotion [43].

Several kinds of fitness landscapes have been considered (but also confused) since

Wright’s introduction of the concept. When promoting fitness landscapes from a meta-

phor to a mathematical construction aimed at a quantitative understanding of adapta-

tion, a dichotomy arose in what specified the horizontal axes of the landscape [45]. The

axes in the first type of landscape define a (DNA or protein) sequence space, being the

set of all genotypes. The other type of landscape specifies fitness as a function of geno-

type frequencies in a population. For example, in a population with two alleles A and a,

it specifies the population averaged fitness as a function of the frequency of allele A. As

the latter type of fitness landscape is derived from the former and moreover makes im-

plicit assumptions about the evolutionary dynamics (as is clearly explained in [45]), we

will only use the former type. Simply stated: it is a mapping from genotype to fitness.

To complicate matters a bit, the term fitness landscape is also used for mappings from

phenotype to fitness, where the axes specify the value of certain phenotypic parame-

ters such as the catalytic rate of an enzyme. Since it is usually clear from the context

which one is meant, the term fitness landscape will be used here interchangeably for

genotype-fitness or phenotype-fitness landscapes. When the distinction is not clear, or

requires attention, the specific mapping will be indicated.

The concept of a fitness landscape is useful, since its shape determines what kind
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The fitness landscape

Figure 1.2: Sewall Wright’s representation of an adaptive landscape, or fitness landscape from ref
[44]. His original caption reads: Diagrammatic representation of the field of gene combinations
in two dimensions instead of many thousands. Dotted lines represent contours with respect to
adaptiveness.

of evolutionary dynamics can be expected. If a population of individuals is located

on or around a peak, natural selection will tend to keep it there. This can be under-

stood as follows: when an individual in a population acquires a mutation that lowers

its fitness (makes a step away from the peak), it will most probably be removed from

the population by selection, so that the population remains at the peak. When a pop-

ulation is located on a slope of a peak, selection will push it upwards: an individual

acquiring a beneficial mutation (makes a step towards the peak) is fitter than the rest

of the population, outcompetes the less fit individuals, and may increase its frequency

in the population until it reaches fixation. In that case the new population approached

the adaptive peak. If the landscape is smooth, adaptation can proceed by consecutive

steps until a high fitness is reached. If the landscape is rugged, adaptation will proba-

bly not reach a high peak: the population gets stuck in a local optimum, as downwards

movements are prohibited by selection. Implicit in the above description is the idea of

an evolutionary trajectory (through DNA sequence space, or protein space) consisting

of consecutive single mutational changes. It is based on the assumption that mutations

occur only one at a time, which is usually realistic in view of naturally occurring muta-

tion rates as was realized by Maynard Smith [46]. Adaptation can thus be visualized as a

continuous path between an initial sequence and an end sequence. Multiple different

paths connect the same points. Some paths will be more likely than others to be fol-
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1. INTRODUCTION

lowed by an adapting population, depending on the topology of the fitness landscape.

Also heterogenous populations can be considered, which are usually referred to as a

quasispecies [47], and can be represented as a cloud in the landscape.

Many theoretical studies have explored the effects of fitness landscape topology on

adaptation. In spite of its apparent similarities with an (upside-down) energy land-

scape, often used in physics and chemistry, the analogy only holds when certain pop-

ulation genetics conditions are fulfilled [48]. Important for the theoretical elaboration

of the concept were the contributions by Gillespie [49, 50], where dynamics governing

taking steps and the step sizes are studied, those of Levin and Kauffman [51, 52], where

the influence of ruggedness is explored in models with varying levels of epistasis (see

below). More recent work by Van Nimwegen and Crutchfield [53] has focused on the

escape from local (suboptimal) peaks, and the evolutionary dynamics when a neutral

region separates two well-adapted states.

Important in the light of fitness landscapes is the concept of epistasis, which refers

to the situation where the effect of a mutation depends on the genetic background in

which it occurs. For example, the effect of a mutation from a to A can be different de-

pending on the state of another locus, being b or B. The basis of this phenomenon often

lies in the physical interactions of the gene products of A and B. The fitness (or pheno-

type) effect when mutating from a to A in different backgrounds can differ not only in

magnitude, but also in sign: ab to Ab can be advantageous, while aB to AB can be dele-

terious. The latter form of epistasis is referred to as sign epistasis [54]. A more severe

form, referred to as reciprocal sign epistasis [55] occurs if there is also sign epistasis

for mutations b/B with respect to the background a/A. If (reciprocal) sign epistasis is

present in a fitness landscape it tends to increase the ruggedness of the surface. In this

way we can see the molecular or biochemical structure of the evolving system being

reflected in the topology of the landscape.

An important issue is, obviously, what natural fitness landscapes look like. Recently

studies have began to appear that construct fitness landscapes based on experimen-

tal data [55]. Attention has been focused on the accessibility of trajectories between

evolutionary important starting and ending points: between naturally occurring poly-

morphisms [56], between ancient and present-day sequences [57, 58], or between se-

quences that are key in likely evolutionary scenarios [59]. So far these studies have

shown that in general a solid fraction of pathways are inaccessible, but that accessible

paths are present. The generality of these initial findings needs to be verified in future

studies. The inaccessibility of pathways are directly related to adaptive constraints [60].

If no paths are accessible there is a strong genetic constraint in the system under con-

sideration [61]. In that case a biochemical or structural cause can be further inspected.

If accessible paths are present, but no adaptation is observed (for example in a lab-

oratory evolution experiment), this might point to a lack of genetic variation. Cur-

rently landscape predictions for the distributions of beneficial mutations [62, 63] and

for the occurrence of epistasis are being verified [64]. An intriguing and medically rel-
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evant example is the finding is that the epochal appearance of new influenza viruses

that transiently escape our immune system, can be explained by the viruses’ wander-

ings through neutral regions in the landscape until they can access a beneficial muta-

tion [65, 66].

1.4 Selection in variable environments

Most environments in which organisms live and develop are variable with respect to

temperature, amount of light, chemical composition, or the presence of other organ-

isms. This environmental heterogeneity may be spatial, temporal, or a combination of

the two. When one shifts focus from selection in a constant environment to selection

in variable environments, one immediately faces complications as many new param-

eters emerge. For example, if the environment is spatially heterogenous, what are the

length scales of the variations, what is their distribution, and how much migration oc-

curs between habitats? If the environment is temporally fluctuating, what is the nature

of these fluctuations, stochastic or periodic, what is their time scale, and what are the

ratios of time spent in each environmental state? For both types of heterogeneity the

extent to which the environmental states are contrasting plays an important role.

Due to this multitude of possibilities, no encompassing theoretical framework for

the evolution in variable environments has been developed. Nevertheless, the basis for

describing dynamics in fluctuating environments is (often, but not always) directional

selection in each environmental state, with a changing direction of selection among

states. Such a fluctuating selective pressure can be a factor in maintaining genetic varia-

tion as was described by Levene [67] for spatial heterogeneity with high migration rates,

and for temporal fluctuations by Haldane and Jayakar [68]. At the level of the individual

organism, it is important to consider the trade-offs it experiences when environmental

states impose contrasting demands. We have seen a clear example above: the heat-

adapted organisms from Dallinger’s experiment were not able to grow anymore at the

much lower temperature their ancestors did and vice versa. This is commonly referred

to as ’the cost of adaptation’. In general, in a changing environment such cost can arise

from two factors. First, while adapting to one environmental state, mutations could

accumulate that are detrimental to the fitness in the other state, but are not currently

selected against. Second, which is more likely in Dallinger’s case, the cost originates

from what is referred to as ’antagonistic pleiotropy’: a mutation increases fitness in one

state, but decreases it in another. Both mutation accumulation, which is a property

of the selective process, and pleiotropy, which is an inherent property of the genetic

architecture of an organism, can constitute a constraint for adaptation to a variable

environment.

The influence of trade-off structure on adaptation was explicitly considered from a

theoretical viewpoint by Levins when he introduced his concept of a fitness set [69,70].

He plotted the fitness in one environment versus the fitness in another for different
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Figure 1.3: Selection in variable environments as represented by Levins [69]. The graph on the
left depicts the effect of a certain phenotypic parameter on the fitness (F) in two environmental
states I and II. When fitnesses in each state are plotted against each other, a so-called fitness
set is obtained (middle and right graphs): the set of fitnesses resulting from different values of
the phenotypic parameter. The more contrasting the demands are that the environmental states
impose on the organism, the further the two peaks in the left graph shift apart. The amount of
overlap determines the shape of the fitness set: more overlap results in a convex set (middle) and
strongly contrasting demands result in a concave set (right). When the organism resides equally
long in each environmental state, equal average fitness is indicated by the dotted isoclines. It
can be seen that under a convex fitness an optimal strategy is to perform moderately well in
both environments (middle), and adaptation could be expected to lead to generalists. Strongly
contrasting states will favor specialization (right).

values of a phenotypic parameter that determines these fitnesses (fig. 1.3). From the

resulting fitness set, one can determine which value(s) of the phenotypic parameter

maximizes the overall fitness in the fluctuating environment. Interestingly, depending

on the shape of the fitness set, this can correspond to a generalist phenotype that per-

forms moderately well in both environmental states, or to specialist phenotypes that

have a high fitness in one state only. When evolution would optimize this phenotypic

parameter, the outcome therefore will critically depend on the strength of the trade-off,

which in turn is determined by the contrast between the environmental states.

One way to escape the trade-off is by varying the phenotype in response to the

environmental state, a phenomenon that in several biological disciplines is known as

phenotypic plasticity [71, 72]. As adaptations to environmental variation, organisms

possess regulatory systems that sense and process environmental signals to accom-

plish altered gene expression, metabolic change, mechanic responses, or even genetic

changes. The remainder of this introduction will be primarily focused on an altered

gene expression in response to the environment, carried out by gene regulatory net-

works. As gene regulation is subject to selective forces, the expression of a gene as a

function of the relevant environmental parameter should in some way reflect the na-

ture of the environmental fluctuations. Recent experimental work addressed the adap-

tive optimization of expression levels in terms of cost (spurious expression when not

required) and benefit (high expression when needed) [73]. Theoretical [74–78] and

some experimental [42] studies have appeared that analyze the environmental condi-
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tions under which it is beneficial to employ a regulatory system.

Another line of research into the effects of variable environments are experiments

into diversification in microbial ecosystems [79]. Here, controlled spatial and/or tem-

poral variation is imposed and adaptive responses are observed. Fitness trade-offs are

inferred and attempts are made to understand the underlying causes for costs of adap-

tation (e.g. [80, 81]). Although these studies have been successful in demonstrating

pleiotropic trade-offs and the effect of several population dynamical phenomena, there

is usually a limited access to the molecular level.

To conclude this section, we note that gene regulatory change is commonly believed

to be the main factor underlying phenotypic and morphological evolution [82–87]. It

is found that regulatory elements often undergo much faster evolutionary change than

sequences coding for structural, metabolic, or other proteins [88]. Therefore, in order to

study evolution at all levels ranging from immediate phenotypic responses, through de-

velopmental control, to speciation, it is necessary to understand selection under vari-

able environments. As will be clear by now, this is a big challenge, but an important

one.

1.5 The lactose operon

Most work presented in this thesis is an investigation into (evolutionary) aspects of the

Escherichia coli lactose operon. E. coli, an intestinal inhabitant of warm-blooded an-

imals, has been a model system for studying bacterial physiology and genetics, and is

often the organism of choice in laboratory evolution studies. The lactose operon can be

said to be the model organism’s model regulatory system. Expression of the lac operon

gene products allows E. coli to efficiently metabolize lactose, in the absence of other

substrates that would sustain higher growth rates. When a mix of sugars is available,

expression of this and other sugar metabolizing operons is regulated in such a way

that the bacterium sequentially utilizes the substrates that yield the highest instanta-

neous growth rate. These and similar observations in other organisms, led Jacob and

Monod in the late 1950s to postulate the model of "negative control", where expression

of metabolic genes is shut off by an inducible repressor [89]. Immediately after this dis-

covery theoretical models (based on reaction kinetics) began to appear (e.g. [90, 91]),

aimed at a quantitative description of the system. Although the lac operon became

the paradigm for gene regulation, subsequent experimental discoveries and theoretical

refinements have continued to date (see also the introduction of chapter 7).

As for the structural parts of this operon, the current knowledge is summarized in

figure 1.4. The lactose operon consists of four genes: lacI, the repressor that can bind in

three locations to operon DNA where it suppresses the expression of the downstream

lacZ, lacY, and lacA genes. lacZ encodes the catabolic enzyme β-galactosidase that

hydrolyses lactose into glucose and galactose. The gene product of lacY is a permease

for α and β galactosides. Lastly, lacA codes for a thiogalactoside transacetylase, whose

21



1. INTRODUCTION

lacI lacZ lacY lacA

O1O3 O2

CAP
lacI lacZ

O1O3 O2CAP

ATG

-82 -62 +10 +411+37

a

b

Figure 1.4: Schematic overview of the lac operon of E. coli. a) The location of genes and sites
in the operon DNA an their sizes are drawn to scale. lacI codes for the lac repressor that can
bind specifically to three locations, operators O1, O2, and O3, thereby competitively inhibiting
RNA polymerase from transcribing the downstream genes lacZ, lacY, and lacA. CAP represents
the binding site of the transcriptional activator protein CAP or CRP. A transcriptional terminator
is located downstream of lacA, determining the boundary of the operon. b) The lac regulatory
architecture in more detail. Distances from the transcriptional start (grey arrow) are given in
base pairs. The translational start of lacZ is denoted as ATG. Note the overlap between operator
O3 and the CAP site. Exact locations as given in EcoCyc [92]

function in the lac operon is, remarkably, still unknown [93].

The control region of the lac operon has been zoomed into in figure 1.4b. Distances

in base pairs from the transcriptional start are shown, as well as the binding sites for

LacI: the operators O1, O2, and O3. The lac operators are (partly) palindromic DNA se-

quences with a length of 22 base pairs. The symmetry of the operators reflects the sym-

metry of the lac repressor where two monomer subunits bind to one operator. Since

the lac repressor acts as a tetramer, it can bind two operators at the same time by loop-

ing the DNA. Also shown is the binding site for the CAP or CRP activator protein, which

partly overlaps with O3. As this region is described and modeled in much more de-

tail in chapter 7 and the references therein, here the description is limited to its essen-

tials. In short, the lac control region integrates two signals1, that enable it to express the

metabolic enzymes only when lactose is present and a more optimal substrate, glucose,

is not. Lactose, in its modified form of allolactose, binds to the repressor to release it

1The role of a third signal, being the nucleoid structuring protein H-NS, is less relevant for the current
description.
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from the operators (induction). The absence of glucose causes a rise in the cytoplasmic

concentration of cAMP, which is a cofactor of CAP and hence results in activation of the

lac promoter. Recent mechanistic descriptions of the lac operon behavior include ex-

plicit descriptions of DNA bending due to binding of the repressor and the CAP protein,

and include the CAP-LacI competitive binding. They take into account the association

of multiple inducer molecules to the tetrameric repressor, the stochastics due to the

low number of repressors per cell, and focus on nonlinear characteristics of the system,

such as feedback and bistability.

The lac system has been elucidated to the present high level of detail as a result

of a tremendous research effort in the course of nearly 50 years. Our knowledge of its

evolutionary history, however, is still in its infancy, let alone our knowledge of other

(including eukaryotic) gene regulatory systems. Many aspects are wide open for ex-

ploration. It is almost an empty statement that lac regulation somehow evolved in re-

sponse to an environment where the presence of lactose is fluctuating. As we have seen

earlier, evolution in variable environments has many more dimensions (also literally)

than evolution in a constant environment. We may ask ourselves for which fluctua-

tion time scales the lac system is optimal. And under what conditions the regulatory

system is retained, lost, or modified? Moreover, since transcriptional activation is avail-

able as an alternative mode of regulation, what conditions favor repression in the case

of lactose metabolism [75, 76]? The answers to these questions will depend heavily on

the dynamics of natural populations of E. coli, which in fact is another subject in its

infancy.

Notably, the previous questions mainly address the optimality of a regulatory sys-

tem already in place, and are markedly different from questions about its origin. We

may wonder what are the early stages of the development of a regulatory system. Phy-

logenetic inquiries, also in the case of the lac operon, lift a part of the veil: the lac

repressor is a member of an extended family of transcriptional regulators in E. coli and

related bacteria [94]. The existence of such families (based on sequence or structural

homology) can be explained by either horizontal gene transfer [95] or by duplication

and divergence of the constituting genes [59, 96]. Most probably both processes are

responsible in part. In any case, having a number of homologous regulators in one or-

ganism poses the interesting question how two dedicated parts, the transcription fac-

tor and its operator, which function like a key and a lock, can change while retaining

their tight binding affinity, when one realizes that evolution usually proceeds by one

mutation at a time. Another way of phrasing this question is: does the system exhibit

rampant (reciprocal) sign epistasis, or are there evolutionary trajectories where this is

avoided? In the case of duplication, cross-talk and possible heterodimerization of the

repressor multimers could play important roles. These issues cannot be resolved by

looking at the phylogeny alone: a detailed understanding of the system’s function and

its influence on organismal fitness are essential.
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1.6 This thesis

This thesis will present a number of explorations into the evolution of regulation in

a temporally varying environment. We have employed a number of approaches and

concepts described above.

First, in chapter 2 we review four studies that analyzed evolutionary trajectories in

fitness landscapes representing a variety of molecular components in different organ-

isms. These studies have focused on the accessibility of trajectories from one function-

ality to another, taking as begin and end point ancestral and present day forms, specific

clinical isolates, or inferred points from homology analysis. In all cases viable path-

ways exist, although there were also indications for non-accessible trajectories. Since

these studies have access to the molecular, phenotypical, and/or fitness level, all cases

revealed interesting features of the selective process. For example a potential adap-

tive constraint due to key-lock issues governing multi-component evolution could be

avoided by either molecular cooption or interactions at the network level.

Chapter 3, which is one of the studies discussed in chapter 2, uses the abundant

evidence for gene duplication and divergence being a major creative evolutionary force,

as a starting point to investigate regulatory divergence at the level of the operator and

repressor’s recognition domain. Here the link between the genotype and phenotype is

formed by a large collection of measured mutant binding affinities, originating from

the group of B. Müller-Hill. Assuming a relevant selective pressure, we investigated the

nature of the divergence pathways and how their accessibility is affected by alternative

selective conditions. We found that divergence can proceed relatively unconstrained,

in spite of a rugged fitness landscape. It appears that also the high dimensionality of

this landscape (owing to its large mutational dataset) favorably affects the amount of

accessible trajectories.

Subsequently, chapter 4 presents an experimental investigation into the trade-off

structure that leads to an effective selective pressure for regulation. Again, the study

employs a fitness landscape (here a phenotype-fitness map) that could be fully exper-

imentally determined. By varying the selective stringency, analogous to the situation

in fig. 1.3, we could quantitatively control the selective advantage of regulatory pheno-

types over non-regulatory phenotypes. We followed the adaptation of randomly mu-

tated lac repressors and a regulatory cascade to the imposed fluctuating selective pres-

sure. In this work we combined an evolutionary and synthetic approach to be able to

directly observe the molecular basis of regulatory adaptation and its constraints.

Chapter 5 elaborates on the results of the previous chapter. Taking a lac repressor

with a novel, inverse functionality as starting point, we tried to assess which genetic

substitutions with respect to the wild-type lac repressor are functional, which are neu-

tral and what is the extent of epistasis between the mutations. The approach followed

here is useful in reducing the combinatorial complexity of that arises when one wants

to assess the selective importance of genetic substitutions between an ancestral and an

evolved sequence. Also we should be able to obtain information on the ruggedness of
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an actual repressor fitness landscape.

In chapter 6 we use a laboratory evolution approach to investigate how the natural

lac regulatory system adapts to a selective regime for which it is not optimal. We were

able to map and vary the extent of non-optimality by using both an artificial inducer

and an artificial carbon source, thereby separating two features normally incorporated

in lactose. In this case genetic variation originates from spontaneous mutation, in con-

trast with work in the chapter 4. By performing adaptation experiments, we explored

the conditions under which lac regulation is conserved, lost, or modified, and compare

the results to our prior optimality analysis. Information about selective pressures in

constant environments is used to interpret the evolutionary outcomes of experiments

in alternating environments.

In order to make inferences about the selective pressures governing regulatory adap-

tation, one has to have a sufficient level of quantitative understanding of the regulatory

system, and vice versa. For example, the noise properties of molecular systems (due to

a small number of constituent molecules), could be a factor that has been optimized by

selection, as is proposed e.g. in refs. [97, 98]. In chapter 7 we argue that residual affinity

of induced lac repressor, which is omitted in recent thermodynamic descriptions of the

lac operon, is directly relevant for the optimal functioning of lac regulation. We worked

out a basic thermodynamic model that includes residual affinity, and highlight predic-

tions that are different from models without residual affinity. The results point to an

optimal relation between the lac repressor copy number and its residual affinity for the

operator.

Chapter 8 contains a theoretical exploration of the consequences of reciprocal sign

epistasis for the shape of a fitness landscape. It was noted by Weinreich et al. [54] that

sign epistasis is a necessary and sufficient condition for having inaccessible trajectories

in the fitness landscape. Here we conclude that reciprocal sign epistasis is a necessary

condition for multiple adaptive peaks in the landscape. However, sufficient conditions

of any simple form do not exist.

Biological systems not only reflect their evolutionary history, but in the age of ge-

netic manipulation and synthetic biology, another history is sometimes also important:

that of human practice. Appendix B briefly discusses how a widely used expression

marker, lacZα became incompatible in combination with plasmids containing pBR322

origin of replication. It is an inheritance from the pre-sequence era. The cloning steps

leading to this incompatibility are discussed, and an alternative lacZα was constructed.

Finally, along the way it was found that the complementary part of this marker lacZω,

when present in the common genotypic marker φ80dlacZ∆(M15) is unexpectedly ac-

companied of a highly expressed lac repressor. That this is never stated in specifications

of the genotype is the result of a historic typographical accident (appendix A).

Summarizing, this thesis presents a number of experimental and theoretical explo-

rations into (mainly) evolutionary aspects of gene regulation. As always, each of the

followed approaches will have its strong points and its limitations. The idea is that
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these and other approaches will contribute to a quantitative understanding of regula-

tory evolution. It is with the current state of knowledge, experimental tools, and the

growing amount of genetic information [99], an exciting field to work in, asking for a

multidisciplinary approach. What was true in the time of the synthesis between evolu-

tionary biology and genetics is as true for present evolutionary research, as expressed

by G.G. Simpson in 1944 [100]: "The basic problems of evolution are so broad that they

cannot hopefully be attacked from the point of view of a single scientific discipline."
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CHAPTER

2
Empirical fitness landscapes reveal
accessible evolutionary paths

It is much easier for a mouse to get a set of genes which enable it to resist

Bacillus typhimurium than a set which enable it to resist cats.

J. B. S. Haldane,

Ric. Sci. Suppl. A 19 68-76, 1949

Evolutionary intermediates represented a central preoccupation for Darwin in his case

for the theory of evolution. He remarked, for example: ’...why, if species have descended

from other species by insensibly fine gradations, do we not everywhere see innumerable

transitional forms?’ [101]. Although Darwin developed a convincing rationale for their

absence, he did realize that the lack of intermediates as proof leaves room for criticism.

He noted, for instance: ’If it could be demonstrated that any complex organ existed which

could not possibly have been formed by numerous, successive, slight modifications, my

theory would absolutely break down.’ [101]. Indeed, in their opposition to evolution, the

proponents of ’intelligent design’ have seized on our current ignorance of intermediates.

B uilding on earlier ideas [22–24, 46], an approach has recently been developed to

explore the step-by-step evolution of molecular functions. The central innova-

tion is that all molecular intermediates along multiple putative pathways are explicitly

reconstructed. Together with a phenotypic characterization of each intermediate, one

can determine whether paths towards a certain novel function are accessible by natu-

ral selection. Although others have reconstructed and characterized phylogenetically

ancestral forms of proteins [21–23, 102], here the focus is on fitness landscapes [44]

in which multiple mutational trajectories can be compared. Fitness landscapes have
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been widely studied on a theoretical level (see refs [45, 50, 52, 53] for example), but one

can now obtain a glimpse of actual biological landscapes. This view finally allows us

to ask which particular evolutionary paths are taken and why. In particular, to what

extent do biomolecular properties constrain evolution? Does it matter in which order

mutations occur? Are fitness landscapes rugged, with many local optima acting as evo-

lutionary dead-ends, or are they smooth? Is neutral genetic drift essential for a new trait

to emerge?

When examining the molecular underpinnings of the evolution of new traits, we

distinguish two elementary cases. First, we discuss a single mutable component such

as an enzyme. Second, we look at molecular interactions involving two or more muta-

ble components, which is typical for regulatory evolution. The specific features of this

broad range of molecular systems will be discussed using the notions of epistasis and

fitness landscapes, which we will explain and relate to each other (Box 2.1 and Fig. 2.1).

The tentative picture emerging from the new results is one that emphasizes the

possibilities of continuous optimization by positive selection. Although evolution was

clearly constrained, as illustrated by many inaccessible evolutionary paths, the stud-

ies also revealed alternative accessible routes: a succession of viable intermediates ex-

hibiting incremental performance increases. Although these findings do not address

whether natural evolution proceeds in the presence or absence of selection, they do

show that neutral genetic drift is not essential in the cases studied. We note that the pre-

sented approach starts with naturally occurring sequences, which are themselves the

product of evolution, and may therefore yield a biased sample of trajectories. Whether

the conclusions are general or not, and whether they break down when the evolved

feature becomes more complex, can only be determined through future studies.

2.1 Enzyme evolution

When a well-adapted organism is challenged by a new environment, an existing gene

may perform suboptimally. One of the most basic questions one may then ask is: when

mutating step-by-step from the suboptimal to an optimal allele, are all possible trajec-

tories selectively accessible? This question depends critically on the stepwise changes

in performance, or in fitness, which are governed by unknown physical and chemical

properties at the molecular level. When all mutations along all paths yield a fitness im-

provement, evolution can rapidly proceed in a straightforward incremental darwinian

fashion. In this case, the fitness landscape can be portrayed by a single smooth peak

(Fig. 2.1a).

Whether this picture is realistic was investigated for the adaptation of bacterial β-

lactamase to the novel antibiotic cefotaxime [56]. The central step was to reconstruct

and measure all likely intermediates, allowing a systematic study of all possible trajec-

tories. The intermediate sequences can be easily identified, because the (five) muta-

tions that control the cefotaxime resistance phenotype are known, resulting in 25 = 32
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Figure 2.1: Schematic representations of fitness landscape features. Fitness is shown as a func-
tion of sequence: the dotted lines are mutational paths to higher fitness. a, Single smooth peak.
All direct paths to the top are increasing in fitness. b, Rugged landscape with multiple peaks.
The light path has a fitness decrease that drastically lowers its evolutionary probability. Along the
darker path selection leads in the wrong direction to an evolutionary trap [59]. c, Neutral land-
scape. When neutral mutations are essential, evolutionary probabilities are low [53, 103]. d, De-
tour landscape. The occurrence of paths where mutations are reverted [59] shows that sequence
analysis may fail to show mutations that are essential to the evolutionary history.

possible mutants. The order in which the mutations are fixed can of course be different,

giving rise to 5! = 120 possible direct trajectories between the start and end sequences.

The trajectory analysis showed that the fitness landscape is not as simple as de-

picted in Fig. 2.1a. A majority of the pathways towards maximum cefotaxime resis-

tance actually shows a dip in fitness (see light path in Fig. 2.1b), or contain selectively

neutral steps (as in Fig. 2.1c), resulting in much smaller chances of being followed by

natural selection [53, 103]. For 18 paths however, each step appeared to confer a resis-

tance increase, making these trajectories accessible to darwinian selection. The part of

the fitness landscape mapped out in this manner therefore does appear to have a sin-

gle peak, but one that contains depressions and plateaus on its slopes. We stress that

such three-dimensional analogies, while useful for conveying basic characteristics, do

not rigorously represent the many direct trajectories existing between two alleles. Also

note that there may be additional paths that contain detours, involving other mutations

that are eventually reverted [59] (Fig. 2.1d).

Interestingly, some mutations yielded either a resistance increase or decrease, de-

pending on the preceding mutations. This phenomenon, called sign epistasis [54] (see

Box 2.1), is both a necessary and sufficient condition for the fitness landscape to con-

tain inaccessible paths to an optimum [54]. Some cases of sign epistasis could be un-

derstood in terms of competing molecular mechanisms. For instance, a first muta-
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tion in the wild-type enzyme increased the resistance by enhancing the catalytic rate,

even though it also lowered the thermodynamic stability. This loss of stability was re-

paired by a second mutation, thereby further increasing the resistance. In contrast,

when this ’stabilizing’ mutation occurred first in the wild-type enzyme, the resistance

was reduced. Such back and forth balancing between structural and functional bene-

fits might well be a more general evolutionary mechanism [104, 105].

Box 2.1. Epistasis and the accessibility of mutational paths. Epistasis means that

the phenotypic consequences of a mutation depend on the genetic background

(genetic sequence) in which it occurs. In the figure below we distinguish four cases

that illustrate paths composed of two mutations, from the initial sequence ’ab’ to-

wards the optimum at ’AB’. When there is no epistasis, mutation ’a’ to ’A’ yields

the same fitness effect for different genetic backgrounds (’b’ or ’B’), while for mag-

nitude epistasis the fitness effect differs in magnitude, but not in sign. For sign

epistasis, the sign of the fitness effect changes. Finally, such a change in sign of

the fitness effect can occur for both mutations, which we here term reciprocal sign

epistasis. These distinctions are crucial in the context of selection. Mutations ex-

hibiting magnitude epistasis or no epistasis are always favored (or disfavored), re-

gardless of the genetic background in which they appear. In contrast, mutations

exhibiting sign epistasis may be rejected by natural selection, even if they are even-

tually required to increase fitness. In other words, some paths to the optimum

contain fitness decreases, while other paths are monotonically increasing. When

all paths between two sequences contain fitness decreases, there are two or more

distinct peaks. The presence of multiple peaks indicates reciprocal sign epistasis,

and may cause severe frustration of evolution (Fig. 2.1b). Indeed, reciprocal sign

epistasis is a necessary condition for multiple peaks, although it does not guaran-

tee it: the two optima in the diagram may be connected by a fitness-increasing

path involving mutations in a third site.
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In a second study [58], the connection between fitness landscape and underlying

molecular properties has been explored for the evolution of isopropylmalate dehydro-

genase (IMDH, Fig. 2.2a), an enzyme that is involved in the biosynthesis of leucine.

As in the previous study, a set of mutational intermediates between different functions

were characterized. Here the mutations changed the cofactor binding affinity of IMDH.

In vitro measurements of enzyme activity did not show epistasis: each mutation gave
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Figure 2.2: Molecular structures in different evolutionary forms. a, The left panel shows wild-
type E. coli isocitrate dehydrogenase [107] (IDH), which is structurally similar to IMDH, with
NADP as cofactor. The right panel shows an engineered IDH form with NAD as cofactor [108].
Main chains are shown in grey, cofactor in black, and hydrogen bonds as dashed lines. b, The
left panel shows a wild-type E. coli lac repressor and operator [109]. The right panel shows a
lac repressor and operator variant, with mutations mimicking the gal system [110]. Binding is
tight and specific (despite the absence of hydrogen bonds): these variants bind wild-type part-
ners poorly. DNA backbone and key bases are shown in dark grey, repressor chains in black,
key repressor residues in grey, and and hydrogen bonds as dashed lines. Figures prepared with
MOLMOL [111].

a fixed catalytic improvement, which was independent of the order in which they oc-

curred. Thus, the ’enzyme activity’ landscape is single-peaked.

The story becomes more complete with the following elements. First, the study

also considered evolutionary paths from the suboptimal cofactor NADP to the normal

cofactor NAD [106]. Second, selection does not act directly on enzyme activity, but

rather on the fitness of an organism. As fitness is typically nonlinear in enzyme activ-

ity, epistasis is introduced. Therefore, the IMDH mutants were also evaluated in vivo,

providing a direct measurement of the fitness effect of a mutation. The resulting fit-

ness landscape was shown to contain a depression or valley, rendering the trajectories

that pass through it selectively inaccessible. There is an intuitive rationale for a val-

ley here: when the recognition of NADP is reduced, the fitness first decreases, before

it rises again when NAD recognition is built up. Interestingly however, some trajecto-

ries also exist that avoid the valley by simultaneously increasing NAD, and decreasing

NADP recognition. In the end, the genotype-fitness landscape has a single peak, but

one that includes a depression on its slope.

2.2 Evolution of molecular interactions

The evolutionary puzzle becomes more complex at a higher level of cellular organi-

zation. In the web of regulatory interactions between ligands, proteins and DNA, the
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Figure 2.3: Evolution of molecular interactions based on reconstructed intermediates. Arrow
thickness denotes measured interaction strengths. DOC, 11-deoxycorticosterone; COR, cortisol;
MR, mineralocorticoid receptor; GR, glucocorticoid receptor; ALD, aldosterone. a, Pathway to-
wards independent steroid receptors after duplication, via intermediate receptors that remained
sensitive to their ligands [57]. A changed mutation order produced a non-sensitive intermediate,
making that path inaccessible. The grey arrow indicates that cortisol is absent in MR-expressing
tissues. b, Pathway towards independent repressor-operator pairs following duplication, taking
single-mutation steps without decreases in network performance. Many paths were compared
in a landscape based on over 1,000 lac mutants [112], covering all substitutions on all key base
pairs. For simplicity, the repressor dimer and two operator half-sites are not drawn.

components are strongly interdependent, which might suggest that their evolution is

severely constrained. The evolution of molecular recognition has recently been ex-

plored by two studies, which also used experimentally reconstructed intermediates.

The first examined hormone detection by steroid receptors in the basal vertebrates (Fig.

2.3a) [57]. The second [59] looked at the adaptation of repressor-operator binding, in

a large evolutionary landscape based on published mutation data for the Escherichia

coli lac system [112] (Figs 2.2b and 2.3b). For both studies, the molecular interactions

may be thought of as a key fitting a lock. The unifying question is: can a new lock and

matching key be formed taking just one mutational step at a time? The adaptation of

these components presents a dilemma: if the lock is modified first, the intermediate is

not viable because the old key does not fit, and vice versa.

From the evolution of the interactions in the two systems (Fig. 2.3), some interest-

ing parallels are apparent. Both studies start with a duplication event yielding two locks

and keys, and then ask how specific interactions can be obtained during mutational di-

vergence. Specificity is clearly vital: two partners must recognize each other, but not

recognizing other components is just as important. A major evolutionary challenge is

therefore to decrease unwanted interactions, while maintaining desired interactions.

Without specific hormone recognition, cortisol regulation of vertebrate metabolism,

inflammation and immunity would be perturbed by varying levels of aldosterone, which

controls electrolyte homeostasis. Similarly, specific recognition in the lac family of re-

pressors allows E. coli to consume a wide array of sugars, without the burden of pro-

32



Evolution of molecular interactions

ducing many unused metabolic enzymes.

