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ABSTRACT We present a biophysical model for the propulsion of the cellulose synthase complex, the motile transmembrane
protein complex responsible for the biosynthesis of cellulose microfibrils, the dominant architectural component of the cell walls of
higher plants. Our model identifies the polymerization and the crystallization of the cellulose chains as the combined driving forces
and elucidates the role of polymer flexibility and membrane elasticity as force transducers. The model is elaborated using both
stochastic simulations and a simplified analytical treatment. On the basis of the model and approximate values for the relevant
physical constants, we estimate the speed of the cellulose synthase complex to be in the range vp�10�9–10�8 m/s, consistent with
the recently reported experimental value of 5.8 3 10�9 m/s.

INTRODUCTION

A distinctive feature of the cells of higher plants is the cell

wall, an extracellular assembly that acts like an external

skeleton. Among other things, it allows the cell to support a

sizeable internal osmotic pressure, a prerequisite for with-

standing the pull of gravity. The cell wall derives its robust

mechanical properties from its ingenious construction: it con-

sists of stacks of thin lamellae (1), all deposited parallel to the

plasma membrane, that are formed by long parallel almost

purely crystalline cellulose microfibrils (CMFs) embedded in

a matrix of polysaccharide ‘‘packing’’ material (2,3). Its ubiq-

uitous presence within plant cell walls makes cellulose the

most abundant polymeric material in the biosphere. Despite

its vital importance both in plant cell function and as a raw

material, the primary event of the biosynthesis of cellulose is

still only partially understood.

In vascular plants the CMFs are synthesized by a trans-

membrane protein complex, which we will call the cellulose

synthase complex (CSC)1. Although already identified through

electron micrograph microscopy for several decades, the def-

inite biochemical proof that these structures indeed are the

location of the cellulose synthases, was only provided in

1999 (4). Current estimates of the diameter of the CSC on the

endoplasmatic of the plasma membrane are in the range of

40–60 nm (5), making the CSC one of the largest protein

complexes so far observed. Electron micrograph images of

freeze fracture preparations of the plasmatic face of plant

plasma membranes reveal a characteristic structure of six

hexagonally arranged particles with a diameter of ;8 nm

forming a ring, or ‘‘rosette’’ (6,7), which has a diameter of

;25 nm (Fig. 1). The current view is that each of the six

lobes of the rosette in turn consists of six cellulose synthases

that each polymerizes a single glucan chain using UDP-

glucose as a substrate (8). These individual chains are then

assembled into the CMF, which by implication consists of 6

3 6 ¼ 36 chains, consistent with the known crystal structure

and the measured cross section of ;3.5 nm (8,9).

The cell wall is deposited from the inside out, with all the

relevant materials delivered through exocytosis of Golgi

vesicles. As the CSC is bound to the membrane, the de-

position of new CMFs thus takes place in the limited space

between the outer surface of the fluid plasma membrane and

the earlier deposited rigid cell wall. For this process to work,

it had to be assumed that the CSC would have to move in the

plane of the membrane (10) leaving behind a CMF in its

track. The latter hypothesis has now finally been confirmed

by the direct real-time in-vivo observation of fluorescently

labeled CSCs (11).

Although the idea that the CSC moves was widely ac-

cepted, the question of the origin of this movement has so far

received less attention. Obvious candidates for the required

force production are motor proteins, molecular chemical en-

ergy transducers that are involved in many different bio-

logical tasks (12,13). Examples are processive molecular

motors such as kinesin, which can transport organelles and

vesicles using cytoskeletal elements as tracks, or nonpro-

cessive motors such as myosins that deliver the power

strokes for muscle contraction, both using ATP as fuel. In-

deed, one of the early theories (14) assumed the CSC to be

linked by a motor protein to a cortical microtubule, which

then acted as a rail to guide the motion. Another proposal

(15) had the cortical microtubules act as force producers

themselves, which by setting up a shear flow in the mem-

brane, provide a motive force to the CSC. Later, it was

realized that in principle the energy released by the glucose

polymerization process could by itself be sufficient to propel

the CSC (16). In addition, it was shown that preventing the
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proper crystallization of the CMF by treatment of cells with

