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I

1.1 General introduction

Spontaneous emission is an essential process in generation of light from many different

sources of energy such as heat, electricity or chemical interactions, and consequently, it

is ultimately responsible for most of the light around us. This process entails radiation

of photons in transitions between high-energy and low-energy states of elementary emit-

ters. The latter include atoms (e.g., sodium in light bulbs), molecules (organic dyes) and

artificial nanostructures (quantum dots, wires and wells). Spontaneous emission is often

called luminescence, when radiative transitions occur from emitters that are not excited by

temperature alone. And if light is generated by re-emission from elementary sources that

are excited by photons, this process is also called fluorescence. Since spontaneous emis-

sion is crucial for diverse everyday applications such as light-emitting diodes, lasers, TV

screens, energy harvesting in solar cells, it is obvious that control over this phenomenon

is of great importance.

Spontaneous emission is a bright example of elementary interaction between mat-

ter and light, which is closely related to stimulated emission: both effects are results of

the coupling of emitters to the electromagnetic field [1, 2]. In the case of spontaneous

emission, the optical transitions occur via interaction with virtual photons (vacuum fluc-

tuations or vacuum state of the field); while in stimulated emission, the emitters interact

with real photons (other field states). It appears that the interaction between emitters and

the field can be raised by enhancing the density of the vacuum fluctuations. It was pre-

dicted already in 1946 that the emission decay rate (the depopulation rate of the excited

state) can be increased, if the emitter is placed in a cavity tuned to its transition frequency

[3], and can be decreased if the cavity is detuned [4].

9



10 Chapter 1 Introduction

Ultimate inhibition of spontaneous emission can be achieved in artificial periodic

structures with tailor-made forbidden frequency bands [5]. These periodic structures

known as photonic crystals consist of different dielectric materials, where the index of

refraction varies on length scales comparable to the wavelength of light. Therefore, the

periodicity of photonic crystals is about 1000 times as large as that of atomic crystals.

Light with specific frequencies is forbidden to propagate along certain directions by wave

interference, similarly to Bragg diffraction of x-rays in atomic crystals. Such forbidden

frequency ranges are called stopgaps. The larger the contrast of the refractive index be-

tween the two materials of a photonic crystal, the more strongly light is influenced, and

the broader the stopgaps become. It was predicted in 1987 that an extreme situation may

be feasible when light cannot propagate along any direction [6, 7]. This situation is called

a photonic bandgap. Spontaneous emission is completely inhibited for frequencies inside

such a bandgap and, conversely, strongly enhanced for frequencies outside the bandgap.

Photonic crystals, therefore, provide an ultimate tool for manipulating with light, which

is of extreme interest for scientists and engineers [8, 9].

Recent advances in nanotechnology have resulted in ability to synthesize semiconduc-

tor structures with dimensions of a few nanometers. Due to the finite sizes, electron-hole

pairs (excitons) can be confined in these nanostructures, which leads to discrete excitonic

energy levels. The nanocrystals that confine excitons in spherical or circular spaces are

known as quantum dots. The discrete structure of the energy levels results in advanta-

geous optical properties of these nanocrystals: narrow and tunable emission spectra. The

emission frequencies can be tuned by varying the nanocrystal size: the smaller the size,

the higher the emission frequency. These properties make the nanocrystals very promising

elementary emitters for new experiments and devices [10, 11].

1.2 Outline of the thesis

This thesis describes time- and angle-resolved experiments, in which effects of three-

dimensional (3D) photonic crystals on spontaneous emission of embedded light sources

(quantum dots and dye molecules) were studied. The thesis is organized as follows:

In Chapter 2 we review the theoretical basics of the interaction between light and mat-

ter. We discuss the factors triggering the process of spontaneous emission and consider in

detail the time evolution of the excited state of the emitter that interacts with the quantized
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vacuum field. Relation between the rate of spontaneous emission and the local density of

states (LDOS) is derived. We discuss conditions, when the excited-state population de-

cays exponentially in time, and how these dynamics can be affected. Propagation of light

in photonic crystals is examined. By the example of a 1D photonic crystal, we explain the

origin of the stopgap. With the help of photonic dispersion relations, we illustrate impor-

tant properties of 3D photonic crystals. Strong modifications of the LDOS and radiative

rates in 3D photonic crystals predicted by theory are discussed.

In Chapter 3 we discuss tools necessary to control spontaneous emission. We review

experimentally realized photonic-bandgap structures, the requirements on their crystal

symmetry and the dielectric contrast for opening of the bandgap as well as the methods to

fabricate such periodic structures on a large scale. We discuss optical probes necessary for

studying the interaction of light with real photonic crystals. These probes include mea-

surements of angle-resolved spectra of reflected and transmitted light as well as emission

from internal light sources. We consider the role of unavoidable structural disorder in light

propagation through the real photonic crystals. Photonic crystals used in our emission ex-

periments, namely polystyrene opals and titania inverse opals, are described. Finally, we

discuss light sources that can be used as internal fluorescent probes of photonic crystals.

Chapter 4 describes the angle-resolved measurements of spontaneous-emission spec-

tra from laser dyes and quantum dots in opal and inverse-opal photonic crystals. We

observe pronounced directional dependencies of the emission spectra: angular ranges of

strongly reduced emission adjoin with angular ranges of enhanced emission. It appears

that emission from embedded light sources is affected both by the periodicity and by the

structural imperfections of the crystals: the photons are Bragg diffracted by lattice planes

and scattered by unavoidable structural disorder. We quantitatively explain the measured

directional emission using a model that unifies diffuse light transport and the photonic

band structure.

In Chapter 5 we present an experimental proof of strongly modified spontaneous-

emission decay rates from an ensemble of CdSe quantum dots in the titania inverse-opal

photonic crystals. By varying the crystal lattice parameter, we achieve both inhibition

and enhancement of the emission decay rates. The complex decay curves are success-

fully analyzed with a continuous distribution of decay rates. The resulting most-frequent

decay rate varies by a factor of 3, whereas the width of the distribution reveals a six-

fold modification. This large modification of the distribution width in photonic crystals

with different lattice parameters is identified with variations of the radiative rates from
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quantum dots at various positions in the unit cell and with variously oriented transition

dipoles. This interpretation is compared to calculations of the LDOS in the inverse opals.

