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The influence of hole shape on the nonlinear optical properties of metallic sub-wavelength hole
arrays is investigated. It is found that the amount of second-harmonics generated can be enhanced
by changing the hole shape. In part this increase is a direct result of the effect of hole shape on the
linear transmission properties. Remarkably, in addition to enhancements that follow directly from
the linear properties of the array, we find a ”hot” hole shape. For rectangular holes the effective
nonlinear response is enhanced by more than an order of magnitude for one particular aspect ratio.
This enhancement can be attributed to slow propagation of the fundamental wavelength through
the holes which occurs close to the hole cutoff.

PACS numbers: 81.07.-b, 42.79.Dj, 71.36.+c, 78.66.Bz, 42.65.k

Metal nanostructures are known to greatly enhance
electromagnetic fields in certain geometries. Therefore
they can also boost nonlinear optics. Surface-enhanced
Raman scattering (SERS) [1] for instance makes use of
nobel metal nanoparticles to amplify the spectroscopic
Raman signature of even a single molecule [2]. Sharp
nano-size tips [3] provide a more controlled route to en-
hance the optical field. Another powerful example of non-
linear enhancement is a single circular hole, surrounded
by an ordered plasmonic structure [4]. But besides sin-
gle structures, also ensembles of multiple nanostructures
or extended metal objects can be used to induce nonlin-
ear enhancement randomly positioned metal nanoclus-
ters show nonlinear effects [5]. A popular example of mul-
tiple nanostructures acting together is a subwavelength
hole array which exhibits extraordinary optical transmis-
sion [6] in the linear regime. Calculations indicate that
the local field enhancement associated with the transmis-
sion through the holes, is exceptionally large [7]. Blair
and co-workers showed that second-harmonics generation
(SHG) on a hole array is possible [8].

The shape of a metal nanostructure influences its field
enhancement, and thus potentially its nonlinear behav-
ior. Shape may explain why one out of 100 to 1000
nanoparticles exhibits high SERS enhancement efficien-
cies and are called ”hot particles”[2]. Shape can also
break mirror symmetry to allow SHG [8, 9]. Changing
the shape of subwavelength holes in periodic arrange-
ments affects the linear transmission properties of the
array [10–13]. An enhancement of the linear transmis-
sion through changes in hole shape would lead to higher
intensities in the holes and as a consequence to a pre-
dictable increase in for example SHG. Recent work has
described SHG from a nonlinear medium combined with

a coaxial hole array [14]. No studies have been performed
on the effects of shape on the actual nonlinear response
of subwavelength hole arrays itself or in other words their
effective nonlinear susceptibility.

In this Letter we present a study of the nonlinear re-
sponse of a metallic subwavelength air hole array by mea-
suring SHG. As the aspect ratio (AR) of rectangular sub-
wavelength holes is varied, an increased transmission of
the fundamental light and a concomitant increase of lo-
cal fields, leads to an expected increase in SHG. From
the combination of the SHG signal and the linear trans-
mission properties of the array, we have determined the
effective nonlinear susceptibility (χ(2)

eff ) of the arrays as
a function of AR. Surprisingly, we find that a ”hot” hole
shape exists for which the χ

(2)
eff is enhanced by more

than an order of magnitude. We are able to attribute
this enhancement to the cutoff condition of the rectan-
gular holes, acting as waveguides for the fundamental
wavelength used. The cutoff condition leads to slow light
propagation through the holes, resulting in an enhance-
ment of the nonlinear effects.