the drug Calcofluor led to a thickening of the cell wall,

suggesting a dysfunctional dispersion of the CSC along the

membrane (17). This observation clearly correlates the

movement of the CSC with the polymerization and crystal-

lization processes of the CMFs. To date, however, a detailed

mechanistic explanation of how the motion of the CSC is

achieved was lacking.

Here we develop an explicit biophysical model of CSC

motility. We show that the concept of a Brownian polymer-

ization ratchet, originally proposed by Peskin et al. to explain

force production by growing polymeric filaments such as

microtubules (13,18), can serve as a basis for describing CSC

propulsion. However, we argue that to obtain a full under-

standing also requires taking into account the geometry of the

deposition process, the additional driving force provided by

the crystallization of the cellulose and the role of the elastic

energy stored in the nascent microfibril as well as in the

deformable plasma membrane. To achieve our aim, we

develop our approach in three steps: First, we formulate a

model that integrates the relevant physical components to

obtain a heuristic explanation for the propulsion process. In

the next step, we implement this model in a stochastic

simulation, providing a proof of principle of the proposed

mechanism. In the final step, we simplify the model into a

form that allows analytical predictions to be made and show

that we can reproduce the experimentally measured value for

the CSC speed.

MATERIALS AND METHODS

Stochastic simulation

The Monte Carlo scheme used in the stochastic simulation consists of a series

of stochastic transitions between different system configurations, all satisfy-

ing the imposed constraints. The probability of a given transition depends on

the energy difference between the two successive configurations and satisfies

the detailed balance condition that ensures the correct sampling of the

equilibrium phase space. In the following, even though the simulated systems

are discretized for numerical purposes, we will express their Hamiltonians in

the continuum limit.

In the simulation, aggregates of six glucan chains are represented by a

single effective filament that is modeled as a discrete linear chain of Nf

spherical beads of diameter s that are rigidly connected by bonds of fixed

length d¼ s. The length of each chain is thus lfi ¼ Nfi s, where the subscript

i ¼ (1..6) refers to the ith filament. The angular bending potential between

two subsequent bonds in the chain is given by U(u) ¼ Jf[1 � cos(u)], where

u is the angle and Jf is the bending constant that determines the stiffness of

the filament. The first monomer-monomer bond (tip) of each filament is

constrained to be oriented along the vertical axis of the laboratory frame and

the last monomer-monomer bond (tail) is parallel to the horizontal axis. The

tips of the filaments are moreover constrained to be located at the vertices of

a regular hexagon, with edge-length Rhex ¼ 6s. No part of any of the

filaments is allowed to occupy the space above the rigid wall located at

z ¼ 0. The individual filaments can be described by inextensible space

curves r(s), where s is the arc-length parameter. Because of the inextensi-

bility, d
dsrðsÞ ¼ 0, so that the local curvature of a filament is given by

kðsÞ ¼ j d2

ds2rðsÞj. In the absence of the constraints, the Hamiltonian for the

full bundle of 6 filaments is then given by

Hbundle

p ¼ 1

2
Jf +

6

i¼1

Z lfi

0

dsikiðsiÞ � es�2 +
1#i, j#6

Z lfi

0

dsi

Z lfj

0

dsj uð21=2
s � jriðsiÞ � rjðsjÞjÞ; (1)

where the binding energy e is attributed to each pair of monomers on

different filaments that are closer than the attraction radius 21/2s.