The mean emission rate varies by a factor of 8, in conformity with the change of the total

emitted power. By varying the optical frequency within the quantum-dot spectrum, we

observe that the changes of the decay rate with the lattice parameter are larger at higher

emission frequencies.

In Chapter 6 we discuss the LDOS in the titania inverse opals. We use the plane-wave

expansion method to calculate the LDOS in many locations in the unit cell for different

dipole orientations. We find that the LDOS in the inverse opals strongly depends on the

crystal lattice parameter as well as on the position and orientation of emitting dipoles. We

have identified conditions where the LDOS is strongly suppressed, strongly enhanced,

and where sharp peaks (van Hove singularities) appear. For theoretical explanation of

the experimental observations described in Chapter 5, we have made calculations of the

LDOS in several positions in the internal TiO2-air interface. At the frequencies near

the first-order stopgap, the dependence of the LDOS on the crystal lattice parameter is

preserved at all investigated locations and dipole orientations, which is agreement with

the experimental observations.

Chapter 7 presents a time-resolved study of spontaneous emission from Rhodamine

6G dye in opal photonic crystals. We have measured fluorescence lifetimes of the dye by

varying both optical frequency and crystal lattice parameter of polystyrene opals. The ob-

served fluorescence lifetimes are nearly frequency independent within the dye emission

spectrum, which is attributed to a broad homogeneous linewidth of the dye. However,

the fluorescence lifetimes are modified when the crystal lattice parameter is changed: we

observe 16 % enhancement and 10 % inhibition of spontaneous emission, which is ex-

plained by the LDOS varying in the opals in bandwidths comparable to the homogeneous

linewidth of the dye. The changes of spontaneous emission induced by the polystyrene

opals are considerably smaller than the effects measured in the titania inverse opals, which

is related to much weaker changes of the LDOS in the opals compared to the inverse opals.
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E    

  

This chapter reviews the theoretical basics of the interaction between light and matter, which is
needed in order to understand experiments described in this thesis. We discuss the factors trigger-
ing the process of spontaneous emission. The time evolution of the excited state that interacts with
the quantized vacuum field is considered in detail. We derive the relation between the rate of spon-
taneous emission and the local density of vacuum-field states (LDOS). We discuss conditions, when
the excited-state population decays exponentially in time, and how these dynamics can be affected.
After introducing the concept of photonic crystals - a means to control spontaneous emission, we
examine the principles determining propagation of light in these periodic structures. By example of
a 1D photonic crystal, we explain the origin of the photonic stopgap. Important properties of 3D
photonic crystals are illustrated with the help of photonic dispersion relations, which are calculated
using the H-field plane-wave expansion method. We discuss strong modifications of the LDOS and
radiative rates in 3D photonic crystals. Finally, alternative methods to calculate the LDOS in finite
periodic structures are briefly considered.

2.1 Phenomenon of spontaneous emission

Spontaneous emission of light is called a transition of an emitter (atom, molecule or quan-

tum dot) from its excited state to its lower energy state by sending out one or more

photons. The effect received its name “spontaneous” in the classical theory of electro-

magnetism where there is no radiation field without photons, and without radiation field,

atoms can stay forever in their exited states [1]. Although some aspects of atomic ra-

diative transitions such as Einstein’s coefficients can be explained in classical optics, a

correct description of spontaneous emission requires quantization of the radiation field

[2]. In quantum optics, even in absence of photons, the vacuum state still has an energy

15



16 Chapter 2 Emission and propagation of light in photonic crystals

per mode of 1
2~ω, and consequently, it has non-zero expectation values of the squares

of the electric and magnetic fields. Therefore, in the vacuum field state, and in all other

stationary field states, the electric and magnetic fields fluctuate around their zero mean

values. Interaction of excited atoms with these so-called vacuum fluctuations can explain

the “spontaneous” decay to lower atomic states. Other quantum phenomena such as the

Casimir forces and the Lamb shift are also regarded as consequences of the vacuum-field

fluctuations [1, 2].

In this section we shall consider the quantum theory of interaction of an emitter with

the radiation field. We will focus our attention on the interaction of the two-level emitter

with a continuum of the radiation-field modes. A two-level description is valid when only

two levels of an emitter (atom, molecule or quantum dot) are involved in the transition,

while effects of other levels are negligible. With the help of certain realistic approxima-

tions, we will derive an expression for the decay rate of the excited state of a two-level

atomic system and discuss the factors determining this decay rate. For simplicity the

“two-level emitter” will be called “atom” further in the text.

2.1.1 Atom-field interaction Hamiltonian

The interaction of an atom with a radiation field E is described by the Hamiltonian:

H = HF +HA +Hint. (2.1)

Here the operators HA and HF represent the energies of the atom and the radiation field

in absence of interaction, respectively; Hint represents the atom-field interaction energy.

The operator of the radiation-field energy is given in terms of the creation operators a†k
and the annihilation operators ak of the field modes with wavevectors k by

HF =
∑

k

~ωk(a†kak + 1/2). (1) (2.2)

HA and Hint can be expressed in terms of the transition operators σi j = |i〉〈 j|. Here

{|i〉} represents a complete set of atomic energy eigenstates, i.e.,
∑

i |i〉〈i| = 1. From the

eigenvalue equationHA|i〉 = Ei|i〉 it follows that

HA =
∑

i

Ei|i〉〈i| =
∑

i

Eiσii = Eaσaa + Ebσbb. (2.3)

(1) We write operators in the Schrödinger picture, in which the operators are time independent, but the wave-
functions carry the entire time dependency.
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F 2.1: Scheme of the interaction of a two-level atom in its excited state a with a con-

tinuum of vacuum-field modes with frequency ωk, leading to a transition to the atomic ground

state b via emission of a photon with energy ~ωd = Ea − Eb.