Surprisingly, these studies again show that new interactions can evolve in a step-

by-step darwinian fashion, despite the mismatching intermediates problem sketched

above. In the hormone receptor case, this predicament is overcome by a molecular ver-

sion of a master key: a putative ancestral ligand, 11-deoxycorticosterone, was found to

activate all receptors (ancestral and present-day), allowing the mutational intermedi-

ates to remain functional even while the receptors diverged (Fig. 2.3a). The capability

to synthesize aldosterone evolved later, finally providing a specific hormone that is rec-

ognized by just one of the two receptors. An existing receptor was thus recruited into a

new role, as a binding partner to aldosterone, in a process that was termed ’molecular

exploitation’. Sign epistasis was again observed: an initial mutation drastically lowered

the response to all substrates, but after another mutation, the same mutation improved

cortisol response while decreasing the aldosterone response. Thus, just as in the β-

lactamase and IMDH cases, at least one selectively accessible evolutionary pathway

existed.

In the evolution of the lac system, a similar mechanism using a ’master’ repressor or

operator was not observed. This is illustrated by the transient loss in affinity during the

adaptation from one tight repressor-operator pair (IM-TG) to another (IK-AC); see Fig.

2.3b. Between some alleles, all connecting paths transiently reduced the affinity, indi-

cating the presence of multiple peaks in the affinity landscape, which contrasts with the

single-peaked landscapes of β-lactamase and IMDH. Multiple peaks indicate a severe

kind of sign epistasis, which we here term reciprocal sign epistasis (see Box 2.1). Recip-

rocal sign epistasis can be intuitively understood for molecular interactions: mutating

one binding partner will probably only benefit a new interaction if the other binding

partner is mutated first, and vice versa. Interestingly, this means that although sign

epistasis does introduce landscape ruggedness and thus perturbs the adaptive search,

it can also be valuable because it enables multiple independent lock-key combinations.

If the lac repressor-operator affinity landscape is rugged and multi-peaked, how can

new recognition evolve in a step-by-step manner? The answer lies in the fact that se-

lection does not act on a single interaction. Instead, multiple interactions in a network

determine the regulation, and ultimately organismal fitness. In the lac case, deteriora-

tions in one interaction were offset by improvements in another. For example, initial

mutations in one repressor duplicate were bad for binding to its designated operator,

but good for relieving an undesired cross-interaction (Fig. 2.3b). These results substan-

tiate the suggestion that network robustness [113] may promote evolvability [114, 115].

The observed compensations yielded a smoothened fitness landscape, making the new

interactions selectively accessible. In fact, because compensation within biochemical

networks is ubiquitously observed [116], we expect that evolution by network compen-

sation constitutes a general mode of regulatory adaptation, molecular interdependence

notwithstanding.
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2.3 Outlook

The experimental reconstruction of evolutionary intermediates and putative pathways

has provided an exciting first look at molecular adaptive landscapes. Although nu-

merous paths appear to be selectively inaccessible, accessible pathways are generally

also available. Importantly, various alternative types of fitness landscapes were not ob-

served. The landscapes could have been so rugged and multi-peaked, that accessible

paths to optima would not exist, thus requiring, for instance, two or more simultaneous

mutations, larger genetic modifications through recombination, or periods of relaxed

selection. We have put forward various mechanisms that can reduce landscape rugged-

ness and improve evolvability. These include the interplay between protein function

and stability [56, 58], the exploitation of existing molecules into new roles [57], and

compensation within biochemical networks [59].

That only a few paths are favored also implies that evolution might be more repro-

ducible than is commonly perceived, or even be predictable. It is important to note

that evolutionary speed and predictability are not determined only by molecular con-

straints, but also by population dynamics. Population dynamics still presents many

open questions, in particular in the context of regulatory evolution and varying envi-

ronments. The situation in which environmental fluctuations are fast relative to selec-

tion timescales has been explored in the repressor divergence study [59]. Recent the-

oretical considerations [77, 117] may provide promising approaches to address these

questions more generally.

The molecular systems interrogated so far represent only a start, but one with great

potential to spark further exploration. The analysis of intermediates is generally ap-

plicable, which makes finding new candidate systems not difficult. Mutational paths

could also be revealed using the directed evolution methodology [118], in which ran-

domly mutated pools are screened. A related approach is the experimental evolution

[119] of cells in chemostats [120] or by serial dilution [73, 121]. The advantage of these

methods is that more extensive and unbiased evolutionary changes can be explored,

although they do not directly reveal why trajectories are chosen. Together, these de-

velopments may change the character of molecular evolution research from one that

is primarily sequence-based to one that explicitly incorporates structure, function and

fitness.
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CHAPTER

3
Evolutionary potential of a
duplicated repressor-operator pair

Everything not forbidden is compulsory.

T.H. White,

The Once and Future King

Ample evidence has accumulated for the evolutionary importance of duplication events.

However, little is known about the ensuing step-by-step divergence process and the selec-

tive conditions that allow it to progress. Here we present a computational study on the

divergence of two repressors after duplication. A central feature of our approach is that

intermediate phenotypes can be quantified through the use of in vivo measured repres-

sion strengths of Escherichia coli lac mutants. Evolutionary pathways are constructed

by multiple rounds of single base pair substitutions and selection for tight and inde-

pendent binding. Our analysis indicates that when a duplicated repressor co-diverges

together with its binding site, the fitness landscape allows funneling to a new regula-

tory interaction with early increases in fitness. We find that neutral mutations do not

play an essential role, which is important for substantial divergence probabilities. By

varying the selective pressure we can pinpoint the necessary ingredients for the observed

divergence. Our findings underscore the importance of coevolutionary mechanisms in

regulatory networks, and should be relevant for the evolution of protein-DNA as well as

protein-protein interactions.

I nitially put forward by Stevens in 1951 [122] and later advocated by Ohno in his sem-

inal work [123], gene duplication followed by functional divergence is now seen as

a general mechanism for acquiring new functions [124]. Also, regulatory networks are
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thought to be shaped significantly by genetic duplication [96]. For instance, sequence

analysis of transcription factor families points to various historical duplication events

[125, 126]. However, very little is known about the subsequent mutational divergence

pathways or about the corresponding stepwise phenotypical changes that are subject to

selection. While these issues have not yet been explored experimentally, related generic

aspects of mutational plasticity have been addressed theoretically [52, 127–130]. How-

ever, a central obstacle in studying mutational pathways through computer simulations

remains the unknown relation between the sequence and binding affinity, for which, in

general, a rather abstract mapping has to be assumed. To describe the formation of a

new regulatory interaction after a duplication event, which is our current aim, such an

abstract approach would be particularly speculative.

Here we reason that many characteristics of the adaptation of real protein-DNA

contacts are hidden in the extensive body of mutational data that has been accumu-

lated over many years (e.g., [93, 112, 131] for the Escherichia coli lac system). These

measured repression values can be used as fitness landscapes, in which pathways can

be explored by computing consecutive rounds of single base pair substitutions and se-

lection. Here we develop this approach to study the divergence of duplicate repressors

and their binding sites. More specifically, we focus on the creation of a new and unique

protein-DNA recognition, starting from two identical repressors and two identical op-

erators. We consider selective conditions that favor the evolution toward independent

regulation. Interestingly, such regulatory divergence is inherently a coevolutionary pro-

cess, where repressors and operators must be optimized in a coordinated fashion.

The mere presence of a selective pressure is clearly not a sufficient condition to

achieve a new function. Rather, the evolutionary potential and limitations can be seen

as governed by the shape of the actual fitness landscape and the evolutionary search

within it. Studying these intrinsic limitations to divergence represents the overall aim

of this work. Many open questions arise when considering the formation of a new

protein-DNA interaction, which may be viewed as the construction of a new lock and

uniquely matching key. For instance, how should the protein be modified step-by-step

to recognize a new DNA-binding site that also does not yet exist, or vice versa? One

would expect that complementary mutations need to occur in the protein and DNA-

binding site. Does this mean that temporary losses in fitness must be endured when

taking single-mutation steps? And, how many mutations must minimally accumulate

before a noticeable new recognition is obtained on which selection can act? The latter

is an important point: mutations conferring a selective advantage spread more readily

through a population [103], resulting in a drastic increase of the divergence probabil-

ity. These questions are addressed by exhaustively searching the landscape for optimal

pathways, as well as by complementary population dynamics simulations.

Previously it has been shown that lac repressor mutants indeed exist that can bind

exclusively to mutant lac operators [112]. Our simulations reveal that a duplicated

repressor-operator pair can readily evolve to achieve such independence of binding,
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while monotonously increasing its fitness in a step-by-step process. Moreover, simply

following the fittest mutants does predominantly guide the system to the desired global

optimum, which indicates funnel-like features in the fitness landscape. A detailed ana-

lysis of the subsequent network changes indicates a generic sequence of events, of

which we study the underlying mechanisms by varying the applied selective pressure.

Next, we show that the trajectories we find in the optimal pathway simulations are not

rare exceptions, since similar trajectories are followed using a probabilistic scheme for

accepting a mutation. The results further suggest the feasibility of studying regulatory

divergence in laboratory evolution experiments, and finally we make a comparison to

alternative models for the creation of new regulatory interactions.

3.1 The model

3.1.1 Selective pressure and the fitness landscape

We consider an ecological situation where natural selection would favor independent

regulation of two genes X and Y. Regulation is not independent in the initial symmet-

ric network with duplicated components (see Figure 3.1): X and Y have two identical

upstream binding sites (O1 and O2), which bind two identical repressors (R1 and R2)

equally strongly. Such a situation will, for instance, arise upon duplication of a repres-

sor that regulates two or more genes. Note that this selective pressure, of course, is

not a general outcome of a repressor duplication. A duplication event may arise in

the context of a different functional pressure, which could direct the evolution toward

a different topological motif [132]. Most often, selective pressures for a new function

will be absent, in which case silencing of one of the duplicates is the most probable

outcome [124, 133]. However, the rare cases where a selective pressure is present are

crucial to developing new functions.

We aimed to define a transparent selection pressure for the divergence of these reg-

ulatory interactions. Attributing a fitness value to a network function is non-trivial: un-

like for an enzymatic function, network fitness cannot be captured in a single biochem-

ical parameter. Here we propose to assign a fitness value based on the desired input-

output relation of the network (see Figure 3.1A and 3.1C). For simplicity, only two con-

centration levels (high and low) of input and output protein are considered, resulting in

four possible input conditions. For each of these input conditions, it follows straightfor-

wardly which repressor-operator interactions should be maximized and which must be

minimized. The interaction strength between operator Oi and repressor homo-dimer

Rj is expressed by repression values (FOiRj ). This value represents the expression level

of a downstream gene in the unrepressed condition divided by the repressed condition

and it is obtained directly from measured data (see below and Materials and Methods,

section 3.4). Taking the fitness to scale linearly with the repression values, the fitness of
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the complete network is denoted by the product of all optimization factors:

Fitness = max(FO1 )
FO1R1

FO1R2

max(FO2 )
FO2R2

FO2R1

(3.1)

In this expression max(FOi ) denotes the repression value of the strongest interaction

with Oi, either by homodimers of R1 or R2 or the hetero-dimer composed of R1 and R2

(see Figure 3.1 and section 3.4).

The fitness definition comes down to a minimum set of two demands for regulatory

binding: each operator must bind a repressor tightly (max(FO1 ) and max(FO2 ) should

be large) but also exclusively (FO1R1 /FO1R2 and FO2R2 /FO2R1 should be large). Prior to

divergence the first demand is already met, but the latter is not. The challenge during

divergence is therefore to improve binding exclusivity, while maintaining tight bind-

ing. Tight and exclusive binding is a core functionality of most regulatory systems, and

most pairs of existing transcription factors must therefore score well on the employed

fitness definition. Take for instance the LacI and RafR repressors, which regulate en-

zymes required for growth on lactose and raffinose, respectively. If operator binding

would not be tight in the absence of lactose and raffinose, the wasteful expression of the

downstream metabolic enzymes would lead to sub-optimal growth speeds [73, 134]. If

RafR would also bind to the lac operator (and thus bind non-exclusively), the effect on

growth speed would also be negative since the mere absence of raffinose would then

lead to insufficient β-galactosidase for high lactose concentrations.

One therefore expects a conservative selective pressure that minimally includes bind-

ing tightness and exclusiveness, to keep the lac and raf regulation intact. Important

here is that the lac and raf repressors are in fact related: their origin has been traced

to duplication events from a common ancestor [126]. If a conservative pressure keeps

their function intact now, it seems a good candidate for the initial divergence pressure

as well. Full divergence to the current lac and raf systems clearly involves many addi-

tional developments after duplication. For instance, the divergence of ligand-binding

properties [135] might have occurred prior to operator-binding divergence. While these

considerations put additional constraints on the entire divergence process, they do not

alter the particular operator-binding divergence studied here.

A remaining question still is how the various demands should be weighed in the to-

tal fitness. That choice is clearly not general: it will strongly depend on the operons in

question and on the changing cell environment. For example, if active RafR is present

more than half of the time, then its cross-interaction with the lac operator would be

comparatively more harmful because it lasts longer. In order to give a uniform presen-

tation we weighed the factors of the four input states equally, which would correspond

to an equal contribution of these phases to the overall fitness. However, weighing the

factors unequally (e.g., by increasing the power of the tight operator binding, or the

cross- interaction factors from 1 to 2) did not alter the main conclusions.
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Figure 3.1: Divergence process, fitness criterion, and mutational dataset of repression values.
(A) Diagram of the studied divergence process: after a duplication event, a new regulatory in-
teraction can be formed by mutating the two operators, O1 and O2, and two repressors, R1 and
R2. (B) Duplication and divergence yields heterodimers, which can all bind to the operator. The
(initially symmetric) operators and repressors are based on the lac sequence, as indicated. Base
pairs that are key to altering specificity (colored red and blue) can be mutated to arbitrary se-
quence. (C) The selective pressure for independent regulation follows from four input conditions
that contribute to the total fitness. When, e.g., R1 is high and R2 low, this implies that X should
be low and Y high. Out of all interaction parameters of the network, in this case only FO1R1 and
(FO2R1 )−1 are relevant and need to be optimized. When R1 and R2 are high, both X and Y should
be low, regardless of which repressor-dimer causes repression. Therefore max(FO1 ) (the strongest
interaction with O1 by either homodimers of R1 or R2 or by the heterodimer of R1 and R2) and
max(FO2 ) need to be be optimized. When both R1 and R2 are low, no parameters need to be
optimized. (D) Resulting repression value landscape, showing repression values based on actual
measurements of mutants.

3.1.2 Mutation data and pathway simulations

In our simulations, the strength of a mutant repressor-operator interaction (as expressed

by the repression value F ), is assigned using data from mutational analysis [112]. In

these experiments, repression values have been determined in vivo from the repressed

and unrepressed expression levels of a lacZ gene, controlled by a mutant lac operator

and mutant lac repressor (see section 3.4). Obviously not all possible lac mutants have

been constructed. Therefore, a potentially significant limitation of our simulations is

the restricted number of base pairs that can be mutated in silico and linked to experi-

mental data. At the same time however, while the tightness of DNA binding is the result

of the integral protein architecture, surprisingly few base pairs (ten in total) have been

found to be important for altering binding specificity [112] (see Figure 3.1B). Focusing

on these key base pairs is therefore reasonable for the minimal paths that we are inter-
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Figure 3.2: Divergence success ratio and path length distributions. (A) Fraction of starting se-
quences (numbering 132 in total) that successfully diverge, as a function of the number of net-
works carried to the next round (L). Dashed line, idem, but with the additional requirement of
continued tight binding (F ≥ 100) for both repressors. (B) Distribution of path lengths until di-
vergence. Red color map, optimal co-divergence pathways. Blue color map, pathways with the
additional requirement of F ≥ 100 for both repressors. Note that a vertical summation of the
color maps yields the lines in (A).

ested in here. Using measurements on 1,286 mutants, repression values of all variants

in these key base pairs could convincingly be determined [93, 112, 136]. These variants

thus include all multiple mutants in both the repressor and the operator. Repression

values of heterodimers and asymmetric operators are calculated using an additive con-

tribution of the repressor monomers to the dimer-DNA binding [137] (see section 3.4).

In total, about 1·107 possible repressor-operator combinations are obtained (see Figure

3.1D for the homodimer variants).

Every mutational path starts with the duplicated sequence of a tight binding re-

pressor-operator combination (repression value > 100). These possible starting se-

quences obviously include wild-type lac, but also e.g., the gal and ebg systems, which

are part of the same family of repressors. Their high measured repression values are

rather remarkable because the rest of the gal, ebg, and lac sequences have in fact di-

verged considerably. These observations further indicate that the key base pairs play

the central role in specific recognition.

The aim of the simulation method (see section 3.4 for details) has been to reveal the

intrinsic possibilities for the divergence of repressor-operator binding, given the mea-

sured data and the constraints of single base pair substitutions and no fitness decreases.

For this purpose, we search the landscape for optimal paths and study what their lim-

itations and potential are. To trace these optimal paths, all mutants with a single base

pair substitution with respect to their parents are evaluated based on the fitness de-

scribed above, and the best performers are selected for the next round. The number of

selected mutants L is varied to assess its effect. We also question whether these optimal

paths are not just rare cases, by comparing them with pathways generated by a differ-

ent simulation method, where a random mutation is accepted with a probability that
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Figure 3.3: Analysis of pathway detours and local environment of fitness optima. (A) Histogram
showing the number of detour mutations of the divergence pathways. The Hamming distance
dH of two sequences is defined as the number of positions at which they have different base pairs.
Paths that are longer than dH arrive at an optimum after a detour. (B) Histogram of the Hamming
distance between the optimum that is found and the closest optimum. If this measure is zero,
a path leads to the closest optimum. (C) Median fitness value as a function of the Hamming
distance from a global optimum (solid line). Grey levels indicate the spread of the fitness values.

depends on its associated fitness increase [138] (see section 3.5.1).

3.2 Results

The simulations show that paths to independent recognition are readily found. Even

when only the best network is carried to the next round (L = 1), which implies always

following the steepest ascent in fitness, some starting sequences can evolve to the high-

est fitness in the sequence space. In these networks, both repressors bind tightly to

one operator (FO1R1 = 520 and FO2R2 = 200, respectively), while not at all to the other

(FO1R2 = 1, FO2R1 = 1). We considered paths to be successful when the fitness value is

within an order of magnitude of the highest fitness in the landscape, which is a strict

criterion given the fact that the fitness parameter is a product of six factors. The di-

verged fraction increases for higher L (Figure 3.2A, solid line), which is expected since

it allows alternative paths to be explored. More surprising is that successful trajecto-

ries can eventually be found from all starting points, but note that paths that can only

be followed for higher L are increasingly less probable because they imply more (near)

neutral mutations.

Most optimal paths are rather short: 70% require just five to nine mutations for L

= 20 (Figure 3.2B). The systems almost exclusively find the nearest diverged state in

sequence space (Figure 3.3B) and do so without taking any detours (Figure 3.3A). No-

tably, despite the fact that the starting points lie in very different areas of the sequence

space, a generic sequence of network changes is generally observed (see Figure 3.4 for

an example). First of all, one repressor-operator combination remains unchanged, ex-

cept at the very end, as the other diverges away. This is an example of asymmetric

41



3. EVOLUTIONARY POTENTIAL OF A DUPLICATED REPRESSOR-OPERATOR PAIR

O1 O2

R1 R2

7

1

43

2

6

5

0

 

R1 O1 R2 O2

A B C

10
-6

10
-4

10
-2

10
0

 

 

 

F
itn

e
ss

 (
a
.u

.)

0 2 4 6 8 10
1

10

100

re
p
re

ss
io

n
 v

a
lu

e
, F 

round

Figure 3.4: Typical divergence pathway: network changes, fitness, and sequence. (A) Evolving
interaction network, where line thickness denotes binding strength between repressor monomer
and operator-half. Dotted lines denote negligible repression. Yellow crosses indicate repressor
and operator mutations, which are positioned at the top and bottom of the interaction lines re-
spectively. (B) Fitness trajectory (black) and corresponding repression of each repressor on its
operator (red and blue). Fitness is normalized to the maximum value (∼1·1010). (C) Sequences
for each round. Mutated positions are colored white.

divergence due to positive selection, as has also been found in phylogenetic analysis

of duplicate genes in eukaryotes [139]. A striking general feature of the pathways is an

early reduction in the binding strength of the diverging repressor, brought about by a

single base pair substitution (Figure 3.4B, red trace). Such a mutation would be un-

favorable for a single repressor-operator pair, but here it can be fitness neutral, partly

because the unchanged duplicate repressor ensures a continued repression. At this

specific point the diverging repressor is freed from functional constraints and therefore

most vulnerable to degenerative mutations resulting in silencing of the gene. The prob-

ability of silencing is reduced however, because already at the second mutation and on-

ward, new and unique protein-DNA recognition can be built up. At the sequence level,

this phase is characterized by transient asymmetries. The operator must go through

non-palindromic sequences because it can only receive one mutation at a time. Het-

erodimers are the best binders in this phase because of their ability to mirror the non-

palindromic operator sequences. Eventually all successful trajectories recover palin-

dromic operators, even as the selective pressure does not explicitly specify this. With

all dimer varieties present, a homodimer is available and now binds most tightly to the

palindromic operator.

In order to obtain a better insight in the essential ingredients for the observed evolv-

ability, various additional simulations were performed. For instance, we were triggered

by the recurrent early knockout of one of the repressors, which is one of the most no-

ticeable features of the mutational pathways. To test for the importance of this step,

both repressor-operator pairs were required to maintain a significant repression (FO1R1
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Figure 3.5: Typical divergence pathway, with the additional requirement of continued tight
binding of both repressors (F ≥ 100.) (A) Evolving interaction network, where line thickness
denotes binding strength between repressor monomer and operator-half. Dotted lines denote
negligible repression. Yellow crosses indicate repressor and operator mutations, which are posi-
tioned at the top and bottom of the interaction lines respectively. (B) Fitness trajectory (black)
and corresponding repression of each repressor on its operator (red and blue). Fitness is nor-
malized to the maximum value (∼1·1010). (C) Sequences for each round. Mutated positions are
colored white.

> 100 and FO1R2 > 100). Divergence is indeed significantly frustrated by these con-

ditions (Figure 3.2A, hatched line). The amount of selected mutants needs to be two

orders of magnitude larger (L > 1,000) for half of the starting sequences to diverge. The

saturation of the diverged fraction for very high L, where prolonged neutral drift is al-

lowed, indicates that for 22% of the starting sequences no pathways exist. Moreover, in

contrast to the optimal paths, the nearest diverged state in the landscape is generally

not found, and the paths contain significant detours (Figure 3.3). The same is seen from

the increased path length: 70% of the paths take 11-21 mutations (Figure 3.2B). These

paths lack a recurring mutation pattern as observed for the optimal paths and instead

show a large variation in the sequence of events. Both repressors and operators are sig-

nificantly mutated, and the fitness increases slowly or is neutral over multiple rounds

(see Figure 3.5 for an example).

Another defining feature of duplicated transcription factors is the heterodimeriza-

tion of transcription factor monomers. It is not a priori evident whether this constraint

on the network topology either promotes or hampers divergence. To assess its effect,

simulations were performed where heterodimers are not able to form (data not shown).

The results indicated a surprisingly limited effect on the divergence. The paths do ini-

tially show a slower fitness increase, but the path length does not appear much affected,

nor the success rate of divergence. The other simulation variations we conducted (with
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unequally weighted factors in the fitness definition), did not qualitatively alter the main

divergence features, such as substantial divergence success without fitness decreases,

short paths, and an early repression dip, indicating the robustness of our results.

3.3 Discussion

3.3.1 Duplication and coevolutionary divergence

We obtain a first view on a fitness landscape for regulatory divergence that is based on

actual measured data. We show that the landscape allows evolutionary paths toward

independent repressor-operator interactions, exhibiting a step-by-step increasing fit-

ness, starting as early as the first or second mutation. Since the possibility of following

such paths critically depends on molecular properties, the use of empirical data is es-

sential for such claims. One could also have imagined fitness landscapes where paths

to diverged networks do not exist, or where they are very long, involving large detours.

Our results contrast with the notion that a number of neutral or even deleterious mu-

tations have to accumulate before a new function can develop (see for a discussion

e.g., [140]). Having beneficial mutations available early on is important, since it greatly

enhances divergence probabilities [103]. A lack of early selection would result in much

higher probabilities of silencing of one of the duplicates by the accumulation of muta-

tions [124, 133].

While the presented systematic search for optimal pathways is useful in revealing

necessary conditions for divergence, one may wonder whether paths are not very dif-

ferent in a probability-based fixation process that typifies natural evolution. However,

we found that population genetics simulations reveal the same pathway characteris-

tics: a significant fraction of paths are successful with monotonous fitness increases,

one repression dip early on, and few neutral mutations are present (see section 3.5.1

and Figure 3.6).

The coevolutionary search for a new and independent recognition, which is rel-

evant for both protein-DNA and protein-protein interactions, comprises fundamen-

tal differences with often-considered evolution of ligand-binding and enzymatic activ-

ity [141, 142]. While in the latter cases the new evolutionary target is fixed, here it is

open-ended: as with locks and keys, many possible combinations are unique matches,

and each of those is equally suitable. This large degree of freedom allows the system to

choose the solution that is most accessible. Another difference with fixed-target evo-

lution lies in the selective pressure. Binding is already tight to both operators at the

start of the coevolutionary scenario, so the initial pressure to change, in fact comes

from benefits of not binding another operator. This pressure for unique recognition is

characteristic for regulatory interactions but plays much less a role in developing other

functions such as enzymatic activity. These characteristics of a coevolutionary mech-

anism, together with the remarkable plasticity of protein-DNA interactions result in a

highly evolvable system.
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3.3.2 Fitness landscape funnels

The diversity of molecular architectures is not only constrained by their inherent physi-

co-chemical limitations, but also by the existence of viable evolutionary routes that

shape them. For instance, in a population of bacteria there is only a small probability

that an advantageous function emerges if a temporary fitness decrease is required first.

Put differently, the shape of the fitness landscape is critical, and one can readily imag-

ine fitness landscapes where the optima are very difficult to reach. Upon first inspec-

tion, the measured landscape we consider indeed contains many potential frustration

sources: over 99% of all optima in the landscape are in fact below our divergence cri-

terion. Such local optima represent traps in which the system gets permanently stuck

once it encounters one. However, the results show that the system is still guided in

the right direction to (near) global optima, which indicates that the fitness landscape

contains funnel-like features. Moreover, the optimal paths contain negligible detours

(Figure 3.3A) and lead to the nearest optimum (Figure 3.3B), showing that the funnel-

ing is efficient and not constrained by ruggedness. A funnel-like organization of the

landscape is also supported by the monotonous fitness increases of the probabilistic

pathways (Figure 3.6C), as well as by the smooth fitness decrease when stepping away

from a global optimum (Figure 3.3C).

The underlying causes for funnels in the fitness landscape may be found at two lev-

els. The first level is that of a single repressor-operator interaction. The surface smooth-

ness that is needed for the funnels may be partly understood from the reported additive

contributions of the lac amino acids to the binding energy. In mathematical models,

additive interactions have been shown to yield smoother fitness surfaces because they

can be optimized independently [52].

At a higher level, features of the network topology shape the landscape surface and

divergence potential. We found that the tightly interconnected topology, as present af-

ter the duplication, does not frustrate divergence but instead promotes it. In contrast

to an isolated repressor-operator pair, where a drop in the binding strength decreases

the fitness, the same mutation can be neutral in the interconnected topology. Com-

pensation for the decrease in binding strength can be attributed to two features of the

topology. First, there is the characteristic pressure to not bind the rival operator: when a

mutation decreases an interaction that should be maximized, this negative effect on the

fitness is partly balanced by the decrease of an unwanted cross-interaction. A second

mechanism is a coevolutionary twist on Ohno’s original idea, in which one repressor-

operator pair can search for a new recognition, while the other repressor maintains

repression on both operators in the very early stages. As we have observed that a drop

in the binding strength is necessary for efficient divergence, the ability to compensate

for its negative contribution to the fitness is crucial for funneling.

The evolutionary fate of redundant genes has previously been studied primarily us-

ing sequence analysis [124, 143]. By using a different dataset and approach, our simu-

lations strengthen recent evidence for a more rapid fixation of mutations in redundant
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genes [143] (termed "accelerated evolution"). Our analysis enables a next step in our

understanding of this important process: It provides a mechanistic rationale for why

such a rapid divergence can indeed occur, in terms of minimal selective conditions

bacteria must experience, in combination with independently measured plasticity of

protein-DNA interactions. Furthermore it yields a quantitative prediction for the mini-

mum number of essential mutations to achieve divergence.

3.3.3 Suggested experiments

Our results show divergence to be possible with monotonic increasing fitness, which

hints at the feasibility of monitoring similar processes in experiments. It has recently

been shown that the serial dilution assay, as pioneered by Lenski and coworkers [121],

can be employed to adapt bacterial strains to a new condition within weeks [73, 144].

Similarly, one could attempt to evolve a duplicate lac repressor/operator copy towards

the independent regulation of a second operon. However, this more complex assay

does require key modifications: (1) growth and selection of the mutants should occur

in alternating media, in analogy to our discussion of multiple input conditions, and (2)

a starting network must be engineered that satisfies the conditions for DNA-binding

divergence: a duplicate repressor/operator and a selective pressure for tight and inde-

pendent binding.

In practice, one could place the lac operator upstream of the raffinose utilization

operon, and construct a lacI duplicate that is sensitive to raffinose. This initial situa-

tion is now similar to our simulations: two lac repressors bind to the two lac operators.

The employed fitness definition is also suitable: (1) in media where the two metabo-

lites are both low (supplemented e.g., by another carbon source), the metabolic en-

zymes should not be expressed. The resulting optimal growth is well represented by

positive contributions to the overall fitness by high values for tight binding. (2) When

just one metabolite is present, one screens for exclusive binding. In a medium without

lactose the lactose-sensitive repressor shuts both operons down if binding is still non-

exclusive. Upon mutations that allow this repressor to bind exclusively to the operator

of the lactose operon, raffinose metabolic enzymes would be expressed. The resulting

faster growth due to raffinose utilization thus correlates well with higher values for ex-

clusive binding. The pressure for a correct behavior under multiple conditions prevents

the fixation of trivial solutions that would just work under one condition.

3.3.4 Other network growth scenarios

For biological regulatory networks to grow, not only new components are required,

but also new and independent interactions. Next to the coevolutionary duplication-

divergence scenario for network growth, alternative models for the creation of new reg-

ulatory interactions have been proposed. In the first alternative, a new operator must

emerge upstream of the regulated gene in an effectively random DNA sequence [145].
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This scenario has mainly been considered for eukaryotes with large upstream regula-

tory regions and short binding sites. For longer operators in prokaryotes, this scenario

requires many neutral mutations before improvements can be selected for (see section

3.5.2), which represents a major evolutionary obstacle.

Another possible source for new regulatory interactions is lateral gene transfer, which

is thought to be the source of many paralogs found in prokaryotes [95]. In this scenario

divergence would occur while two genes each reside in different organismal lineages

(essentially being orthologs at that stage) and each experiencing different selective con-

straints. Lateral gene transfer unites the diverged genes, resulting in immediate contri-

butions to fitness by both homologous genes. Although examples of this scenario have

been found for enzymes [146], transcription factor-operator interactions are a special

case, as there is no obvious internal or external selection pressure for their interaction

to diverge by itself. Our results illustrate the feasibility of coevolutionary divergence of

two transcription factors within a single organismal lineage. These findings are sup-

ported by the lack of evidence for horizontal transfer of the lac system in E. coli [147].

However, this is not to say that lateral gene transfer and duplication-divergence are mu-

tually exclusive. Summarizing, the coevolutionary divergence studied here differs from

alternative models of network growth by providing both a high probability of selective

advantageous point mutations and a rationale for a divergence pressure.

Finally, it is of interest to consider different selective pressures within the same du-

plication scenario. While the pressure for independent regulation seems to be a dom-

inant one, as evidenced by the many independent transcription factors that are par-

alogs, duplications also have yielded other network motifs. An interesting example is

the UxuR/ExuR pair of repressors. Like the case studied in the present work, they have

originated by duplication and share two operators (see section 3.5.3). However, they

seem to have diverged under a different selective pressure, since their cross interac-

tion was not eliminated, but instead has been retained, forming a socalled bi-fan mo-

tif [132].

This work describes how regulatory network connections can be formed and bro-

ken after a duplication event. Our quantitative approach takes the selective conditions

and molecular adaptability explicitly into account, and opens up a new angle on the

duplication-divergence question that is complementary to existing approaches. Evolu-

tion of network connections is treated more abstractly in numerical studies of biolog-

ical network growth, which have recently received much attention [129, 148, 149]. The

use of experimental data will help to perform such studies on a more realistic footing.

Finally, the promising new field of experimental network engineering [150–152] and

evolution (see e.g., [153]) will also benefit from the quantification of network adapt-

ability.
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3.4 Materials and methods

Mutational dataset. In this work we used an extensive dataset of binding affinities of

lac repressor and operator mutants, obtained by B. Müller-Hill and coworkers. In these

experiments, repression values FOiRj have been determined in vivo as the ratio of the

unrepressed and repressed expression levels of a β-galactosidase (lacZ) reporter gene,

controlled by a mutant lac operator Oi and mutant lac repressor Rj. This was done using

the standard assay by Miller [154]. Since the β-galactosidase synthesis is proportional

to the fraction of free operator (see e.g., [90]), we find for the repression value FOiRj = 1 +

[Rj]/KD, where KD is the equilibrium dissociation constant and [Rj] is the concentration

of active repressor Rj. The dataset contains repression values of base pair substitutions

leading to changes in amino acid residues 1 and 2 of the recognition helix of the lac

repressor (Y17 and Q18) and base pairs 4 and 5 of the symmetric lac operator [155].

These residues and base pairs were found to be most important for altering repressor

operator-binding affinities [112]. The dataset covers a considerable fraction of all pos-

sible substitutions involving a homodimeric repressor and a symmetric operator (1,286

out of a total of 6,400). Part of this raw data is published in Lehming et al. [112]; the full

dataset is found in [136]. The contributions of the two repressor amino acids to the re-

pression value were found to be additive. With this knowledge, repression values could

convincingly be assigned to all mutants, including those that were not measured [112].

In the present study we use these assigned repression values, all of which are given

in [112]. Moreover, we extend the dataset to include heterodimeric repressors and non-

palindromic operators (see below), to obtain the complete mapping between sequence

and repression values for all possible mutants (1·107) in the key repressor residues and

operator base pairs.

Repression values of heterodimers and non-palindromic operators. We consider the

repressors to act as dimers. After their duplication, once the repressors genes are mu-

tated, this leads to heterodimerization of distinct monomers. While heterodimer bind-

ing strengths (FHe) have not been directly measured, they can be derived from the two

corresponding homodimer repression values (FHo1 and FHo2 ), measured on a palin-

dromic operator. The heterodimer binding energy ∆GHe is the sum of the monomer-

monomer and the dimer-operator binding energy. Simple equilibrium considerations

lead to the following expression, where [R] in this case is the total concentration of

repressor subunits:

FHe = 1+ [R]2e−∆GHe/kT = 1+
√

(FHo1 )(FHo2 ) (3.2)

With this equation, repression values involving non-palindromic operators are also

automatically taken into account: each dimer-operator interaction is built up addi-

tively [137] from two interactions between a monomer and an operator-half. In this

derivation the dimerization free energy was assumed to be fixed, since it does not di-

rectly affect the specificity by which the repressors recognize their operators. The het-
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erodimer repression value then becomes independent of the dimerization energy.