The liquid bilayer forming the plasma membrane is modeled as a l 3 l
grid of N2

m point particles of size s that are capable of moving only in the

vertical direction. The edges of the membrane are kept fixed at z ¼ 0. The

Hamiltonian for the membrane is described by the Helfrich functional (19)

Hm ¼
Z

Jm

2
ð=2

hÞ2 1
g

2
ð=hÞ2

� �
dxdy; (2)

where h is the local vertical distance with respect to the equilibrium position,

Jm the bending modulus, g the surface tension contribution, and the inte-

gration runs over the area of the membrane. This Hamiltonian is the base

model to describe lipid bilayers, since such membranes are fluid in their

lateral direction but resistant to stretching forces due to the hydrophobic

effect. In this model, we neglect the internal pressure P of the cell, since it

has been shown that it makes only a trivial contribution (20).

Analytical treatment

In the analytical version of our model, we consider the whole CMF as a

single chain whose configurations are constrained to lie in a vertical plane.

The chain is modeled as a semiflexible filament with a persistence length jf

significantly larger than the typical dimensions of the region where the

filament is bent. Again we have the constraint that the tail of the filament is

horizontal and the tip vertical, and that no part of the filament can penetrate

FIGURE 1 Electron micrographs

from freeze-fracture preparations of

plant cell walls showing a so called

terminal-complex, the imprint of a CSC,

with an attached CMF in the exoplas-

matic face of the plasma membrane (left
panel), a so-called particle rosette, the

outward facing side of the CSC, within

a characteristic depression of the plasma

membrane (middle panel, scale bars are

100 nm, both images courtesy A. M. C.

Emons) and a close-up of the particle

rosette with its typical six-sided sym-

metry (right panel, scale bar is 10 nm,

image courtesy C. Haigler).
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the wall at z ¼ 0. To minimize its elastic energy under the given constraints,

the equilibrium shape of the filament will be given by a quarter arc of circle

of length p
2
zf , with energy Ef(z) ¼ pJf/4zf, where zf is the distance from the

filament tip to the wall. (The geometry of this situation is schematically

depicted in Fig. 4.) The force the tip of the filament exerts on the supporting

membrane thus is

FfðzfÞ ¼ �
dEfðzfÞ

dzf

¼ pJf

4

1

z
2

f

� (3)

The membrane in turn also tries to minimize its energy by flattening out

as much as possible. To obtain this opposing force Fm(zm), we follow the

method of Daniels et al. (21), first calculating the partition function for the

fluctuations of a membrane described by the energy functional (2), that is

constrained such that its midpoint cannot come closer than a distance z from

its unconstrained equilibrium location. Assuming that we are in a regime

where the fluctuations of the membrane around its equilibrium position,

which scale as D ¼ ðbAgÞ�
1
2, are small compared to the amplitude z of the

induced deformation, we can neglect the presence of the rigid wall in z ¼ 0

and extend the relevant integrations over all the possible membrane

conformations.

The partition function is then given by

QmðzÞ ¼ expð�bAgz
2Þ; (4)

where b ¼ (kBT)�1 and A ¼ 2p=½logð11 gV

Jmp2Þ�, with V ¼ l2 the area of the

membrane frame, g the surface tension, and Jm the bending modulus. We

assume throughout that the size of the frame is large enough such that all

physical results obtained are insensitive to the shape of the frame. When the

membrane is constrained such that the midpoint cannot be above the location

zm, as is the case when an impinging filament is present, it can only explore

those configurations where its midpoint is located at positions z $ zm. The

force the membrane exerts on the filament is thus given by

FmðzmÞ ¼ �
@FmðzmÞ
@zm

; (5)

where the free energy is given by

FmðzmÞ ¼ �b
�1

log
1

L

Z N

zm

dzQmðzÞ (6)

with L an irrelevant constant added for dimensional purposes. In case

zm � D, the force is approximately linear in the displacement and given by

FmðzmÞ ’ �2 A g zm[� km zm; (7)

which defines the spring constant km. Balancing the two opposing forces Ff

and Fm yields the equilibrium position for the filament tip and the membrane

midpoint

zeq ¼
1

2

pJf

Ag

� �1
3

: (8)

To study the fluctuations around this equilibrium position, and assuming

that these are small with respect to zf itself, we linearize the force Ff around

zeq yielding

FfðzfÞ ’
pJf

2z
3

eq

zf �
3

2
zeq

� �
[� kfðzf � z

ð0Þ
f Þ (9)

with the effective spring constant given by kf ¼ �4 Ag and the effective rest

length of the spring by z
ð0Þ
f ¼ 3

2
zeq.