In our case of a two-level atom, Ea and Eb are the energies of the excited and ground

states, respectively, as shown in Figure 2.1. The interaction Hamiltonian in the electric

dipole approximation is

Hint = −d · E, (2.4)

where d is the operator of the electric-dipole transition moment that is given by

d =
∑
i, j

e|i〉〈i|re| j〉〈 j| = dabσab + dbaσba. (2.5)

Here, re is the displacement operator of the electron with charge e relative to the position

of the atom r. di j = e〈i|re| j〉 is the matrix element of the operator of the dipole transition

between the states |i〉 and | j〉. It can be shown that dab = dba. We will further write

dab as ded, where d is the magnitude and ed is the orientation of dab. The electric-field

operator is evaluated at the atom center r in the dipole approximation, i.e., k · re � 1. The

quantized electric field E has the form:

E(r) = i
∑
k,p

zk,p(r)[ak,pΛk,p(r) − a†k,pΛ
∗
k,p(r)], (2.6)

where zk,p(r) = [~ωk,p/2ε0ε(r)V]
1
2 is the normalization factor for a field mode Λk,p(r)

with wavevector k and polarization state p = 1,2. ε(r) is the dielectric function that is

generally position-dependent, V is an arbitrary quantization volume. For the sake of read-

ability of the following formulae, we will leave out the summation on the field polarization

p as this summation can be always inserted into the resulting formulae. Now we insert

the expressions for d and E(r) into Eq. 2.4 and substitute forHA,HF andHint from Eqs.

2.2, 2.3 and 2.4 into Eq. 2.1 to obtain:
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H =
∑

k

~ωka†kak + (Eaσaa + Ebσbb)

+ i
∑

k

~(σab + σba)[gk(r)ak − g∗k(r)a†k], (2.7)

where

gk(r) = −~−1zk(r)dab · Λk(r) = −
√

ωk

2ε0ε(r)~V
ded · Λk(r). (2.8)

In Eq. 2.7 the zero-point energy 1
2
∑

k ~ωk has been ignored because constant terms have

no influence on the time behavior of the system. We write the second term in Eq. 2.7 as

Eaσaa + Ebσbb =
1
2
~ωd(σaa − σbb) +

1
2

(Ea + Eb)(σaa + σbb), (2.9)

where ~ωd = Ea−Eb and σaa+σbb = 1. The constant energy 1
2 (Ea+Eb) is again omitted.

We use the notations

σz = σaa − σbb = |a〉〈a| − |b〉〈b|,

σ+ = σab = |a〉〈b| and

σ− = σba = |b〉〈a|, (2.10)

where the transition operators σ+, σ− and the inversion operator σz
(2) satisfy Pauli’s com-

mutation relations:

[σ−, σ+] = −σz,

[σ−, σz] = 2σ−. (2.11)

Then, the Hamiltonian (2.7) takes the form

H =
∑

k

~ωka†kak +
1
2
~ωdσz + i~

∑
k

(σ+ + σ−)[gkak − g∗ka†k]. (2.12)

For convenience we have left out the explicit r-dependence of gk(r) for a while.

2.1.2 Interaction in perturbation approach

In order to solve the evolution of the atom-field system described by the Hamiltonian

(2.12), we use the perturbation approach and represent the Hamiltonian asH = H0+Hint,

where

H0 =
∑

k

~ωka†kak +
1
2
~ωdσz (2.13)

(2) 1
2~ωdσz represents the internal energy of the atom, relative to the average 1

2 (Ea + Eb), which we have set to
zero. Therefore σz is often referred as the inversion operator.
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is the Hamiltonian of the unperturbed atom-field system without any interaction. The

perturbation due to the interaction between the atom and the field is described by

Hint = i~
∑

k

(σ+ + σ−)[gkak − g∗ka†k]. (2.14)

Furthermore, it appears to be convenient to represent the Hamiltonian in the interaction

picture, which is related to the Schrödinger picture by

V = eiH0t/~Hinte−iH0t/~. (2.15)

Using the identities (3)

eiωka†kaktake−iωka†kakt = ake−iωkt and

eiωdσzt/2σ+e−iωdσzt/2 = σ+eiωd t, (2.16)

we rewrite the Hamiltonian as:

V = i~
∑

k

[gk(σ+akei(ωd−ωk)t + σ−ake−i(ωd+ωk)t)

− g∗k(σ−a†ke−i(ωd−ωk)t + σ+a†kei(ωd+ωk)t)]. (2.17)

This Hamiltonian consists of four terms. The term σ+ak describes the process of the

atomic transition from the ground state to the excited state and annihilation of a photon

in a k-mode. The term σ−a†k describes the opposite process. In both processes the energy

is conserved. The term σ+a†k describes the process in which the atom makes a transition

from the ground state to the excited state and a photon is created, resulting in an energy

gain of 2~ωk. Similarly, σ−ak results in the loss of the same energy. In the so-called

rotating-wave approximation, (4) these energy non-conserving terms are dropped. The

resulting Hamiltonian becomes

V = i~
∑

k

[gkσ+akei(ωd−ωk)t − g∗ka†kσ−e−i(ωd−ωk)t]. (2.18)

(3) These identities can be derived if we first write exA as a series expansion
∑∞

i=0(xA)i/i! that gives exABe−xA =

B + x[A, B] + x2

2! [A, [A, B]] + ..., and then use the commutation relations [ak, a
†

k] = 1, [ak, a
†

kak] = ak and those
from Eqs. 2.11.
(4) When the radiation-field and dipole oscillations are close to a resonance, ωk ≈ ωd , terms proportional to
e±i(ωd−ωk)t change slowly in time. The counter-rotating terms proportional to e±i(ωd+ωk)t vary rapidly on time
scales (ωd − ωk)−1 and are ignored in the rotating-wave approximation. The counter-rotating terms still affect
dipoles giving rise to minute changes of the transition frequency (∼ 10−10ωd), called the Bloch-Siegert shift [3].
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Now we need to solve the Schrödinger equation for |Ψ(t)〉:

i~
∂|Ψ(t)〉
∂t

= V|Ψ(t)〉. (2.19)

The state |Ψ(t)〉 is a linear combination of the states |a, n〉 and |b, n〉 of the unperturbed

atom-field system. Here, |a, n〉 is the state, in which the atom is in its excited state and

the field has n photons. |b, n〉 is the state, in which the atom is in its ground state and the

field has n photons. Taking at time t = 0 the atom to be in the state |a〉 and the field in the

vacuum mode |0〉, we write the state vector as

|Ψ(t)〉 = ca(t)|a, 0〉 +
∑

k

cb,k(t)|b, 1k〉, (2.20)

with initial conditions ca(0) = 1 and cb,k(0) = 0. Because of the perturbation Hint, the

probability amplitudes ca and cb,k become time dependent. Since we want to determine

the time evolution of the excited state, we must find an expression for the probability

amplitude ca(t). From the Schrödinger equation we obtain the equation of motion for

ca(t) and cb,k(t):