Optimal pathway simulations. Each repressor monomer is represented by six base

pairs (two amino acid residues), and each operator by four base pairs, which are key

to specific binding. The complete network with duplicates is thus represented by 20

base pairs. Each simulation run starts with the duplication of a tight binding repressor-

operator pair, having a repression value of 100 or higher. Out of all possible repressor-

operator combinations (homodimers and palindromic operators), there are 132 fulfill-

ing this condition. Changing this threshold did not significantly alter the outcome of

the simulations. In order to avoid any bias due to codon usage of the starting repressor,

separate simulations were run starting from each of its synonymous codon versions.

These simulations were averaged to produce the presented results.

In order to determine the optimal mutational pathways in the fitness landscape, an

evolutionary algorithm was employed. Beginning with one of the starting sequences,

each round we generated all mutants that differ by one base pair (60 in total). Of each

mutant network, the strength of all eight possible interactions was determined (see Fig-

ure 3.1B where four possible interactions are schematically shown between the repres-

sor dimers and one of the two operators). Interactions between repressor homodimers

and palindromic operators were directly assigned from the published repression val-

ues [112]. Other interactions were calculated from the measured data as described

above. Next, we selected the best L networks to the next round based on a fitness pa-

rameter that is directly calculated from the interaction strengths (see equation 3.1). The

next round started by again generating all single base pair mutants of the L selected net-

works. The effect of L was assessed by varying it between 1 and 105. Decreasing fitness

steps were not allowed, and in case of equal fitness, parents were ranked above their off-

spring. These rules make divergence harder because they constrain the space that can

be explored. The evolutionary cycle was repeated until the fitness could not be further

improved. Pathways were considered to be successful when the fitness came within a

factor 10 of the highest fitness in the landscape.

3.5 Appendix

3.5.1 Simulation of mutational pathways incorporating probabilistic

population dynamics

Here results are presented of a second simulation method, where mutations are fixed

with a probability that is based on the associated fitness increase (see methods below).

Compared to the optimal pathway simulations, this probabilistic approach does not

search the landscape as systematically, but it is arguably closer to natural evolution, in

that the fixation chance of mutations with no or lower fitness increases is more well-

defined [103].

We find that the key characteristics of the probabilistic pathways are very similar
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Figure 3.6: Qualitative features of successfully diverging paths in the probabilistic pathway
simulations. Simulations were performed with a 5% growth advantage of a diverged network
over the initial duplicate network, and a population size of 105. Of all traced paths, 17% suc-
cessfully diverged, despite the strict requirements that promote trapping in local optima (fitness
cannot decrease). Relaxing these conditions would lead to larger divergence probabilities. (A)
Histogram showing the number of base mutations until divergence for the successful pathways.
(B) Histogram showing the lowest repression values of each repressor on its operator during the
successful divergence pathways. (C) Histogram showing the number of neutral mutations that
occur until the pathways successfully diverged.

to those of the optimal pathways. From every starting condition it appears possible to

diverge towards independent binding while the fitness increases monotonously along

the way (17% of all paths). The success rate logically differs for the different starting

sequences, but all of them can yield successful trajectories. Looking at the probabilistic

paths in more detail (Figure 3.6), we see that they are somewhat longer, but half of them

still diverge within 10 mutation steps. And although the sequential network changes are

not as uniform, the paths are still characterized by few neutral mutations (0 or 1 neutral

steps for 50% of the paths) and an early reduction in repression of one repressor (F<5

for 50% of paths).

Our probabilistic model allows us to vary the amount of drift present in our path-

ways by varying both the effective size of a population (N ) and the growth advantage

that diverged networks have over un-diverged networks (smax). Taking a conservative

growth advantage of 5% [73] we simulated probabilistic pathways for population sizes

ranging from 103 to 108. At high population sizes pathway characteristics remain very

similar. Only at population sizes below 104 we start to see a strong effect of genetic drift:

more neutral mutations, and hence longer pathways. However, the fraction of diverged

pathways and the reduction in repression of one of the repressors does not significantly
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change.

In our probabilistic model we do not allow disadvantageous mutation to be fixed.

An important finding we present in this work is that for divergence to occur, fitness

drops are actually not necessary. (Note that if one would allow drops in fitness, all

pathways would reach divergence eventually, since trapping in local optima would then

not be possible.) Even if disadvantageous mutations would be explicitly modeled, we

would not expect to find other pathway characteristics for population sizes above 104,

as these mutations have very low fixation chances compared to the readily available

beneficial mutations present in our system.

Probabilistic pathway simulations. To model the effect of genetic drift in the evolu-

tionary pathways, probabilistic simulations were performed. Thousand such pathways

were traced for each of the starting sequences. In each simulation step 60 different sin-

gle base pair substitutions are possible (the 20 base pairs can each mutate to 3 different

bases), which were assumed to occur with equal probability. The fixation probability of

each specific mutation depends on its associated fitness increase, and was calculated

with a standard and simple population genetics model [103, 138] (and see below). In

each simulation step, the fixation probabilities of all 60 possible single base pair sub-

stitutions were calculated, and one substitution was randomly chosen according to its

share in the total probability. Each path was continued until a (possibly local) opti-

mum was reached, so that the fitness could not be further improved. The purpose of

this Monte Carlo-like scheme was to check whether biased random walks show similar

features as the ones generated by our optimal pathway simulations.

Mutations that decrease the network fitness were assumed not to be able to fix,

while those that keep the fitness constant have a fixation probability of 1/N , where

N is the effective population size. Mutations that do increase the fitness have a fixa-

tion chance of 2∆s, where ∆s is the selective advantage that this fitter mutant has over

its parent. In our simulations we let an increase in the fitness parameter by a factor

of 10 correspond to a ∆s of 1%. In this way, a successfully diverged network has a se-

lective advantage of 5% (smax) over the initial duplicated state (fitness rises from 10−6

to 10−1, see main text), which matches typical experimentally observed growth advan-

tages [73, 134].

In this probabilistic scheme a mutation conferring a selective advantage ∆s will

have 2N∆s times more chance to be accepted than a neutral mutation. Therefore, both

the effective population size and the defined selective advantage influence the effec-

tiveness of selection. By either lowering N or smax the amount of genetic drift in the

model increases. We typically simulated an effective population size N = 105, together

with a fixed smax = 5%. The population size needed to be lower than 104 before genetic

drift substantially increased the number of neutral mutations in successful paths.
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3.5.2 Comment on neutral mutations required for the emergence of a new

operator

Here we consider an alternative mechanism for creating a new regulatory interaction,

where a new operator must emerge in an effectively random DNA sequence. In a typical

prokaryotic case, like e.g. the lac system, a 20 base pair operator has to emerge some-

where in a roughly 100 base pair region in order to effectively block RNA polymerase

binding. Then there are 10 expected prior matching base pairs for the best binding

site within the promoter region. However, experimental data suggests that at least 15

base pairs need to match before appreciable binding is achieved [156,157], from which

point further mutations can be positively selected for. This means that more than 5

base pairs need to be optimized without selection, while the coevolutionary pathways

can be selected for almost immediately.

3.5.3 Alternative selective pressures and the Escherichia coli regulatory

network

Here we briefly comment on the possibility of alternative selective pressures after a

duplication event. In the main text we have considered a selective pressure for inde-

pendent regulation of two operator sites by two repressors. But other selective pres-

sures could result in different network topologies, or motifs [132,158]. In the case of the

regulators of the Lac/Gal family it is clear that cross-interactions between the operons

should be eliminated: each operon should be transcribed only if the relevant carbon

source is present. In other cases the cross-interactions might in fact be desirable and

therefore not be selected against. For instance the so-called bi-fan motif (see ref [132]

and Figure 3.7) might then originate from a duplication of a gene that regulated multi-

ple genes before duplication.

In order to see whether this scenario could have materialized in the E. coli regu-

latory network, one would need to search for bi-fan motifs where homologous tran-

scription factors share their operators. Interestingly, these cases are readily found. An

example could be the system of repressor genes uxuR and exuR. The UxuR/ExuR re-

pressors are the regulators of genes involved in the transport and catabolism of fruc-

turonate and glucuronate [159–161]. They are highly homologous (see Figure 3.9 and

[125]) and indeed are very likely to bind to shared operator sites, with different affini-

ties (see [162, 163] and Figure 3.8). Moreover, they are found to be able to form het-

erodimers [164] and can partially substitute for one another [162, 164]. As the enzymes

from the UxuR/ExuR regulons have overlapping functions, there is a rationale for re-

taining the cross-interactions [161].

Other selective pressures for different topologies after duplication could be imag-

ined, for example where one cross-interaction is eliminated (see Figure 3.7). In the case

where global regulators become duplicated, one could expect homologs to be present

in the so-called Dense Overlapping Regions. Alternatively, when more than one dupli-
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cation event has taken place, a ’tri-fan’ (see Figure 3.7) would seem a possible outcome.

Remarkably, in the E. coli regulatory network all of these topologies can be found, with

the additional conditions that the transcription factors are homologous and their oper-

ators are shared.

X Y

Z W

X Y

Z W

V

U

X Y

Z W

X Y

Z W

Figure 3.7: Examples of network topologies that might arise after duplication of a regulatory
gene. From left to right: independent regulators, the bi-fan, a bi-fan where one connection has
been lost, and a ’tri-fan’.

Figure 3.8: Overlapping operators and the homologous repressors ExuR and UxuR (from EcoCyc,
[92]).

Figure 3.9: FAST alignment of the amino acid sequences of ExuR and UxuR shows 44% homology.
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CHAPTER

4
Adaptive landscapes of gene
regulatory systems in variable
environments

I knew their tremendous possibilities, and I have no doubt I could have speeded up

their evolution, perhaps by some millions of years. But for what good?

G.G. Simpson,

The Dechronization of Sam Magruder

Adaptation to variable environments is a fundamental issue in evolutionary biology.

We determined the phenotype-fitness landscape for mutant LacI repressors in alternat-

ing environments, using an operon with tunable cost and benefit. We found that non-

linearities in the relation between expression and growth critically affect adaptation:

they alter the competition between specialists, regulated and non-regulated generalists,

and can result in weak selection on regulation despite strong alternating pressures. Us-

ing random mutagenesis, we showed that LacI adapts to an unfavorable alternating en-

vironment according to the predicted landscape, resulting in novel inverse LacI pheno-

types. We identified a local adaptive constraint by mapping intermediate phenotypes on

the fitness landscape. The adaptation towards more complex regulatory functions was

demonstrated using a small genetic network. This study shows that a functional insight

into phenotypic responses is central to understanding adaptation in variable environ-

ments.

A lthough regulation is central to cellular behavior, the mechanisms by which regu-

latory systems evolve remain poorly understood [69, 165–167]. A central obstacle

is the complex and unknown relation between environment, phenotype and fitness [55,

56, 58]. In temporally varying environments, fitness depends on multiple environmen-
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tal states and the phenotypic changes they induce, but also on the timescales of varia-

tion, and the strength of trade-offs experienced across environments [42, 69, 168, 169].

Moreover, it can be challenging to distinguish regulated from non-regulated general-

ists [170], because a functional understanding of many phenotypes is lacking.

These complications have made it difficult to quantify the selective pressure driving

regulatory adaptation, leaving many open questions about its constraints [36, 37, 61].

For instance, do regulatory phenotypes emerge under varying selective pressures, or

are specialists maintained, possibly as a balanced polymorphism [68]? When stasis is

observed in the phenotypic response to environmental variation, either in nature or in

laboratory experiments, is this due to constraint or rather to weak selection on regula-

tion?

To study the relation between gene regulation phenotypes and fitness, one may

measure the overall growth rate of regulatory mutants in alternating environments, as

has been reported for two repressor mutants [42]. However, this method is less suited

for a comprehensive mapping between phenotype and fitness. Here, we employed an

operon with a tunable cost and benefit of expression, which allowed us to determine

phenotype-fitness landscapes for various temporally alternating environments, and to

study adaptation towards novel regulatory functions and its potential constraints.

The operon, harbored by Escherichia coli, consists of three co-regulated genes (Fig.

4.1A): expression of sacB from Bacillus subtilis, confers a cost in the presence of su-

crose, expression of cmR confers a benefit in the presence of chloramphenicol (cm),

while lacZα allows measurement of the operon expression level (see sections 4.1 and

4.2.1). The fitness (growth rate) depends both on the concentration of selective agent

S (sucrose or cm) and on the operon expression level E , and is described by the func-

tion G(E ,S) (Fig. 4.1B). Operon expression was initially controlled by the native lac

repressor LacI, as described by the function E(I ), where I is the concentration of the

inducer isopropyl-β-D-thiogalactopyranoside (IPTG). Importantly, the ability to vary

I and S independently enables the experimental determination of G(E ,S). In a sec-

ond set of experiments, where LacI is mutated, E(I ) may change while G(E ,S) remains

fixed. Operon expression was controlled by a small network composed of the tet and

lac repressors in the last experiments, making E dependent on two input signals, IPTG

and doxycycline (Dox). Because cost and benefit are generic aspects of gene expres-

sion [73, 134], the selective pressures applied by the operon are relevant for regulatory

adaptation in general1.

To quantify the selective pressure on operon expression, we measured the growth

rate as a function of expression level by induction with IPTG (Fig. 4.1). Media con-

taining sucrose yielded a growth rate that gradually decreased to negative values for

higher expression (Fig. 4.1C). Increasing sucrose concentrations led to sharper growth

decreases. The dependence of growth on expression could be described by a reaction

1For many repressible catabolic operons the expression cost is significantly smaller than the benefit [75].
However, when the catabolite is only rarely present the total (time-integrated) cost and benefit may be of
similar order, as is the case in our system.
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Figure 4.1: (A) Schematic of operon with a tunable cost and benefit of expression. Expression
of sacB reduces growth in sucrose media (cost), expression of cmR facilitates growth in chloram-
phenicol (cm) media (benefit), and lacZα allows expression levels to be quantified. All genes are
initially co-regulated by the wild-type lac repressor (B) Functional representation of the system.
The function E(I ) describes the dependence of expression on the IPTG concentration I . The
function G(E(I ),S) describes the dependence of the growth rate on E(I ) and the concentration of
selective agent S (sucrose or cm). (C) Measured growth rates as a function of expression level, in
the presence of 0.15% (red), 0.25% (black), and 0.40% (blue) sucrose (w/v). Open triangles: nega-
tive effective growth rates determined by relative performance assays (section 4.1). (D) Measured
growth rates as a function of expression level, in the presence of 25 µg/ml (red), 40 µg/ml (black),
and 80 µg/ml (blue) cm. Curves in (C) and (D) represent a growth model based on reaction kinet-
ics (section 4.2.1). (E) Growth rate in cm media as a function of growth rate in sucrose media, for
the same expression levels in both media. Depending on the sucrose and cm concentrations the
trade-off curves can be either concave (red, black) or convex (blue). Diagonal lines are isoclines
indicating constant average growth rate for an alternating environment with equal periods.

kinetics model that incorporates sucrose import and sucrose polymerizing activity of

levansucrase (section 4.2.1). Media containing cm exhibited the opposite effect, with

growth rates increasing for higher operon expression (Fig. 4.1D). Increasing the cm

concentration led to sharper growth increases. This data was similarly modeled by

chemical rate equations.

Having determined the relationships between expression and fitness, we could pre-

dict the relative performance of LacI mutants in a constant environment on the basis

of their altered expression. For instance, in a medium with 0.40% sucrose but without
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4. ADAPTIVE LANDSCAPES OF GENE REGULATORY SYSTEMS IN VARIABLE ENVIRONMENTS

IPTG, the growth rate of a constitutive LacI mutant that yields a high expression level, is

lower by about 2.4 doublings/hour (Fig. 4.1C) compared to wild-type, which has a low

expression in this medium. This suggests that in a mixed population containing both

variants, the latter will be enriched by a factor of 2(6x2.4) = 1.8·104 during 6 hrs of growth.

Such differences in growth rate are here referred to as the selective pressure. Note that

the maximum growth rate difference (for high and low expression), does not depend

strongly on the sucrose concentration. Rather, increasing the sucrose concentration

pushes the favorable expression levels (conferring high growth rates) to lower values,

which we will denote as more stringent selection. Similarly, media with increased cm

concentrations favor higher expression levels, and are referred to as more stringent.

In environments that alternate between sucrose and cm, the selection of non-res-

ponsive (fixed expression) phenotypes is governed by a trade-off: high expression re-

sults in rapid growth in the presence of cm, but slow growth in the presence of sucrose.

Conversely, low expression yields slow growth in the presence of cm, but rapid growth

in the presence of sucrose. Plotting the growth rate in one medium versus the growth

rate in the other, for each expression level, yields a so-called trade-off curve (Fig. 4.1E),

which is analogous to the notion of Pareto optimality2 as used in economics and in en-

gineering. The expression level that confers maximum growth can be determined using

the diagonal isoclines that indicate the average growth rate when residing equally long

in each of the two environments.

The graphical method described above was originally introduced by Levins [69] and

has since been widely used in evolutionary theory (e.g. [171, 172]) to explain two pos-

sible strategies: specializing to one environment is optimal when the trade-off curve

is convex, whereas a concave curve favors generalists that do moderately well in both

environments. Here the trade-off curves can be determined experimentally (Fig. 4.1E)

and their shape can be rationalized: stringent selection yields convex curves because

in the two media the favorable expression levels are well separated (low in sucrose and

high in cm), while less stringent selection yield concave curves because the favorable

expression levels partially overlap (Fig. 4.1CD). These trade-off characteristics may well

be more general, since they originate from generic non-linearities of the underlying re-

action kinetics.

The constraint delineated by the trade-off curve can be overcome, if cells are able to

adjust their expression level in response to the environment. In Fig. 4.1E, this implies

escaping from the trade-off curve towards optimal growth under both conditions, as

represented by the upper right corner. Note that responsiveness is analogous to ’phe-

notypic plasticity’ as generally employed in evolutionary ecology [169, 173]. When al-

2Interestingly, the trade-off curves shown here are conceptually similar to the economical and game-
theoretical notion of Pareto-optimality, which describes the solutions in a multi-object optimization where
no criterion can be improved without simultaneously degrading an other (thereby pointing at a constraint
in the system). In our system the non-responsive phenotypes can improve their performance in one envi-
ronment only by decreasing it in the other, and therefore constitute a Pareto optimal front that can only be
overcome by developing regulation.
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Figure 4.2: (A) and (B) Fitness landscape for gene regulatory phenotypes in a variable environ-
ment. An environment is considered that alternates between two media (medium 1: 0.40% su-
crose; medium 2: 80 µg/ml cm with 1 mM IPTG), leading to opposing expression demands. Phe-
notypes are characterized by their basal expression level e0 in medium 1, and the fold change in
expression F when shifting to medium 2. Displayed is the average growth rate Galtern (fitness)
that is derived from G(E ,S) (Fig. 4.1CD), as a function of e0 and F . In this environment, the wild-
type LacI phenotype (WT) performs near optimally and is located on the peak. Other crosses are
mutants R1, N1, and N2 that are used with WT in relative growth assays. The spheres are ran-
domly chosen isolates from the following populations: randomly mutated LacI phenotypes prior
to selection (green), and after one cycle of sucrose and cm+IPTG selection (blue). (C) Growth
rate differences (Gi −G j ) of LacI mutants (WT, R1, N1, and N2) as determined by relative growth
assays versus predictions based on the fitness landscape.

ternating between two media, all phenotypes can be represented by two parameters:

e0, the basal expression level in one environment, and F , the factor by which expres-

sion changes in the other environment. A fitness landscape is obtained by plotting the

average growth rate for the two media as a function of e0 and F (Fig. 4.2AB, for 0.40%

sucrose and 80 µg/ml cm). For simplicity the growth time in each medium is equal and

much longer than the system response time, though other cases may be considered

(Fig. 4.17).

The landscape exhibited one peak (low e0/high F ), two plateaus (low e0/low F , and
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high e0), and two optima for non-responsive phenotypes (low and high e0 at F =1). The

optimal responsive phenotypes perform significantly better than the best specialists

(low e0 at F =1), although a large area of responsive phenotypes is seen to perform

worse. Upon reducing the selection stringency (0.15% sucrose and 25 µg/ml cm) the

peak broadens and partially overlaps with the F =1 line, resulting in a single optimum

for non-responsive phenotypes (Fig. 4.16C, intermediate e0 at F = 1) , and a reduced

advantage of responsive over non-responsive phenotypes. The latter is also seen in Fig.

4.1E, where the concave red trade-off curve is closer to the optimal responsive pheno-

type (upper right corner) than the convex blue curve. Interestingly, this illustrates that

the selective pressure on regulation in alternating media can be weak, even though the

selective pressure on expression is large in each medium separately (the growth rate

difference for high and low expression is large).

We tested the phenotype-fitness landscapes (Fig. 4.2AB) using two responsive (WT,

R1) and two non-responsive mutants (N1, N2), as obtained by random mutagenesis.

When the cm medium is supplied with inducer (1mM IPTG), but not the sucrose me-

dium, wild-type LacI exhibits the appropriate response and is thus positioned on the

peak, while the other mutants have lower fitness (Fig. 4.2A). Several experiments were

performed, in which two mutants were grown together for 6 hours, while the change in

their relative abundance was monitored by plating. The data were in good agreement

with the fitness landscape predictions (Fig. 4.2C). The measurements also confirmed

that responsive phenotypes do not always outperform non-responsive ones. For in-

stance, N1 out-performed R1 by 0.47 doublings/hour when grown in 0.15% sucrose fol-

lowed by 25µg/ml cm. However, increasing the selective stringency (0.40% sucrose and

80µg/ml cm) reversed these roles, favoring R1 over N1 by 0.23 doublings/hour. This de-

pendence on selection stringency is directly apparent from changes in the phenotype-

fitness landscapes (Fig. 4.16B and D).

We investigated alternating selection on a diverse population, using a pool of ∼5·106

random LacI mutants, which have 3 base substitutions on average (section 4.1). A ran-

domly chosen sample of 35 mutants appeared well separated from wild-type LacI, hav-

ing higher e0 and lower F , with some non-responsive to IPTG (F =1) (green spheres, Fig.

4.2A and 2B). The population was grown for 6 hours in the sucrose medium and for 6

hours in the cm+IPTG medium, totaling ∼24 generations at the maximum growth rate.

Much faster alternation would lead to dominant transient effects, effectively averaging

the two media [42], while much slower alternation may lead to a loss of population di-

versity and specialization. Guided by the trade-off analysis, we chose stringent selective

conditions that result in a large selective pressure on regulation (0.40% sucrose and 80

µg/ml cm). After selection, the population clustered in the e0-F plane around a point

that co-localized with the fitness optimum, illustrating the accuracy of the adaptive

landscape, as well as efficient enrichment (Fig. 4.2AB).

So far we studied the principles of alternating selection on regulatory responses that

differ only in magnitude to wild-type LacI. Organisms may also be confronted with en-
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average growth rate Galtern (fitness) that is derived from G(E ,S) (Fig. 4.1CD), as a function of e0
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the wild-type LacI phenotype (WT) is located in the valley. The spheres are randomly chosen
isolates from the following populations: randomly mutated LacI phenotypes prior to selection
(green), after a first (blue spheres), second (grey spheres) and third (red spheres) cycle. Each cycle
involves random mutation of lacI, 6 hours of growth in the sucrose+IPTG medium, and 6 hours in
the cm medium. Adaptation occurred in accordance with the predicted fitness landscape, lead-
ing to the optimum, and resulting in inverse LacI phenotypes (C) Measured induction curves of
the wild-type regulatory phenotype (blue), and an adapted inverse LacI phenotype (red).

vironments that demand qualitatively different responses. Here we investigated a max-

imally unfavorable alternating environment for wild-type LacI: sucrose with IPTG (1

mM), and cm without IPTG. e0 now indicates expression in the cm medium, and F is

the fold change in expression when shifting to the sucrose+IPTG medium. In the corre-

sponding phenotype-fitness landscape (Fig. 4.3A and 3B), wild-type LacI is now posi-

tioned in a valley, while the fitness optimum is seen at F values below 1. The phenotype

at that optimum would have to achieve tight repression with IPTG, and high expression
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without IPTG. IPTG would thus act as a co-repressor instead of an inducer. Within the

LacI family of transcriptional regulators [94], such a function has been adopted by the

purine repressor, with guanine acting as a co-repressor [174].

After a single cycle of sucrose+IPTG and cm selection on a population of random

LacI mutants, the isolates showed no inverse function, but instead clustered along the

F =1 line in the e0-F plane (Fig. 4.3AB). After a second cycle of LacI mutagenesis and

selection in both media, some isolated phenotypes did appear below F =1 (Fig. 4.3AB,

grey dots). These improvements, together with the position of the cluster at F =1, sug-

gests a local constraint [37] due to a limited access to F <1 phenotypes in combination

with a high probability of generating non-responsive mutants. Some isolates already

outperform the best specialist phenotypes (F =1, low e0), which have appreciable fit-

ness and might have presented an adaptive challenge. After a third cycle, the fitness

optimum was reached (Fig. 4.3AB, red spheres), yielding inverse LacI phenotypes with

expression ratios of around 100 (F ∼0.01, Fig. 4.3C). Note that we did not observe phe-

notypes on the low e0 flank of the peak, which may indicate a constraint in increasing

the repressor-operator interaction strength.

The inverse lacI sequences showed a substantial diversity (section 4.2.2), revealing

several genetic solutions to the same evolutionary challenge. Mutations were spread

over the complete lacI coding sequence, although none specifically affected DNA-pro-

tein interaction. No direct indications were found for the molecular mechanism, which

may be based on increased aspecific binding [175] or on altered allostery (see e.g. [174,

176]). However, all sequences contained mutations at the interface between repressor

monomers. One recurring mutation (Ser97Pro) did not yield an inverse LacI phenotype

in isolation [177], which hints at epistasis in the system, although a mutational bias

cannot be excluded at the moment.

Cells can integrate multiple environmental signals using regulatory systems com-

posed of multiple regulatory proteins. Whether such increased network complexity

leads to adaptive constraints [55, 59] was studied using a lacI and tetR repressor net-

work controlling the expression of the operon (Fig.4A). After construction we measured

the operon expression function as a function of the two inducers Dox and IPTG (Fig.

4.4 B)3. The complete network, including regulatory and coding sequences, was subse-

quently randomly mutated followed by selection for a novel expression function, which

involves growth in four media with different combinations of selective agent and induc-

ers (Fig. 4.4C and D). The earlier trade-off analysis (Fig.1E) remains relevant: to achieve

selection for regulated phenotypes, the favorable expression levels in the sucrose and

cm media must be well separated.

After two cycles of mutation and selection, the two resulting phenotypes (Fig. 4.4E

and 4F) were similar to the target expression pattern of Fig. 4.4C and D. The regulatory

circuits thus adapted in accordance to the selective pressures of all four media, reveal-

3As has been observed previously for similar networks [153,178], the measured input-output relation for
the network as constructed did not match the one expected from the topology, indicating some limitations
to the rational design of networks.
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Figure 4.4: Adaptation of a regulatory circuit. (A) Schematic of the tetR and lacI repressor cir-
cuit, which controls operon expression as a function of inducers doxycycline (Dox) and IPTG. (B)
Measured expression level in color, as a function of Dox and IPTG concentrations, for the circuit
as constructed. Expression range: 5.0·107 to 2.7·108. (C and D) Schematic representation of two
experiments in which the environment alternates between four media. The composition of the
four media are indicated, as well as their corresponding favored expression level in color (low or
high). In the first environment an ’OR’ relation between Dox and IPTG is favored. In the second a
’NAND’ relation is favored. (E) Measured expression level in color, as a function of Dox and IPTG
concentrations, for a circuit adapted to an OR-environment. Expression range: 8.5·106 to 1.4·108.
(F) idem, for a circuit adapted to a NAND-environment. Expression range: 1.1·108 to 3.1·108.

ing no insurmountable adaptive constraints. None of the observed mutations were lo-

cated in regulatory sites on the DNA, which are often considered to be a main source of

regulatory network plasticity [179]. The results emphasize the possibility of generating

novel regulatory functions via structural changes in transcription factors.

This study underscores the value of obtaining a network-level, functional under-

standing of phenotypes when studying their adaptation. It allows one to identify the

phenotypic parameters on which selection acts, to measure their relation to fitness,

and to disentangle causes of constraint. This approach can be applied to a wide range

of other open issues, such as the adaptation in spatially heterogeneous environments

[180] and the role of network topology in adaptation [59]. The controlled shaping of

regulatory networks by evolutionary methods also provides a complementary method

to their rational design [181–183].
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Figure 4.5: Plasmids pRD007 and pCascade5, in which the selection module is under control
of lacI or a tetR-lacI regulatory cascade. The selection module consists of lacZα364 (expression
marker), cmR (chloramphenicol resistance), and sacB (levansucrase).

4.1 Materials and methods

Strains. In all selection experiments Escherichia coli K12 strain MC1061 [184] was used,

which carries a deletion of the complete lac operon. Genotype of MC1061:

F− ∆lacX74 mcrB1 e14−(mcrA0) rpsL150(StrR) galE15 galK16 ∆(ara, leu)7697 ara∆139

λ
−

hsdR2(r−k , m+
k ) spoT1

This strain was obtained from Avidity LLC, Denver CO, USA, as electrocompetent strain

EVB100 (containing an additional chromosomal birA gene).

For colony counting purposes, after the relative performance assay (see below),

strain DH10B [185] was used. Genotype of DH10B:

F− φ80dlacIqZ∆(M15) ∆lacX74 deoR recA1 endA1 mcrA ∆(mrr hsdRMS mcrBC) nupG

rpsL(StrR) galU galK ∆(ara, leu)7697 ara∆139 λ
−

Plasmids. We constructed two plasmids based on the pZ vector system [186] in which

the expression of the selection module is either regulated by lacI (pRD007) or by the

tetR-lacI regulatory circuit (pCascade5) (see Fig. 4.5). The selection module consists of

the co-ex-pressed genes lacZα364, cmR, and sacB, under control of the Ptrc promoter

from pTrc99A [187] (which is amplified until base pair -300 before start).

The lactose repressor gene lacI is PCR amplified from pTrc99A [187]. Tet repressor

gene tetR and the constitutive promoter PN25 were amplified from the chromosome of

DH5αZ1 [186]. A functionally random spacer (originating from D. melanogaster kinesin

coding sequence) of 277 base pairs was inserted between the diverging promoters, to

minimize potential transcriptional interference.

Reporter gene lacZα364 (see also appendix B) consists of the first 364 base pairs

of lacZ, amplified from the chromosome of strain MG1655 [188] (CGSC stock center).
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Figure 4.6: Mutations per 1093 base pairs for a random sample of mutagenized isolates.

Chloramphenicol resistance gene cmR originates from the pZ vector system [186]. The

levan sucrase coding sequence sacB was amplified from plasmid pKNG101, obtained

from the BCCM/LMBP Plasmid and DNA Library Collection (Belgium), accession num-

ber LMBP 5246.

Two reporter plasmids (pRepLacZω and pReplacZ) were created for measuring ex-

pression either in cis or in trans, respectively by deleting pTrc99A for lacI and Ptrc and

inserting a constitutive PlacIq-lacZω fragment, or by deleting pTrc99A for lacI and Ptrc

and inserting the MG1655 Plac-lacZ fragment.

Media. All growth and expression measurements, as well as the selection and relative

performance experiments were performed in Defined Rich medium (Teknova, Hollis-

ter, CA, USA, cat. nr. M2105), with 0.2% glucose as carbon source, and supplemented

with 1 mM thiamine HCl.

Mutagenesis. Mutants were created in a mutagenic polymerase chain reaction using

the Stratagene Genemorph II Random Mutagenesis kit. Mutation rates can be con-

trolled by varying the amount of template DNA in the reaction. Mutagenized product

was restricted and ligated into the (non-mutated) selection vector. Transformation into

MC1061 was carried out by electroporation. A control of pool size was performed at ev-

ery transformation. Pool sizes were routinely between 5·105 and 1·107.

In order to determine the mutation rate, a random sample of mutants was sequen-

ced after one mutagenesis round. The number of mutations per sequence (length 1093

bps) are given in the histogram in Fig. 4.6. Under the used conditions for mutagenesis

on average around 3.2 mutations per 1093 base pairs are applied, which implies a mu-

tation rate of roughly 0.003/bp.

Determination of β-galactosidase activity. To determine the β-galactosidase activ-

ity (and thus the expression level) of mutant pools and clones in our experiments, we

used the fluorogenic substrate fluorescein di-β-D-galactopyranoside (FDG), which al-
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Figure 4.7: Typical fluorescence trace, fitted with equation (4.3) (fit in red)

lows for an accurate determination of the LacZ activity over at least 4.5 orders of mag-

nitude. FDG contains two galactose groups that both have to be cleaved in order to

release the fluorescein.

FDG+E → FMG+E +galactose

FMG+E → fluorescein+E +galactose

In [189] an extended model for the FDG-FMG hydrolysis is proposed. In our concen-

tration range of LacZ and FDG, the increase in fluorescence is given by (eq. 7 in [189]):

d

dt
F = k2E

S0

Km +S0
(αP + (αM −αP )e−Rt ) (4.1)

where R is the relaxation constant (time scale to reach maximum fluorescence rate), E

is the (total) concentration of enzyme, k2 is the catalysis rate constant of FDG to FMG,

and the α’s are proportionality factors between product and fluorescence, in the paper

given as F =αP P+αM M (P is product (fluorescein) and M is FMG). Km is the Michaelis-

Menten constant for FDG and S0 is the initial FDG concentration. We can see that at

time t=0 as well as at large t ’s the rate with which the fluorescence increases is propor-

tional to E , though with different proportionality constants (first αM , then αP ).

The paper gives measured values for αM = 5.3 µM −1 and αP = 150 µM −1. Although

assigning arbitrary units to the fluorescence counts, they are relevant as relative quan-

tities between FMG and fluorescein. At t=0, equation (4.1) reduces to

d

dt
F =αM k2E

S0

Km +S0
(4.2)

In order to determine the enzyme concentration per cell, fitted slopes should be divided

by the cell density: we use here ε∝ E/OD600, where ε is the LacZ concentration per cell.

Integration of equation (4.1) leads to

F (t ) = c1(αR t + (αR −1)

R
e−Rt )− c1(αR −1)

R
(4.3)
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Figure 4.8: Comparison of Miller assay (A) and FDG assay (B) in determining the induction curve
of wild type LacI (expressed from pRD007). ’norm. fluorescence slope’ indicates the slope of the
fluorescence trace at t=0, divided by the optical density at 600 nm. (C) FDG expression versus
Miller expression.

where c1 = k2E S0
Km+S0

αM , and αR = αP
αM

. Fig. 4.7 shows a fit to a typical fluorescence

trace.

FDG expression measurements were compared to the standard Miller assay for β-ga-

lactosidase activity [154], We measured an induction curve of wild-type LacI (as ex-

pressed from plasmid pRD007), both by using the Miller assay (Fig. 4.8A) and the FDG

assay described above (Fig. 4.8B).

Since β-galactosidase also has affinity for IPTG, inductive IPTG in the medium will

competitively inhibit the hydrolysis of FDG by LacZ. Therefore, FDG assays that have to

be compared, have to be performed at the same final level of IPTG: we added inhibitive

IPTG directly before fixation of the cells and measuring expression.