To determine the velocity of polymerization (see Eq. 14), we need to

evaluate the probability that a gap is opened between the filament tip and the

membrane midpoint larger than the monomer size d. Note that, after

linearization of the filament force, both the filament tip and the membrane

midpoint can be considered as harmonic oscillators, which are coupled by the

requirement that the filament tip is always above the membrane since the two

cannot interpenetrate, i.e., that zm � zf $ 0. Recalling that the probability

distribution for a one-dimensional harmonic oscillator in a thermal bath is

given by

P
oscðzÞ ¼ bk

2p

� �1
2

exp �1

2
bkðz� z

ð0ÞÞ2
� �

; (10)

we can determine the probability for a gap of given size Z . 0 from

PðZÞ ¼
Z N

�N

dzm

Z N

�N

dzfP
osc

m ðzmÞPosc

f ðzfÞdððzm � zfÞ � ZÞ;

(11)

where, as before, we have freely extended the upper limit of the integrations

boundaries to 1 N since the product (Posc
m Posc

f ) is significantly different

from zero only in a small region around Z¼ 0. Performing these integrations

yields

PðZÞ ¼ e
�1

2
b�kðZ1z

ð0Þ
f
Þ2

RN

0
dZ9e�

1
2b�kðZ91z

ð0Þ
f
Þ2
; (12)

where the effective spring constant of the coupled system is given by �k ¼
kmkf=ðkm1kfÞ. To assess the validity of the approximations made in deriv-

ing the analytical model, we compare the prediction of the gap distribution in

Eq. 12 with the results we obtain from sampling of a one-filament version of

the full stochastic model we will present in the section ‘‘Stochastic simula-

tion’’. The results are presented in Fig. S1 in the Supplementary Material

and show a perfect agreement. Finally, Eq. 15 follows from the definition

PðZ . dÞ ¼
Z N

d

dZ9PðZ9Þ: (13)

The model

The mechanical cycle that we propose is responsible for CSC

propulsion is illustrated in a schematic fashion in Fig. 2. We

model the CSC as a planar, membrane-bound object. On the

side of the object facing away from the cell a regular array of

cellulose polymers is extruded. We model these polymers as

inextensible semiflexible chains of beads. The configuration

of these polymers is constrained by three factors. The first is

their attachment to the CSC itself. Here we assume that this

attachment not only fixes the location of the polymer tips, but

also specifies the orientation of their first bonds to be per-

pendicular to the plane of the CSC. The latter assumption is

consistent with the hypothesis that the chains emerge from

narrow channels in the complex. The second constraining

factor is the confining influence of the already deposited cell

wall, which we model as an impenetrable barrier. The final

constraint arises from the fact that the polymers are at their

other ends all linked up into a nascent CMF, which on this

scale is an effectively rigid linear structure constrained to lie

in the plane of the membrane. Because the polymers have a

finite resistance to bending, the combination of geometrical

constraints imposed on them implies that they are in a non-

relaxed conformation, resulting in forces acting on their at-

tachment points. At the loci where the polymers emerge from

2668 Diotallevi and Mulder
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the CSC, these forces will typically have both a perpendic-

ular component and an in-plane component. The perpendic-

ular component has two effects: i), it acts as a barrier for the

polymerization process, thus influencing the rate of addition

of new monomers, and ii), it contributes to a net force that

pushes the CSC downward, counteracted by an elastic re-

sponse of the membrane. The latter effect is consistent with

the membrane-indentations that are seen in some freeze-

fracture images of the CSC (22) (see also Fig. 1). Note that

we disregard the possibility that the CSC ‘‘tilts’’ with respect

to the global membrane orientation, as the energetic cost of

such short length-scale deformations of the membrane is

probably appreciable.