ċa(t) =
∑

k

gkei(ωd−ωk)tcb,k(t), (2.21)

ċb,k(t) = −g∗ke−i(ωd−ωk)tca(t). (2.22)

To get an equation that contains ca(t) only, we first integrate Eq. 2.22:

cb,k(t) = −g∗k

∫ t

0
dt′e−i(ωd−ωk)t′ca(t′). (2.23)

Then, we substitute the expression for cb,k(t) into Eq. 2.21:

ċa(t) = −
∑

k

|gk|
2
∫ t

0
dt′e−i(ωd−ωk)(t′−t)ca(t′). (2.24)

To resolve this integro-differential equation, several further approximations have to be

made. We assume that the quantization volume V is much larger than the size of the

atom. Therefore, there is a quasi-continuum of the field modes, and we can replace the

summation over k by an integral:
∑

k →
V

(2π)3

∫ ∞
−∞

dk. Then, Eq. 2.24 with gk substituted

by the expression in Eq. 2.8 becomes

ċa(r, t) = −
d2

2(2π)3ε0ε(r)~

∫ t

0
dt′ca(r, t′)

×

∫ ∞
−∞

dk ωke−i(ωd−ωk)(t′−t)|ed · Λk(r)|2. (2.25)
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It is convenient to add a frequency integration over a Dirac δ function, which does not

affect the value of ċa(r, t):

ċa(r, t) = −
d2

2(2π)3ε0ε(r)~

∫ t

0
dt′ca(r, t′)

×

∫ ∞
0

dωωei(ω−ωd)(t′−t)
∫ ∞
−∞

dkδ(ω − ωk)|ed · Λk(r)|2. (2.26)

The frequency integral is defined only over positive frequencies, for there are no negative-

energy field modes. We notice that Eq. 2.26 contains the local radiative density of optical

states (LDOS), which counts the number of modes per unit volume at a given frequency

ω to which the atomic dipole oriented along ed and positioned at r can couple. This

projected LDOS is defined as [4]:

N(r, ω, ed) ≡
1

(2π)3ε(r)

∑
p

∫ ∞
−∞

dkδ(ω − ωk,p)|ed · Λk,p(r)|2, (2.27)

where we have inserted back the summation on the field polarization p. The dielectric

function ε(r) must be real here, otherwise the complex mode density N(r, ω, ed) is not

defined. The LDOS will be discussed in more detail in Section 2.3. Thus we have the

equation of motion

ċa(r, t) = −
d2

2~ε0

∫ t

0
dt′ca(r, t′)

∫ ∞
0

dωωN(r, ω, ed)ei(ω−ωd)(t′−t), (2.28)

where the time integral means that the atom-field system has a memory of ca(r, t) at earlier

times.

2.1.3 Rate and frequency shift of spontaneous emission

To solve the equation of motion (Eq. 2.28), we replace the probability amplitude ca(r, t′)
by ca(r, t) taken at time t. This approach called Markov approximation, assumes that if

a photon is emitted, memory of this event is lost practically instantly [1, 2]. The time

integral then becomes∫ t

0
dt′ei(ω−ωd)(t′−t) =

sin(ω − ωd)t
ω − ωd

−
i[1 − cos(ω − ωd)t]

ω − ωd
. (2.29)

For sufficiently long times, so that ωdt � 1, the first term in Eq. 2.29 vanishes due to fast

oscillations of sin(ω − ωd)t, except if ω = ωd; then it equals t. Similarly, the second term
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is (ω − ωd)−1, except at ω = ωd where it is 0. Therefore, for the case when Eq. 2.29 is in

a frequency integral, we can rewrite it as∫ t

0
dt′ei(ω−ωd)(t′−t) = πδ(ω − ωd) − iP(ω − ωd)−1, (2.30)

where P denotes the Cauchy principal value, and δ is the delta function[2]. If we substitute

the resulting expression into Eq. 2.28, it follows that

ċa(r, t) = −(γ/2 − i∆)ca(r, t), (2.31)

where

γ =
πd2ωd

~ε0
N(r, ωd, ed) (2.32)

is the rate of the optical transition |a〉 → |b〉; and

∆ =
d2

2~ε0
P
∫ ∞

0

dωωN(r, ω, ed)
ω − ωd

(2.33)

represents a shift of the transition frequencyωd called the Lamb shift [1, 2]. From Eq. 2.31

we obtain the expression for the time evolution of the atomic excited state:

|ca(r, t)|2 = e−γt. (2.34)

Thus, with the help of several approximations, we have derived a simple expression for

the probability |ca(r, t)|2 of the excited state, which reveals an exponential decay in time

with the rate constant γ.

In the Markov approximation we assume that the quasi-continuum of the field modes,

the bath, is much faster than the oscillation period of the dipole τd. Because the LDOS

N(r, ωd, ed) has a dimension of per frequency, it can be considered as the correlation time

of the bath τb [5]. We can estimate τb for the LDOS at optical frequencies (∼ 1015 Hz)

in a quantization volume V = (2πc/ω)3: the resulting correlation time τb is ∼ 10−18 s,

which is much shorter than τd ∼ 10−15 s. Therefore, the interaction of the emitting dipole

with the fast bath destroys the memory of the past and leads to the exponential decay of

the excited state. Interestingly, when the LDOS increases, the bath becomes slow. And

when the correlation time τb is longer than the dipole oscillation period τd, the system

retains the memory of the previous times. This means that the atom and the bath are

strongly coupled, and the evolution of the atomic excited state is not an exponential decay.

The Markov approximation, which is justified in the case of weak atom-field coupling,
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is related to the Weisskopf-Wigner approximation. The latter assumes that the product

ωN(r, ω, ed) is a slowly varying function of ω around the dipole transition frequency ωd,

so that in Eq. 2.28, ω can be replaced with ωd [1]. The frequency integral then becomes

proportional to δ(t′ − t), which also results in the exponential decay shown in Eq. 2.34.