Multiple subwavelength hole arrays are studied, each
consisting 20 × 20 rectangular holes in a square lattice
(Fig. 1a). The holes are milled in an optically thick
Au film (thickness 160 nm) on a glass substrate. Both
the hole area and lattice periodicity are kept fixed at
3.4 × 104 nm2 and 410 nm, respectively. The different
arrays contain holes with different dimensions, ranging
from 180× 190 nm2 to 280× 120 nm2. As the extraordi-
nary transmission through the array, and therefore its lin-
ear properties, follows a power dependence on hole area
with a high power [15], care was taken to keep the hole
area constant. The aspect ratio of the holes is defined
as AR = x/y, with x and y the hole dimensions perpen-
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FIG. 1: (a): SEM micrograph of an array of square holes.
(b): SEM micrograph of an array with AR = x/y = 2.0, where
x and y (black arrows) are defined as the hole dimensions
perpendicular and parallel to the polarization of the incident
light (white arrow), respectively.

FIG. 2: (color online)(a): Transmission of the fundamental
light at 830 nm, strongly attenuated by colored glass filters.
The small sharp peak at 415 nm visible in the inset, is sec-
ond harmonics light. The broad background that is also vis-
ible in the inset, is attributed to three-photon luminescence.
(b): Double-log plot of the SHG power (triangles), transmit-
ted fundamental power (circles) and the broad background
(squares) as a function of the incident fundamental input
power. The solid lines are power-law fits. The fitted expo-
nents are 1.9 ± 0.1, 0.9 ± 0.1 and 2.7 ± 0.2 for the SHG, the
fundamental and the background, respectively.

dicular and parallel to the polarization of the incident
fundamental light, respectively (Fig. 1b). This way, an
AR range of 0.42 to 2.4 is explored.

The sample is illuminated with bandwidth-limited
pulsed light from a Ti:Sapphire laser (pulse duration
80 fs, repetition rate 80 MHz, wavelength tunable be-
tween 750 nm and 830 nm). This fundamental beam is
focused onto the Au-side of the sample with a numerical
aperture (NA) of 0.07. An achromatic lens (NA = 0.3)
on the glass side of the sample, collects only light from
the zeroth diffraction order, which is spectrally analyzed
for the polarization directions along x and y (spectral
resolution 0.3 nm). To avoid damage of the detector by
the transmitted fundamental light, we use a colored-glass
filter with a transmission factor T = 0.40 for the SHG
light, and T = 2.4× 10−9 for the fundamental light.

A typical spectrum is given in Fig. 2a. The sharp
peak at λ = 830 nm corresponds to the fundamental

FIG. 3: (color online) Double-log plot of the SHG power (tri-
angles) and fundamental light transmission (circles) as a func-
tion of hole AR for equal polarizations. The SHG increases
by two orders of magnitude, and has a peak of almost an-
other two orders of magnitude at AR = 2.0. The fundamental
transmission also increases with the AR. The solid lines are
guides to the eye.

wavelength. The inset reveals a second peak at 415 nm,
accompanied by a broad background centered around
450 nm. The shape of the latter is affected by the
colored-glass filter and actually extends beyond 500 nm.
The background has a cubic dependence on the inci-
dent fundamental power (Fig. 2b) and is attributed to
three-photon luminescence [16]. This power dependence
is different than that obtained previously in different Au
nanostructures [17], indicating a different physical ori-
gin. For the determination of the intensity of the small
sharp peak, this background is always subtracted. To
prove that the small sharp peak is due to SHG in the
hole array, we perform three control experiments. First,
we tune the fundamental wavelength and observe that
the small peak is always exactly at half the fundamen-
tal wavelength. Secondly, the quadratic dependence on
the fundamental input power is verified (Fig. 2b) [18].
Third, the SHG signal at 415 nm from both a plain glass
substrate and a plain Au film is checked to stay below
noise level. It may seem surprising that an SHG signal
is obtained from this centro-symmetric structure using
excitation and detection angles that are perpendicular
to the sample [8, 19]. We remark however that sym-
metry breaking at an interface can be sufficient to gen-
erate a scattered beam of second-harmonics (SH) light
[20], which can be detected if the collection NA is large
enough to include such scattering angles [4].