The result of all the in-plane force components due to the

individual polymers is the net force that drives the linear

motion of the CSC. Energy is injected into this system by the

polymerization as well as the crystallization process, as both

will tend to increase the stress in the polymers. The energy is

dissipated by the work the CSC as a whole performs against

the frictional forces it experiences. We stress the fact that

thermal fluctuations, which are a dominant effect at the rele-

vant molecular scale, play a crucial role in the whole process.

It is these fluctuations that allow the system to cross (and also

to recross) the energetic barriers associated with the mech-

anical constraints imposed on the polymerization process. In

fact, it is the rectification of these fluctuations that allow the

system to convert chemical energy into directed motion.

Stochastic simulation

We now implement the conceptual model presented above in

terms of a stochastic simulation. For simplicity, we consider

a CSC producing six effective filaments (EFs), each repre-

senting six cellulose chains. This simplification is consistent

with the mechanism proposed by Cousins et al. (23) in which

the ;36 cellulose strands that emerge from the CSC are first

assembled into six glucan chain aggregates, which sub-

sequently coalesce crystallizing into a CMF. The EFs are

modeled as bead chains with a bending potential governing

the relative orientation of pairs of neighboring bonds. The

beads on different chains have a short-range attractive inter-

action allowing them to crystallize into a compact arrange-

ment. The already extant cell wall is taken to be a rigid wall,

into which the beads are not allowed to enter. The EFs

emerge from six hexagonally arranged channels representing

the CSC, with their first bond constrained to be perpendicular

to the plane of the CSC. This whole construct interacts with a

fluid membrane modeled as a dynamically reconfigurable

squared network of beads and springs. The tips of the EFs

cannot penetrate the membrane, thus coupling the EFs ener-

getically to the membrane. Starting from an initial condition

in which the end of one of the chains is clamped, the sim-

ulation now proceeds as follows. An attempt is made to

move one of the particles in the system (either a chain or a

membrane bead). The proposed movement is accepted with a

probability proportional to the Boltzmann weight of the as-

sociated change in energy of the whole system (including the

energies associated with various constraints). This procedure

is then repeated for several sweeps over all the particles in

the system. This standard Metropolis Monte Carlo scheme

allows the system to equilibrate its state to the current lengths

of the individuals EFs. After this equilibration step, the gap

between the tips of the EFs and the membrane is monitored

FIGURE 2 Snapshots at four different time points in a stochastic simu-

lation of the motion of a six filament CSC. Note the rotation of the complex,

induced by the helical nature of the crystalline arrangement in the CMF.
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for all the EFs. If this gap is larger than the size of a chain

bead, a new bead is added at the tip, preserving the per-

pendicular orientation of the first bond. The system is then

allowed to equilibrate again, and the whole cycle is repeated.

The justification for this procedure is found in the large

separation in timescale between the molecular relaxation

mechanisms and the rate at which the polymerization process

progresses, which allows one to treat the system in a quasi-

stationary manner. Note that this algorithm is therefore a

microscopic implementation of a Brownian ratchet (18), in

the case that the fluctuations are fast compared to the poly-

merization rate. The full details of the simulation were dis-

cussed in the Materials and Methods section.

The results of our simulation show that after initial effects

have died down, a stationary regime is reached in which the

CSC moves with a statistically stationary velocity in a direc-

tion dictated by the essentially straight CMF produced. This

shows that indeed, the polymerization and crystallization

processes, both exothermic, are coupled by thermal fluctua-

tions to the membrane and the partially flexible chains as

energy transducers, are sufficient to obtain the directed

motion of the synthase.