From Eq. 2.32 we conclude that the rate of spontaneous emission γ is determined by

the electric-dipole moment d and frequency ωd of the transition |a〉 → |b〉, and the LDOS

at the transition frequency and at the atom position. The first two factors are internal

atomic properties, whereas the last one, the LDOS, depends on the environment of the

atom. If the atom is placed in an unbounded homogeneous dielectric with ε(r) = ε, the

spontaneous-emission rate is position independent and can be readily calculated. For

an isotropic medium, we can easily perform integration over k in the expression for

N(r, ω, ed): ∑
p

∫ ∞
−∞

dk = 2
∫ 2π

0
dφ
∫ π

0
dθsinθ

∫ ∞
0

dkk2. (2.35)

Since k = |k| = nωk/c with the refractive index of the medium n =
√
ε, we write

N(ω) =
4π

(2π)3n2

∫ π
0

dθsinθcos2θ

∫ ∞
0

dωk
n3

c3ωk
2δ(ω − ωk), (2.36)

where θ is the angle between the dipole orientation ed and the k-mode vector Λk. Thus

the radiative density of states per unit volume becomes

N(ω) =
nω2

3π2c3 , (2.37)

and gives the familiar expression for the decay rate in a homogeneous medium: (5)

γhom =
πd2ωd

~ε0
N(ωd) =

nd2ω3
d

3π~ε0c3 . (2.38)

As we can see in Eq. 2.38, the decay rate depends linearly on the refractive index of the

environment and increases as the cube of the transition frequency.

Let us now consider the Lamb shift ∆ given by Eq. 2.33. Similarly to the decay rate γ,

the Lamb shift depends on the transition dipole moment d and the LDOS N(r, ω, ed). The

integrand in Eq. 2.33 is proportional to ω2 for large frequencies, and hence, the integral

(5) Here we assumed that the emitter has the same refractive index as the host medium, which gave us a simple
relation between decay in a medium and vacuum: γhom = nγvac

hom. However, it is not always the case, especially
for quantum dots: more complicated factors relate the decay rates in a dielectric to those in vacuum. For details
see, e.g., Refs. [6–8].
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diverges leading to infinite values for the shift of the transition frequency. The divergence

in the shift ∆ is overcome by using a technique called mass renormalization suggested by

Bethe [9]: due to the interaction with the vacuum fields, the effective mass of the electron

is different from the mass of the electron which does not feel any fields. In addition to

this technique, a cut-off of the integration range at high frequencies must be introduced to

remove the divergence, which leads to accurate estimations of the shift of the transition

frequency [2]. The calculated value of the Lamb shift in vacuum is ∼ 10−7ωd [10]. In

cases when the LDOS is strongly enhanced, the Lamb shift is about 10−6ωd: an order of

magnitude larger than the vacuum Lamb shift [11]. Because these modifications are still

much smaller than the homogeneous linewidth of available emitters as will be seen below,

investigations of the frequency shift are not performed in this thesis.

Let us now summarize the approximations and assumptions that we used to derive the

expression for the time-evolution of the atomic exited state:

a. The electric-dipole approximation to evaluate the electric-field operator E(r).

b. The perturbation approach to describe the time evolution of the atom-field system.

c. The rotating-wave approximation to neglect the rapidly-changing counter-rotating

terms.

d. The dielectric function ε(r) is real to define the LDOS N(r, ω, ed).

e. The atom-field interaction is considered as a Markovian process to solve the integro-

differential Equation 2.28.

Possibilities to modify the rates of spontaneous emission from emitters at fixed fre-

quencies ω have been attracting much interest after Purcell [12] originally recognized that

the rate γ is increased if the emitter is placed in a cavity tuned to the emitter transition fre-

quency. The rate γ can be also decreased by detuning the cavity, see [13–15]. The effect

of the cavity consists in enhancing or inhibiting the vacuum-field fluctuations. Modified

rates of spontaneous emission were also demonstrated by placing an emitter near a re-

flecting interface, see e.g. [16, 17]. However, ultimate modifications of the spontaneous

emission in large volumes can be achieved in media with frequency bands free from elec-

tromagnetic fluctuations, as was suggested by Bykov [18]. We will see in the following

section that periodic dielectric photonic structures are an ideal example of such media.
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a

(a) (b) (c)a

a

x

F 2.2: Schematic illustration of one (a), two (b) and three (c) dimensional (1D, 2D and

3D) periodic structures. Such structures are called photonic crystals, if their periodicity is com-

parable to the wavelength of light. Symbols a represent the sizes of the crystal unit cells.

2.2 Dispersion of light in periodic structures,
photonic bands

Materials with periodic variations of the dielectric function on length scales comparable to

the wavelength of light are called photonic crystals (see Figure 2.2). These dielectric com-

posites are very attractive for scientists and engineers because they offer exciting ways to

manipulate photons [19, 20]. The spatial variations of the dielectric function cause scatter-

ing of light. If these variations are periodic on lengthscales comparable to the wavelength

of light, then the interference of the scattered light leads to optical Bragg diffraction:

frequency windows, called stopbands, appear in which there are no field modes for cer-

tain propagation directions. Of even greater interest are three-dimensional (3D) photonic

crystals possessing a photonic bandgap - a frequency range where no field modes ex-

ist at all. In two pioneering works, which started the field of photonic crystals in 1987,

E. Yablonovitch and S. John pointed out the potential of photonic bandgap materials in

inhibition of spontaneous emission and light localization [21, 22].

2.2.1 Wave equation in periodic dielectric media

In order to understand the interaction of electromagnetic waves with photonic crystals,

we need to discuss the Maxwell equations. In a medium without charges and currents, the
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propagation of light is governed by these four equations:

∇ × E = −
∂B
∂t
, ∇ · D = 0,

∇ ×H =
∂D
∂t
, ∇ · B = 0,

(2.39)

where E and H are the electric and magnetic fields, D and B are the displacement and

magnetic-induction fields. The field E is related to D by a constitutive relation, and the

same holds for the fields H and B. The relations between the fields are equal to

D(r) = ε0ε(r)E(r),

B(r) = µ0H(r).
(2.40)

Here ε(r) is a real and frequency independent function within the frequency range of in-

terest. The spatial variation of the dielectric function obeys the periodicity of the photonic

crystal, so that ε(r) = ε(r + R) for all crystal lattice vectors R. Fields E(r) and H(r) can

both have complicated temporal and spatial dependencies, yet we can always expand the

fields into a series of harmonic modes because of the linearity of the Maxwell equations.