By investigating arrays with different hole shapes, we
find that the influence of the AR on the amount of SHG
collected is very large (Fig. 3). Both the fundamental
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FIG. 4: Double-log plot of the normalized effective nonlinear

susceptibility |χ(2)
ijk| as a function of the AR. |χ(2)

yyy| (filled tri-

angles) and |χ(2)
xyy| (open triangles) correspond to SHG with

y and x polarization, respectively, both with the fundamental
polarized along y. The lines are guides to the eye.

transmission and the SHG exhibit a general increase as
the AR is increased from 0.42 to 2.4. Moreover, a distinct
enhancement in SHG, centered around AR = 2.0 with
a width of 0.2 in units of AR, of more than an order
of magnitude is observed. The influence of AR on the
linear transmission of the fundamental is consistent with
previous work [21].

For a better understanding of the behavior of the SHG
we approximate the hole arrays as a slab of effective non-
linear medium that generates second harmonic, i.e., we
ignore a probable intensity distribution in the (x,y)-plane
of the metal array. The nonlinear properties of each ar-
ray can be characterized by the second-order nonlinear
susceptibility χ

(2)
ijk [18]. In the case of SHG, the index

i ∈ {x, y, z} corresponds to the vector components of the
electric field of the SH wave, and j = k corresponds to the
vector components of the electric field of the fundamental
wave. Thus, χ

(2)
yyy and χ

(2)
xyy determine the amplitudes of

SH waves with y- and x-polarization, respectively, that
are generated by a fundamental wave that is polarized in
y-direction.

The interaction length of the electric field with the
array is equal to the film thickness, which is small com-
pared to the wavelength. Therefore, perfect phase match-
ing can be assumed. Because of the low SHG conversion
the non-depleted pump approximation is justified. Under
these assumptions, Maxwell’s equations can be analyti-
cally solved to calculate the SHG yield of a medium in
which all the beams can exhibit attenuation [18]. Conse-
quently, if the SHG yield is known, the solution can be

used to calculate the effective χ
(2)
ijk of the crystal:

[χ(2)
ijk ]2eff =

P2ω

P2
ω

ε0εω
√

ε2ωcλ2
ωO

2π2

[
αω − 1

2α2ω

e−αωd − e−
1
2 α2ωd

]2

, (1)

where Pω is the incident fundamental power, and P2ω

the SHG power on the output side of the crystal. O
is the surface of the array, ε0 the permittivity of free
space, c the speed of light in vacuum and λω the funda-
mental wavelength. εω and ε2ω are the linear dielectric
constants of the medium at fundamental and SH wave-
length, respectively. The effective dielectric constants for
the arrays are unknown and not trivial to determine. To
obtain these values, we treat the subwavelength holes as
waveguides with the same lateral dimensions. For these
waveguides we calculate the wavevectors of the lowest
order modes (see below) from which the linear dielectric
constants follow. Please note that our results are hardly
affected by the particular choice of εω and ε2ω. αω and
α2ω are the linear attenuation coefficients of the medium
at fundamental and SH wavelength, respectively, which
can be determined from the measured linear transmis-
sion coefficient of the array using α = − ln(T )/d. Here,
d en T are the Au film thickness and the transmission
coefficient, respectively. By determining the |χ(2)|eff in
this way we ignore possible changes in the shape of the
intensity distributions in the plane of the array. However,
effects caused by an increase in local intensities resulting
merely from an enhanced linear transmission due to hole
shape drop out. As a result we obtain the effect of hole
shape on the effective nonlinear response.

Elements of the nonlinear susceptibility are plotted as
a function of AR in Fig. 4. |χ(2)

yyy|eff is determined from
the data presented in Fig. 3 and |χ(2)

xyy|eff results from an
additional data set that was acquired in the same way as
Fig. 3, but with the analyzing polarizer set perpendicu-
larly to the polarization of the incident fundamental light.
We have normalized the effective nonlinear susceptibility
to the |χ(2)|eff at AR = 0.94 in order to focus on the
differences due to the variation in hole shape and to be
insensitive to a non-unity collection efficiency that might
affect the absolute value of |χ(2)|eff . Between AR = 0.4
and AR = 1.5 no clear trend is discernable in the ef-
fective nonlinear susceptibility. This indicates that the
gradual increase of the SHG signal over two orders of
magnitude, shown in Fig. 3, is primarily explained by
linear transmission effects only. However, we observe a
large increase of the |χ(2)|eff around AR = 2, indicating
a strong enhancement of the nonlinear response.