Fig. 3 shows four snapshots of our simulation at succes-

sive times (a short movie is available in the Supplementary

Material). We note that although the trajectory of the CSC is

approximately linear, the complex itself undergoes a rotation

during its motion. This is caused by the helical nature of the

crystalline structure of our pseudo-CMF, which is a natural

consequence of the maximization of the binding energy be-

tween the spherical monomers. Intriguingly, cellulose micro-

fibrils have also been observed experimentally to ‘‘twist’’

(24,25), an effect generally attributed to the chirality of

the planar glucan chains, which spontaneously ‘‘twist’’ to

relieve the strain built around the oxygen bridge that con-

nects the successive glucan units together. Clear evidence of

this phenomenon is provided by the twisted cellulose ribbon

produced by Acetobacter, the so-called vinegar bacterium

that lives at water-air interfaces and propels itself by forces

derived from cellulose polymerization. Interestingly, moving

Acetobacter cells undergo a continuous rotation about their

longitudinal axis: again, this is believed to be caused by the

relaxation of the torques generated by the crystallization

during the biogenesis of the CMFs (26). Also clearly visible

in the side views of Fig. 3 is the marked indentation of the

membrane at the locus of CSC, over an area several times the

area of the complex itself. This indentation is a consequence

of the forces generated by the bent EFs, and has been ob-

served experimentally (see Fig. 1 and Emons (22)), and as

such provides direct evidence in favor of our model.

Analytical treatment

Although the simulation presented above is able to illustrate

the mechanism we propose, its inherent complexity never-

theless impedes a fully quantitative analysis of how the dif-

ferent factors work together to produce the outcome: directed

motion of the synthase at a given average speed. We there-

fore undertake to strip the model to its bare essentials,

focusing on a single growing polymer constrained to a two-

dimensional planar geometry interacting with a three-

dimensional elastic membrane. In this simplified setting,

whose projection on a vertical plane is already illustrated in

Fig. 2, the model can be solved exactly, allowing the poly-

merization velocity to be determined. The details of the full

calculation were presented in the Materials and Methods

section.

In the following, we neglect the thickness of the polymer

and the membrane. The membrane is fixed at its edges to a

rigid frame of size V ¼ l2. The equilibrium position of the

membrane is taken to coincide with the hard top wall that

represents the already extant cell wall. We neglect the spatial

extent of the CSC, which is now simply represented by the

constraint on the verticality of the first bond of the polymer.

We first investigate the equilibrium configuration of the

polymer. The active part of the filament can be considered as

FIGURE 3 Schematic representation of the mechanical cycle in our

model of CSC propulsion, illustrated for the case of a single CMF. (From top

to bottom) Step 1: the filament and the membrane are in thermal equilibrium.

Step 2: due to fluctuations of the filament and/or the membrane, a gap of

sufficient size is opened allowing a new monomer to be added to the

filament. Step 3: the increase in length of the filament causes an

accumulation of elastic energy in the system, which generates a force on

the tip of the filament. Step 4: the accumulated energy is released in a

unidirectional motion of the tip of the filament, which is attached to the CSC.

Step 5: the filament has effectively advanced by one monomer unit d and

equilibrium is restored, allowing the cycle to repeat itself.

2670 Diotallevi and Mulder

Biophysical Journal 92(8) 2666–2673



an elastic rod clamped at one end horizontally to a rigid part,

representing the crystallized CMF, and vertically at the tip by

the CSC. Such a rod adopts a quarter arc of circle configu-

ration, whose length is pzf/2, where zf is the vertical distance

of the filament tip to the wall. In the following, we will

consider the polymer so stiff as to always maintain the

definite shape of an arc of circle: thermal fluctuations have

the only effect to modify its radius of curvature zf. The force

the filament exerts on the membrane at its tip is given by

FfðzfÞ ¼ pJf=4z2
f , where Jf is the bending modulus of the

filament. In response to this force, the membrane will

deform, generating a counterforce on the tip of the polymer.