Therefore, assuming harmonic dependencies of the E(r) and H(r) fields with temporal

frequency ω and reminding ourselves that ε0µ0 = c−2, we combine Eqs. 2.39 and 2.40

into the wave equations:

∇ × [∇ × E(r)] = ε(r)
ω2

c2 E(r) and (2.41)

∇ ×
[
ε(r)−1∇ ×H(r)

]
=
ω2

c2 H(r). (2.42)

These wave equations together with the divergence equations in (2.39) completely deter-

mine E(r) and H(r). In order to find the field modes at a certain frequency for a given

by the photonic crystal ε(r), one needs to solve these complicated differential equations.

The situation is called an eigenvalue problem: a series of operations is performed on a

function, say, E(r), and if E(r) is an allowed field mode, the result is the original function

E(r) multiplied by a constant called eigenvalue. For nonmagnetic materials, it is more

convenient to solve the wave equation for H(r) field because the operator ∇× ε(r)−1∇× is

Hermitian, and consequently all its eigenvalues ω2/c2 are real [19].

Because of the periodic dielectric function ε(r) in photonic crystals, the field modes

of the eigenvalue problem Eq. 2.42 should satisfy the Bloch theorem [23]:

Hk(r) = eik·ruk(r). (2.43)
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These Bloch modes are fully described by the wavevector k and the periodic function

uk(r), which has the periodicity of the crystal lattice so that uk(r) = uk(r + R). To solve

Eq. 2.42, the inverse dielectric function and the Bloch modes are expanded in a Fourier

series over the reciprocal-lattice vectors G:

ε(r)−1 = η(r) =
∑

G

ηGeiG·r and Hk(r) =
∑

G

uk,Gei(k+G)·r. (2.44)

Substituting these expressions into the H-field wave equation in Eq. 2.42, we obtain a

linear set of eigenvalue equations:

−
∑
G′
ηG−G′ (k +G) × [(k +G′) × uk,G′ ] =

ωk
2

c2 uk,G, ∀G. (2.45)

This infinite equation set with the known parameters G and ηG−G′ determines all allowed

frequencies ωk for each value of the wave vector k, subject to the transversality require-

ment ∇ ·Hk(r) = 0. Due to the periodicity of uk(r), we can restrict k to the first Brillouin

zone. Therefore, for every vector k, there is an infinite number of modes with discretely

spaced frequencies. All the modes are labeled with the band number n in order of increas-

ing frequency and described as a family of continuous functions, ωn(k). The information

borne by these functions is called the photonic band structure. Knowledge of the band

structure of a photonic crystal gives practically all the information on how the crystal

interacts with electromagnetic waves. Therefore, the search for the structures with pho-

tonic bandgaps has raised a great interest in solving the photonic band-structure problem

[19]. The eigenvalues ωn(k) can be approximated if the infinite equation set in Eq. 2.45

is reduced by truncating the set the reciprocal lattice vectors. This truncation is quite

a difficult task because of the poor convergence of the Fourier transform of the sharply

varying dielectric function [24]. Numerical methods to determine the components of

the truncated Fourier transforms and to resolve the eigenmatrices are described in Refs.

[24–27]. The expansion of the dielectric function assumes infinitely extending perfect pe-

riodic structures. Nevertheless, this approach known as the H-field plane-wave method,

is widely used due to its principal simplicity and applicability to a great variety of 3D

periodic structures. The plane-wave method results in good approximations to the disper-

sion relation in real periodic structures: calculated photonic band structures are found to

correspond to reflection and transmission experiments on photonic crystals.
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2.2.2 1D photonic crystal, origin of photonic stopgap

As an example, we will now resolve the H-field wave equation set for the two lowest bands

of the simplest case of photonic crystals: a 1D periodic structure (see Figure 2.2a). We

consider a multilayered structure consisting of materials with different dielectric functions

alternating with the period a. The structure is infinite and periodic in the x-direction and

homogeneous in the other two directions. We also consider the light propagating in the

x-direction. The dielectric function can be written as

ε(x) = ε1 + (ε2 − ε1) f (x), (2.46)

where f(x) equals 0 or 1, depending on whether x is inside the region of ε1 or ε2. Since

we consider only low-energy bands, we take into account only two dominant reciprocal-

lattice vectors: G = 0 and G = 1 in units of 2π/a. The Fourier components of the inverse

dielectric function are equal to

ηG =
1
a

∫ a/2

−a/2
ε(x)−1e−iGxdx. (2.47)

The field modes in the Bloch form are:

Hn,k(x) = e−iGxun,k(x), (2.48)

where un,k(x) = un,k(x+ X) whenever X is an integer multiple of the period a. The Fourier

components of un,k(x) for G = 0 and 1 are denoted as u0 and u1, respectively. The equation

set Eq. 2.45 then becomes: (6)

ωn(k)2

c2 u0 = η0k2u0 + η1k(k + 1)u1,

ωn(k)2

c2 u1 = η−1k(k + 1)u0 + η0(k + 1)2u1. (2.49)

This equation set yields a quadratic equation for ωn(k)2/c2, two solutions of which are

ωn(k)2

c2 =
1
2
η0[k2 + (k + 1)2] ±

1
2

[
η2

0[k2 − (k + 1)2]2 + 4η−1η1k2(k + 1)2
]1/2
. (2.50)

Here we should bear in mind that k and G have opposite signs, so that if k > 0 then G =

-1. (7) Next, we substitute expressions for ηG, namely η0 =
1
2 (ε−1

1 + ε
−1
2 ) and η1 = η−1 =

1
π
(ε−1

2 − ε
−1
1 ), and plot the resulting ωn(k).

(6) Note that in Eq. 2.45 the double vector product (k +G) × [(k +G) × uk,G] is antiparallel to uk,G, which
therefore compensates the “-” sign in front of the sum.
(7) Due to the Bragg condition kin +G = kout and the momentum conservation |kout | = |kin |, the projection of kin
on G is opposite to G. Here, kin and kout are wavevectors of incident and Bragg diffracted waves, respectively.
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F 2.3: Photonic band structures for light propagating along the axis of a 1D periodic

structure consisting of alternating layers of width 0.5a with the dielectric function: (a) ε1 = ε2 =

13, (b) ε1 = 13 and ε2 = 11.6, and (c) ε1 = 13 and ε2 = 8.8.