In order to quantify the IPTG inhibition of FDG hydrolysis, a concentration range

from 0 to 10 mM of inhibitive IPTG was added to MC1061 cells harboring pRD007 and

pRepLacZ that had been growing without IPTG (Fig. 4.9). The resulting data points are

fitted according to the following model. Around t=0, the development of the fluores-

cence is entirely due to FDG to FMG hydrolysis:

FDG+E → FMG+E +galactose

This yields a simple time derivative of the fluorescence proportional to the concentra-

tion of enzyme-FDG complex (E ∗FDG)

d

dt
F =αM k2[E ∗FDG] (4.4)

In the absence of inhibitive IPTG, we recover equation (4.2), using the equilibrium rela-

tions for binding of FDG to LacZ. When IPTG is present, the effective concentration of

the enzyme-FDG complex is decreased due to titration of enzyme with the competitive

binder IPTG.
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Figure 4.9: The effect of competitive inhibition by IPTG on FDG hydrolysis. ’norm. fluorescence
slope’ indicates the slope of the fluorescence trace at t=0, divided by the optical density at 600
nm. MC1061 cells containing plasmids pRD007 and pReplacZ were grown without IPTG; the
indicated concentrations of IPTG were added just prior to fixation.

The E ∗FDG and the E ∗ IPTG concentrations are coupled via the conservation of

enzyme

[E ]tot = [E ]free + [E ∗FDG]+ [E ∗ IPTG] (4.5)

where Efree is the free concentration of enzyme is solution. We can solve the relevant

equilibrium equations to yield:

d

dt
F ∝ [E ∗FDG] = [E ]tot

1+ Km
[FDG] (1+ [IPTG]

KdIPTG
)

(4.6)

where KdIPTG is the equilibrium dissociation constant for IPTG. This equation, for large

enough IPTG concentrations ([IPTG] À KdIPTG) reduces to

d

dt
F ∝ [E ]tot

1+ Km
[FDG]

[IPTG]
KdIPTG

(4.7)

The data points in Fig. 4.9 are fitted with equation (4.6), using [FDG] = 109 µM (see

assay conditions below), and the literature value for the Michaelis-Menten constant for

FDG Km = 18 µM, as given in [189]. This yields a value of 49.6 µM for KdIPTG.

Assay conditions for the determination of β-galactosidase activity were as follows. A

reporter plasmid expressing lacZ or lacZω was cotransformed into the mutant pool or

clone that is to be assayed. Cell cultures were grown at 37oC in a Perkin & Elmer Victor3

plate reader, at 200 µl per well in a black-clear bottom 96 well microtiter plate (NUNC

165305). Medium was EZ Rich Defined medium + glucose (Teknova, Hollister, CA, USA,

cat. nr. M2105), supplemented with 1 mM thiamine HCl and the appropriate antibi-

otics. Optical density at 600 nm was recorded every 4 minutes, and every 29 minutes 9
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Figure 4.10: Example of a growth curve (optical density at 550 nm) of chloramphenicol selection
on a pool (dilution at OD550∼0.1 is not shown here).

µl sterile water was injected to each well to counteract evaporation. When not measur-

ing, the plate reader was shaking the plate at double orbit with a diameter of 2 mm. Cells

were fixed and stained after the cultures had reached an optical density of at least 0.015

and at most 0.07 (in the plate reader, which corresponds to an OD600 of 0.05 to 0.23),

by adding 20 µl FDG-fixation solution (109 µM FDG (MarkerGene Technologies Inc,

Eugene, OR, USA, cat. nr M0250), 0.15% formaldehyde, and 0.04% DMSO in ddH2O).

Fluorescence development was measured every 8 minutes, as well as the optical den-

sity at 600 nm. Shaking and dispensing conditions as above. Note that, as described

above, when cells are induced with IPTG, directly before or after fixing and staining, an

appropriate amount of inhibitive IPTG was added.

Growth conditions during the selection and the measurement of the fitness land-
scape. Growth was performed at 37oC in 100 ml erlenmeyer flasks, under vigorous

shaking. Culture medium was 20 or 40 ml EZ Rich Defined medium + glucose (Teknova,

Hollister, CA, USA, cat. nr. M2105), supplemented with 1 mM thiamine HCl, the ap-

propriate antibiotic, and IPTG when needed. Selective compounds (chlorampheni-

col, sucrose) were added after 3 hours of pre-selection, after which the cultures were

grown for 6 hours. This duration of selective growth was chosen to obtain significant

enrichment factors (of up to 104), while still maintaining diversity in the population

(which starts off at about 106). Optical density was monitored at 550 nm (see the ex-

ample below) and whenever an OD550 of 0.1 is reached, a dilution was made into fresh

prewarmed selective medium. After selection, cultures were washed, and flash frozen.

When transferred to the next environment (without mutagenesis), a threshold dilution

was applied, which sets the minimum growth rate for mutants to effectively increase in
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Figure 4.11: Examples of measured growth curves in selective media. (A) Medium containing 25
µg/ml chloramphenicol. (B) Medium containing 0.15% sucrose. Cultures with more than 60 µM
IPTG did not increase their OD.

number in the previous environment. This minimum growth rate is typically 1.0 dou-

blings h−1, which implies a dilution of around 500x after each environment (26 for 6

hours of selective growth plus a factor 22 for the pre-selection period).

In order to measure growth rates for determination of the fitness landscape, wells

of a 96-well plate containing 200 µl of Defined Rich glucose medium with the appro-

priate amount of IPTG were inoculated with a 2·104 x dilution of an O/N (LB) culture,

and grown for three hours (pre-selection) until an OD550 of around 0.0005 (in the plate

reader). Since this OD is too low to be determined directly, in the same plate 6 wells

were inoculated with a mere 5·102 x dilution, which reached a measurable OD of around

0.02 at the same time. At that moment sucrose or chloramphenicol was added4.

Optical density at 550 nm was recorded every 4 minutes, and every 29 minutes 9 µl

sterile water was added to each well to counteract evaporation. When not measuring,

the plate reader was shaking the plate at double orbit with a diameter of 2 mm. From

the measured growth curves the growth rate was obtained by determining for each well

what the increase in cell density was at t=6 hours. From this the effective growth rate

was obtained according to µ= log(ODt=6h/ODt=0)
log 2 /6, in doublings per hour. In order to ac-

curately determine the OD at t=0, the plate also contained wells with cells without se-

lective compounds. In case the growth rate was high and stationary phase was reached

within 6 hours, the slope of the growth curve was taken directly, since in the selective

experiments the cultures were always diluted before reaching stationary phase.

For the 1-to-1 relative performance assay two mutants were mixed in a known ra-

tio and subjected to selective environments. After 6 hours of growth in each environ-

4It was checked that the found growth rates do not vary much when the incubation parameters vary
within reasonable bounds (a lower dilution upon inoculation (up to 5·103), or a shorter pre-selection incu-
bation (2 hours), did not change the results).

70



Additional material

Figure 4.12: Part of a typical counting plate for the 1-to-1 relative performance assay. Cells with
high LacZ activity form blue colonies on plates containing Xgal. Image is twice real size.

ment (in which the initial inoculation was such that an OD550 of just under 0.1 was

reached), cultures were washed, and allowed to grow to stationary phase in LB medium.

A DNA extraction was performed on the whole pool for each culture, of which subse-

quently around 0.1 ng was electroporated into BioRad EP-Max10B electro-competent

cells (cat.no. 170-3330), and directly plated on agar containing Xgal (5-bromo-4-chloro-

3-indolyl-β-D-galactoside) and/or IPTG. As our selection module contains a lacZα gene,

complementation with the chromosomally expressed lacZω allowed for discrimination

between the mutants and determination of their ratio (Fig. 4.12).

4.2 Additional material

4.2.1 Interpolation of expression-growth curves using growth models

In order to interpolate the measured points on the expression-growth relations, we use

models for the selective action of chloramphenicol and sucrose.

chloramphenicol growth

In the presence of a certain concentration of chloramphenicol acetyl transferase (CmR),

the internal concentration of chloramphenicol (cm) is reduced and determined by the

equilibrium between influx through the cell membrane and acetylation (’inactivation’)

by CmR. As such, we model the action of cm by comparing the situation with growth

under sublethal concentrations of cm. The most basic equation relating growth to the

concentration of an inhibitive substance is derived from the Monod form for nutrient

limited growth [190], µ ∼ K X
X+K , where µ is the growth rate, X is the concentration of

nutrient and K is a constant determining the nutrient concentration that allows half-

maximum growth rate. Interestingly, this is the same functional form as the fraction
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of substrate bound enzyme under Michaelis-Menten kinetics. Now, for sublethal con-

centrations of cm, whose action is to block protein synthesis upon binding to the ri-

bosomes, it would not be unreasonable to expect the the growth of the cell (as a first-

order approximation) to be proportional to the unbound fraction of ribosomes, which

is given by K
X+K . Therefore we adopt the following simple functional form for growth in

the presence of chloramphenicol

µ([cm]ext) =
µ0

c1 [cm]int +1
(4.8)

where c1 is a constant, µ0 the growth rate in absence of cm, and [cm]ext and [cm]int

respectively the cm concentrations outside and inside the cell.

To obtain a relation between the internal and external cm concentration, we express

the equilibrium between influx and acetylation of cm by

Cbar,cm([cm]ext − [cm]int) = racet,cm (4.9)

Here the influx of cm is either diffusion limited or limited by the permeability of the

membrane, which does not matter for the functional form of the equation, and can be

expressed as a constant Cbar,cm times the concentration difference between inside and

outside. The acetylation rate racet,cm is given by

racet,cm = kcat,cm[E ∗cm] = kcat,cm
Etot

1+ KmEcm
[cm]int

(4.10)

where kcat,cm is the catalysis rate constant for the acetylation reaction, and KmEcm is the

Michaelis-Menten constant for CmR. Solving for [cm]int in

Cbar,cm([cm]ext − [cm]int) = kcat,cm
Etot

1+ KmEcm
[cm]int

(4.11)

now yields the expression for the growth rate as a function of the external chloram-

phenicol concentration (here abbreviated as [cm]), being

µ([cm]) =
µ0

1+ c1
2 ([cm]−KmEcm −Etotkcat,cm +

√
4[cm]KmEcm + ([cm]−KmEcm −Etotkcat,cm)2)

(4.12)

Expression-growth data for media containing cm were fitted with this equation.

sucrose growth

Sucrose selection is based on the formation of sugar chains (levan) in the periplasmic

domain of gram-negative bacteria [191]. The enzyme catalyzing this polymerization

reaction is levansucrase (SacB) from Bacillus subtilis. In the gram-positive B. subtilis
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Figure 4.13: Lysis of E. coli MC1061 cells as a result of the build-up of levan chains in the
periplasm. The interval between the pictures is roughly 7 minutes. Cells were often observed
to suddenly adopt a spherical shape prior to complete lysis. Scale bar is 1 µm.

the enzyme is exported through the inner membrane, where it constitutes a protective

poly-sugar layer outside the cell wall. In gram-negative bacteria, which have a second

cellular membrane, the enzyme is not exported through the second membrane and

therefore accumulates levans in between the cellular membranes, which decreases the

cellular growth rate. High expression of the protein in the presence of sucrose is lethal

and leads to lysis of the cells (see Fig. 4.13).

Thus, the rate of levan formation is the factor influencing cell growth. In contrast

to chloramphenicol, which is a bacteriostatic, high levan production leads to lysis of

cells, and in a population average this can give rise to a negative growth rate. Therefore

the growth as a function of levan formation rate cannot directly be described by the

Monod form. However, expecting that the relevant parameter for the toxic effect is the

levan formation rate (rlevan) relative to the instantaneous growth rate5, we can write a

modified Monod form

µ([sucrose]) = µ0

c0
rlevan

µ([sucrose]) +1
(4.13)

where and c0 is a constant. This can be solved to yield

µ([sucrose]) =µ0 − c0 rlevan (4.14)

In the same way as for the chloramphenicol selection, we can write down the rate of

levan formation and the equilibrium governing the transport of sucrose through the

outer membrane, yielding

rlevan = kcat,sucr[E ∗ sucrose] = kcat,sucr
Etot

1+ KmEsucr
[sucrose]int

(4.15)

and

Cbar,sucr([sucrose]ext − [sucrose]int) = kcat,sucr
Etot

1+ KmEsucr
[sucrose]int

(4.16)

5A stronger effect of sucrose was indeed observed when the basal growth rate is lowered (e.g. growth with
glycerol as a carbon source instead of glucose)
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We can solve equation (4.16) for [sucrose]int, substitute this into equation (4.15), which

in its turn can be substituted into equation (4.14) to obtain the growth rate as a function

of the external sucrose concentration and the expression of sacB.

However, all measured expression-growth characteristics for sucrose show a steeper

dependency on enzyme concentration than can be obtained by this form. Indeed, SacB

mediated formation of levan is a process that needs a levan seed in order to proceed

[192,193]. Most probably seed formation is also dependent on the enzyme and sucrose

concentration. Therefore we phenomenologically alter the equation for the growth rate

as a function of levan formation rate into

µ([sucrose]) =µ0 − c0 r n
levan (4.17)

The obtained function provides good fits for the low-enzyme regime of the expression-

growth data.

However, at the high [E ] end, we observe a saturation at higher growth rates than

equation (4.17) can account for. There are at least three saturation effects (see also

[192, 193]) coming into play at high rates of levan synthesis (apart from potential feed-

back on protein production in ’struggling’ cells):

1) Since the levans are (possibly branching) chains, the autocatalytic seed-effect (see

above) of the reaction decreases: attaching a fructosyl-group to an existing long chain

does not increase the number of fructosyl-acceptors.

2) At high levan production rates, there is a high concomitant production of glucose,

that has an inhibitory effect on levan formation in two ways:

2a) The fructosylation reaction by the E∗S (levansucrase-sucrose) complex branches

between levan elongation and fructosylation of glucose (which re-forms sucrose).

2b) The competitive inhibition of E to S binding by glucose. Due to levan formation,

the internal sucrose concentration decreases, and the glucose concentration increases.

3) The formed levans themselves act as an inhibitor at higher concentrations.

Since it is at this stage impossible and will not yield further insight to adapt the model

to account for the saturation at high enzyme concentration, we opt for a more phe-

nomenological description. For fits over the complete concentration range of SacB en-

zyme, we used

µ([sucrose]) = µ0 +µsat

c0 r n
levan +1

−µsat (4.18)
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4.2.2 Mutant sequences

Here mutant sequences are given for some of the lac repressors after wild-type selec-

tion, for the inverse repressor phenotypes, as well as for some of the regulatory circuits.

A B

C D

Figure 4.14: Structure of the C-terminal deleted but otherwise wild-type lac repressor (PDB
1JWL); residues that are mutated in inverse repressors are rendered as red space-filling residues.
DNA sequences are given on page 76. (A) mutant FPM400m21 (B) mutant 3BII5 (C) mutant
M32alt; red arrows indicate the recurring Ser97Pro mutation (D) mutant FPM399m22

lac mutants after wt selection

5B-1 5B-4 5B-9

C828T silent C828T silent T269A Leu90Gln

T663C silent

T702A Asn234Lys
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Figure 4.15: Induction profiles of mutants FPM400m21, 3BII5, M32alt, and FPM399m22. The
inverse profile of mutant FPM400m21 is also the one shown in Fig. 4.3.

inverse lac repressors

Shown below are sequences for isolated inverse repressors from different lineages. Fig-

ure 4.14 indicates mutant amino acids as red space-filling residues in the wild type (but

dimeric) lac repressor in complex with operator DNA and the ligand ONPF (PDB ID

code 1JWL). Repressor monomers are shown in blue and green, DNA in grey, and lig-

and in yellow. Note that the structure in PDB 1JWL is a dimeric C-terminal deletion

mutant: it lacks the tetramerization domain, residues 330-360. Images were created

using PyMOL [194]. Measured induction profiles are shown in Fig. 4.15.

FPM400m21 3BII5 M32alt FPM399m22

C206A Ser69Tyr G171T silent T289C Ser97Pro G123A silent

T289C Ser97Pro T289C Ser97Pro G944A Gly315Asp G213A silent

A392C Gln131Pro A324T Lys108Asn C1016A Pro339His C215T Ala72Val

G723T silent G432A silent C275T Ala92Val

G726A Met242Ile T573C silent G320C Cys107Ser

G813A silent G705T Glu235Asp T360A Ser120Arg

C952T silent C963G silent C382T silent

T1037A Leu246stop C1054G Gln352Glu C883A Leu295Met

T902C Val301Ala

C1001T Thr334Met

T1037A Leu346stop

Distribution of amino acids substitutions in inverse repressors.

Overall there seems no clear clustering of substitutions in a particular domain of the

repressors. However, no isolates were recovered with substitutions in the domain that

makes direct contact with the DNA. Furthermore, all inverse isolates contain substitu-

tions in the interface between the monomers, among which particularly often Ser97Pro,

which is marked with red arrows in Fig. 4.14C.
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regulatory circuit sequences

OR phenotype NAND phenotype

tetR mutations tetR mutations

C132T silent G128C Trp43Ser

C145G Arg49Gly C132T silent

T269 del C149G Ala50Gly

A270 del deletion Leu (90) G214T Gly72Trp

C271 del C568A Leu190Ile

T355A Phe119Ile

G549T Glu183Asp

promoter mutations promoter mutations

A–36G In PN25 promoter (36

bps before transcrip-

tional START)

T-136C In insert between

PN25 and PLtetO1 (136

bps before PLtetO1

transcriptional START)

lacI mutations lacI mutations

G285A silent T289C Ser97Pro

G325T Ala109Ser T401C Ile134Thr

C900T silent A466G Ile156Val

G531A silent

C1001T Thr334Met

G1064 del Arg355His

Leu356Trp

Glu357Lys

Ser358Ala

Gly359Asp

Gln360Asn

stop361Asn

362Thr

363Trp

stop
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4.2.3 Alternative selective pressures and fitness landscapes

Here we consider alternative selective pressures than used in the main text.

comparison between stringent and less stringent selection & relative growth of
regulatory mutants

We can construct the fitness landscape for alternating environments, comprised of any

combination of media described by the curves in Fig. 4.1C and D. Especially for the

relative growth assay of the mutants depicted in Fig. 4.2B (mutants R1 and N1), the

fitness landscapes clearly illustrate the different outcome in stringent and less stringent

environments.
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Figure 4.16: (A) and (B): Fitness landscape for environments alternating between 80 µg/ml chlo-
ramphenicol + 1 mM IPTG and 0.4% sucrose. In (B) the mutants are depicted of which we as-
sayed their 1-to-1 performance. In these environments responsive mutant R1 outperforms non-
responsive mutant N 1. (C) and (D): Fitness landscape for environments alternating between 25
µg/ml chloramphenicol + 1 mM IPTG and 0.15% sucrose. Here the landscape predicts that mu-
tant N 1 outperforms mutant R1, which was indeed found in relative growth assay. Growth rates
µ are in doublings h−1. Black lines in (A) and (C) indicate non-responsive phenotypes: F =1.
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non-equal dwelling times in alternating environments

In principle the expression-growth relations from Fig. 4.1C and D can also be used to

predict the fitness landscapes for regulation when the dwelling time in the alternating

environments is unequal. In the figure below we show the resulting fitness landscapes

when the dwelling time in the cm environment is four times longer than the dwelling

time in the sucrose environment. We can see that the resulting selective pressure to

conserve wild-type regulation has effectively decreased, since large regions in the e0-F

plane have emerged that do not have wild-type regulation, but do have a near-optimal

fitness.
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Figure 4.17: (A) and (C): Fitness landscape for environments alternating between 80 µg/ml chlo-
ramphenicol + 1 mM IPTG and 0.4% sucrose. In (A) dwelling times in both environments are the
same, while in (C) dwelling time ratio between cm + IPTG and sucrose conditions is 4:1. (B) and
(D): Fitness landscape for environments alternating between 25 µg/ml chloramphenicol + 1 mM
IPTG and 0.15% sucrose. In (B) dwelling times in both environments are the same, while in (D)
time ratio between cm + IPTG and sucrose conditions is 4:1. Growth ratesµ are in doublings h−1.
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4.2.4 Simple simulation of mutant pools and direction of selection

simulation of mutant pools in the e0 −F plane

We performed a simple simulation of differential enrichment in a mutant population. A

pool of mutants with a certain distribution N0(e0,F ) is passed through two subsequent

selective environments, yielding growth rates of G1(E ,S) and G2(E ,S) respectively. In

case the selection times in both environments are equal (t1 = t2 = t ), we may write for

the new distribution

N (e0,F , t ) = N0(e0,F )eln2(G1(E ,S)+G2(E ,S))t (4.19)

Fitness landscapes as depicted in Fig. 4.2AB and 4.3AB are now represented by the term

G1(E ,S)+G2(E ,S). Assuming an initial Gaussian e0,F -distribution with the same center

of mass as the experimentally measured mutated pool (green spheres in Fig. 4.2 and

4.3), end distributions are calculated on the basis of a discrete pool of mutants. Figure

4.18 shows for wild-type selection the assumed Gaussian mutant pool before selection,

the calculated pool after selection in the sucrose medium, and the calculated pool after

selection in the cm medium. After each environment a 500x dilution is applied. The

location of the end-distribution (Fig. 4.18, right) corresponds well to the experimentally

observed distribution (Fig. 4.2AB).

Figure 4.18: Initial distribution before selection (left), calculated pool after sucrose selection
(middle), and calculated pool after sucrose and cm selection (right). Initial mutant distribution
is here assumed Gaussian, with a total of 106 mutants. Axes are the same as in Fig. 4.2A. Grey
values indicate the number of individuals per ’unit surface’ in the fitness landscape.

The same is done for one round of selection for inverse repressor phenotype (Fig.

4.19). While the initial mutant distribution is of course an assumption that heavily in-

fluences the distribution after selection, the calculation does show how this distribu-

tion would change, were there no genetic constraint. Upon comparison with the mea-

sured pool after the first selection round (blue spheres in Fig. 4.3), we can infer that the

clustering of the measured pool around the line F = 1 is not dictated by the phenotype-

fitness mapping, but due to the underlying genetic architecture, which determines the

mapping from genotype to phenotype.
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Figure 4.19: Initial distribution before selection (left), calculated pool after sucrose selection
(middle), and calculated pool after sucrose and cm selection (right). Initial mutant distribution
is here assumed Gaussian, with a total of 106 mutants. Axes are the same as in Fig. 4.3A. Grey
values indicate the number of individuals per ’unit surface’ in the fitness landscape.

calculation of the direction of selection

Using a simple calculation we can demonstrate how the net direction of the selective

pressure in an alternating environment is towards the right upper corner in a trade-off

diagram, like the one shown in Fig. 4.1E. Depending on how strong the trade-off is,

this is generally in the direction of responsive phenotypes. Indeed this is the case for

the trade-off curves shown in Fig. 4.1E. Note that what will follow assumes a regime of

environmental fluctuations that is not so rapid that the cells effectively experience an

average environment (see [42]), but also not so slow that clonality is obtained during

the dwelling time in one environment. We start from a general distribution Po(µ1,µ2)

of individuals with growth rates µ1 and µ2 in environment 1 and 2 respectively (see Fig.

4.20).

For every individual, after remaining a time t1 in environment 1 and a time t2 in

x
y

m2

m1

mmax

mmax

Figure 4.20: Trade-off diagram of growth in two environments 1 and 2, where mutants exhibit
growth rate µ1 and µ2 respectively. Indicated are the axes x and y of the alternative coordinate
system.
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environment 2, its number will have increased by a factor of 2µ1t1 ·2µ2t2 . Therefore the

distribution will have changed towards

Ps(µ1,µ2) = 2µ1t1 ·2µ2t2 Po(µ1,µ2)

Ns
(4.20)

where Ns is the normalization factor accounting for the total growth of the population.

We now change the coordinate system of the growth rates to the perpendicular axes x

and y (see Fig. 4.20), locating the origin in the center, using µ1 = µmax+x−y
2 and µ2 =

µmax+x+y
2 . We can rewrite the mutant distribution after selection as

Ps(x, y) = 2
(µmax+x−y)t1

2 ·2
(µmax+x+y)t2

2 Po(x, y)

Ns
(4.21)

which in case of equal t1 = t2 = t gives

Ps(x, y) = 2(µmax+x)t Po(x, y)

Ns
= c 2xt Po(x, y) (4.22)

from which we can see that by selection in these alternating environments the distri-

bution shifts in the direction of x, towards the right upper corner of Fig. 4.20.
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CHAPTER

5
Identification of functional
mutations and epistasis by reverse
neutral evolution

I returned and saw under the sun, that the race is not to the swift, nor the battle to the

strong, neither yet bread to the wise, nor yet riches to men of understanding, nor yet

favour to men of skill; but time and chance happeneth to them all.

Ecclesiastes 9:11

In recent years a major focus in evolutionary research has been on the molecular basis of

adaptation. An exciting new development is the reconstruction of evolutionary interme-

diates between an ancestral and evolved sequence and investigate, assuming a relevant

selective pressure, which evolutionary pathways are accessible. However, when the total

number of mutational differences between the ancestral and evolved sequence rises, the

combinatorial complexity soon surpasses our capacity to reconstruct all intermediates.

In that case pathway reconstruction and statistical analysis will be incomplete. Often

though, a considerable fraction of the mutations between ancestor and evolved sequence

will be functionally neutral, and our understanding of the evolving system may not de-

pend on them. In this work we apply a PCR-based technique to remove neutral muta-

tions from an evolved inverse lac repressor and screen the obtained pool of intermediate

sequences for conservation of function. We analyze correlations between mutations in

the selected pool, after correcting for correlations due to the PCR procedure. Based on

this data we attempt to deduce functional information and decide which subsets of mu-

tations are interesting for further investigation. In ongoing work selected loci are further

analyzed by creation and measurement of all mutational intermediates and inspection

of genotype-phenotype and genotype-fitness landscapes.

83



5. MUTATION FILTERING BY REVERSE NEUTRAL EVOLUTION

F or a long time the main source of detailed information about evolutionary pro-

cesses has been standing genetic variation. Current polymorphisms and phyloge-

netic analysis have been used to uncover the signature of natural selection, and in some

cases to infer evolutionary pathways from ancestor to present-day DNA sequences and

proteins. However, even if phylogenetic data on a certain system is sufficiently com-

plete, this type of analysis does not provide information at the level of phenotype or

fitness, which leaves an important area of fundamental questions inaccessible. For ex-

ample, without recourse to data on fitness, many issues surrounding the repeatability

or the predictability of evolution, or the prominence of adaptive constraint cannot be

resolved. Based on earlier ideas, and helped by the development of molecular biolog-

ical techniques, recent studies have been very successful in filling this gap [20, 55]. By

reconstructing ancestral sequences and possible intermediates towards the present-

day sequence, and often analyzing them in the context of a fitness landscape, one can

obtain information about key events in evolutionary history at the molecular level.

However, the amount of mutational differences between ancestor and evolved se-

quences easily becomes so high that the number of possible intermediates increases

beyond regular molecular screening techniques. Two sequences that are polymorphic

at L locations, have 2L −2 possible intermediates. To recreate these intermediates can

by itself already be a challenge, even apart from assaying relevant phenotypes and fit-

nesses. Often, a subset of the L mutant loci (note that in this chapter ’loci’ will usually

refer to positions within a gene) will have no or negligible effect on a present phenotype

or fitness. In these cases, one may consider intermediates consisting of a subset of the

L loci and still capture the essential information about the evolutionary process. On

the basis of sequence information alone, however, it is impossible to know which of the

loci are neutral and can be disregarded in the analysis of the evolutionary trajectories.

In this work we apply a PCR technique that is followed by selection for conservation

of function to sieve out non-functional mutations and a statistical analysis for func-

tional relevance. The PCR reaction accomplishes in vitro recombination of mutant

loci on a DNA sequence conceptually similar to the DNA shuffling method by Stem-

mer [195], but does not require reassembly of fragmented sequences. A comparable

PCR approach has been described [196] but without a statistical functionality analysis.

Due to the nature of the PCR reaction, or recombination more in general, distance cor-

relations will arise between the occurrence of mutations. Our analysis aims to separate

these correlations from those that can be an indication for functionality or epistatic

interactions. For this analysis it is not necessary that all neutral mutations have been

removed in the selection process: we compare observed correlations between loci with

their expected average correlation based on their distance on the DNA.

We follow this approach, using an (artificially) evolved inverse lac repressor (chap-

ter 4). This inverse repressor has an opposite response to its ligand isopropyl-β-D-

thiogalactopyranoside (IPTG) compared to the wild-type lac repressor: it represses in

the presence of IPTG and abolishes repression in its absence. We found earlier that
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there is a large diversity of genetic changes in the wild-type repressor that can accom-

plish this inverted functionality. Here we focus on one such mutant, containing 8 base

pair substitutions compared to wild-type LacI. We discuss another statistical test (ANa-

lysis Of VAriances, ANOVA) with respect to our data which in principle is powerful to

infer functionality and epistatic interactions, but has limitations when the data is not

complete. For subsets of polymorphic loci that seem functionally important we are

currently in the process of constructing and measuring phenotypes of all possible in-

termediates. By tracing mutational paths in a fitness landscape, we expect to find ample

evidence for epistatic interactions governing the inversion of function in the lac repres-

sor. Some implications and limitations of the followed approach will be discussed.

5.1 Methods

5.1.1 PCR procedure and selection

1

2

3

4

j

..
.

template sequences

extension steps

ancestor

evolved

anc.

evol.

anc.

evol.

Figure 5.1: Template switching during the dilution PCR procedure. Two DNA templates differing
in a limited number of base pairs are mixed. 1) After an annealing step, a primer is extended,
replicating an non-mutated (ancestral) template strand. Because of short extension time steps,
elongation does not proceed to the end of the template. The elongated primer is released in
the subsequent melting step (not shown). 2) The elongated primer anneals to a mutant (evolved)
strand, and by further extension incorporates a subset of the mutations. 3) and 4) the procedure is
repeated until a full-length complementary strand is formed. j) When an extension is completed,
the resulting DNA strand containing a subset of the mutant loci can serve as a template for a
reverse primer.

The procedure of the ’dilution PCR’ is only slightly modified from a standard PCR
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5. MUTATION FILTERING BY REVERSE NEUTRAL EVOLUTION

reaction. There are two main differences. First, the template is a mix of two DNA se-

quences (’ancestor’ and ’evolved’) that are similar, except for a number of polymorphic

loci. Second, the elongation steps in the PCR procedure are drastically shortened. A

standard PCR protocol typically consists of 30 cycles of melting (order 30s at 94oC),

primer annealing (order 30s just below melting temperature for primers), and elonga-

tion (60s per 1000 base pairs at 72oC). A dilution PCR reaction shortens the elongation

step (in the present work to 20s for 1200 base pairs), and increases the number of cycles

(here 99 instead of 30). In this way incomplete elongation is accomplished in the ex-

tension steps, and the nascent DNA strands are able to switch template in subsequent

steps (see fig. 5.1). Care should be taken that the primer annealing temperature is suffi-

ciently low, otherwise the effective elongation step is much longer than the time spent

at 72oC. Parameters that influence the switching between templates are the elongation

time and the concentration ratio of the two templates (which here was chosen to be

one). How these parameters should be tuned, depends on how strong the dilution of

mutations should be, which in turn depends on the purpose of the experiment and the

pool sizes that can be screened. Generally, to remove unwanted linkage between loci,

the switching between templates should be as often as possible. However, control over

this parameter is limited, since the temperature steps are never real step functions, and

the polymerase will also work at non-optimal temperature ranges. Moreover, at very

short elongation steps, the product yield will be unpredictable.

After creation of the recombined DNA sequences, we can inspect their phenotype.

The creation of the pool consisting of mutation diluted sequences is followed by se-

lection for conservation of function. The selection procedure is described in detail in

chapter 4. The procedure is set up such that the evolved inverse LacI phenotype has a

high enough fitness to not overly favor potential fitness improvements with respect to

this phenotype.

5.1.2 Identification of correlated loci

In order to determine whether there is a meaningful correlation between polymorphic

loci in sequences after selection, we have to remove correlations that are due to the

PCR procedure. The nature of the PCR procedure will make that closely neighboring

loci have a higher chance to be correlated, since they might originate from a single

elongation event. Of course, in later stages of the PCR reaction, mixing has already

taken place, and the same elongation event may then include polymorphic loci from

different origin (ancestor or descendant). These latter events will reduce the average

effective run length. To know the characteristic length scale at which correlations decay

due to the dilution PCR, we need to know the average effective run length.
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determination of run length

To estimate this average effective run length, we cannot simply inspect the resulting

amplified sequences. Since most base pairs of the two template sequences will be

identical, information about the run length can only be obtained from inspection of

the polymorphic loci, and the correlation between consecutive polymorphic loci. For

example, if two consecutive polymorphic loci are uncorrelated among amplified se-

quences, the probability is high that the average run length is smaller than the distance

between these loci. We now derive an expression for the probability that two polymor-

phic loci share the same origin (are both ancestor, or both descendant) as a function of

average run length. To this end, we consider a Poisson process that alternates between

two states, 0 and 1, for simplicity with equal characteristic switching rates ∆ for both

states. Starting in one of the states, here 0, we calculate the probability P0(κ|0) that

after a certain propagation κ (which here is the length over the DNA sequence, and is

considered a continuous variable) we observe the same state 0 again.

This probability is given by the sum

P0(κ|0) = P0→0(κ|0) + P0→1,1→0(κ|0) + P0→1,1→0,0→1,1→0(κ|0) + ·· · (5.1)

where P0→0(κ|0) = S(κ) = (1/∆)e−κ/∆ is the survival probability density of the individual

state. The other terms can be calculated by considering the example

P0→1,1→0(κ|0) =
∫ κ

0
dκ2

∫ κ2

0
dκ1 S(κ1)S(κ2 −κ1)S(κ−κ2)

= 1

∆2
S(κ)

∫ κ

0
dκ2

∫ κ2

0
dκ1 = 1

2

( κ
∆

)2
S(κ) (5.2)

When all terms are taken into account, the result is

P0(κ|0) =
∞∑

n=0

(
κ
∆

)2n

2n!
e−κ/∆ = cosh

( κ
∆

)
e−κ/∆ (5.3)

In this calculation it was assumed that upon switching, the state changes from 0 to 1

or from 1 to 0. In the case of template switching, however, this is not necessarily so:

the subsequent annealing may be again on a ’same state’ template. In other words, it

may flip from state 0 to state 0, which results in a rescaling of the decay rates. We do

not explicitly perform this scaling, however. Apart from the fact that it will yield the

same results in what follows, we are here interested in extracting the average effective

run length (see also ’caveats’ below).