This counterforce is given by Fm(zm) ¼ �2A g zm, where

A ¼ 2p/[ log(1 1 gV/Jmp2)], g the membrane surface ten-

sion, Ji the membrane bending modulus, and zm the vertical

displacement from the equilibrium configuration of the

membrane. Balancing these two opposing forces yields the

equilibrium position zeq ¼ 1
2
ðpJf=AgÞ

1
3. Note that the force

exerted by the membrane is already linear in the displace-

ment zm. We now also linearize the force exerted by the

polymer around the equilibrium position, anticipating the

fact that we will be concerned only with small fluctuations

around it. This procedure maps our model conceptually onto

a system of two linear springs acting in opposite directions,

the polymer downward and the membrane upward, with the

constraint that the tip of neither spring may pass the other,

reflecting the fact that the polymer and the membrane cannot

interpenetrate (Fig. 4). The dynamics of the growing poly-

mer is governed by the balance between the rate of addition

of new monomers and the rate of removal of monomers

(assuming a reversible polymerization reaction). In the case

that the timescale of the thermal fluctuations is fast compared

to the polymerization kinetics, and under the common as-

sumption that the effect of the applied force only influences

the on-rate and not the off-rate, the polymerization speed is

given by (18)

vp ¼ dðKonPðZ . dÞ � KoffÞ; (14)

where d is the size of the monomer, Kon and Koff the bare

rates of monomer addition and removal, respectively, Z ¼
zm � zf the size of the gap between the filament tip and the

membrane, and P(Z . d) the probability that this gap is

larger than the monomer size. For the effective two-spring

system we derived above, the probability distribution for the

tip-membrane gap can be evaluated exactly. This in turns

allows the explicit evaluation of the probability that the gap

is larger than the monomer size

PðZ . dÞ ¼
1 1 erf 1

2
b�k
� �1

2 ðzð0Þf � dÞ
h i

1 1 erf 1
2
b�k
� �1

2 z
ð0Þ
f

h i ; (15)

where erf(x) is the error function, z
ð0Þ
f the equilibrium posi-

tion of the linearized polymer-spring, �k an effective spring

constant, and b ¼ 1/kBT the standard inverse temperature

(see the Materials and Methods section for details). Taken

together, Eqs. 14 and 15 allow the polymerization velocity,

which equals the velocity of motion of the CSC, to be deter-

mined as a function of all the relevant parameters. Deferring

the numerical estimate of this velocity to the next section, we

remark that we can readily deduce that the polymerization

velocities increases with increasing temperature and de-

creases with increasing stiffness of the system, caused either

by increased stiffness of the filaments or the membrane.

DISCUSSION

The model proposed for the mechanism of the CSC propul-

sion in this article achieves three goals. First of all, on a

conceptual level it provides an explicit and physically con-

sistent heuristic for understanding CSC motion. Secondly,

our stochastic simulations, albeit simplified with respect to

reality, provide a proof of principle of this mechanism. Fi-

nally, the analytical approach, which abstracts the model to

its bare essentials, allows the observable result of the mech-

anism, i.e., the velocity of motion of the CSC, to be quanti-

fied in terms of the underlying physico-chemical parameters.

Our fundamental assumption that the microscopic fluctua-

tions occur on a timescale fast compared to that of the motion

of the CSC justifies the use of the coarse graining that

underlies the analytical approach, which replaces the many

individual microscopic degrees of freedom, with a small

number of effective ones. We can therefore use the results of

FIGURE 4 (a) Schematic cross-sectional drawing of the geometry used in

the analytical model. (b) The effective model of two coupled springs the

analytical model maps onto.
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the analytical approach in an attempt to estimate the velocity

of the CSC. In this attempt we are of course limited by the

availability of quantitative estimates of the relevant param-

eters.