Figure 2.3 shows ωn(k) for a 1D periodic structure with three different amplitudes

of the periodic function ε(x). The plot in Figure 2.3a is for the structure in which all

dielectric layers have the same ε(x) = 13, (8) and the periodicity a is purely fictitious. The

resulting k-dependence of the frequency is simply a straight line given by

ω(k) = ck/
√
ε. (2.51)

Because we have restricted k to the first Brillouin zone [− πa ,
π
a ], the line folds back into

the zone when it reaches the edges. Figure 2.3b is for a multilayer structure where ε(x)

of the layers slightly varies. It looks similar to that in Figure 2.3a, but with one important

peculiarity: near reduced frequency of 0.14, it reveals a narrow frequency range, in which

Eq. 2.50 has no real solutions. At the zone edges, k = ± 1
2G, the incident and diffracted

waves form standing waves with a wavelength λ = 2a. Since the standing waves should

also satisfy the Bloch theorem, there are only two ways to position them. The first stand-

ing wave has its extrema in the centers of the layers with ε1, and the other one, in the

centers of the layers with ε2. The wavelengths of these waves are still the same, but they

experience different ε, therefore their frequencies ω1 and ω2 are different. Consequently,

there appears a spatial and frequency separation of the two modes with the zone-edge

k-vector, which leads to a splitting of the photonic bands n = 1 and 2. The frequency

range between ω2 and ω1 contains no modes for the crystal and is often called a photonic

(8) For this example we have taken specific values of ε for materials used in multilayer devices: ε ≈ 13, 11.6 and
8.8 are values of the dielectric functions of GaAs, GaAlAs and AlAs, respectively, at λ = 900 nm.
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bandgap. We emphasize here that we shall reserve the term photonic bandgap for situa-

tions when no modes exist for wave propagation in all directions in the 3D space. When

a gap in the dispersion occurs only along a certain propagation direction, it will be called

a stopgap.

As shown in Figure 2.3c, with increasing dielectric contrast, the splitting, i.e., the

stop-gap width becomes noticeably larger. The width of the stopgap is determined by the

photonic strength S that is a gauge for the interaction between light and a photonic crystal

[28]. It can be readily derived from Eq. 2.50 that at k = ± 1
2G the photonic strength S, the

relative width of the stopgap, equals

S = ∆ω/ωc =
√

1 + η1/η0 −
√

1 − η1/η0 ≈
η1

η0
=

2
π

|ε1 − ε2|

ε1 + ε2
. (2.52)

We can see that S is proportional to the ratio of the dielectric contrast and the geometri-

cally averaged dielectric function. The photonic strength S can be enhanced by optimizing

the geometry of the periodic structure: by optimizing the Fourier components of the in-

verse dielectric function, minimizing η0 and enhancing η1. Eq. 2.52 is also valid for 2D

and 3D photonic crystals for low-order stopgaps when only two reciprocal-lattice vectors

are involved. Large photonic strength S is crucial for opening photonic bandgaps. The

larger the strengths S, the wider the stopgaps, and in a 3D photonic crystal with wide

stopbands, simultaneous diffraction on different crystal-lattice planes can result in an om-

nidirectional stopgap: a photonic bandgap.

2.2.3 Dispersion relation in 3D, photonic bandgap

We shall now discuss photonic dispersion in structures where the dielectric function ε(r)

is periodic in the three directions, e.g., shown in Figure 2.2c. Such 3D photonic crystals

are much more important than 1D and 2D ones because only they can possess a photonic

bandgap, which is essential for light localization and ultimate suppression of spontaneous

emission. The importance of 3D light confinement can be seen in the example of an emit-

ter interacting with a continuum of the field modes. Indeed, the emitter will always inter-

act with all field modes of its 3D environment, and therefore, no radical suppression of

spontaneous emission is possible if the modes in only, say, 2 dimensions are eliminated by

a 2D “bandgap”. For this advantageous property of 3D photonic crystals, a special price

must be paid: fabrication of 3D periodic structures with high photonic strengths is quite a

complicated task [20, 29]. An example of 3D photonic crystals that can be relatively easy
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F 2.4: Electron microscopy image of a polystyrene opal - a 3D colloidal crystal built from

polystyrene spheres close-packed in the f cc lattice. Image courtesy of N. Dziomkina.

fabricated in a large scale, is an opal-like structure made by self-assembly of dielectric

spheres into the close-packed fcc lattice, shown in Figure 2.4. As discussed above, a large

photonic strength S requires a high dielectric contrast and a low volume-averaged dielec-

tric function. Therefore, the inverse opals [30–32], fcc lattices of close-packed air spheres

in the backbone from a material with high ε, fulfil these requirements and are suitable

for the confinement of light in 3D. For this reason we will discuss in detail interaction of

light with an inverse-opal photonic crystal consisting of air spheres and shells from gal-

lium phosphide (GaP). In practice, it is rather difficult to infiltrate opals with GaP, and also

with other III-V semiconductors such as InP and GaAs [33, 34]. Nevertheless, GaP has

the highest dielectric function in the visible range: ε ≈ 11 at λ = 600 nm [35]; (9) which

makes this semiconductor very attractive for photonic applications requiring manipula-

tion with visible light. Therefore, we will consider a calculated photonic band structure

for an inverse opal consisting of air spheres covered by dielectric shells with ε = 11.