Using equation (5.3), we can now perform a regression procedure to obtain the av-

erage run length ∆. Assuming we have N back-crossed sequences, each with L poly-

morphic loci, we can compare the expected and the real correlation for all consecutive

loci. In order to find an estimate for the average run length, we have to minimize the
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following sum1

χ2 =
N∑

n=1

L−1∑
l=1

(E n
l ,l+1)2 (5.4)

where E n
l ,l+1 = 1−P0(κ|0) if the consecutive loci l and l +1 have the same origin (both

0 or both 1), or E n
l ,l+1 = P0(κ|0) if they have a different origin (0 and 1, or 1 and 0). The

value for κ in the calculation of the P0(κ|0) terms is given by the distance between loci l

and l +1 in base pairs. The average run length ∆ is that which minimizes equation 5.4.

p-values for correlations

Having obtained the effective run length ∆, we can look at pairs polymorphic loci and

decide whether they are more correlated or anti-correlated than can be expected on the

basis of their distance. The null hypothesis –no functional correlations between pairs of

loci– would result in a binomial distribution of equal states of the loci, with an intrinsic

probability P0(κ|0), using the found run length ∆. For a certain pair of loci, given that ν

out of a total N (number of sequences) share an equal origin (both states are 0, or both

are 1), we can perform a two-tailed test to assess whether the null hypothesis should be

rejected. The p-value is given by

p =
N∑

n=ν

(
N

n

)
P N−n(1−P )n if ν> 2P N

p =
N∑

n=ν

(
N

n

)
P N−n(1−P )n +

2P N−ν∑
n=0

(
N

n

)
P N−n(1−P )n if 2P N Ê ν> P N

p = 1 if ν= P N

p =
ν∑

n=0

(
N

n

)
P N−n(1−P )n +

N∑
n=2P N−ν

(
N

n

)
P N−n(1−P )n if 2P N −N É ν< P N

p =
ν∑

n=0

(
N

n

)
P N−n(1−P )n if ν< 2P N −N

(5.5)

where the probabilities P are given by P0(κ|0). Mind that some of the summations

strictly can only be performed when P N is an integer. If not, either a continuous ap-

proximation of the distributions and integration can be used, or the differences 2P N−ν
should be rounded to the closest integer value away from P N . Here we do the latter.

1Mind that although the quantity in equation (5.4) plays the role of a χ-square, critically considered it is
different, since its error terms are not normally distributed.
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Note further that since we perform M = ∑L−1
l=1 l pairwise checks, we should adjust

the significance level accordingly, in order to minimize false positives. If we have a

significance level α for each pairwise comparison, the chance that we wrongly reject

the null hypothesis in at least one of the cases is given by 1− (1−α)M . Therefore, to

perform a strict hypothesis testing, one should require 1− (1−α)M < 0.05, which yields

α ≈ 0.05/M . Mind that with this stringent criterion we might assume incorrectly that

the null hypothesis is not rejected.

caveats

Some caveats are in place. First, the value of ∆ can only be determined accurately if

enough sequences of the PCR products are obtained. What ’enough’ is, depends also

on the number of polymorphic loci: if there are few of these,∆will also be less accurate.

Further, the determination of ∆ should in principle be done on the basis of unselected

sequences. However, since the interesting functional correlation will only show up af-

ter selection, more data will probably be gathered from selected sequences. We expect

that, as long as functional correlations are not too prominent, the above determination

of the run length ∆ will be reasonably accurate. Third, one may argue that the elonga-

tion steps are not well described by a Poisson process. One could indeed expect that if

primer annealing is fast compared to the elongation, then the run length will be more

directly determined by the duration of the temperature step. This would cause the dis-

tribution of∆ to be more peaked around a certain value. On the other hand, replication

of a DNA strand using already mixed strands as a template (as will happen more often

towards the end of the PCR reaction), will tend to randomize the run lengths again. The

in the end (semi-)random nature of the process was our rationale to model it as a Pois-

son process and we expect that the influence of a deviation from Poisson statistics on

the detection of functional correlations is limited.

That the average effective run length is not simply determined by the duration of

the elongation steps is clear: from our estimated run length of 199 (see below), using a

annealing time step of 30s and an elongation time of 20s, and given the measured rates

of DNA replication rates of 102-103 nucleotides per second [197, 198], we can conclude

that the 72oC time steps cannot directly be the run length determining factor. To assess

which factors exactly determine the run length is less important for the present work.

Apart from the earlier mentioned replication of already mixed templates, run lengths

could be influenced by association rates of primers to their complementary strand, as-

sociation rates of DNA polymerase to the primer-template complex, or the initiation

rate of the replication process.

Lastly, here we only look at pairwise correlations, but not at higher order interac-

tions, which could be important, but will be missed by the above treatment. The higher

order correlations could be approached in a similar way, but to do this meaningfully, we

would have to have many more sequenced recombinants available than we have (here

order 20).
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5.2 Results

Figure 5.2 shows the wild-type (dimeric) LacI protein structure. Indicated in red space

fills are the amino acids that are mutated in the inverse repressor that is studied in

the present work. This repressor contains 8 mutations (see table), that give rise to 6

amino acid substitutions, as 2 base pair substitutions are synonymous. The repressor

phenotypes in this work are described by two parameters: the basal expression (no

inducer present) e0, and the regulation factor F , that gives the fold change in expression

in media that do contain inducer (here 1 mM IPTG). Hence, repressors with an F value

smaller than 1 exhibit an inverse phenotype, in which case IPTG acts as a co-repressor

rather than as an inducer. The initially evolved inverse repressor has an F value of 0.022

and a basal expression level e0 of 8.8·107, whereas the wild-type lac repressor in our

assay has an F of 27.4 and an e0 of 3.5·105.

We performed a mutation-dilution PCR on a 1:1 mix of wild-type and evolved se-

quences, and subsequently created a pool of ∼1·106 E. coli cells carrying a plasmid-

borne mutational intermediate. Using a selection operon developed earlier (chapter 4),

we selected for inverse functionality (F values smaller than 1), which here is a function-

ally conservative (purifying) selection. Mutants before and after selection are isolated,

and their phenotypes are assayed (fig. 5.3). In figure 5.3 wild-type phenotype (black

star) is indicated as well as the inverse repressor containing all 8 base pair substitutions

(white star). From the location of the mutation-diluted pool before selection (open cir-

cles), one can see that the removal of mutations yields phenotypes that are also largely

intermediate between wild-type and inverse repressor. After selection (solid squares)

phenotypes again surround the evolved inverse repressor phenotype. Interestingly, the

low expression level of the measured isolates (which is e0 for F>1 and e0F for F<1)

seems to be very similar for most isolates, being slightly below 1·106. This seems to

suggest that there is no locus among the 8 base pair substitution that by itself tightens

the binding of the repressor to the DNA. This in turn suggests that the modus by which

the inverse repressors acquire their functionality is not the kinetic effect proposed in

ref [175].

From a subset of isolates before and after selection the lacI sequences are deter-

mined (table 5.1). We can see that most selected sequences indeed contain only a

subset of the 8 mutations. In order to obtain a first indication about which loci are

important for the inversion of the lac repressor functionality, we show p-values the oc-

currences of each of the 8 polymorphic loci among sequences that have a F value lower

than 0.2 (that are given in table 5.2). The p-values are calculated on the basis of a bi-

nomial distribution that assumes equal chances for the presence and absence of the

mutations. Also given for comparison is the result of a multi-factor ANOVA with un-

equal replication [199,200], on the basis of all available sequences. Note that due to the

limited number of obtained sequences we cannot perform a ANOVA test that includes

interaction terms. Would we have had all 28 possible combinations of the 8 polymor-

phic loci, then an ANOVA test would have given us all direct influences of loci on the
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C39A A13s
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G620T R207L

A772G T258A

T920A L307H

T1046C L349P
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Ser97

Lys84

Lys84

Figure 5.2: Structure of the C-terminal deleted, but otherwise wild-type lac repressor (PDB 1JWL)
with bound ligands (yellow). Amino acids that are mutated in the inverse repressor are rendered
as red space-filling residues. The inset on the right shows the central part of the repressor, tilted
forward to provide a clearer view on residues 84 and 97. The table on the right shows the base
pair substitutions (left), and the corresponding amino acid changes (right) in inverse repressor
versus wild-type. A30T and C39A are silent. Mutation Leu349Pro is located in the C-terminal
tetramerization domain of the protein, and is therefore not shown in the structure.

inverse phenotype, as well as all interaction terms.

A first inspection of table 5.2 learns that both ways of analysis (binomial and ANOVA)

indicate a high functional significance to mutation Ser97Pro. From the last column we

see that its effect is to lower the F value. Earlier work showed that this mutation also

arose in other, independent, lineages where a selection for inverse phenotype was per-

formed. Remarkably, however, this amino acid substitution was always accomplished

by the same base pair mutation T289C. This in principle could be a hint towards a mu-

tational bias rather than a functional substitution. Moreover, it was found that this

substitution in isolation does not result in an inverted phenotypic response [177]. On

the basis of these considerations we could expect that Ser97Pro interacts epistatically

with some of the other mutations. On the other hand, the ANOVA test does give an in-

dication for a direct effect of Ser97Pro. Reconstruction of a mutant with Pro97 should
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Figure 5.3: Measurement of the phenotypic parameters F and e0, for a sample of mutation-
diluted sequences before selection (open circles), and after selection (closed squares). Wild-type
(ancestor) phenotype is indicated with a filled star, evolved inverse phenotype (descendant) is
shown as a white star.

decide what its role is.

Both tests also seem to agree on the significance of substitution Leu307His, al-

though less pronounced, to promote inversion of the lac response. Interestingly, this

locus in isolation (fifth sequence in table 5.1, taking into account that the first two loci

are neutral), on the contrary yields a higher F value than wild-type. From chapter 7 we

can see that this suggests a destabilization of the repressor-DNA interaction (we argue

there that a reduced binding affinity in an overexpressing system leads to a down-shift

of the IPTG concentration that is necessary to induce the system, and hence to a higher

expression at 1 mM IPTG used here). Again an epistatic interaction is suggested here:

substitution Leu307His alone increases the F value, but occurs significantly more often

among the sequenced inverse phenotypes (low F value) than expected . Substitution

Leu349Pro also seems to occur significantly more often than expected in the selected

sequences, but the ANOVA test disagrees here, which is caused by the fact that in the

selected sequences Leu349Pro only once occurs in the absence of Leu307His. Their oc-

currence thus seems correlated in the selected sequences, to which we will come back

below. Finally, table 5.2 shows that the synonymous base pair substitutions indeed have

no effect on the phenotype (values in the ’effects’ column around 0). Their distribution

seems perfectly random over the selected sequences (8 out of 17). However, note that

the ANOVA test can not assign a p-value, which here is an indication that these base

pair substitutions always occur paired (and no significance to individual effects can be

assigned).
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occurrence p-value ANOVA F p-value effect

V9s 8 1.00 0 – 0.13
A13s 8 1.00 0 – 0.13
K84I 12 0.14 3.42 0.080 -0.49
S97P 17 0.000015 7.65 0.012 -1.37

R207L 6 0.33 0.09 0.77 0.21
T258A 10 0.63 1.59 0.22 -0.28
L307H 16 0.00027 4.25 0.053 -0.97
L349P 16 0.00027 0 0.97 -1.20

Table 5.2: Left two columns: occurrences of mutations in sequences with a measured F value of
less than 0.2 and the associated p-values based on a binomial distribution (p=0.5,N=17). Right
two columns: Multi-factor ANOVA (with unequal replication) test statistic F and its p-value (only
linear terms taken into account) on the basis of all 26 sequences plus wild-type. The ANOVA test
is performed with respect to the logarithm of the F value. The last column contains an expression
for the effect of the mutation, logFmut − logFwt, being the difference between the averages of the
logarithmic F values for sequences that have and do not have the mutation.

V9s A13s K84I S97P R207L T258A L307H L349P

V9s 1.00 0.0000019 0.26 0.66 0.50 0.012 0.66 1.00
A13s 1.00 0.26 0.66 0.50 0.012 0.66 1.00
K84I 1.00 0.50 0.19 0.66 0.12 0.26
S97P 1.00 0.19 0.82 0.00040 0.000040

R207L 1.00 0.12 0.19 0.078
T258A 1.00 0.66 1.00
L307H 1.00 0.000040
L349P 1.00

Table 5.3: Overview of p-values stating the significance of the deviation from the expectation
of pairwise correlation without taking PCR effects into consideration. The p-values based on a
binomial distribution (p=0.5,N=17).

Next we will focus on the analysis of functional correlations between the mutations.

So far we have been able to only discuss direct effects of the substitutions, or had to re-

fer to additional information to speak about possible epistatic interactions. Here we

will concentrate on the significance of correlations in the occurrence of substitutions

directly. We will compare a naive analysis of correlations to the analysis developed in

section 5.1.2. Table 5.3 lists p-values expressing the significance of the pairwise pres-

ence or absence of substitutions in the selected sequences. The p-values are calculated

on the basis of a binomial distribution assigning equal chance to a pair of loci having

the same or a different origin. This table states a highly significant correlation between

the two synonymous mutations. As can be seen from table 5.1, they indeed only occur

in pairs, but their overall effect on the phenotype is negligible (table 5.2). In principle

when this occurs, this could be an indication for (reciprocal) sign epistasis (see chapter
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V9s A13s K84I S97P R207L T258A L307H L349P

V9s 1.00 0.63 0.50 0.50 0.50 0.012 0.66 1.00
A13s 1.00 0.50 0.50 0.50 0.012 0.66 1.00
K84I 1.00 0.0083 0.18 0.66 0.12 0.26
S97P 1.00 0.18 0.82 0.00040 0.000040

R207L 1.00 0.50 0.18 0.075
T258A 1.00 0.17 0.83
L307H 1.00 0.0037
L349P 1.00

Table 5.4: Overview of p-values stating the significance of the deviation from the expectation of
pairwise correlation due to the distance between the loci. Recombinant sequences are included,
when their F value is below 0.2. Dark grey cells indicate significant (positive) correlation. Lighter
grey cells indicate potential (anti-)correlations.

2). In this case we know that the individual effects of the two synonymous mutations

will also be negligible. The correlation will most probably be caused by the fact that the

two mutations lie only 9 base pairs apart.

In order to remove these distance effects we applied the analysis from section 5.1.2

to the sequences of the selected pool. We obtained an effective average run length ∆

based on all sequences of 199 base pairs. In figure 5.4, we show how the quantity χ2 de-

pends on ∆, and that the minimum is a clearly defined value. Based on this run length

we calculated now the p-values of pairwise correlations, corrected for the distance ef-

fects (table 5.4). Note that these correlations address the occurrences of the mutations,

and are not a direct measure for the interaction between loci in their effect on phe-

notype (e.g. if two loci additively affect the phenotype, they will also show up in the

correlation measure here). The purpose of the correlation measure as developed here

is to signal potentially functionally interesting loci, that affect function either directly

or through epistatic interactions.

Comparing table 5.4 with table 5.3, we indeed see that the high correlation in the

presence or absence of the two synonymous base pair substitutions is entirely due to

distance effects: their p-value changes from highly significant when distance effects

are not taken into account to highly non-significant. Further we see that correlations

between Ser97Pro and Leu307His, as well as between Ser97Pro and Leu349Pro remain

significant. As we saw earlier, the effect of the former pair is probably epistatic. What is

further interesting from table 5.4 is that there is an anti-correlated pair on the border of

significance: Lys84Ile and Ser97Pro. Although the occurrence of Lys84Ile seems to be

random and its correlations with Ser97Pro seem to be negligible if distance effects are

not taken into account (table 5.3), based on the proximity of Ser97Pro it should occur

more often than it does. Interestingly, in the lac structure (fig. 5.2 we can see that the

residues 84 and 97 spatially lie very close to each other (both within and among dimers),

and their interaction is not unimaginable.
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Figure 5.4: χ2 (equation (5.4)) as a function of run length ∆, on the basis of 26 recombined se-
quences recovered, from before and after selection. A clear minimum is found for ∆ = 199 base
pairs.

On the basis of our analysis, for the fitness landscape analysis of a subset of mu-

tations we will focus on combinations of Ser97Pro, Leu307His, and Leu349Pro. This is

ongoing work. Among our sequenced isolates, we also found a strongly inverse pheno-

type that has the substitutions Ser97Pro, Arg207Leu, and Thr258Ala. Intermediates of

these will also be further investigated.

5.3 Discussion and Outlook

In this work we developed a general method that together with the reconstruction of

specific subsets of intermediate mutants can be applied to acquire insight in evolution-

ary pathways between an ancestor and evolved sequence or protein. When there are

many mutational differences between ancestor and descendent, it might seem impos-

sible to extract information about the potential evolutionary trajectories. However, in

cases where there are many functionally neutral loci, attention can be focused on a sub-

set of mutations that are most important for changes in function. Here we applied the

method to an evolved inverse lac repressor. As a proof of principle, we showed how our

analysis correctly discards the distance correlation between two closely located syn-

onymous mutations. Targeted construction of potentially interesting intermediates is

ongoing work. In principle, since the total number of amino acid substitutions here is

not that large, a complete reconstruction of the phenotypic landscape might also be

considered. A similar analysis could be applied to naturally occurring polymorphims,

resurrected ancestral molecules, and artificially evolved systems alike, as long as we

have access to phenotype or fitness. The approach should prove especially interest-

ing in cases where loci affect phenotype or fitness in mutually additive clusters, within
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which their effects are epistatically linked.

When attempting to infer the evolutionary process based on a reduced dataset,

some essentials might be missed. For instance, one implicitly makes the assumption

that loci that have no influence on the present-day phenotype or fitness, were also neu-

tral when they occurred in evolutionary history. This is not necessarily so. And vice

versa, mutations that now have a clear influence on the present function, might not

have increased fitness when they occurred. Both scenarios may occur in the process

of ’molecular cooption’, or ’molecular exploitation’ (e.g. [57]), where a molecule takes

on a new functional role and thus will experience a different selective pressure than

before. More broadly, in assaying the characteristics of an ancient molecule or system,

one often has to assume that it evolved under a selective pressure similar to the one it

experiences at present. Interesting counterexamples can be found where a punctuated

adaptation proceeds via intermediate wanderings over so-called neutral nets [45, 66].

In these cases adaptive mutations are not accessible without taking detours via neutral

substitutions. In general, it will always remain important to work on the basis of plausi-

ble assumptions about the past selective pressures. Nevertheless, the approach should

be valuable in studying adaptation and the role of constraints.

In the present work, we obtained clear indications of the functional importance of

mutations and for epistatic interactions, based on a reasonably low amount of data. At

least three mutations in the evolved repressor seem to cooperate to yield an inverse re-

sponse, though partly disjunct sets seem to be able to accomplish this. Together with

one substitution that is possibly anti-correlated to the functionally important Ser97Pro

substitution, it seems that epistasis is very prominent in this system. Apart from infor-

mation about the evolutionary process this might also yield structural insight into the

allosteric changes in the repressor protein. When combined with information obtained

from inverse repressors from different lineages (chapter 4), information can be ob-

tained about the structural plasticity of transcription factors to obtain novel responses

to their ligands. We expect that reverse neutral evolution might be in itself an interest-

ing tool to elucidate the structural basis of protein functions.
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CHAPTER

6
Maintenance and loss of gene
regulation in experimental
evolution

Degeneration is a much commoner phenomenon than progress.

J.B.S. Haldane,

The Causes of Evolution

The evolution of gene regulation is a major open question in biology. Regulatory sys-

tems not only allow organisms to respond to a variable environment, but are themselves

shaped by evolution under a variable selective pressure. When adaptation is approached

as an optimization process, a variable environment adds many degrees of freedom to

the search space compared to adaptation in a constant environment. How environmen-

tal variation selects for different modes of regulation, or in which cases other strategies

than regulation are favored, such as bet-hedging, is presently under intense debate. These

issues cannot be addressed at a theoretical level alone, and require information about

the evolutionary plasticity and potential functional constraints of actual biological sys-

tems. In the present work we experimentally follow regulatory adaptation starting from

a non-optimal regulatory response. We focus on regulation of lactose metabolism in Es-

cherichia coli, which arguably exhibits a near-optimal relation between the amount of

lactose in the environment and the level of expression of the lactose metabolic genes. By

using separate compounds for induction and metabolism, we dislodged the lac regula-

tory response from its optimum, and predicted new optima. We followed adaptation in

several constant and alternating environments. We find some cases of fast adaptation to

the predicted optimum. In a number of instances adaptation occurred, but the predicted

optimum was not reached. This may be due to a diminishing return of further optimiza-

tion, or to the existence of a functional or genetic constraint.
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A ll living organisms are equipped with mechanisms that enable them to sense their

environment and respond to it. In many cases the response consists of regulating

gene expression. For bacteria the link between sensing and response is often formed by

a small network of interacting proteins and regulatory sites on the DNA controlling the

expression of downstream genes. Such a gene regulatory system can be characterized

by its regulation function (or regulatory profile, or induction curve), that specifies the

relation between the environmental signal and the expression level of the regulated

genes.

Just as the adaptation of catalytic properties of enzymes or protein expression lev-

els may be viewed as an optimization process [43, 73, 144], so may be the adaptation of

regulation. However, in the case of regulation, the system is shaped by varying selective

pressures in an environment that is fluctuating, which makes that there are many more

potential parameters to optimize. Optimality can, for example, concern the nature of

the environmental fluctuations (regular or stochastic), their time scales, the strength of

selection in each environmental state, and how variable selective pressures constitute

trade-offs experienced by the adapting organism. Moreover, similar regulation profiles

can be accomplished by different modes of regulation, for example by employing a

repressor (negative control), or an activator (positive control), and several theoretical

studies have addressed their optimality in an ecological context [74–76]. Alternatively,

in the case of slow and unpredictable environmental variation, it might be optimal not

to employ regulatory systems, but to stochastically switch phenotypic states [77]. Such

issues have mainly been been approached theoretically and experiments have been

lagging behind. As a result, we lack essential information on regulatory plasticity and

the potential constraints that hamper reaching an optimal regulatory response.

In this work we will consider the lactose operon of Escherichia coli from the view-

point of optimality and explore adaptation of the regulatory response to new environ-

ments by experimental evolution [119].

6.1 Optimality of gene expression

Following ref. [73], we describe the growth rate of a population of E. coli cells as a func-

tion of expression of metabolic genes and carbon source (here lactose) in the environ-

ment in terms of the cost and benefit of gene expression

g = g0 −η(Z )+B(Z ,L) (6.1)

where g0 is the basal growth rate, set by compounds other than lactose in the environ-

ment. η(Z ) is the decrease of growth rate due to the burden of producing lac operon

gene products LacZ, LacY, and LacA [134]. B(Z ,L) is the growth advantage due to lac-

tose metabolism, which depends on both the expression level of the lac gene products

(in particular LacZ), and the concentration of lactose in the environment.

This gives rise to an optimal expression level for each concentration of lactose in

the environment Z = Zopt(L). At low levels of lactose the cost term will dominate the
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benefit term, and the optimal expression level will be low or zero. Conversely, at high

lactose concentrations the optimal expression level will be high.

The purpose of catabolic regulation is to sense the external concentration of the

catabolite and to vary the expression level of metabolic genes as a function of this con-

centration: Z = Z (L). Selection will drive a regulatory system towards the following

optimality relation

Zopt(L) = Z (L) (6.2)

implying that the system establishes a connection between the catabolic and inductive

properties of lactose. Indeed, for lac regulation there are strong indications [73, 97] for

this relation to hold. It is important to note that this criterion for regulatory optimal-

ity only concerns the relation between expression levels and catabolite concentrations.

The regulatory system may well have to be optimized for response times, structural ar-

chitecture, robustness, or otherwise.

In the present work we are interested in the evolutionary plasticity of the regula-

tion profile Z (L). In order to study regulatory adaptation, the system should be dis-

lodged from its optimum, so that selective pressures arise that are directed towards a

new optimum. This can be done in several ways. For example, one may change the

kinetic parameters or the demands on the downstream regulated genes, which results

in different cost and benefit terms and hence in different expression optima. Another

approach, which we present here, is to decouple inducer and carbon source and allow

the regulatory system to adapt to a new relation between the two, which is imposed

by the experimenter. This approach mimics a situation in which an organism is con-

fronted with a novel carbon source that has a different relation between induction and

catabolic benefit.

For the lac system, a large number of artificial compounds have been synthesized

[93], that interact with the gene products in a different way than lactose. The decou-

pling between lac signal and metabolism can be made by using isopropyl-β-D-thio-

galactopyranoside (IPTG), and phenyl-β-D-galactoside (Pgal). IPTG is a gratuitous in-

ducer; it binds to the lac repressor and relieves repression, but cannot be hydrolyzed

by β-galactosidase. Pgal, on the other hand does not induce LacI, but is hydrolyzed

by LacZ, releasing galactose (for further metabolism) and phenol. Now the optimality

criterion reads

Zopt(P ) = Z (I ) (6.3)

where P and I are independent variables (the Pgal and IPTG concentrations in the me-

dium). In the present work we experimentally determined Z (I ) and the growth rate

g = g0 −η(I )+B(I ,P ) (6.4)

with which we can make a prediction for the selective pressures on the regulation for

combinations of IPTG and Pgal concentrations. Subsequently we determined how reg-

ulation changed during experimental evolution, in which growing cultures of E. coli

were serially passaged in batch cultures for around 800 generations.
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6. MAINTENANCE AND LOSS OF GENE REGULATION IN EXPERIMENTAL EVOLUTION

Figure 6.1: a) Measured growth rates as a function of Pgal and IPTG in a minimal M9 medium
consisting plus casamino acids (see Materials and methods, section 6.3). At low Pgal concentra-
tions inducing lac operon products will yield an expression cost that is larger than the benefit,
resulting in a decrease of growth rates. For higher Pgal concentrations the benefit will dominate
the cost. b) The induction profile in the absence of Pgal.

We first investigated adaptation of the lac system to a constant environment

Zopt(P1) = Z (I1) (6.5)

which in principle can be attained without regulation, as it only requires the optimiza-

tion of one expression level.

A selective pressure for a regulatory response can be applied when cells experience

multiple environmental conditions that impose opposite expression demands. The

system is then confronted with a trade-off that can only be overcome by developing

an appropriate regulatory response. To this end we performed evolution experiments

in an environment that alternated between two states (P1, I1) and (P2, I2), so that the

optimality criterion reads

Zopt(P1) = Z (I1) and Zopt(P2) = Z (I2) (6.6)

with different optimal expression levels Zopt(P1) 6= Zopt(P2).

6.2 Results and discussion

We determined growth rates of Escherichia coli MG1655 (’wild-type’) cells [188] carrying

the lac operon, as function of IPTG and Pgal in a minimal medium where casamino

acids set the basal growth rate g0 to be 1.09 generations h−1 (see Fig. 6.1). A measured

wild-type induction profile is also shown. We observed that when the medium does

not contain a carbon source ([Pgal]= 0 mM), induction leads to a cost. The growth rate

decrease is 0.20 doublings h−1 per hour for full induction.
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Figure 6.2: Interpolated and smoothened growth data from figure 6.1, providing an impression
of the functional form of equation (6.4). The decoupling of inducer and carbon source is visu-
alized: addition of Pgal when not expressing lac operon genes (low IPTG concentration) will not
result in growth rate increases, and addition of IPTG without Pgal will lower the growth due to
an expression cost. The ridge in the landscape is caused by anti-induction of the lac repressor
by Pgal, when present at a high concentration (see section 6.4). For low Pgal concentrations we
used a functional relation for the cost of expression fitted to the data (section 6.4).

At higher concentrations of Pgal cost and benefit are balanced for intermediate in-

ducer concentrations: growth in the presence of 0.10 mM and 0.24 mM Pgal is max-

imized for IPTG concentrations near 5 µM and 30 µM respectively. For higher Pgal

concentrations the maximum observed growth rates lie at inducer levels of 200 µM or

higher. We observed that high concentrations of Pgal have an anti-inductive effect due

to the competitive binding of IPTG and Pgal to the repressor (see section 6.4). Since

the affinity of IPTG for the repressor is much higher than that of Pgal (a KD of 1·10−6 M

versus 1·10−3 M [201]), this effect can be neglected for sufficiently low concentrations

of Pgal. We see the effect of anti-induction in the growth data for medium containing 1

mM Pgal, which for 5 µM IPTG has a lower growth rate than medium containing 0.1-0.5

mM Pgal.

In figure 6.2 we show an interpolation and smoothening of the growth data to give

an impression of the optimality relations between IPTG and Pgal for the lac operon.

For low concentrations of IPTG (low expression level) we recover the basal growth rate

g0 independent of the Pgal concentration, while for high IPTG concentrations (high

expression level) a benefit only occurs in the presence of a high enough concentra-
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Figure 6.3: Optimal expression levels of lac operon genes as a function of Pgal, obtained from
the landscape in figure 6.2. The circles represent the optimal expression levels obtained from
inspection of the raw growth data in figure 6.1.

tion of Pgal. From these smoothened growth data, we recovered the optimal expres-

sion levels for LacZ using the induction profiles that we measured for different con-

centrations of Pgal (section 6.4). This optimality relation is given in figure 6.3, together

with the optimal Pgal concentrations as obtained directly from the growth data in fig-

ure 6.1. Although the optimal level shows a very sharp Pgal dependence, this does not

mean that the growth difference for optimal and non-optimal expression are necessar-

ily large. We can see from the landscape in fig. 6.2 that for the Pgal concentrations

around the inflexion point of fig. 6.3 (∼150 µM), the growth rates for high and low ex-

pression are very similar. This implies that non-optimality at these Pgal concentrations

will not result in high selective pressures.

We modeled the cost and benefit aspects of our system given by equation (6.4) in a

similar fashion to what was done in refs. [202] and [73]. Since in our system induction

and catabolite are separated, we included IPTG induction and anti-induction for high

concentrations of Pgal (section 6.4) in the model, based on independent measurements

of the expression levels of LacZ. Although we obtained a clear qualitative agreement, a

quantitative agreement was reached only for higher concentrations of IPTG. Data and

model for 220 µM IPTG are shown in figure 6.4, and model predictions other IPTG con-

centrations are given in section 6.4. The observed discrepancies point at an interesting

issue: whereas expression levels only rise marginally for IPTG concentrations up to 5

µM, cost and benefit already diversified the obtained growth rates (see figure 6.1). Ad-

justment of the model is required (section 6.4).
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Figure 6.4: Fit of growth data at high induction (220 µM IPTG) using a reaction kinetics model
(section 6.4). The dotted horizontal line indicates the growth rate in the absence of Pgal and
IPTG. The growth difference between this line and the data point at [Pgal] = 0 represents the cost
of protein expression. For higher Pgal concentrations this cost is compensated and eventually
dominated by the benefit of Pgal metabolism. Cost and benefit are balanced for a Pgal concen-
tration of 1.2·102 µM.

6.2.1 Evolution in constant environments

We performed a serial dilution experiment in a number of constant environments with

different concentrations of IPTG and Pgal, as indicated schematically in figure 6.5. For

each condition, a 10 ml culture was grown and diluted twice daily 300-500 fold for a

total of ∼800 generations. Each week a sample of each culture was stored at -80oC

to preserve snapshots of its evolutionary history. Afterwards, the LacZ activity1 of the

adapting populations was determined for different time points during the experiment.

The history traces in figure 6.6 indeed show that the expression level of LacZ changes

during the adaptation experiment. As expected on the basis of the optimality curve in

figure 6.3, cultures grown in the presence of 350 µM Pgal, but at IPTG concentrations

that do not fully induce expression (fig. 6.6a and e), increase their uninduced expres-

sion levels. In these cases we observed a loss of repression. For the population grown

without IPTG it takes ∼200 generations before the uninduced levels resemble the in-

duced levels. Notably, two replicate experiments performed at this condition (squares

and triangles in fig. 6.6a), are indistinguishable.

1The measured LacZ activity in principle is determined by both the expression level and the kinetic pa-
rameters of LacZ. Therefore the LacZ activity is indicative for the expression level if we assume that the kinetic
parameters of LacZ remain unchanged, as we do in this chapter. We argue that this assumption reasonable
since we do not see an increase in maximum LacZ activity for adaptation lines that select for higher expres-
sion (fig. 6.6).
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Figure 6.5: Overview of Pgal and IPTG concentrations of the constant environments in which
adaptation experiments were performed.

Comparing the history traces of the cultures without IPTG (fig. 6.6a) to the trace

of the culture grown at 2 µM IPTG (fig. 6.6e), we observe that the rates of adaptation

are markedly different. If both traces are fitted with a simple competition model (as-

suming a single mutant fixation and a sufficiently high mutation rate to be able to ne-

glect stochasticity due to bottlenecking the population, see section 6.4), we find that

the selection coefficient of the population growing without IPTG is more than 4 times

larger than that of the population at 2 µM IPTG (s = 0.055 versus 0.013)2. Although we

would indeed expect the selection coefficient to decrease for increasing concentrations

of IPTG, the observed large difference between 0 and 2 µM IPTG is remarkable in the

face of the small expression differences between these IPTG concentrations in wild-

type cells (see fig. 6.1b). On the other hand, from fig. 6.1a, we can see that wild-type

cells for a Pgal concentration of 0.5 mM already realize more than half of their expres-

sion benefit at 5 µM IPTG. Consequently, at this IPTG concentration the additional se-

lective advantage of abolishing regulation is decreased considerably compared to cells

growing in the absence of IPTG. We further note that the absolute values of the selec-

tion coefficients found from the history traces are lower than expected on the basis of

the wild-type growth rates. On the basis of the landscape in figure 6.2, we would expect

a selection coefficient on the order of 0.2 for adaptation in the absence of IPTG.

In figure 6.6b we show the evolutionary trace of a culture grown under conditions of

high amounts of carbon source ([Pgal] = 350 µM) and high induction ([IPTG] = 220 µM).

No significant adaptation is observed, and as these conditions provide near optimal

growth rates, this is as expected. Unchanged expression levels were similarly found for

the culture grown at 350 µM Pgal and 30 µM IPTG (not shown). When fully induced,

the regulatory system is in principle free to lose regulation by neutral drift: mutations

that deactivate the repressor do not affect the growth rate. Since mutations that restore

2The selection coefficients determine the rate at which a mutant is fixed in the population, which in a
history trace corresponds to the steepness of the curve (see section 6.4).
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Figure 6.6: History traces of expression levels (population averages) for a subset of populations
adapting in constant environments. Open symbols represent induced expression levels (at 220
µM IPTG), solid symbols are uninduced expression levels. Curves are fits based on growth rate
differences under exponential growth (section 6.4). Where induction levels are the same as in the
environment to which the populations adapted, the curves are solid. a) 0 µM IPTG, 350 µM Pgal.
Two populations evolved in parallel are shown to yield the same adaptation dynamics (triangles
and squares). b) 220 µM IPTG, 350 µM Pgal. c) 0 µM IPTG, 0 µM Pgal. d) 220 µM IPTG, 0 µM
Pgal. e) 2 µM IPTG, 350 µM Pgal. f) 2 µM IPTG, 0 µM Pgal.
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repressor function are in general much less likely to occur, in the long run repressor

null mutants will fix in the population. However, the expected rate at which this would

occur is on the order of 1/µ generations [203], where µ is the mutation rate towards

lacI− mutants, being ∼1·10−6 [204]. If repressor deactivation is neutral, fixation would

only be expected after 1·106 generations. Interestingly, a null mutation in the promoter

controlling the transcription of the repressor may actually be selectively favored, since

it should reduce the cost associated with the production of repressor protein. On the

basis of the low amount of repressor protein compared to the other lac gene products,

we expect that the selection coefficient associated with the loss of repressor production

are too low to be observable within the time course of the experiments performed here.

Figure 6.6c also shows an unchanged regulation. Here the medium contains no

IPTG and no Pgal, and expression of lac operon products would only incur a cost. A

similar argument as above for the neutral loss, now of downstream operon products

(LacZ, LacY, and LacA) could be developed. Indeed no change is expected within the

800 generations followed here.

Expression is drastically reduced during growth on 200 µM IPTG and 0 µM Pgal

(fig. 6.6d). The rate at which the expression decreases in the population suggests a

selection coefficient of around 0.067, comparable with the loss of repression observed

in fig. 6.6a. However, the fact that fixation occurs at later generations indicates that this

type of mutants occur less frequently than the repressor null mutants.