We first consider the bending modulus of the effective

filament, arguably the least well-determined parameter. Us-

ing crystallographic data, we can provide an upper and a

lower bound to the value of Jf, as the Young’s modulus Y of

cellulose is known to vary between 5 GPa for the amorphous

state and 150 GPa for the crystalline state (27). We can,

however, extract a more appropriative estimate from the

depth of the observed indentation of the plasma membrane at

the locus of the CSC, which provides an estimate for the

equilibrium value of the filament tip to wall distance zeq.

Through the use of relation Eq. 8, we can then determine

Jf ¼ 8 Agz3
eq=p. For typical values of the membrane surface

tension g ¼ 5 3 10�5 N/m, the membrane bending modulus

Jm ¼ 2 3 10�20 Nm, an indentation depth of zeq ¼ 100 nm,

and size of the relevant membrane patch l� 300 nm, we find

Jf ¼ 2.5 3 10�25 Pa m4. Taking the radius of the effective

filament to be r ¼ 1/2 diameter of the CMF ¼ 2 nm, we

obtain an estimate of Y ¼ 4Jf/(pr4) ¼ 20 Gpa, which falls

squarely between the bounds mentioned above. We have to

keep in mind that, even if the structure of the CMF is almost

perfectly crystalline, at the moment of the extrusion from the

CSC, the glucan chain aggregates are in a noncrystallized

state. Thus the effective Young’s modulus of the aggregate is

much lower that the one of a cellulose crystal.

For the polymerization rate, we use the value of free poly-

merization of cellulose achieved by the bacterium Aceto-
bacter, Kon ’ 100 s�1 (26,28). Strictly speaking, these

experiments determine the net rate Kon � Koff, but we as-

sume that the off rate for these almost irreversible chemical

bonding processes is negligible. The final parameter neces-

sary is the size of the monomer, which is equal to the size of a

glucose subunit, making d ’ 0:5 nm. With these ingredients,

we can now estimate the speed of the CSC to be vp ¼
d Kon PðZ . dÞ ’ 4:5310�9m=s . This number compares fa-

vorably to the measured average speed vp ’ 5:83 10�9m=s

observed by the Somerville group (11). We can also compare

our results to the estimate of Hirai et al. (29), who observed

calcofluor-stained CMFs growing from membrane fragments

isolated from tobacco BY-2 protoplasts. Their estimated

elongation rate of vextract
b ¼ 1:03310�8m=s is higher than

that observed in vivo, presumably due to the absence of the

spatial constraint of an existing cell wall, which lowers

the counterforce experienced by the polymerization process.

Nevertheless, given the inevitable effects of friction with

surrounding aqueous medium, this value is still lower than

that which we would estimate for totally unobstructed

deposition, in which case P(Z . d) ¼ 1 and we obtain

vfree
p ¼ 5310�8 m=s.

We contend that the biophysical model presented here

provides a solid basis for understanding the propulsion of an

individual CSC. Moreover, it gives an estimate for the

polymerization velocity of the CMF that is consistent with

the observed speed of the CSC within the uncertainty im-

posed by the approximations used. This opens the way for

considering the much more challenging problem of under-

standing the full dynamics of cell wall deposition, which

involves the simultaneous and apparently highly coordinated

deposition of many CMFs. Indeed, the question of the origin

of the highly regular CMF textures found in secondary cell

walls is still actively debated. Although the textbook ex-

planation involves the guidance of CSCs by ordered arrays

of cortical microtubules (30), there is also a body of evidence

against this idea, and a few models have been suggested that

rely more strongly on the physical interactions between the

CSCs and the CMFs they produce (see, e.g., Emons and

Mulder (31) and Baskin (32)). Clearly, all these approaches

will benefit from a fuller understanding of the motive

processes of the CSC in interaction with its direct environ-

ment.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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