In order to understand the enhancement it is useful to
consider the calculated wavevectors of the guided modes
in the array, for the fundamental light for the different
hole shapes. We performed calculations with a Fourier
modal method in which all modes, including the evanes-
cent modes, are obtained through an eigenvalue problem
of the Fourier components of the fields [21, 22]. Fig. 5
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shows the real and imaginary parts of the wavevector
kg for the different AR investigated normalized to the
wavevector of the fundamental beam in vacuum. It is
clear that for the modes in the real metal there is no
clear distinction between propagating (kg real) and non-
propagating (kg fully imaginary) modes, unlike the case
for a perfectly conducting metal, which, in the geome-
tries considered here, are fully imaginary. This observa-
tion has previously been made for cylindrical waveguides
[23] and rectangular holes [24]. We can distinguish two
regimes. The first regime starts at AR = 1 and runs
roughly until AR = 2; here the imaginary part of kg

is dominant, i.e., modes excited with a free space wave-
length of 830 nm are mainly evanescent. On the other
hand, the second regime, starting at AR = 2.5 and ex-
tending to higher AR, shows modes with a dominance of
the real part of kg. Here, the modes are propagating. In
between the evanescent and the propagating regime will
be the cutoff region for a single hole. It has also been
pointed out that single rectangular holes exhibit a reso-
nance in their transmission close to cutoff with large asso-
ciated field enhancements [25]. It is clear from Fig. 5 that
the cutoff region is exactly the region where we observe
the enhancement of the |χ(2)|eff by an order of magni-
tude. When a waveguide is close to cutoff, the modes
in that guide will have a low group velocity (see, e.g.
[23]). It has been shown theoretically that a reduction
in group velocity leads to enhanced nonlinear responses
due to an effective increase of light-matter interactions
[26] We suggest that these slow modes for the fundamen-
tal wavelength cause the sharp increase in the |χ(2)|eff .

We checked our hypothesis by changing the wavelength
of the fundamental and the periodicity of the arrays. The
enhancement of |χ(2)|eff at AR = 2 exhibits a peak with
a FWHM of 80 nm around 830 nm. We find that the
strong increase in |χ(2)|eff around AR = 2 cannot be
shifted,within the experimental error, by changing the
lattice periodicity. This strongly suggest that the in-
crease in |χ(2)|eff at AR = 2 is strongly linked to the
incident fundamental and a property of the single holes
rather than of the array as a whole.

In conclusion, we have shown by means of SHG
that the nonlinear optical properties of a metallic sub-
wavelength hole array can be strongly modified by tai-
loring the shape of the holes. Increasing the hole AR
results in an increase of the SHG yield, resulting from
increasing local fields and an increase in linear transmis-
sion. Moreover, for holes with AR = 2.0, we observe an
enhancement of an order of magnitude in the effective
second-order susceptibility of the array. We attribute
this enhancement to a cutoff behavior in the individual
holes, leading to slow modes inside the holes. Our find-
ings are promising for improving nonlinear applications
such as SERS, all-optical switching and ultra-high reso-
lution near-field microscopy.
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FIG. 5: (color online) Calculated imaginary part vs. the real
part of the propagation constant perpendicular to the metal
film of the fundamental modes for subwavelength rectangular
holes integrated in a periodic array with dimensions of the
experimentally investigated arrays, at an incident wavelength
of 830 nm. The AR of the holes is indicated by the numbers.
The square and triangular markers correspond to gold and
infinitely conducting structures, respectively.
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