Figure 6.6f shows the evolutionary history of a population growing without Pgal, but

with 2 µM IPTG. Here again expression of downstream genes is decreased. We observe

a selection coefficient that is roughly half of that in fig. 6.6d. Apparently, 2 µM IPTG

increases expression of downstream genes enough to be selected against in the absence

of carbon source.

Two conditions indicated in fig. 6.5 remain. For medium containing 39 µM Pgal and

220 µM IPTG we observed no significant change in expression levels, while we found

(fig. 6.3) that the optimal expression level at this Pgal concentration would be zero.

However, from our landscape we would predict the selection coefficient for this con-

dition to be around 2.5 times lower than for medium containing no Pgal and 220 µM

IPTG. Assuming a similar mutation rate towards low expression for the medium con-

dition discussed here, we do not expect observable changes in expression levels before

generation ∼900.

For the constant environment at 15 µM IPTG and 350 µM Pgal we found an altered

induction profile (figure 6.7), such that the expression level at 15 µM IPTG remained

similar to wild-type expression (taking into account Pgal anti-induction). From the data

shown in our landscape in fig. 6.2 we can infer only a marginal difference in fitness be-

tween the expression level as induced with 15 µM IPTG compared to that at 220 µM

IPTG. Interestingly, in this population a mutant was fixed that did not abolish repres-

sion altogether. Once fixed, the fitness advantage of a constitutive mutant would be

minimal, and hence its chance to invade the population would be small.
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Figure 6.7: Induction profile (black squares and curve) of a population evolved for approximately
700 generations in the presence of 15 µM IPTG and 350 µM Pgal. Also shown is the wild-type
induction profile (grey data points and fit), as well as the profile for wild-type incorporating Pgal
anti-induction (grey curve shifted to the right). The expression levels at 15 µM IPTG for wild-type
(with anti-induction) and evolved strain are very similar.

From 8 clonal isolates after the serial dilution experiment we sequenced the chro-

mosomal region consisting of the lac repressor, the lac promoter (upstream of lacZ),

until 420 base pairs into the lacZ coding sequence (see fig. 1.4 in chapter 1). Compared

to the reference GenBank nucleotide sequence of the lac operon (accession number

J01636.1), all isolates contain a often occurring lacI polymorphism (C857T) that does

not affect LacI function, and a silent mutation in the coding sequence of lacZ. From

earlier work we know that C857T pre-existed in the MG1655 strain, and we assume that

the lacZ mutation did also. Apart from these mutations, three clones isolated from the

population adapted to 350 µM Pgal, 0 µM IPTG all showed a known hotspot frameshift

deletion of four base pairs from a triply repeated TGGC (nucleotides 593-604 of the lacI

coding sequence) [204]. This frameshift leads to complete inactivation of the repres-

sor [204], which corresponds to our observation. One clone sequenced from adaptation

on 350 µM Pgal, 220 µM IPTG and another from 0 µM Pgal, 0 µM IPTG, which retained

wild-type induction characteristics, did not reveal any mutations. Remarkably, three

clones sequenced from the population that adapted to 220 µM IPTG, 0 µM Pgal, also

showed the hotspot frameshift. These isolates do not show a constitutive expression,

but instead a greatly reduced expression, which means that they must carry another

mutation. However, since these isolates did not contain mutations in the promoter

controlling lacZ expression, no cause for the observed loss of LacZ activity (which orig-

inated from selection against expression cost, not against activity) can be identified at

present.
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Figure 6.8: Example of trade-offs experienced when expression is not regulated in an environ-
ment that alternates between a low Pgal concentration (39 µM) and a high Pgal concentration
(350 µM). Data points denote the growth rate in each environment for a certain constant expres-
sion level (at the indicated concentrations of IPTG in µM). This trade-off data is directly obtained
from figure 6.1. Low expression levels (0 µM IPTG) yield optimal growth in medium with low Pgal
concentrations, but non-optimal growth in medium containing high Pgal concentrations, and
vice versa for high expression levels. Only when expression is regulated (low in low Pgal condi-
tions and high in high Pgal conditions), overall growth over both environments can be optimal
(indicated by the black cross).

6.2.2 Evolution in alternating environments

Regulation is favorable when an organism is confronted with a fitness trade-off, which

occurs when optimizing the expression level in one state decreases the fitness in the

other state. Using the growth data in figure 6.1 we can visualize such trade-offs. In

figure 6.8, we plotted the growth rate in an environment with a high Pgal concentra-

tion (500 µM) versus the growth rate in an environment with a low Pgal concentration

(39 µM). The IPTG concentrations to which these data points belong are given in the

figure (in µM). The point of maximum growth rate under both conditions is marked

with a cross. The figure suggests that there is no intermediate inducer concentration

(hence expression level) that provides optimal growth under both conditions. From

the concave shape of the curve we would expect that in an environment that alternates

between these states in equal periods, an unregulated expression level would be evolu-

tionary adjusted towards an intermediate level between low and high expression (see

chapter 4).

We performed a number of serial dilution experiments in which the environment

was alternating between two states (fig. 6.9). A change of environment was accom-

plished once or twice daily (see section 6.3). For 4 out of 6 experiments (marked with
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Figure 6.9: Overview of Pgal and IPTG concentrations of the alternating environments in which
adaptation experiments were performed. Grey arrows indicate conditions which resulted in un-
altered induction profiles. Black arrows did result in adapted profiles (see text).

grey arrows in the figure) we found no significant change of the induction profile. In-

terestingly, from the experiments in a constant environment we know that there is a

selective pressure to decrease expression levels for a population grown at 2 µM IPTG

and 0 µM Pgal. However, for the cultures alternating between this condition and high

Pgal (350 µM) plus moderately high IPTG (15 and 30 µM), we found no response to

decrease the expression level at low IPTG concentrations. Growth in the high Pgal con-

dition prevents loss of expression, so that it would be advantageous here to increase the

ratio between low and high expression levels. Since this was not observed, this may in-

dicate a functional constraint in the system. For the environment alternating between

no IPTG, no Pgal and 220 µM IPTG, 39 µM Pgal, we would expect an overall decrease

of expression on the basis of the optimality curve in fig. 6.3, but evolution in a constant

environment of 220 µM IPTG, 39 µM Pgal already showed that the selection coefficients

are probably too small to see adaptation here within 800 generations.

In two alternating environments the induction profile did change. First, alternat-

ing between 2 µM IPTG, 350 µM Pgal and 220 µM IPTG, 39 µM Pgal almost fully abol-

ished regulation and acquired a high constitutive expression. These conditions were in-

tended to elicit an inverted regulatory response to IPTG (as was accomplished in chap-

ter 4), but the selective pressure to decrease expression in the presence of 39 µM Pgal

was not strong enough to lower the expression level at high concentration of IPTG (at

least not within the time course of this experiment). The recovery of a constitutive ex-

pression suggests that the inverted response is genetically less accessible. Whether con-

tinuation of the adaptation experiment would result in the optimal inverted response,

or whether the fixation of an inactivated repressor constitutes an evolutionary dead-

end cannot be decided at the moment.

Second, when the environment alternates between no IPTG, no Pgal and 2 µM

IPTG, 350 µM Pgal, a constitutive expression results. An optimal regulatory strategy

would have been here to change the inflexion point of the induction curve to lower
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Figure 6.10: History trace of expression levels for the population evolved in an environment alter-
nating between no IPTG, no Pgal and 2 µM IPTG, 350 µM Pgal. The population evolves towards
a constitutive expression.

IPTG concentrations, which could result from a higher affinity of the repressor for IPTG.

It is likely, however, that genetic changes that accomplish this are not easily accessible.

The adaptation that occurred here maximizes growth in the environmental state with

Pgal. However, the predicted fitness loss due to spurious expression in the state without

Pgal is comparable. The fact that the mutation fixes rapidly in the population (fig. 6.10)

on the other hand implies a considerable selection coefficient.

6.2.3 Conclusions and outlook

The decoupling of inducer and carbon source presented in this work provides a frame-

work for studying the evolutionary plasticity of gene regulation. In most cases within

the course of a few hundreds of generations a predicted optimal expression level was

reached. In some cases optimal expression levels under the same conditions were not

reached by populations that evolved in an alternating environment, when the other

environmental state imposes a different optimal expression level. This implies that the

lack of evolutionary change in these cases is not due to a lack of selective pressure, but

points at functional constraints of the gene regulatory system.

We observed that mutations inactivating the repressor are more easily accessible

than mutations that abolish expression, in cases where the selective advantages for

such mutations are comparable. The high accessibility of the hotspot frameshift mu-

tation [204], leading to lac− phenotypes at a frequency that is an order of magnitude

higher than would be expected from the genomic mutation rate3, is interesting in the

3The genomic mutation rate being 5.4·10−10 per base pair per replication for E. coli [205], we would
expect mutations to occur in the lac coding sequence (1080 base pairs) at a rate of ∼6·10−7. It is known that
roughly a quarter of substitutions is synonymous, and that around half of the amino acid substitutions in the
lac repressor are deleterious [177]. This yields an expected rate of lacI− mutations of ∼2·10−7. The observed
rate is 2·10−6 [204]
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light of regulatory evolution. In fact, both deletions and additions of the 4 base pair

repeat are observed at high frequency [204], which implies that reversals of hotspot

mutations will also be more likely than reversals of e.g. base pair substitution that de-

activate lacI. Together with the observation that the lacI coding sequence surrounding

the hotspot is highly structured (palindromic), which elevates the mutation frequency

due to slippage of a replicating DNA polymerase [206], it seems as if the lac repressor

also has an in-built mutational regulation.

We obtained one instance (evolved at 350 µM Pgal, 15 µM IPTG) where the induc-

tion profile was not changed towards either constitutive expression or loss off expres-

sion. In some cases evolving towards constitutive expression was not predicted to be

optimal on the basis of the measured growth rates from fig. 6.1. For example the culture

alternating between 350 µM Pgal, 2 µM IPTG and 39 µM Pgal, 220 µM IPTG, would be

optimal when the response to inducer would be inverted. However, it acquired a muta-

tion which abolished repression first, after which the additional fitness gain of lowering

expression for the high IPTG condition was diminished, and probably not enough to

adapt within the course of 800 generations (even apart from whether such phenotype

is still genetically accessible after the first mutation). The combination of fitness effect

and mutational accessibility will determine which mutation will fix in the population

first. This initial fixation is likely to lead to a ’law of diminishing returns’ for subsequent

mutations [27], and hence longer fixation times.

As a final remark, we note that the superior mutant would cheat our decoupling

between inducer and carbon source and become responsive to Pgal, so that

Zopt(P ) = Z (P ) (6.7)

None of the evolved populations here was found to be induced by Pgal. Although this

is an interesting issue, we expect that for this type of mutation to occur, a range of envi-

ronments and an amount of generations need to be surveyed that is not easily accessi-

ble in this type of laboratory evolution experiments. Adaptation of inducer specificity is

a subject probably more effectively studied at a higher level of control over the system,

as was achieved in chapter 4.

In this work we presented an experimental approach to explore the adaptation of

a gene regulatory response. Due to the many ways an environment can be variable,

the survey of environmental conditions and fluctuations was necessarily limited. To

obtain a high level of understanding of the evolutionary aspects of gene regulation will

require a major effort, but which is necessary, as it increasingly appears that evolution

is more strongly driven by regulatory changes than by modifications in non-regulatory

proteins [165].

6.3 Materials and methods

Strains and media
We used Escherichia coli strain MG1655 [188]. All experiments were performed in M9
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minimal medium, consisting of M9 salts (Sigma-Aldrich), supplemented with 0.1 mM

CaCl2 (Merck Eurolab), 1 mM MgSO4 (Merck Eurolab), and 5 g/l casamino acids (BD

Biosciences). When indicated, media contained isopropyl-β-D-thiogalactopyranoside

(IPTG) and phenyl-β-D-galactoside (Pgal), both obtained from Sigma-Aldrich. All cul-

tures were grown at 37oC.

Determination of growth rates
Growth rate determinations were performed after overnight growth in the medium de-

scribed above, without IPTG or Pgal, followed by at least 3 hours growth in medium

with the appropriate concentrations of Pgal and IPTG. Subsequently the cultures were

diluted to an optical density of ∼5·10−4 and transferred to a pre-warmed flat bottom 96

well microtiter plate (VWR 351172), at 200 µl per well. Optical density at 600 nm was

recorded in a Perkin & Elmer Victor3 plate reader every 4 minutes, and every 29 minutes

9 µl sterile water was added to each well to counteract evaporation. When not measur-

ing, the plate reader was shaking the plate at double orbit with a diameter of 2 mm. All

presented growth values are averages of 3 independent measurements. From measure-

ments in which all 96 wells were inoculated with wild-type MG1655, we determined the

error margins on our averaged growth data to be 4.3%.

Determination of β-galactosidase activity
To determine the activity of β-galactosidase (LacZ) we used essentially the same method

as described in section 4.1. Before transfer to a 96 well plate, cultures were grown

overnight without IPTG and Pgal, and then diluted to an optical density of ∼5·10−4.

When expression levels were high so that overnight passage through stationary phase

resulted in ’superinduced’ LacZ activity levels (see section 6.4), growth times before flu-

orescence determination were prolonged.

As some of the expression levels in the current work were one or two orders of mag-

nitude lower than the lowest expression levels in chapter 4, determination of the initial

slope of these FDG curves was inaccurate due to experimental noise. In these cases we

used the maximum slope at long timescales, which is proportional to the slope at t=0

(by a factor ∼30, see section 4.1).

As before, during the assay of hydrolysis concentrations of IPTG and Pgal in each

sample are made equal, to prevent unfair comparison due to competitive inhibition of

LacZ by IPTG or Pgal.

Serial dilution experiments
10 ml cultures were grown in 50 ml flasks in a 37oC water bath under vigorous shaking

(200 rpm). Cultures were diluted 300-500x twice daily in fresh medium. As stationary

cultures contain ∼109 cells ml−1, this implies bottleneck sizes of ∼107 cells (for 10 ml

total culture volume). The alternating conditions were either switched twice daily (for

the cultures alternating between 2 µM IPTG, 0 µM Pgal and 15/30 µM IPTG, 350 µM

Pgal, see fig. 6.9), or once daily (for the remaining conditions). When switching from a

higher concentration of IPTG or Pgal to a lower one, cultures were washed 3x in minimal

medium. Each four days a sample of the cultures was frozen at -80oC. Re-inoculation
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Figure 6.11: Induction profiles for wild-type cultures grown at different Pgal concentrations. The
data is fitted with a Hill function that incorporates anti-induction by Pgal.

occurred after thawing and 3x washing in minimal medium.

6.4 Supplementary information

Analysis of induction curves and competitive inhibition by Pgal
The lac repressor does not only bind IPTG, it also has a affinity for Pgal. Pgal does not

induce the repressor, but does competitively prevent IPTG from binding and thus ef-

fectively anti-induces the repressor. Since the equilibrium dissociation constants differ

by three orders of magnitude (KD = 1·10−6 for IPTG and 1·10−3 for Pgal [201]), this effect

is only noticeable when the Pgal concentration is much higher than the IPTG concen-

tration. In other cases IPTG and Pgal can be considered to be decoupled with respect to

induction of the lac repressor. We measured the effect of Pgal anti-induction by growing

cultures under different concentrations of Pgal and IPTG. Immediately before the LacZ

assay, all concentrations of IPTG and Pgal were equalized to prevent unequal inhibition

at the level of LacZ. The results are given in figure 6.11.

The data for [Pgal] = 0 was fitted with a general Hill function (compare ref. [207])

αIPTG =α0
1+F ([IPTG]/CIPTG)m

1+ ([IPTG]/CIPTG)m (6.8)

where α0 is a parameter relating the number of LacZ molecules to the measured LacZ

activity, F is the ratio between induced and uninduced LacZ activity, CIPTG is a disso-

ciation constant associated with the affinity of IPTG to the repressor, and m is a phe-

nomenological Hill exponent incorporating non-linear behavior of the lac induction

(due to e.g. cooperative binding of the repressor to multiple operators).
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The curves for higher Pgal concentrations in fig. 6.11 were obtained by incorporat-

ing Pgal anti-induction into the Hill description of the system. This is done in a similar

way as in chapter 4, where we described and measured the competitive binding of FDG

and IPTG to LacZ. Pgal anti-induction increases the effective equilibrium dissociation

constant of IPTG to the lac repressor, (or equivalently lowers the effective IPTG concen-

tration).

CIPTG,eff =CIPTG(1+ [Pgal]

KP
) (6.9)

where KP is the apparent equilibrium dissociation constant of Pgal binding to the repres-

sor (which incorporates a potential difference in internal and external Pgal concentra-

tions).

All curves in fig. 6.11 could be fitted using a KP of 0.45 mM. A minor vertical offset

of the curves was observed due to the different growth rates under the different (Pgal,

IPTG) conditions, as can be expected on the basis of a slightly different dilution rate

(see e.g. equation (7.1) for the relation between growth rate and expression level).

Comparison to reaction kinetics model for transport and degradation
Here we modeled our system according to the cost-benefit analysis for a fixed expres-

sion level as reported in [73]. We modify this model by including induction by IPTG

and anti-induction by Pgal. A comparison of this model to the obtained growth data in

figure 6.1 is made.

The proposed [73] functional form for relative growth due to the cost and benefit of

lac operon gene expression is

∆g =−η(Z )+B(Z ,L) =− η0 ·Z

1−Z /M
+δ Z ·L

KY +L
(6.10)

where η is the cost term and B the benefit term, that depend on the concentration of

LacZ (Z ), lactose (L), and the equilibrium dissociation constant of the LacY permease

and lactose (KY ). This expression was derived under the assumption of low lactose

concentrations (< 1 mM). This assumption assures that the rate limiting step in lactose

metabolism is the import of lactose into the cell by LacY. In our system this condition

is also fulfilled, as the equilibrium dissociation constant of LacY for Pgal is of the same

order of magnitude as that for lactose, being 1.3 mM [208]. Pgal has a ∼10 times higher

affinity for LacZ [209], which justifies the assumption for Pgal.

We thus modified the expression for relative growth as follows

∆g =−η(Z (I ,P ))+B(Z (I ,P ),P ) =− η0 ·Z (I ,P )

1−Z (I ,P )/M
+δZ (I ,P )) ·P

KY +P
(6.11)

where the LacZ expression Z (I ,P ) depends on IPTG as well as on Pgal concentration

(the latter being of influence only at high concentrations).

Using this model we fitted the growth at high IPTG concentrations (220 µM), which

works well for Pgal concentrations up until 1 mM (fig. 6.4). Indeed for higher concen-

trations the assumptions of the model may be violated.
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Figure 6.12: Comparison of growth data in the presence of various concentrations of IPTG and
Pgal (left), with a model incorporating transport and catalysis of Pgal, as well as induction by
IPTG and anti-induction by Pgal (right). The qualitative trend and the predictions at higher IPTG
concentrations correspond well. For lower IPTG concentration there is a discrepancy: cost and
benefit of expression occur at lower induction levels than is predicted by the model, on the basis
of the measured induction profiles (fig. 6.11).

When we compare model predictions using the obtained parameters from the fit for

200 µM IPTG to reproduce the data at lower IPTG concentrations, we observe a quali-

tative correspondence only (fig. 6.12). The major difference is the occurrence of a cost

and a benefit at very low IPTG concentrations (e.g. 5 µM), while LacZ expression levels

have only increased marginally (from fig. 6.11 we see that they are still a factor ∼100

below fully induced levels). These observations suggest that the cost and benefit terms

may exhibit a steeper dependence on operon expression levels than assumed in the

model. Alternatively, the model might need to incorporate competition between Pgal

and IPTG for LacZ. However this would imply that Pgal import by LacY is not rate limit-

ing, and hence violate the assumptions underlying the present model, which precludes

an analytical solution. A numerical description of the system is ongoing work.

Non-stochastic competition model
Evolutionary traces were fitted (dotted and solid curves in expression history graphs)

using a non-stochastic model for the change in expression when a mutant fixes in the

population. It is known that the fate of mutants in a population that is periodically bot-

tlenecked is influenced by ’sampling noise’ when the mutation is initially only present

in a few individuals [210]. However, when the mutation rate is such that the expected

number of mutants after bottlenecking is significantly larger than 1 (µb À 1, where b

is the bottleneck size and µ the mutation rate), these stochastic effects can be ignored.

This seems to hold in our case at least for the hotspot mutations that occur at a rate

of ∼1·10−6, while our bottleneck size is ∼107. Moreover, the selection coefficients are

estimated from the rate of the fixation process, which is independent of the mutation
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rate (unless the population is very small or the mutation rate very high).

As both the wild-type and the mutant population grow exponentially in between

the bottlenecks we have for their numbers

wild− type N (t ) = N0eln2g t

mutant N∗(t ) = N∗
0 eln2g (1+s)t (6.12)

where g is the wild-type growth rate, s is the selection coefficient. On the basis of these

numbers of individuals, we have for the expression levels of a population average

Eave(t ) = E∗N∗(t )+E N (t )

N∗(t )+N (t )
= E

Er R0eln2g st +1

R0eln2g st +1
(6.13)

where R0 = N∗
0 /N0 is the initial ratio of mutants, and Er = E∗/E the ratio of the expres-

sion levels of the mutant and the wild-type. This expression assumes that a mutant

arises close to the beginning of the experiment and further does not address consecu-

tive mutations.

Enzyme dilution
Important for both the correct determination of expression levels, as well as important

to take into account when setting up an experiment with alternating medium condi-

tions, is the fact that we observed a ’superinduced’ LacZ activity for cells after spending

a stationary phase at high expression levels. We found that the expression levels of in-

duced cells as determined immediately after they leave stationary phase, can be up to

a factor of 10 higher that the expression during exponential growth. If this happens,

it can take very long before LacZ molecules are diluted out by cellular division, even

when their production is low. To demonstrate this effect, a culture of wild-type cells

was grown overnight at full induction (200 µM IPTG). The next morning the culture

was washed and grown in fresh medium without IPTG. At specific time points sam-

ples were taken and frozen at -80oC. Afterwards the expression levels for these samples

was determined (figure 6.13). In the figure induced and uninduced levels of expression

for an exponentially growing population are given as dotted lines. We indeed observe

that the cells initially have a much higher LacZ expression than exponentially growing

induced cells. The expression levels decrease over time, which corresponds to the ob-

served growth rate of the cells. Remarkably, even after 8 hours of growth the expression

level of exponentially growing uninduced cells has not yet been reached.

In our determination of expression levels (see above), we have taken into account

the long times it may take to be able to determine the expression levels associated with

exponential growth. Importantly, for evolution experiments under alternating condi-

tions, it is essential to take into account enzyme dilution effects on the response times

of the regulatory system.
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Figure 6.13: Enzyme dilution by cellular division, visualized by decreasing expression levels. At
t=0 a stationary overnight culture of induced (200 µM) wild-type cells is inoculated in fresh me-
dium. At the indicated time points, samples are taken from this culture of which the expression
is determined. Dotted lines are uninduced (lower) and fully induced (upper) expression levels of
an exponentially growing wild-type population. On the logarithmic vertical scale we observe a
near linear decay, corresponding to exponential dilution of the enzyme. From the decay rates a
slowly increasing decay rate (1/t1/2) was determined, starting at 0.92 h−1 and ending at 1.3 h−1.
The initial rate corresponds well with the growth rate of the population at full induction, whereas
the end rate is somewhat higher than that of an uninduced population, which might be caused
by intrinsic degradation of LacZ.
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CHAPTER

7
Residual affinity of induced
repressors alters the shape of the
induction curve

Why do we still study E. coli?

Jeffrey H. Miller,

Experiments in Molecular Genetics, 1972

In recent years our understanding of gene regulation and regulatory networks has greatly

increased owing to the development of quantitative thermodynamic and stochastic mod-

eling approaches. Among one of the best characterized systems is the lactose utilization

operon of Escherichia coli. We argue, however, that to quantitatively account for the

behavior of the system, a missing ingredient in recent extended modeling efforts is the

residual DNA binding affinity of induced repressor species - although it has in fact been

experimentally determined in early studies on lac regulation. We present a basic thermo-

dynamic model that incorporates residual affinity in the lac system, and together with

experimental data on overexpressed wild-type and mutant repressors, we investigate its

consequences. We conclude that for the interpretation of kinetic as well as equilibrium

behavior, residual affinity plays an important role. For overexpressing systems, it signif-

icantly alters the expected shape of the induction curve. If it is not taken into account,

extraction of quantitative information from such measurements suffers from inconsis-

tencies in interpretation. We expect that residual affinity plays a similar role in systems

with regulatory allosteric interactions in general. Accounting for its effect should be par-

ticularly important in the field of synthetic biology and rational network design.

A lthough the lac operon in Escherichia coli is since its initial description [89] un-

doubtedly experimentally and theoretically the most well-studied example of bac-
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7. RESIDUAL AFFINITY OF INDUCED REPRESSORS

terial regulation [93, 201, 211–213], some important aspects are still under scrutiny. Re-

cently a focus has been on repressor mediated DNA looping [214–218], the observed

cooperativity in the lac operon induction kinetics [207, 219] and the presence of multi-

stability [220–222]. Quantitative thermodynamic models have been formulated that ex-

plain additional sharpness of the inducer response by incorporating a detailed model

of inducer bound repressor states [207, 219], as well as by including CAP/CRP medi-

ated DNA bending [207]. However, these models, and more in general models of tran-

scriptional regulation responding to an intra- or extra-cellular signal, do not take into

account an important ingredient: the residual DNA binding affinity of the ’inactivated’

transcription factor. In the case of the lac operon this means that repressors that are

fully saturated with inducer retain an affinity for the operator site, where they will still

competitively interfere with the binding of RNA polymerase and thus inhibit transcrip-

tion. This effect, although it was discussed in the earlier literature [201, 223] and bind-

ing constants were experimentally determined [224], has been neglected in the recent

modeling literature. The reason for it is understandable: within the wild-type lac sys-

tem the residual binding does indeed not seem very prominent (which we will argue has

been evolutionary tuned to be so). But when the transcriptional regulators are over-

expressed, as is the case for specific lac mutants [225] or often for artificial systems,

the effects cannot be neglected. In fact, an important fraction of experimental work

on the lac system has been performed in overexpressing systems (e.g. [216, 226, 227]).

Also in studies focusing on the rational design of synthetic gene regulation networks,

transcription factors are usually not operating in their ’natural’ concentration ranges,

which may lead to a discrepancy between conceived and actual behavior of the net-

works (e.g. [153, 178]). Apart from the consequences for the equilibrium description of

the lac system, a kinetic description of the system will also suffer from not taking resid-

ual binding into account. Effectively the absence of residual binding would imply that

the time constant of induction would be equal to the time constant of dissociation of

the repressor-operator complex (see section 7.3), which is certainly not true for the lac

operon.

In this work we will present a somewhat simplified, but transparent thermodynamic

equilibrium model of lac transcription regulation that does take into account residual

binding of induced repressor states. Our model is discussed in close reference to ex-

perimental data we obtained from a highly overexpressing system and a mutant system

with a reduced DNA binding affinity. The consequences of residual binding are made

clear by comparison to the case where residual binding is neglected. We show that over-

expression and residual binding can have unexpected effects and can explain a number

of apparent experimental inconsistencies and seemingly anomalous behaviors, from

literature data, as well as from our own data. We argue that, in order to meaningfully

extract thermodynamic information from experiments on transcription regulation, it

should be assessed whether residual binding plays a role in that particular system, and

if so, its effect should be taken into account. Especially in the field of synthetic biology
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it is important to realize the potential effects of residual binding.

7.1 Model

The most straightforward effect of repressor overexpression is that the operon cannot

be fully derepressed (see e.g. [211, 223]), which is the hall mark of residual affinity in

the system. Even when the transcription factors are saturated with their inducer they

still retain an affinity for their operator, and the expression from the operon is less than

the there were no repressor present. However, this fact is often obscured as the experi-

mentally obtained expression levels are generally normalized to the value at saturated

induction.

Our model consists of a set of coupled reaction equations, based on relevant ther-

modynamic equilibria. It describes the binding and unbinding of the molecular species

at the level of signal integration on the lac promoter and the resulting expression of the

downstream genes. Expression levels are generally determined in assays of the concen-

tration of the catabolic enzyme LacZ [154]. Since the focus is to provide an intuitive

view on the effects of residual binding, we have made the following simplifications. 1)

the two auxiliary operators of the lac system O2 and O3 (see fig. 1.4 on page 22 for an

overview of the architecture of the lac regulatory region) are lumped in one compound

operator, here termed O2. This reduces the amount of looped complexes that have to

be taken into account. This will not greatly affect the description as can be seen e.g.

from ref [227] where deleting O2 only has a small effect on measured repression values.

Mind that throughout this chapter subscripted operator species O1 and O2 refer to the

model parameters. 2) we assume that a repressor will change to its induced state upon

binding of one inducer. Other models have demonstrated the additional cooperativity

resulting from partially induced tetrameric repressors ( [207, 219] and see section 7.5).

This implies that our model will not provide an ab initio prediction for the sharpness of

the induction curve, which is therefore incorporated via a phenomenological Hill coef-

ficient. Note that the predictions for either the zero or saturating inducer limits do not

depend on the cooperativity and are therefore not influenced by assumption 2).

The expression level of a repressible promoter is determined by the competitive

binding of the repressor and the RNA polymerase [228, 229]. Since binding processes

are generally fast with respect to the time scale of transcription, expression levels are

commonly assumed to be proportional the promoter activity P A , which is proportional

to one minus the fractional saturation of the operator by the repressor (P A ∝ 1− S f )

(see [90, 230]), where S f is defined as the averaged time fraction that a binding site

is occupied. However, the lac system is also activated by the CAP/CRP protein, the

action of which is modulated by catabolite repression [231]. Interestingly in the lac

system one of the operators partially overlaps with the binding site for the CAP/CRP

protein [232, 233], so that the level of activation is also determined by a competitive

binding mechanism. As we will see, this removes the proportionality of the expression
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Figure 7.1: Cube of reaction equations used to describe the lac system. K ’s are equilibrium disso-
ciation constants, R is repressor, I is the intracellular inducer concentration. O1 and O2 denote
the main and auxiliary operator, where O2 represents a lumped variable for the lac O2 and O3
operators (see fig. 1.4). Downward reactions denote repressor species binding to O1, leftward
represents binding to I , and backward reactions represent binding to O2.

to the fractional saturation S f of the main operator.

The concentration of the product of downstream gene lacZ, or expression is given

by

E = AP Aαo

γ
(7.1)

where A is the factor of activation,αo is the un-activated, un-repressed enzyme produc-

tion rate and γ is the dilution rate, resulting from cellular division and protein degrada-

tion. These elements are incorporated into the model by coupling the relevant reaction

equations (figure 7.1). The species O1O2R and O1O2RI denote the looped complexes

of main operator, auxiliary operator and repressor with or without inducer bound.

The functional form of the promoter activity is given by

P A =O1 ·O2 + f O1 ·O2R + f O1 ·O2RI (7.2)

where O1 and O2 denote the average time fraction that the main and auxiliary opera-

tors are free, and O2R and O2RI denote the fraction of time that the auxiliary operator

is occupied by respectively free repressor R and induced repressor RI . A dot denotes

a product of these fractions. f is a factor (its value being between 0 and 1) to account

for the competitive binding of repressor species and CAP/CRP to the auxiliary opera-

tor, given by f = 1/A. In this way the promoter activity is 1 if both main and auxiliary

operator are unbound (O1 = O2 = 1, other terms 0), the activity is f if the main operator
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is free while the auxiliary operator is bound (O1 = 1, and O2R +O2RI = 1), and 0 if the

main operator is bound (O1 = 0).

In order to find an expression for P A in terms of equilibrium dissociation constants,

and repressor and inducer concentrations, we should state the equilibrium relations
A B
AB = KAB for the different binding events. However, in order not to overspecify the

system, one should properly take into account the constraints of the system: stating

three equilibrium relations on a face of the cube in figure 7.1, determines the fourth

one because of detailed balance. However, the relations on the faces are in their turn

constrained since they are part of a cube, and one constraint would be doubly counted.

In total we are left with 6 - 1 = 5 constraints, and 12 equilibrium constants. We thus fully

determine the system by stating 7 equilibrium relations.

O1 R

O1R
= K1

I R

I R
= K2

O2 R

O2R
= K3

(7.3)

O1R O2

O1O2R
= K4

O1 RI

O1RI
= K7

O2 RI

O2RI
= K8

O1RI O2

O1O2RI
= K10

which are chosen on the basis of either their experimental accessibility, or their useful-

ness in considering limit cases of the system (see section 7.3).

Next the conservation relations for operator and repressor are specified

R +RI = Rtot

O1 +O1R +O1RI +O1O2R +O1O2RI =O1tot (7.4)

O2 +O2R +O2RI +O1O2R +O1O2RI =O2tot

O1tot =O2tot = 1

Note that repressor bound operator states do not contribute to the conservation rela-

tion of repressors, since they are negligible compared to the total repressor concentra-

tion. Also there is no conservation relation for inducer, as the inducer (here the gratu-

itous inducer isopropyl-β-D-thiogalactopyranoside (IPTG)) easily crosses the cellular

membrane (e.g. [234]) so that the intracellular inducer concentration is buffered by the

extracellular reservoir. Note further that I can be considered equal to the extracellular

concentration, only in the case if membrane transport is by diffusion, hence in strains

deleted for the permease LacY.

Given these relations, we can analytically solve for P A (given by equation (7.2)),

which yields

P A = 4p (2+ y −2
√

1+ y)

y2 (7.5)

where

p = K1K7(I +K2)(K2K8(K3 + f Rtot)+ I K3(K8 + f Rtot))

(K2K7(K1 +Rtot)+ I K1(K7 +Rtot))(K2K8(K3 +Rtot)+ I K3(K8 +Rtot))
(7.6)
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y = 4K3K8Rtot(I +K2)(I K1K4 +K2K7K10)

K4K10(K2K7(K1 +Rtot)+ I K1(K7 +Rtot))(K2K8(K3 +Rtot)+ I K3(K8 +Rtot))
(7.7)

For small y , equation (7.5) simplifies to p; when y is large, this reads 4p
y . In fact, p is the

full description for the case when no tetramerization occurs, and only dimers can bind

(see section 7.3).

In order to compare the case without residual binding, we consider the limit of this

model where none of the inducer-bound repressor species is able to bind (K7, K8, and

K10 (and hence K12) to infinity). This changes the functional forms of p and y , which

are given in section 7.3. Other limits and their consequences are discussed in relation

to experimental data in section 7.3.

7.2 Results and Discussion

We constructed a plasmid that overexpresses wild-type LacI by a factor of 5·103 (see

section 7.4), thus yielding around 5·104 tetrameric lac repressors per cell. A reporter

plasmid containing the wild-type lac promoter controlling lacZ expression was used to

measure the induction curve as a function of IPTG concentration. The induction curve

is given in figure 7.2a, square symbols. The expression values are normalized here with

respect to the maximum operon expression level, which we determined experimentally

in the absence of a repressor.

Indeed, it can be seen that the overexpressed system cannot be induced to the max-

imum expression levels: induced expression is a factor of ∼100 lower than the maxi-

mum. Moreover, the IPTG concentration, I1/2, at which the expression is halfway be-

tween the repressed and induced values (plotted in log-log), which for wild-type repres-

sor levels is ∼20 µM (see [207] for the ∆lacY strain TK150), has shifted to higher values:

140 µM. This is a strikingly large shift: whereas at wild-type repressor levels (in a ∆lacY

strain) full induction is reached at around 200 µM IPTG, in the overexpression strain ex-

pression is only ∼1/30 of the induced level, and full induction is only reached for IPTG

concentrations larger than 2 mM.

This effect is especially important to account for when using transcription factors

in synthetic networks. Functioning of a designed network that contains transcription

factors that either operate outside their natural concentration ranges, or where their

concentration is regulated itself, often behave quite differently than expected (see e.g.

[153, 178]). An interesting situation occurs when I1/2 shifts upwards, while adding a

higher concentration of inducer would be toxic to the cell. This was for example the

case for TetR induction by doxycycline in the initially constructed repressor cascade

network in chapter 4. Practically, this causes the repressor to be uninducible. When

we evolved the cascade network under a selective pressure to be inducible by non-toxic

levels of doxycycline (.60 ng/ml), we mainly recovered tetR mutations which presum-

ably destabilized the tet repressor and decreased its capacity to repress. Indeed, also

when we randomly mutate the lac repressor to an extent that its repression is decreased
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Figure 7.2: (a) Expression data of a LacI overexpressing operon as a function of IPTG. Square
symbols are data for overexpressed wild-type sequence LacI, round symbols for a mutant LacI.
Curves are generated by the model described in the text. Triangles indicate maximum operon
expression levels, measured in the absence of repressor (leftmost triangle indicates level without
inducer). This expression level serves as normalization. (b) Definition of the curve shape pa-
rameters. The F value is the ratio of fully induced over uninduced expression. The slope is here
defined by the line that intersects the induction curve at 5% and 95% of the expression range,
plotted logarithmically. I1/2 is the inducer concentration where the expression is halfway its dy-
namic range, again plotted logarithmically.

(figure 7.2, round symbols) the value for I1/2 is shifted back from 140 µM to 58 µM.

The shape of the curve could be reproduced by equation (7.5), with the model pa-

rameters as given in section 7.6. The mutant data was fitted with the same parameters,

where the lower affinity of the mutant repressor-operator interaction was captured by

a single ’mutation parameter’. With the obtained parameters we use the model to in-

vestigate the effect of repressor overexpression quantitatively. We will focus on changes

in parameters describing the shape of the curves, as indicated in figure 7.2b. These

are besides I1/2: the F value or regulation factor F , being the induced expression di-

vided by the uninduced expression, and the slope, defined here as 0.9 F divided by the

inducer concentration interval between 5% and 95% of induction. We used this prac-

tical definition for the slope, and not the maximum derivative since the model allows

for non-sigmoidal curve shapes where the maximum derivative would not be a good

measure for the concentration of half-induction.

The shapes of the induction curves for repressor concentrations between 1 nM and

1 M are given in figure 7.3a, where 1 nM corresponds to about 1 repressor per cell1.

Figures 7.3b-d demonstrate the changes in the induction curve shape parameters (solid

lines) as a function of repressor concentration, in comparison to the situation without

1Note that the full concentration range might not be physiological for E. coli, as extreme overexpression
(Rtot&0.1 mM) will interfere with cellular growth.
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Figure 7.3: Influence of overexpression and residual affinity on the shape of the induction curve.
(a) Changes in the curve shape as a function of total repressor concentration, ranging from 1
nM to 1 M for the model including residual affinity. Other model parameters are as used to de-
scribe the induction profile of wt-sequence LacI (curve through the square symbols in figure 7.2
and which is here shown in bold). (b, c, d) Influence of LacI overexpression on the curve shape
parameters defined in figure (7.2b). Solid curves include residual affinity, dotted curves do not.

residual affinity (dotted lines). From the figures we see that for wild-type expression

levels (10-20 repressors per cell [235], or log Rtot ∼1 - 1.3) the effects of residual affinity

are minimal: the solid lines and the dotted lines do not differ much. An intuitive evo-

lutionary argument can be given why this is the case. In fact the optimal operational

concentration for a repressor is subject to two opposite selection pressures: to maxi-

mize the F value and to minimize the cost of repressor protein expression. The require-

ment of a large F value sets a minimum to the repressor concentration. At the same

time, a higher repressor concentration would tune down the overall operon expression,

but this would be a very inefficient way to achieve a lower expression: downtuning the

promoter strength would achieve the same, but would impose a lower cost associated
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with repressor protein production and therefore be more advantageous in evolutionary

terms. A more quantitative derivation can be given (see section 7.3) why the optimum

repressor concentration should actually be roughly equal to the dissociation constant

specifying the residual affinity.

For mildly overexpressing systems (∼10x wild-type levels, logRtot ≈ 2− 2.5), figure

7.3b shows that the regulation factor F increases, which corresponds well with the ob-

servation in ref. [226] that F values increased from 1300 to 6700 for 5x overexpression.

However for stronger overexpression F decreases again, as is observed in figure 7.2.

Note that not taking into account residual binding would imply that the fully induced

expression level is the maximum expression level (as if no repressor were present), and

the F value would grow without bound (dotted lines). The difference between the solid

and the dotted curve in figure 7.2 therefore also directly demonstrates the mismatch

between determining the F value either by induction, or by absence (or knock-out) of

the repressor (see also section 7.3).

Interestingly, the shift in I1/2 combined to the limited increase in F value for over-

expressing systems, may influence the quantitative estimation of parameters from an

induction curve. If the expression level at saturated induction is interpreted as the max-

imum expression level for the operon (no repressor present), a model reproducing the

experimental data may largely overestimate the dissociation constant for inducer bind-

ing, K2, due to the shift in I1/2. Although K2 has been determined experimentally [224]

to be ∼1.0 µM, in the modeling literature generally much higher values are used (15-

30 µM). This, in turn, may lead to wrong predictions on the behavior of the regulatory

system, especially when integrated in a larger network.

Figure 7.3d shows the change in the steepness of the induction curve as a function

of repressor concentration. As remarked earlier, based on the model in section 7.1, we

cannot make precise statements about the values for the slopes of the curve. From

our model we see that for (mild) overexpression it increases, which has also been re-

marked in [219]. However, comparing the case with and without residual affinity, we

observe that a maximum value for the slope is reached at repressor concentrations that

are lower by a factor of about 10. Moreover, the slope decreases quickly at higher over-

expression, to a lower value than for wild-type repressor levels. This is qualitatively

different when there is no residual affinity: the slope of the curve is then predicted to

stay high. Again, as the sharpness of response is an important quantity in a signal trans-

ducing system (e.g. [236–238]), care should be taken in its description.

In this work we have discussed the effects of transcription factor overexpression

using a model that explicitly incorporates the residual affinity of induced states. We

argued that a description of transcriptional regulation is not complete and often will

not be accurate without giving attention to residual affinity. Although we have focused

mainly on the lac transcriptional regulation, we expect that similar effects occur for

other systems with an allosteric transition between an ’active’ and an ’inactive’ state

[239–241]. Especially when acting in a network where the concentration of allosteric
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regulators itself is regulated, operational concentration effects can be expected to play

a role. For a realistic quantitative description of network behavior (e.g. [242]) and their

stable states, and especially for rational design of networks in synthetic biology [243],

explicitly considering these effects is important.

7.3 Useful limits and comparison to data

In this section a number of limits are worked out that demonstrate in an intuitive way

how changes in the system affect the shape of the induction curve and the F values.

An emphasis is placed on the role and consequences of residual affinity. Outcomes are

discussed in the light of measured data, and some interpretation issues in existing lit-

erature are clarified.

No residual affinity.

The case of no residual binding is obtained by taking the limits of large K7, K8, and K10

of equation (7.5). The functional form of P A remains the same, but the terms p and y

now read

p = K1(I +K2)(I K3 +K2(K3 + f Rtot))

(I K1 +K2(K1 +Rtot))(I K3 +K2(K3 +Rtot))
(7.8)

and

y = 4K2K3Rtot(I +K2)

K4(I K1 +K2(K1 +Rtot))(I K3 +K2(K3 +Rtot))
(7.9)

which are the relations used in figure 7.3 (dotted curves) where the effects of having

residual binding are demonstrated.

Only one operator, O1.

If the auxiliary operators are knocked out or removed the F value is greatly reduced (see

e.g. [226, 244]). We can find this limit by solving for the front face of the cube, or, equiv-

alently take the limit to infinity for K3, K4, K8, and K10.

This results in

P A = K1K7(I +K2)

K2K7(K1 +Rtot)+ I K1(K7 +Rtot)
(7.10)

The F value for the single operator system is given by

F = K7(K1 +Rtot)

K1(K7 +Rtot)
(7.11)

from which we can see that the maximum F value is given by K7
K1

(being the ratio of

dissociation constants for induced and uninduced repressor to the main operator), for

sufficiently large Rtot. Interestingly, for wild-type LacI concentrations Rtot is not larger
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than K7, which means that the full dynamic range is only observed in overexpression.

This is indeed the case. The group of Müller-Hill measured an F value of 18 in the wt i+

background, but a factor of 60 in a (5x) LacI overexpressing system [226].

Only one operator, O1 & no residual binding.

As seen above, one of the most notable effects of residual binding of induced repres-

sors is that an operon cannot be fully derepressed by induction. This implies that in

experiments that use non-functional repressors to determine the maximum operon ex-

pression, the apparent F value of an operon grows unlimitedly for increasing repressor

concentrations. This is a main source of confusion in the interpretation of measure-

ments and the extraction of thermodynamic quantities from them. That the effects can

be large can be seen from e.g. [227], where a repression value of 230 is reported for

a 5x overexpressed (dimeric) repressor, determined by comparison to non-functional

repressor. In [226] the same quantity is determined by induction, and yields a factor of

60. These fairly large differences are often interpreted as experimental noise, but are

perfectly explained by the presence of residual binding. The combined case (only O1

and no residual affinity) discussed here can be obtained by setting K3, K4, K7, K8, and

K10 to infinity. We obtain

P A = K1(I +K2)

I K1 +K2(K1 +Rtot)
(7.12)

which is the same form as the first mechanistic model of lac induction kinetics in the

seminal paper by Yagil and Yagil [91]. The equation yields a regulation factor of F =
1+ Rtot

K1
. This is also the apparent regulation factor when using a non-functional mu-

tant in the experimental determination of the F value. In contrast, determining the F

value using induction yields equation (7.11). Indeed for overexpressing systems a dis-

crepancy between the two methods is expected, where for sufficiently high repressor

concentrations the induction method will result in a lower F value, which is indepen-

dent of the degree of overexpression.

No tetramerization / repressor acts as dimer.

Repressor mutants exist that do not form tetramers, but act as dimer (e.g. the lacIadi

mutant [226, 245]). Such mutant repressors are not able to bind two operators simul-

taneously and therefore not able to form loop the lac promoter DNA. Their observed

repression values are lower than those of tetrameric LacI, when the repressor concen-

tration is comparable to wild-type, but when the repressor is overexpressed the repres-

sion values for dimers and tetramers become similar (see e.g. [226, 227]). From our

model the expression for dimers is obtained by taking the limit of P A given by equation

(7.5) for large K4 and K10. P A then reduces to p, as given by equation (7.6). From this

we can see that indeed for high repression values there is no distinction between having

dimers or tetramers, since the limit of equation (7.5) for large repressor concentrations

is equally described by p. This can be understood by realizing that for large tetrameric
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Figure 7.4: Logarithm of the factor given by equation (7.13), specifying the ratio of uninduced
expression levels accomplished by tetramers and by dimers as a function of the total repressor
concentration. When the ratio is 1 (here its log being 0), there is no difference in repression
between tetramers and dimers. Used parameters are given in section 7.6.

repressor concentrations each operator is occupied by a separate lac repressor, as is

necessarily the case for dimers. In fact, the factor

4(2+ y −2
√

1+ y)

y2 (7.13)

from equation (7.5) is the change of the functional form of the induction curve due to

the ability of tetramers to bind to two operators and loop the DNA.

From figure 7.4 we can see that the factor in equation (7.13) indeed reaches 1 for high

overexpression of repressor.

The F value in the no-tetramerization case is given by

F = K7(K1 +Rtot)(K3 +Rtot)(K8 + f Rtot)

K1(K7 +Rtot)(K3 + f Rtot)(K8 +Rtot)
(7.14)

which for large concentrations of (either dimeric or tetrameric) repressor, reduces to

F = K7/K1. Moreover, since for large Rtot the functional form of the induction curve is

a sigmoidal where I1/2 coincides with the inflexion point of the curve, we can find the

location of I1/2 by solving d 2

dI 2 P A = 0, which yields I1/2 = K2
p

K7/K1.

O1 knockout, only auxiliary operators.

Several effects of the auxiliary operators have been proposed. First, the presence of

the auxiliary operators would result in an increase in the local repressor concentra-

tion around O1 [246]. Second, the induction kinetics would become more coopera-

tive because of DNA looping, potentially aided by CAP/CRP binding [207,219,227,244].

Thirdly, since the operator O3 and the CAP/CRP activator binding site partially overlap,
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Useful limits and comparison to data

binding of repressor to O3 sterically hinders CAP/CRP activation, and thus lowers ex-

pression [227,233]. The observation that when only O3 is functional, there is still a large

difference in repression values between smaller dimers and bulkier tetramers [227] sup-

ports the third explanation. In our model the effect of DNA looping is incorporated

by the reaction constants. The effect of CAP/CRP interference is incorporated via the

factor f , where CAP/CRP activation is a factor of 1/ f (see the next sub-section for its

value). The case of an inactivated operator O1 can be obtained in our model by taking

the limit of K1 and K7 to infinity, from which we obtain an F value of

F = (K3 +Rtot)(K8 + f Rtot)

(K3 + f Rtot)(K8 +Rtot)
(7.15)

As K8 À K3 and for wild-type K8 À Rtot, the regulation factor becomes:

F = K3 +Rtot

K3 + f Rtot
(7.16)

which is 1 for f = 1 (no interference with CAP/CRP), and 1+ Rtot
K3

for f = 0 (realistic val-

ues are closer to 0, see below). Assuming that K3 is of the order of 10 nM (roughly a

factor 5 less than K1, see above), for wild-type repressor concentration the repression

value will be of the order of 2. The measured value in [226] is 1.9.

Induction and CAP/CRP activation.

The most obvious effect in a CAP/CRP deletion strain is the lowered expression of lac

operon expression due to a lack of activation. A 50 fold difference has been found be-

tween the expression of a wild-type and CAP/CRP deletion strains [247], and a factor of

28 by maximum repression of a mutant containing only operator O3 [227]. This effect

is incorporated in our model, since the lac operon expression is proportional to P A/ f

(section 7.1). By changing f , we therefore do not only change the functional form of

P A , but also the overall expression level. Our measurements are performed by growth

in 0.2% glucose medium, which due to catabolite repression will reduce CAP/CRP acti-

vation ∼3 fold [207,248]. As the best-fit value for f in our model is around 0.1, we would

interpolate the full CAP/CRP activation factor to be on the order of 1/(0.1/3) = 30, close

to the experimental value of 28 [227], or 50 in [247]. Interestingly, the mere factor of

3 that is due to catabolite repression may not be the main function of CAP/CRP sig-

nal integration in the lac operon, nor the overall activation factor of ∼30 (which could

equally be accomplished by increasing the promotor strength). An alternative sugges-

tion would be that the main role of CAP/CRP activation is steepening and increasing

the dynamical range of the response to lactose, as a result of the competitive binding

with the lac repressor. Such a general activator (CAP/CRP at the same time interacts

with many other operons) could well be an efficient general mechanism for simultane-

ously obtaining sharp response curves for a large number of operons.
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7. RESIDUAL AFFINITY OF INDUCED REPRESSORS

Residual affinity and the kinetics of induction.

Not only an equilibrium but also a kinetic description of the system will suffer from

neglecting residual affinity, and even at wild-type repressor levels. Its absence would

imply that the time constant of induction would be equal to the time constant of disso-

ciation of the OR complex. This can be made intuitive by looking at front face of figure

7.1. When the operon is in the repressed state, upon addition of inducer, I will bind

to the free repressors R, which effectively lowers the concentration of repressor. How-

ever, at saturating concentrations of inducer, the induction kinetics are determined by

the rate of dissociation of the OR or ORI complex. The assumption that the repressor-

inducer complex has no affinity for the operator would imply that K7 is very large (in-

finite). However, by detailed balance, this would mean that the dissociation constant

K6 is also very large, implying that inducer does not bind OR. This would mean that

after addition of inducer, the time in which protein synthesis rate reaches its maximum

is at least equal to the dissociation time of the OR complex (20-30 minutes [249, 250]),

which is clearly incorrect when compared to experimental values. For example the op-

erator clearance rate (however for dimeric lac repressor) was determined at less than 1

s−1 in [234]. If we assume that inducer binding does not affect the association but only

the dissociation rate of repressor to operator, our estimate for operator clearance rate

would be the reciprocal of ∼25 min divided by the F value, which would indeed be on

the order of 1300 / 1500s = 0.9 s−1.

Evolutionary argument on wild-type repressor levels.

The argument why the optimal concentration of repressors should lie around the equi-

librium dissociation constant expressing the residual affinity is most clearly made by

reference to a simple system containing one operator (see case above ’Only one opera-

tor, O1’. We suggest that the optimum repressor concentration is a result of two coun-

teracting selective pressures. First, the repressor concentration should be high enough

to be able to accommodate the maximum F value in the system (if a lower F value would

suffice for operation, there would be no reason to have an in-built, but never used, ca-

pacity for higher F values). Earlier it was already shown that equation (7.11) for one

operator leads to a maximum F value for repressor concentrations larger than K7, the

equilibrium dissociation constant that determines the residual affinity of induced re-

pressors. However, as the fully induced promoter activity for one operator is given by

P A = K7

K7 +Rtot
(7.17)

we see that for repressor concentrations larger than K7 the operon cannot be fully dere-

pressed. We argue that this is an evolutionary unfavorable situation, since if a lowered

expression would be more favorable, it could be accomplished by down tuning the pro-

moter strength. This would achieve the same regulation, but with a lower cost, since no

extra repressor protein need to be produced. These arguments taken together, we ex-

pect that the operating concentration of the repressor will be of the order of K7. Indeed,
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Material and Methods

when the lac operon is described in a simplified way as a one-operator system (as was

the case before the discovery of the auxiliary operators), the measured residual affinity

is on the order of 10−8 M (see [201] and section 7.6 below). This number amounts to

around 10 repressors per cell which also is the consensus value [93, 235]. It would be

interesting to see whether the same holds for other repressible operons.

7.4 Material and Methods

Induction experiments are performed using Escherichia coli K12 strain MC1061 [184],

which carries a deletion of the complete lac operon. This strain was obtained from

Avidity LLC, Denver CO, USA, as electrocompetent strain EVB100 (containing an addi-

tional chromosomal birA gene). We constructed a LacI overexpressing plasmid, based

on the pZ vector system [186], in which LacI is expressed from the PLtetO1 promoter

in a medium copy plasmid (p15A ori). This plasmid yields an estimated constitutive

expression of ∼5·104 lac tetramers per cell (by comparison of the PN25 promoter ex-

pression as stated in [186], and the comparable promoter strength of PL [251]). No in-

fluence of this extent of overexpression on the bacterial growth could be established

within an error of roughly 5% (for methods of growth measurements see chapter 4).

Repression strengths were determined by either ONPG or FDG expression assays (see

chapter 4), using a pTrc99A [187] based plasmid where lacI and Ptrc were replaced by

the Plac-lacZ fragment from strain MG1655 [188]. All growth and expression measure-

ments are performed in Defined Rich medium (Teknova, Hollister, CA, USA, cat. nr.

M2105), with 0.2% glucose as carbon source, and supplemented with 1 mM thiamine

HCl. Mutants were created in a mutagenic polymerase chain reaction using the Strata-

gene Genemorph II Random Mutagenesis kit.

7.5 Appendix A: not modeled induced repressor states

For simplicity, and given the scope of the present work, induction was modeled as if

the binding of one inducer molecule would bring the repressor in the induced state.

Although this might be the case for some repressors, LacI is a dimer of dimers [252],

which causes the induced repressor states to be more complex (see figure 7.5).

Both recent studies on the origin of the cooperativity in the lac system [207, 219]

include the possibility of partial induction. Without inducer, both dimers can bind and

the repressor can form loops (repressor in the black dotted box). At intermediate in-

ducer levels one dimer can be induced, while the other is still active (grey boxes). How-

ever, both studies assume that the ’unboxed’ states abolish all operator infinity, i.e. do

not take into account residual affinity of the fully induced states.

The reaction equation model described in the present work does not take into ac-

count multiple binding events of the inducer and had therefore to be modified with a

phenomenological Hill coefficient to account for increased steepness of the response
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7. RESIDUAL AFFINITY OF INDUCED REPRESSORS

Figure 7.5: Partially induced repressor states. As the lac repressor is a dimer of dimers, in which
each monomer has a binding site for an inducer molecule, there are various (partially) induced
repressor states. Different dimers are depicted as dark grey and light grey connected circles. Filled
circles represent monomers with an inducer molecule in their binding pocket. When an inducer
molecule is bound to (at least) one monomer, the corresponding dimer is induced. Possible tran-
sitions between repressor states are indicated by a black line. Two recent lac cooperativity stud-
ies [207, 219] incorporate this scheme, but assume only the boxed states to be able to bind to
DNA. Figure after ref. [207].

due to the inducer cooperativity. Importantly however, while the model might not pro-

vide an ab initio prediction for the steepness of the response, the limits for low and

high inducer levels are independent of cooperative behavior and therefore the same as

when partial induction would have been included. A full model including both partial

induction states and residual binding is best approached with a partition sum descrip-

tion and is left for future work.
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Appendix B: reaction constants

7.6 Appendix B: reaction constants

Here we give the values of equilibrium dissociation constants used in the model de-

scription of the data given in figure 7.2a. For comparison specific experimentally ob-

tained constants are stated.

To model the mutant data in figure 7.2a, we used the same data, together with a ’muta-

tion parameter’ that raises all K ’s describing protein-DNA interactions (all but K2) with

the same factor. The obtained factor was 5.9.

constant model valuea lit. valueb refs.
K1 6.3 nM 1 nM [257]
K2 4.9 µM 1 µM [224]
K3 31 nM 10 nM [226]
K4 2 pM N/A –
K7 120 nM 60 nM [226]
K8 82 mMc N/A –
K10 3.5 µM N/A –
Rtot 14 µM N/A –

f 0.116 ∼0.1 [207, 227]
Hill c. 1.9 N/A –

aAll literature values specifying DNA-protein interactions are corrected for aspecific interactions [253–
255], which cause that most of the repressors are aspecifically bound. Only a fraction of around 0.01 is free
in the cytosol [223, 256]. This could be incorporated by either scaling the total repressor concentration or
the equilibrium constants by a factor of roughly 100. We opted for the last. Note that this introduces some
uncertainty with respect to what is listed as the literature values. This would introduce a (small) scaling factor
between the model parameters and the listed literature values, which indeed seems the case.

bValues for compounded operators are estimated on the basis of the induction characteristics in the cited
references.

cThis value implies that the affinity is of the order of the affinity for aspecific DNA, being 100 µM- 10
mM [201] in the scaled units used here.
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CHAPTER

8
Reciprocal sign epistasis and
multiple peaks in the fitness
landscape

The whole organism is so tied together [...] that when slight variations in one part

occur, and are accumulated through natural selection, other parts become modified.

This is a very important subject, most imperfectly understood.

Charles Darwin,

The Origin of Species

Epistasis refers to the situation when the effect of a mutation depends on the genetic

background in which it occurs. In the context of fitness landscapes it has been shown

that the presence of epistatic interactions affects the selective accessibility of evolutionary

trajectories. Here we focus on ’reciprocal sign epistasis’ that occurs when mutating one

locus is either deleterious or advantageous depending on the state of another locus, but

also vice versa for the second locus with respect to the first. We show that it is a necessary

condition for the occurrence of multiple peaks in the adaptive landscape. This implies

that for any landscape harboring multiple peaks, there is at least one reciprocal sign epis-

tasis motif at the level of the most elementary mutations. We also briefly indicate why a

reciprocal sign epistasis motif is not a sufficient condition for the existence of multiple

peaks.

O rganisms are highly integrated functional systems, where change in one compo-

nent often affects the functioning of other components or the system as a whole.

That this interdependence of parts presents challenges for evolutionary processes was

already remarked by Darwin [101]. Manifestations of these dependencies at the genetic

and physiological level are pleiotropy, where a single gene or mutation has an effect on
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Figure 8.1: Different manifestations of epistasis along a path from a suboptimal allele ab towards
the optimal AB. Left: Sign epistasis: the fitness effect of a mutation from a to A differs in sign (is
either beneficial or deleterious) depending on whether the other locus is b or B. Right: Reciprocal
sign epistasis: sign epistasis occurs for both loci A/a and B/b reciprocally.

multiple phenotypic traits, and epistasis, defined as the interaction between genes or

mutations in their effect on the phenotype. In the latter case the effect of a mutation

depends on the genetic background in which it occurs. The basis for the conditional-

ity of epistatic effects often lies in the physical interactions between the gene products

and other biomolecules, but it can for example also result from the interplay between

protein stability and catalytic activity [104], from Watson-Crick base pairing within an

RNA molecule [258], or from interactions between modular metabolic networks [259].

In general such dependencies between parts may constrain the evolutionary optimiza-

tion of a biological system. An intuitive picture here is that of a key and a lock: changes

in multiple parts are needed to obtain a new functional combination, while interme-

diates are non-functional. In an evolutionary process this implies long ’waiting times’

before the relevant new genetic combinations appear in a population (see e.g. [260]).

When genotype, phenotype, and organismal fitness are considered from a fitness

landscape perspective, epistatic interactions have a marked impact on the topology of

the surface. As was shown by Kauffman in the mathematical framework of his NK land-

scape models [52]: the more epistasis, the more rugged the fitness landscape, and the

more local adaptive peaks arise, which increases the chance of entrapment on a sub-

optimal adaptive solution. The occurrence of so-called ’sign epistasis’ in the mapping

from genotype to fitness (fig. 8.1, left), which means that the fitness effect of a certain

mutation can be both advantageous and deleterious depending on the genetic back-

ground, was shown to be a necessary and sufficient condition for the selective inacces-

sibility of a subset of the evolutionary trajectories towards a fitness optimum [54]. If

all paths towards a landscape optimum are inaccessible, this implies that the current

population is located on a local adaptive optimum. In that case there are at least two

adaptive peaks in the landscape. We will show here that in this case the landscape nec-

essarily contains an epistatic motif, that is referred to as ’reciprocal sign epistasis’ (fig.

8.1, right) [55]. This motif occurs when two loci (which can be intragenic) exhibit sign

epistatic interactions with respect to each other: mutation A/a is sign epistatic with re-
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Figure 8.2: Procedure for finding the Reciprocal Sign Epistasis motif. A random direct path be-
tween peaks P and Q has a minimum at location I. By reversing the order of the mutations lead-
ing to and from this minimum, a new minimum occurs at location II. Again the order of the two
mutations around this minimum are reversed. A new minimum occurs at III. When the relevant
mutations are reversed here, however, the minimum does not change its location. At this location
a RSE motif is found.

spect to ’background’ B/b, and mutation B/b is also sign epistatic with respect to back-

ground A/a. This motif applies e.g., when two mutations are separately deleterious but

jointly enhance fitness, or in the case of compensatory mutations [261].

To demonstrate that reciprocal sign epistasis (RSE) is a necessary condition for the

existence of multiple peaks, we have to show that multiple peaks imply the existence of

a RSE motif somewhere in the landscape. Here we give a short version of the argument,

a more extended version can be found in section 8. We can look at direct paths (no de-

tours or ’backmutations’) between two maxima. If we take one of such direct paths (see

solid line in fig. 8.2), we will find a combination of mutations that confers a minimum

fitness (indicated with I in fig. 8.2), at some (Hamming) distance1 from the initial peak

P and the new peak Q. We can now try to optimize the minimum fitness of this path

by reversal of the mutations leading to and from this minimum. In many cases the re-

versal will cause the minimum to shift to a different position between P and Q (e.g. to

position II in fig. 8.2). We then again reverse the order of mutations to and from this

minimum, and so on until the minimum remains located at the same mutational step.

At that moment we will have found a RSE motif. This optimization procedure has to

come to an end - because the path’s minimum cannot be higher that the lowest fitness

peak - and this means that we will necessarily find an RSE motif2.

Next, we ask whether a sufficient condition could be formulated for the existence

1The Hamming distance dH between two sequences is defined as the number of positions at which they
differ.

2Finding the overall highest minimum from P to Q is a strict criterion required for the proof. In fact, we
already will have found a RSE motif when for some position the minimum does not shift to another position
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of multiple peaks that would not involve assaying the full sequence space. Although

for the two locus-two allele case of fig. 8.1 RSE is a sufficient condition for multiple

peaks (being ab and AB), in higher dimensions it is not. Noting that we can describe the

discrete sequence domain fitness landscape as a continuous, although triangulated,

multidimensional surface, we can apply Morse theory [262], linking the dimension and

connectedness of the surface to the number of stationary points, like minima, maxima,

simple and higher order saddles. To obtain a sufficient condition for multiple peaks, we

need a lower limit on the number of maxima (M > 1), and within the context of Morse

theory such a lower limit consists of a sum of the number of higher order saddles, with

alternating signs. However, any sufficient condition for multiple peaks based on these

topological considerations would thus involve the exclusion of saddles of a certain or-

der, which can only be done by inspection of the complete surface or landscape. Hence

using Morse theory, no practical sufficient condition can be formulated.

Recently studies have emerged that seek to assess the extent to which natural fitness

landscapes are rugged and multiply peaked [25, 55–58, 61, 263–266] (and see also chap-

ter 5). It should be noted that due to the sheer amount of combinatorial possibilities

associated with the genetic sequence, it will never be possible to conclusively demon-

strate that two adaptive peaks are really separated and that they are not connected by

a ridge in the landscape that avoids the adaptive valley between them. However, mu-

tational paths that accomplish such a detour may involve such long waiting times that

from a practical point of view the fitness maxima are separated [263]. Here we have

shown that multiple fitness peaks imply a reciprocal sign epistasis motif at the level

of elementary mutations. This implies that in order to move from a lower to a higher

adaptive peak, selection has to overcome typical key-lock type interactions, or at least

one.

Extended proof

Theorem: In a N -allelic L locus system, reciprocal sign epistasis is a necessary condi-

tion for the existence of multiple peaks in the fitness landscape.

Assuming that all fitness values are nondegenerate.

First of all, we will define the terms:

Definition 1: Epistasis: means that the fitness effect of a mutation is conditional on

the presence of other mutations (the ’genetic background’).
Example: ∆wab→Ab 6= ∆waB→AB , where ∆w is the fitness difference between two

mutational states, and B and b can be considered to be the genetic background for

states A and a.

For one mutation in different backgrounds, two classes of epistasis can be discerned:
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Definition 2: Magnitude epistasis: means that the magnitude of the fitness effect of

a mutation is conditional on the presence of other mutations.
Example:

∆wab→Ab 6=∆waB→AB AND |∆wab→Ab +∆waB→AB | = |∆wab→Ab |+ |∆waB→AB |

Definition 3: Sign epistasis: means that the sign of the fitness effect of a mutation is

conditional on the presence of other mutations.
Example:

|∆wab→Ab +∆waB→AB | < |∆wab→Ab |+ |∆waB→AB |

In case the role of mutation and background can be reversed, there is a special case

of sign epistasis:

Definition 4: Reciprocal sign epistasis: means that the sign of the fitness effect of muta-

tion a → A is conditional on whether the state of another locus is b or B , and vice versa.
Example:

|∆wab→Ab +∆waB→AB | < |∆wab→Ab |+ |∆waB→AB | AND

|∆wab→aB +∆w Ab→AB | < |∆wab→aB |+ |∆w Ab→AB |

Now, in order to prove the Theorem, we can restrict ourself to direct paths between

two peaks only (follows below).

If we can prove that for the subset consisting of direct paths reciprocal sign epistasis is

a necessary condition for the existence of multiple peaks, we also have proved it for the

set of all paths. In other words: if reciprocal sign epistasis is necessarily present in the

subset, then also in the superset. Further, it will be shown that it is enough to prove the

necessity for two peaks.

Starting with a number of ’sub-theorems’ that are used for narrowing down the extent

of the proof needed:

T 1: The set of direct paths (d −dH = 0) of length d between two points in a N -allelic L

locus system is equal to the set of direct paths of length d in the bi-allelic L locus system.

Which is a complicated way of stating something trivial. Direct paths between between

two points in sequence space (d −dH = 0) only require one substitution at each locus

that is different between begin and end points.

Hence we only need to produce the proof for the bi-allelic case:

T 2: In a bi-allelic L locus system, reciprocal sign epistasis is a necessary condition for

the existence of multiple peaks in the fitness landscape.

But we can further narrow down what we have to prove, since:
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T 3: If two peaks in a bi-allelic L locus system are at a distance L, then adding any other

peak will decrease the minimum distance between pairs of peaks in the system.

If the two initial peaks differed at L loci, a possible additional peak would find itself

at a distance d from the first one and L −d from the second one. Hence the minimum

distance has decreased from L to L −d or to d , whichever is smaller, but in any case

d < L and L−d < L.

As we can choose to only look at differences at the smallest amount of loci (either L−d

or d) between two peaks (e.g. only mutating these positions), this subspace should also

contain reciprocal sign epistasis. Then, one only needs to prove the necessity of recip-

rocal sign epistasis for two peaks at a distance L −d or d in a biallelic L −d or d locus

system. So finally, we are left to prove:

T 4: In a bi-allelic L locus system, reciprocal sign epistasis is a necessary condition for

the existence of two peaks at a distance L in the fitness landscape.

We will now prove that two mutations along a path containing the highest fitness mini-

mum in the landscape (max(min(Fi )), where i specifies the points in sequence space),

exhibit reciprocal sign epistasis. Since all paths between two maxima necessarily go

through a minimum, the landscape must contain reciprocal sign epistasis.

1) There are two maxima at distance L in a biallelic L locus system.

2) We consider a random direct path (length L) from one maximum to the other

one.

3) This path necessarily contains a minimum.

4) We change the path, by reversing the order of the two mutations leading to and

away from the minimum.

5) Two cases are possible:

5a) If the fitness minimum of the path is still located between the same mu-

tations, then these mutations exhibit reciprocal sign epistasis.

5b) If the fitness minimum is now located at another step along the path, go

back to point 4), now for the two mutations around this new minimum.

6) The repeating of steps 4) and 5) necessarily leads to breaking the loop via case

5a), because the maximization of the minimum along the path is necessarily

bounded (by the value of the lowest peak).

This completes the proof of T 4, hence the proof of the Theorem. ■
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But visions are still important, as long as we also remember the details.

Stig W. Omholt,

Science 295 2220, 2002
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APPENDIX

A
Historical lineage of strains DH5α,
DH10B, and MC1061

Here we provide a brief overview of the historical derivation of a number the Escherichia

coli strains used throughout this thesis (parental strains are indicated below deriva-

tives). As a large part of the work in this thesis is performed with a plasmid borne lac

repressor, we were in need of strains containing a chromosomal deletion of the lactose

operon. Contrary to common indications, DH5α and DH10B were found to contain a

lac repressor. We traced the present confusion to a sudden omission in description of

the genotype in the history of strains carrying the genotypic marker φ80dlacZ∆(M15),

which should correctly read φ80dlacIqZ∆(M15). The Iq designation is still present in

the description of strain JM83 [267], but omitted in the papers describing the construc-

tion of the DH lineage of cloning strains [185].

DH5α

F− φ80dlacIqZ∆(M15) ∆(argF-lac)U169 deoR recA1 endA1 hsdR17(r−k , m+
k ) supE44 phoA

thi-1 λ
−

gyrA96 relA1

Strain ref

DH5α [185]

DH5 SH210 TB1 D. Hanahan unpubl. / [268] / [269]

DH1 MC4100 JM83 D. Hanahan unpubl. / [270] / [267]
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A. HISTORICAL LINEAGE OF STRAINS DH5α, DH10B, AND MC1061

DH10B
F− φ80dlacIqZ∆(M15) ∆lacX74 deoR recA1 endA1 mcrA ∆(mrr hsdRMS mcrBC) nupG

rpsL(StrR) galU galK ∆(ara, leu)7697 ara∆139 λ
−

MC1061
F− ∆lacX74 mcrB1 e14−(mcrA0) rpsL150(StrR) galE15 galK16 ∆(ara, leu)7697 ara∆139

λ
−

hsdR2(r−k , m+
k ) spoT1

Strain ref

DH10B [185]

DH10 [185]

MC1061 DH1 MM294 TB1 [184] / D.H. unpubl. / [271] / [269]

MC1060 JM83 [184] / [267]

MC1000 JM82 [184] / [267]

M182 J. Beckwith, see also [272]

CSH51 71.18 [154] / [273]

Here ’D.H. unpubl.’ refers to unpublished data by D. Hanahan, as indicated in ref. [185].

The lac deletion ∆X74 is also referred to as DE(codB-lacI)3. The extent of the deletion

is reported in [274]. The extent of deletion ∆(argF-lac)U169 is described in [275].

Ref. [267] states that JM83 carries φ80dlacIqZ∆M15. The parent strain that contains

the φ80, CSH51, is stated to carry φ80dlac+ by J. Messing [267], as well as by J.H. Miller

[154]. The other parent, 71.18, carries lacIq and Z∆M15.
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APPENDIX

B
Incompatibility of the lacZα
marker with pBR322 plasmids

We found that transfer of the commonly used α-complementation marker lacZα orig-

inating from the pUC line of plasmids to plasmids bearing a pBR322 origin of repli-

cation did not yield viable transformants. Upon inspection, we found that the pUC

lacZα marker contains a 90 base pair stretch in its coding sequence that is identical

to a region near the origin of replication of pBR322. This suggests that the reason

for the decreased viability is interference with replication, as a result of which trans-

formed bacterial cells fail to express the antibiotic resistance marker that was used for

plasmid maintenance. We used a pBR322 derivative plasmid (pTrc99A [187]) to cre-

ate a construct where the lacZα marker (from pUC8 [276]) is under tight control of

an overexpressed lacI repressor, while additionally using a lacI overexpressing strain

DH5αZ1 [186]. In this strain we indeed observe a strong decrease of viability on plates

when we induce expression of the lacZα marker (fig. B.1). We constructed a new alter-

Figure B.1: E. coli DH5αZ1 cells harboring a pTrc99A derivative plasmid containing lacZα from
pUC8 under control of the lac repressor. Overnight growth of DH5αZ1 on plates containing
ampicillin (100 µg/ml) as a selection marker was normal in the absence of IPTG (left), but strongly
reduced at 1 mM IPTG (right) where colonies were hardly visible by eye after 14 hours at 37oC.
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B. INCOMPATIBILITY OF THE lacZα MARKER WITH PBR322 PLASMIDS

nativeα-complementation marker, by using the first 364 nucleotides from the chromo-

somal lacZ from strain MG1655, to avoid the observed incompatibility. In this way, we

obtain the maximum length lacZα fragment that does not carry lac operator O2 (see

fig. 1.4), which may limit the usability of the marker. Decrease of viability upon induc-

tion was not observed and α complementation was functional and similar to the pUC

lacZα marker, as was verified by LacZ activity assays (see chapter 4).

α-complementation is the remarkable phenomenon that the β-galactosidase ac-

pBR322
4361 bp

tetR

Rop

ampR

H Y eff

L Y eff

ori

Hae II (2352)

lacI lacZ

HindIIHindII HaeII HaeII

789 bps

441 bps

178 bps

Figure B.2: Overview of cloning fragments involved in the creation of the lacZα gene of the pUC
plasmid series [276]. Shown above is the pBR322 cloning plasmid [277]. ampR indicates an ampi-
cillin resistance gene, tetR is a tetracycline resistance gene. ’ori’ denotes the replication origin.
Rop (also known as Rom) is a small protein modulating replication control [278]. Two Y effector
sites [279] are indicated, which can function as origins of DNA replication [280]. The half-circle
indicates the pBR322 derivative which received the lacZα fragment, and ’HaeII’ denotes the lo-
cation of the restriction site that was used to clone lacZα into it. The lacZα fragment originates
from a phage M13 cloning vector [273], where it is present as a HindII restriction fragment from
the lac operon, of which the relevant part is shown below (compare fig. 1.4). After HaeII digestion
of the phage, the fragment containing the lac promoter and the first 178 base pairs from lacZ was
ligated into the pBR322 derivative.
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tivity of an inactive N-terminal deleted lacZ gene (lacZω) is recovered in the pres-

ence of a separate peptide containing the N-terminal part (lacZα), both in vivo and

in vitro [281, 282]. Due to the small size of the α-peptide, it is has become one of the

most commonly used plasmid or phage borne markers to identify bacterial colonies

with a successful insertion of recombinant DNA. The larger ω-fragment is usually sta-

bly integrated in the chromosome of bacterial strains designed for gene cloning (see

also appendix A). Although different size fragments display complementation [283],

the most often used combination has been a lacZ mutant lacking amino acids 11-41

as ω donor (lacZ∆(M15) [284]), with an α donor carried by coliphage M13 [273], or its

derivative in the pUC series of plasmids [276].

We will briefly trace the construction history of the pUC lacZα gene that reveals

the cause of the incompatibility observed above. One of the first cloning vehicles of

recombinant DNA into Escherichia coli was the filamentous coliphage M13 [273, 285].

Recombinant DNA could be inserted in vitro into the DNA of M13 phage, which in turn

could infect the bacteria and be stably maintained. To facilitate cloning and screen-

ing, the phage was modified by insertion of a lacZα marker [273]. This was done by

incompletely digesting the phage DNA and making a blunt end ligation with a HindII

restriction fragment of the lac operon (see fig. B.2). Due to its less infective nature,

cloning using plasmid DNA became more popular. Initially natural isolates were used,

but they were soon modified and stripped from parts not essential or inconvenient to

the molecular biologist (e.g. [277, 286]). As plasmid cloning vectors would also profit

from a screenable marker, lacZα from a phage M13 derivative was transferred [276] to

a derivative from the versatile cloning vector pBR322 [277].

This was done by restriction of phage M13mp7 (containing lacZα) with HaeII, which

yielded the fragment indicated in fig. B.2 containing a smaller α-marker than was

present in the phage. A pBR322 derivative (consisting of base pairs 2067-4361 as indi-

cated with the black half-circle in fig. B.2) was partially digested with HaeII, and a blunt

end ligation of the digest with the M13 α-fragment was performed. This yielded some

of the early members of the pUC series of plasmids [276]. Since the α-fragment was

cloned into the pBR322 derivative without a stop codon, the translated protein con-

tains an additional 30 amino acids, before an accidental stop codon is encountered.

When this gene is further subcloned as its full open reading frame, it contains 90 base

pairs that belong to the pBR322 origin of replication. As we stated above, this results in

an incompatibility with plasmids containing the full pBR322 origin.
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Summary

Environmental variability has been hotly debated in evolutionary biology, as it is con-

sidered the evolutionary cause of cellular regulation, and ultimately responsible for

much of an organism’s complexity. However, quantitative experimental data has been

largely lacking, because of the limited phenotypic understanding of the organisms stud-

ied so far, and the technical challenges associated with variable environments. In this

thesis we have explored several aspects of the evolution of bacterial gene regulation. In

the described work our aim has been to observe how variable selective pressures ex-

perienced by an organism drive evolutionary change at the molecular level, and how

properties of molecules and their interactions in networks determine evolutionary po-

tential and constraints. Our access to the molecular level is enabled by two approaches.

The first is the use of model systems, a model organism, a model regulatory system, or

a synthetic system, in order to maximize our functional understanding. The second is

the use of fitness landscapes, which reveal how molecular variation affects the fitness

of an organism.

In chapter 2 we have described the emerging use of empirical fitness landscapes

in evolutionary studies. A major question in this field is to what extent natural fitness

landscapes are rugged, since the ruggedness of the fitness surface determines whether

a mutation-by-mutation evolutionary process can reach an optimal solution under a

certain selective pressure. Most studies sofar have shown that evolution is constrained,

but that a subset of possible evolutionary trajectories is accessible, which has inter-

esting implications for the repeatability and predictability of evolution. A potential

source of frustration in evolutionary processes are the ’key-lock’ issues that arise when

two components of a system are co-adapted and exhibit a specific mutual interaction.

When such a system is under a selective pressure to change, a new interaction may be

reachable only via a deleterious intermediate situation where the interaction is reduced

due to a first mutation in one of the interaction partners.

In chapter 3 we focused on a typical key-lock problem that must have been over-

come many times during evolutionary history: that of a transcriptional regulator with

its DNA binding site. Many of the transcription factors in Escherichia coli are part of

families whose members display a high level of sequence and structural homology, and

must have arisen from ancient duplication events. The present-day members of these

families are highly specific for their own binding sites and cross-interactions are gen-

erally weak. In chapter 3 we computationally investigated the evolutionary divergence

of a duplicated pair of transcription factors and their binding sites, using a large fit-
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ness landscape based on experimentally determined binding affinities of lac repressor

mutants. We showed that the initially redundant network topology can alleviate the

key-lock dilemma, so that rapid evolutionary trajectories towards high fitness exist that

do not contain deleterious intermediate steps.

Central to understanding the selective pressure on regulation are the performance

trade-offs experienced by an organism living in an environment that alternates be-

tween different states. Trade-offs arise when optimizing fitness in one environmen-

tal state implicates a fitness decrease in another state. Optimality in the context of

trade-offs has been analyzed on an abstract level, but lacked experimental verifica-

tion so far. Although correlations between performances in different environmental

states are ubiquitously observed (e.g. adaptation to the dark resulting in diminished

performance in the light), they may merely reflect an accumulation of mutations. In

chapter 4 we present the first determination of a trade-off relation for the expression

level of a gene. Using a synthetic operon we obtained full control over both phenotype

and fitness consequences. This allowed us to determine the fitness landscape for gene

regulation in alternating environments, thus quantifying the selective pressures. We

demonstrated how the trade-off curve shape can be altered, which changes the rela-

tive performances of regulatory phenotypes. Adaptation experiments were performed

where a regulatory protein and more complex regulatory systems adapted to new, im-

posed, environments. In this way lac repressors with an inverse response to inducer

were obtained, as well as ’dual-input’ regulatory networks with boolean responses as

’OR’ and ’NAND’.

In chapter 5 we zoomed in on the molecular details of the newly evolved inverse

repressors. We set out to identify functional mutations and epistasis between muta-

tions at the level of the genotype-fitness landscape. We used PCR-based recombina-

tion followed by conservative selection in alternating environments to ’filter out’ non-

functional mutations. In this way we can reduce the complexity of the fitness land-

scape that has to be assayed. We developed a statistical method to remove correlations

between mutations that arise during such combinatorial approaches. A number of po-

tentially epistatically interacting mutations was identified.

In chapter 6 we use serial dilution of a growing population of E. coli to investigate

the adaptation and optimality of gene regulation for the natural lac operon in constant

and alternating environments. To observe adaptation however, one must start with a

mal-adapted system. In de presented work we were able to create suboptimal starting

points by decoupling the relation between the inductive properties and the catabolic

properties of lactose, that arguably has been optimized by natural evolution. Hence

we were able to measure fitness for independently varying gene expression levels and

concentrations of carbon source in the environment, which allowed to assess regula-

tory optimality for different environmental conditions. In the serial dilution experi-

ments we generally observed a fast adaptation to near optimal regulatory responses.

In some cases the genetic accessibility of fitness-improving but suboptimal mutations
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prevented fixation of an optimal mutation, at least temporarily.

A part of our experiments was performed using lac repressor overexpressing strains

(chapters 4 and 5). For these systems we found a discrepancy between the measured

induction curves and the available theoretical descriptions of the induction profile (in

combination with experimentally determined reaction constants). We found that an

important ingredient lacking in recent theoretical descriptions of lac induction is the

residual affinity of repressors when they are fully saturated with inducer. In chapter

7 we present a basic thermodynamic model that does incorporate the residual affin-

ity and recover a close match to the induction data in our overexpressing strains. We

showed that the presence of residual affinity may well be a determining factor in set-

ting the evolutionary optimal repressor copy number. Residual affinity must be a gen-

eral property of allosteric regulators (we observed similar effects for the tet repressor),

and especially when the expression level of regulators is regulated itself, it will be an

important factor to take into account in theoretical modeling, as well as in the creation

of artificial bio-circuitry in synthetic biology.

In chapter 8 we return to the key-lock issue, now in relation to multiple-peaked fit-

ness landscapes. When a fitness landscape contains several adaptive peaks, this is not

only interesting because they represent alternative solutions to the same problem, but

also because the peaks might not be equally high, which opens the possibility for an

evolving population to get entrapped on a sub-optimal peak. We showed that any fit-

ness landscape harboring multiple peaks contains at least one epistatic motif referred

to as ’reciprocal sign epistasis’. This motif in fact represents a key-lock situation be-

tween two of the elementary mutations in the landscape’s sequence space.
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Samenvatting

Bacteriën hebben een verbluffend vermogen om hun leefomgeving waar te nemen en

erop te reageren. Daardoor kunnen ze efficiënt gebruik maken van de voedingsstof-

fen en omstandigheden die ze daar aantreffen. Dit doen ze dankzij hun ’regulatie-

systemen’, die een signaal uit de omgeving vertalen in bijvoorbeeld de productie van

een eiwit. Zo maken sommige bacteriën, wanneer er suiker in hun omgeving aanwezig

is, eiwitten die dat suiker kunnen afbreken. Dit levert energie en bouwstoffen, waarmee

ze kunnen groeien. Wanneer er geen suiker is, is het niet voordelig als de bacterie de

eiwitten blijft maken. De productie van het eiwit kost namelijk ook een beetje energie,

maar levert niets op zonder suiker. Het regulatie-systeem van de bacterie schakelt de

productie van de eiwitten dan uit.

Hoewel het functioneren van veel bacteriële regulatie-systemen redelijk goed be-

grepen wordt, is er veel minder bekend over hoe ze zijn ontstaan tijdens de evolutie. In

dit proefschrift is een aantal onderzoeken beschreven, waarin is gekeken naar de evo-

lutionaire aanpassing van zo’n regulatie-systeem. De essentie van veel van dit soort

systemen is een eiwit (de ’repressor’) dat op een precieze plaats op het DNA (de ’ope-

rator’) kan binden. Als de repressor daar gebonden is, voorkomt het dat andere eiwitten

worden gemaakt. En als de repressor loslaat (in ons eerdere voorbeeld doordat er een

suikermolecuul aan de repressor bindt), worden de andere eiwitten geproduceerd.

Er is een aantal redenen waarom het nuttig is om juist de evolutie van dit soort sys-

temen te proberen te begrijpen. Ten eerste bevatten alle organismen regulatie-systemen

en denkt men tegenwoordig dat de verschillen tussen verwante organismen vooral be-

paald worden door verschillen in hun regulatie-systemen. Organismen hebben vaak

voor een groot gedeelte hetzelfde erfelijk materiaal en daardoor dezelfde eiwitten, maar

hoe die eiwitten gereguleerd worden is verschillend.

Ten tweede zijn er interessante evolutionaire vragen rondom deze systemen. De

repressor past heel precies op zijn operator, als een sleutel in zijn slot. Vaak hoeft er

maar één verandering in het DNA plaats te vinden (een mutatie) op de plaats van de

operator en de repressor kan niet meer binden. Als dat gebeurt kan het systeem niet

meer reageren op een signaal uit de omgeving: het staat altijd aan. Hetzelfde geldt voor

kleine veranderingen in de repressor. Er zijn in een veelbestudeerde bacterie als E. coli

veel ’sleutels’ en ’sloten’ die erg op elkaar lijken, maar toch alleen in de goede combi-

natie op elkaar passen. Van deze systemen weten we dat ze stap voor stap veranderd

zijn tijdens de evolutie. Een vraag is dus: hoe kan zo’n systeem functioneel blijven en

toch veranderen?
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Verder is het belangrijk dat deze systemen zijn geëvolueerd in een omgeving die

voortdurend verandert (bijvoorbeeld een variërende hoeveelheid suiker). Als een or-

ganisme nog geen goed regulatie-systeem heeft, zal het een gedeelte van de tijd niet de

optimale hoeveelheid eiwitten produceren. Soms is dat niet erg; bijvoorbeeld wanneer

er bijna altijd suiker is en de bacterie altijd veel eiwit produceert. In dat geval is het

voordeel van een regulatie-systeem niet groot. Het hangt dus af van hoe de omgeving

precies verandert, of een regulatie-systeem nuttig is en kan evolueren.

Voordat ik noem welke vragen we in de verschillende hoofdstukken van dit proef-

schrift precies hebben onderzocht, wil ik eerst een begrip introduceren dat wij gebrui-

ken om de evolutie te beschrijven: namelijk het fitness-landschap.

Een fitness-landschap laat zien bij welke combinatie van mutaties een organisme

het best aangepast is aan zijn omgeving. Het fitness-landschap is een enigszins abstract

begrip, maar kan vergeleken worden met een berglandschap met pieken en dalen. De

pieken stellen combinaties van mutaties voor die maken dat een organisme goed is

aangepast aan zijn omgeving. De dalen geven de combinaties weer waarmee organis-

men slecht overleven. Het meten van fitness-landschappen, door precies te kijken wat

de effecten zijn van heel veel combinaties van mutaties, is een vrij nieuwe wetenschap-

pelijke trend.

Als je weet hoe het fitness-landschap eruit ziet, kun je een voorspelling doen hoe de

erfelijke eigenschappen van een organisme stap voor stap zullen veranderen, wanneer

het zich in een omgeving bevindt waaraan het niet goed is aangepast. Deze reeks van

stappen door het fitness-landschap wordt het ’evolutionaire pad’ genoemd.

Omdat de natuur vaak alleen verbeteringen toelaat, kun je in een fitness-landschap

alleen maar omhoog lopen. Totdat je een top bereikt. Het interessante is nu, dat dat

niet altijd de hoogste top is. Het kan een lage berg zijn –wat betekent dat het organisme

niet optimaal is aangepast aan zijn omgeving– maar omdat stappen naar beneden niet

kunnen, evolueert het toch niet verder.

De vragen die in studies naar fitness-landschappen gesteld worden zijn: is het mo-

gelijk in het landschap van een punt A naar een punt B lopen, zonder ergens halver-

wege op een lage piek vast komen te zitten? Zijn er veel verschillende paden die je kunt

volgen, of zijn er maar weinig? En welke mutaties zijn cruciaal? Vaak is voor iedere

stap in het landschap bekend wat voor erfelijke veranderingen er plaatsvinden op het

niveau van moleculen zoals eiwitten en DNA en hoe dit de chemische reacties tussen

bio-moleculen beïnvloedt. Hierdoor krijg je gedetailleerde informatie over welke eigen-

schappen van die moleculen maken dat iets makkelijk evolueert of moeilijk.

Ik geef een minder abstract voorbeeld. Wanneer er een nieuw antibioticum wordt

gebruikt, verschijnen er meestal snel bacteriën die ook resistent zijn tegen dat nieuwe

antibioticum. Dit is een van de meest opvallende voorbeelden van evolutie. Patiënten

die geïnfecteerd raken met zulke ’ziekenhuisbacteriën’ ondervinden daarvan vaak grote

complicaties en ziekenhuizen investeren veel tijd en geld om uitbraken te voorkomen.

Daardoor zou het goed zijn wanneer we zouden weten hoe de evolutie van resistentie
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verloopt.

Niet zo lang geleden hebben Amerikaanse onderzoekers een fitness-landschap be-

paald van het resistentie-eiwit van een bacterie en hebben daarbij gevonden dat er van

alle mogelijke evolutionaire paden (van de oude resistentie naar een nieuwe) maar een

beperkt aantal gevolgd kan worden. Dit soort informatie kan van groot belang zijn om

te bepalen wat voor antibioticum gebruikt moet worden of welke combinatie van ver-

schillende antibiotica.

Zoals gezegd, hebben we in dit proefschrift gekeken naar de evolutie van regulatie-

systemen. We doen dit met behulp van fitness-landschappen en laten zien dat deze

belangrijke informatie kunnen opleveren. Ook hebben we onderzocht hoe je de evolu-

tie ook een bepaalde richting op kan sturen, wanneer je het fitness-landschap begrijpt.

In hoofdstuk 2 hebben wij de opkomende trend beschreven waarin fitness-land-

schappen gebruikt worden zoals hierboven is uitgelegd. We laten ondermeer zien wat

de verschillen en overeenkomsten zijn tussen de evolutie van eiwitten die chemische

stoffen afbreken en de evolutie van regulatie-systemen. Het zojuist genoemde voor-

beeld van de resistentie tegen antibiotica is een van de onderzoeken die we beschrij-

ven.

In hoofdstuk 3 kijken we gedetailleerd naar de evolutie van een sleutel-slot systeem.

We gebruiken hier een computer-programma om in een fitness-landschap mogelijke

evolutionaire paden te vinden die het sleutel-slot dilemma oplossen. Wij zien dat in een

belangrijk evolutionair proces – mutaties waar genetisch materiaal verdubbeld wordt –

het sleutel-slot probleem omzeild kan worden. Er zijn dan aanvankelijk twee dezelfde

sleutels en twee dezelfde sloten die ervoor kunnen zorgen dat het regulatie-systeem

niet slechter wordt als er veranderingen optreden. Zo kunnen er toch stap voor stap

twee unieke sleutel-slot combinaties ontstaan.

In hoofdstuk 4 beschrijven we experimenten waarin voor de eerste keer een fitness-

landschap bepaald wordt van een regulatie-systeem in een variabele omgeving. We

laten zien hoe de vorm van het landschap (hoe spits de piek is) afhangt van chemische

reacties die plaatsvinden in de bacteriën. We kunnen daarna de omgeving zo veran-

deren dat de regulatie-systemen die eerst optimaal waren, nu slecht presteren. Met het

fitness-landschap kunnen we dan voorspellen wat voor regulatie-systeem in de nieuwe

omgeving optimaal is. We maken mutaties in de systemen en kijken of ze zich aan-

passen aan de nieuwe omgeving. We zien inderdaad dat de nieuwe piek bereikt wordt

(zie bijvoorbeeld figuur 4.4) .

In hoofdstuk 5 kijken we naar de geëvolueerde systemen uit hoofdstuk 4. We pro-

beren hier inzicht te krijgen in welke mutaties ervoor zorgen dat de systemen beter

presteren. We gebruiken een methode die nuttig is in combinatie met fitness-land-

schappen: we evolueren als het ware terug in de richting van het originele systeem en

raken daarbij de mutaties die niet belangrijk waren kwijt.

In hoofdstuk 6 kijken we weer naar de evolutie van regulatie in variabele omgevin-

gen, maar nu zonder dat we zelf mutaties in het regulatiesysteem maken. We kijken dus

178



of bacteriën zich aanpassen aan de omgeving door spontane mutaties die ze oplopen

als ze groeien. We groeien culturen met grote aantallen bacteriën (ongeveer een miljard

per flesje) in constante en variërende omgevingen. De bacteriën die een gunstige mu-

tatie oplopen, groeien beter dan de andere en zullen langzaam maar zeker de cultuur

overnemen ten koste van de andere. Dit zien we inderdaad gebeuren. We zien dat de

bacteriën vaak snel evolueren naar de regulatie waarvan we hadden voorspeld dat hij

optimaal zou zijn. In sommige gevallen zijn er beperkingen waardoor dat niet gebeurt;

bijvoorbeeld omdat een net-niet-optimale mutatie veel vaker optreedt dan een opti-

male.

Doordat we veel met een bepaald regulatie-systeem werkten, bleek dat er iets miste

in de theoretische modellen in de literatuur die dat systeem beschrijven. In hoofdstuk 7

presenteren we een model, waarin dit wel is opgenomen en laten zien dat dit metingen

die we gedaan hebben verklaart. Een correcte beschrijving van het regulatie-systeem is

namelijk belangrijk om te kunnen begrijpen hoe het evolueert.

In hoofdstuk 8, tenslotte, kijken we op een wat abstractere manier naar het fitness-

landschap en laten zien we dat het sleutel-slot dilemma altijd een rol speelt wanneer

een fitness-landschap meerdere pieken heeft. En zoals eerder gezegd heeft het bestaan

van meerdere pieken (optimale en minder optimale) grote invloed op het verloop van

de evolutie.
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Dankwoord

Lasciate ogne speranza, voi ch’intrate (Laat alle hoop varen, gij die hier binnentreedt),

is niet alleen een regel uit La Divina Commedia van Dante Alighieri, maar staat ook

te lezen boven de deur van het microbiologisch laboratorium op AMOLF. Het is daar

opgehangen door Martijn van Duijn en mij, niet zo lang nadat dit lab in gebruik werd

genomen. Inmiddels is het een enigszins vergeeld velletje papier geworden en ik weet

niet of er ooit nog acht op wordt geslagen, maar niemand die hier voor het eerst in zijn

of haar carrière microbiologisch werk verricht (en dat is in een fysisch instituut toch het

merendeel) kan zich erop beroepen niet vooraf gewaarschuwd te zijn.

Ik zelf dus ook niet. Als fysicus aan het werk met biologische systemen heb ik in-

derdaad geleerd een bepaald soort hoop te laten varen. De natuur doet in veel gevallen

geen duidelijke uitspraken en experimenten bedoeld om een ’ja’ of ’nee’ antwoord te

krijgen, leverden vaak een ’misschien’ op, of een ’soms’, of gewoon iets vreemds. Veelal

blijken de biologische systemen waaraan hier gewerkt wordt lastig te temmen, terwijl

ze wel getemd moeten worden om ze te kunnen beschrijven op een voldoende kwanti-

tatief niveau. Maar uiteindelijk ligt hierin toch, althans voor mij, ook de grootste bron

van genoegen: wanneer het lukt aspecten van een biologisch systeem in een exacte

beschrijving te vangen.

Net zoals in evolutie, wordt ook in een promotie het traject in hoge mate bepaald

door de omgeving. Ik heb op AMOLF deze omgeving, met z’n constante en variabele

factoren, als zeer prettig en stimulerend ervaren. Als eerste wil ik hier mijn begeleider

Sander Tans bedanken, dé constante factor tijdens mijn promotie. Ik denk dat je aan-

vankelijke idee om vanuit een kwantitatief perspectief te kijken naar ’de veranderbaar-

heid van biochemische netwerken’ een unieke niche creëerde hier in Nederland en ik

ben erg blij dat je mij toentertijd als promovendus hebt aangenomen. Ik heb het enorm

gewaardeerd dat we zo exploratief bezig konden zijn in een gebied dat voor ons beiden

nieuw was. Ik waardeer je openheid voor discussies, je enthousiasme en je vertrouwen

in een goede afloop (of althans het sterk wekken van die indruk) in de periode dat re-

sultaten nog op zich lieten wachten.

Ik wil mijn promotor Daan Frenkel bedanken, omdat veel van de biologische explo-

raties op AMOLF mede door hem zijn gekatalyseerd. Hij en de andere groepsleiders van

de ’Overloop’ hebben het voor elkaar gekregen om een zeer prettige sfeer te creëren,

zowel wetenschappelijk als sociaal. Natuurlijk hangt sfeer af van alle aanwezigen, maar

ik denk dat de rol van de groepsleiders hierin niet moet worden onderschat. Ik wil

Marileen Dogterom ook bedanken voor mijn introductie bij de vakgroep Moleculaire
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Cytologie van de UvA, waar we samen DNA preps hebben gedaan en gels gerund (die

voor mij de eerste waren, maar zeker niet de laatste). Ik dank Bela Mulder voor de keren

dat ik het antwoord op een wiskundige vraag, waarvan we de oplossing niet ter plekke

doorzagen, de volgende ochtend grondig uitgewerkt op mijn bureau vond. Ook wil ik

Pieter Rein ten Wolde bijzonder bedanken voor de vele discussies en zijn universele

bereidheid na te denken over vragen die je hem stelt.

Ik wil hier ook mijn speciale dank uitspreken voor dhr. Smit, biologieleraar op mijn

middelbare school, die mijn enthousiasme voor biologie erg heeft gestimuleerd tij-

dens mijn eerste echte evolutionaire experiment waar we keken of de oogkleur van

Drosophila invloed heeft op hun reproductieve fitness. Het is bizar om te realiseren

hoe dicht dat experiment stond bij wat ik de afgelopen jaren heb gedaan.

Als dit proefschrift een boodschap ’mede mogelijk gemaakt door’ zou bevatten, dan

zouden Kim Renders en Roland Dries de eersten zijn die daar genoemd worden. Jul-

lie inzet en ondersteuning in het lab zijn voor mij onmisbaar geweest. Ik ken weinig

promovendi die zo’n voorrecht hebben gehad. Ook onder dit kopje zou Philip Heijning

komen, mijn eerste afstudeerstudent, die zich een toegewijd serial-diluter betoonde

en zich met groot enthousiasme op de kosten-baten analyse stortte. Enthousiasme is

sowieso voor jou een wezenskenmerk en je droeg daardoor erg bij aan de goede sfeer

in de groep. Ik ben benieuwd waar je uiteindelijk zal neerstrijken, in de muziek, de

economische wereld, of toch de wetenschap, of een combinatie?

Ik bedank de mensen van de werkplaats en de ontwerpafdeling voor een aantal

noodzakelijke en zeer handige gereedschappen in het bio-lab, zoals de replica-plater,

de kolonieprikker (versies 1 tot, ik geloof, 3) en de petrischaal-imager. En natuurlijk de

mensen van de receptie, de kantine, de bibliotheek, E&I en het magazijn...

Van buiten AMOLF wil ik speciaal bedanken Conrad Woldringh van wiens kritische

houding ten opzichte van labgebruiken en protocols ik veel geleerd heb, en Tanneke

den Blaauwen voor de discussies, haar hulpvaardigheid, dat ik met haar promovendus

Gert-Jan Kremers mocht meelopen om moleculair biologische technieken te leren en

later een eigen lab-bench kreeg toen het lab op AMOLF nog niet klaar was. En ik dank

natuurlijk Gert-Jan zelf voor zijn geduld om mij in te wijden in de bewuste technieken.

Verder wil ik alle mensen bedanken die voor mij AMOLF een heel fijne plek hebben

gemaakt om (samen) te werken en vaak ook buiten het werk voor vermaak zorgden.

Allereerst zijn daar mijn huidige en voormalige groepsgenoten: mijn mede-Tanser van

het eerste uur en goede vriend Ruud, Eva, Thomas, Matt, Philipp, Daan wiens gevoel

voor humor een essentieel onderdeel is van onze groep, Ienas with her kindness, Aileen

with her cold-bloodedness in case of lab-fires (AMOLF should know what could have

happened without her...), ons sociale powerhouse Marjon, just-father Manju, Jerien,

Ndika, en onze oud-studenten Genison, Robert en Merlijn.

Ook wil ik hier mijn kamergenoten bedanken (voor zover niet al genoemd), voor

wie ik een constante omgevingsfactor ben geweest aangezien ik hier zit sinds de inge-

bruikname van de overloop en zo ongeveer wegga als het nieuwe AMOLF gebouw klaar

182



is. Speciaal wil ik hier noemen Martijn van Duijn, wiens lab-stijl ik erg heb gewaardeerd,

Tatiana Schmatko with whom I very much enjoyed the pique-niques in the parks around

AMOLF whenever the weather allowed, en Gertjan, mijn paranimf met zijn goede hu-

meur en zijn gevatheid. Gertjan, ik heb onze bespiegelingen over het werk in het bio-

lab en überhaupt over van alles en nog wat erg gewaardeerd; ik wens je veel succes met

het laatste deel van je promotie!

Among the past AMOLF-ers whose leaving made me deplore the fast fluctuating en-

vironment in science are Rosalind Allen, also a steady picnic-er, whom I could assist in

her (partial) conversion from theorist into experimentalist, and Sorin Tǎnase-Nicola,

who would never allow anything remotely in that direction. Both of them I want to

thank for the scientific discussions and their friendship. Further, Guillaume Romet-

Lemonne who managed his younger brother to give up his Paris apartment so that we

could stay there during a visit, en ook Gerbrand Koster die ik nu veel geluk wens bij het

opbouwen van een nieuw bestaan in Noorwegen.

Verder zijn er nog heel veel mensen (geweest) op AMOLF die voor de goede sfeer

zorgen en gezorgd hebben. Dit zijn zeker, maar niet alleen: Paige and her liveliness,

Liedewij, Rutger, Julien that decorates the corridor with paintings of completely un-

known girls, Christian and his boat, Nienke, Iza, Marco (2x), Frans die altijd goed is voor

een hart onder de riem tijdens late uurtjes op AMOLF, Ioana, Maarten, Maria, Rhoda,

Simon, Jacob K., Chantal, Behnaz, Niels die er soms ’s middags om half vijf al elf uur

op heeft zitten, Thorsten, Siebe die tegelijk met mij ploeterde op zijn proefschrift, Eva,

Patrick, Koos, Sanne, Kostya, Ana, Andrea, Marina, Svenja, Nefeli.

Buiten AMOLF is er een aantal mensen die ik wil bedanken voor het hooghouden

van de moraal en de gezellige tijden (maar van wie ik er een aantal door alle drukte ook

veel minder heb kunnen zien dan ik wel gewild zou hebben). Ik noem hier Reinout,

Dagmara en Marieke voor onze goede tijden in Utrecht, België en Triëste, Lotje voor

haar meelevendheid (jij nu ook succes met de laatste loodjes!), Christiaan, Janne, Ineke,

Charlie, Alice for her constant interest in how I was doing, Bastian voor zijn relative-

rende invloed en zijn overredingskracht weer te gaan zingen, en Ruben en Matthijs,

beiden nu ver weg, maar als we bij elkaar zijn is het altijd als vanouds.

De ultieme dank ben ik verschuldigd aan mijn ouders, voor mijn bestaan, maar

ook voor de onvoorwaardelijke steun die ze mij altijd hebben gegeven. Jullie vaste

zaterdagochtend-telefoontje de afgelopen maanden naar AMOLF, wanneer ik daar zat

te typen, was erg goed om me even te ’ontstressen’.

And finally Laura: thank you for all the fun, your love, and your making me see

things more optimistically than I sometimes tended to do. As I type this, it is one-thirty

in the night and you’re sitting at the corridor a couple of offices away typing your own

thesis, with one month to go. Finishing together has its good sides and its bad sides...

One of the lesser sides were the countless ready-made dinners we microwaved in the

AMOLF canteen. But one of the definitely good sides is that we will be ready together to

start a new adventure in the States!
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