To obtain the dispersion relation for 3D periodic structures, we have solved the eigen-

value problem in Eq. 2.45, similarly to the 1D example, but we must take into account

more than just two reciprocal-lattice vectors G. First, let us consider a simple case: a

photonic band structure for an inverse opal with no dielectric contrast. Absence of the

dielectric contrast means that all non-diagonal elements of the eigenvalue matrix are ze-

ros. In Figure 2.5a, we plot the dispersion for an fcc periodic structure, in which both

dielectrics have ε = 11. The frequencies are plotted along lines in the first Brillouin zone

(9) The bandgap energy of GaP is 2.24 eV, hence the material does not absorb down to λ ≈ 550 nm.
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F 2.5: Calculated photonic band structure for an fcc lattice plotted along lines connecting

points Γ(k = 0), L, X, U, W, K (see the inset). The wavevector varies across the irreducible

Brillouin zone, along the trajectories Γ → L → U → X and Γ → X → W → K. The 3D lattice

consists of close-packed spheres (r = 0.25
√

2a, a - cubic lattice parameter) from a dielectric

with ε1, surrounded by spherical shells (1.25r) from a dielectric with ε2. (a) ε1 = ε2 = 11 (bulk

“GaP”, fictitious periodicity). (b) ε1 = 1 and ε2 = 11 (air spheres surrounded by “GaP” shells).

Solid curves are for s-polarization, and dashed curves are for p-polarization. Grey rectangles

indicate directions and widths of stopgaps and a bandgap. The calculations were done with a

basis of 725 plane waves.

joining high-symmetry points Γ, L, X, U, W, K (see the inset in Fig. 2.5a) that correspond

to (0, 0, 0), ( 1
2 ,

1
2 ,

1
2 ), (1, 0, 0), (1, 1

4 ,
1
4 ), (1, 1

2 , 0) and ( 3
4 ,

3
4 , 0), in units of 2π/a. These lines

bound the irreducible part of the Brillouin zone. Because all k-points have their symmetry

equivalents in the irreducible Brillouin zone, and the bands have their maxima (or min-

ima) on the high-symmetry lines at surface of the Brillouin zone, it is sufficient to plot the

dispersion relation along those lines only. If we consider band 1, we will see that starting

from the Γ point the frequency increases linearly with the wavevector with the slope de-

termined by ω1(k) = ck/
√

11 similar to the 1D case. After band 1 has reached the L point

and moves along the LU line, the frequency change seems to be non-linear. It is merely

because the frequency there is proportional to the square of the length of the wavevector

along the LU line. The frequency in the other bands behaves in the same way. The higher

bands can also be seen as linear functions of the k-vector, which originates at point Γ and

moves along the trajectories beyond the first Brillouin zone. For example, for band 2, the
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tip of the k-vector goes from the X point via U to L in the same way as for band 1, but

then it slides away along the ΓL line toward point Γ of a neighboring Brillouin zone. Be-

cause the number of G-vectors, i.e., the number of crystal planes increases quadratically

with length of the k-vector, the bands become more densely spaced at higher frequencies.

It should be also mentioned that the bands have a double degeneration because the two

polarization states are indistinguishable for this empty crystal.

The photonic dispersion changes radically when the dielectric contrast is increased.

Figure 2.5b shows the calculated band structure for the inverse opal that consists of air

spheres (ε = 1) and shells from a dielectric with ε = 11. The band structure reveals a wide

band splitting in the ΓL direction that corresponds to light diffraction on the (111) set of

crystal-lattice planes. This is the lowest-frequency stopgap since ΓL is the shortest path to

the surface of the Brillouin zone. Consequently, light at frequencies within this gap and

wavevectors kin parallel to reciprocal-lattice vectors G111 cannot propagate in the crystal.

The stopgap shifts to higher frequencies when the angle between kin and G111 increases.

On the opposite side of the diagram, at the point X, we see another stopgap, corresponding

to diffraction on the (200) set of lattice planes - the other Bragg plane contouring the first

fcc Brillouin zone. This stopgap is narrow due to a lower photonic strength S: modulation

of ε(r) is not optimal in this direction.

In Figure 2.5b we can see that the bands in the LUX and XWK planes are different

for waves with mutually orthogonal p and s polarizations (solid and dashed curves, re-

spectively). (10) Because bands 3 and 4 are degenerate at the point W [25], and bands 2

and 3 cross each other near the point U, there is no complete overlap between these (111)

and (200) stopgaps. Therefore, no photonic bandgap can be opened at these frequencies

for any dielectric contrasts. At frequencies around a/λ = 0.9, the band diagram reveals

a frequency range with no modes for all k-points - a photonic bandgap. Propagation of

waves at these frequencies is forbidden irrespective of direction. The bandgap is not only

an omnidirectional overlap of stopgaps associated with diffraction on higher-order lattice

planes but also a multiple diffraction, i.e., simultaneous coupling of waves with certain k-

vectors to many G-vectors [36]. When going back to low frequencies, we can see that the

dispersion is linear with the slope determined by the volume-averaged dielectric function.

Thus at the low-frequency limit, i.e, at long wavelengths compared to the lattice spacing

a, the light “sees” the crystal as a homogeneous medium.

(10) Waves propagating along the ΓX line, i.e., in [100] direction, are p-polarized when E vector lies in the plane
of incidence. When E is perpendicular to the incident plane, the wave is s-polarized.
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In this example, the photon band structure was calculated for a fixed dielectric con-

trast. This means that the variation of the reduced frequency a/λ is determined only by

the change of the lattice parameter a. However, for a specific photonic crystal, one is of-

ten interested to know the band structure for a fixed lattice parameter but varying optical

frequency ω. In that case, due to possible dispersion of the dielectric function ε(ω) of the

materials constituting the photonic crystal, the dielectric contrast becomes a function of

the reduced frequency a/λ.

2.3 Local density of states in photonic crystals

In Section 2.1 (Eq. 2.27) we introduced the local radiative density of electromagnetic

states (LDOS). We have already seen in Eq. 2.32 that the radiative rate of spontaneous

emission is determined by the LDOS at the emission frequency, projected on the orienta-

tion of the transition dipole. Now, by a simple example of a single mode in a cavity, let

us first consider the dependence of the LDOS on the profile and orientation of the field

mode relative to the emitting dipole. In Figure 2.6a we plotted a field mode Λy(x) with

the Gaussian profile in a cavity with ε = 1, which confines light along the x-direction. The

field in the mode is polarized in the xy plane and has the wavelength λ = 2πc/ωd, where

ωd is the dipole transition frequency. For this single mode, the expression for the LDOS

(Eq. 2.27) becomes

Nyy(x) =
1

(2π)3 |ed,yΛy(x)|2, (2.53)

where ed,y is a projection of the dipole orientation ed on the y-axis. In Figure 2.6b we show

the resulting LDOS as a function of the location in the cavity. We see that the density of

the mode has maxima and minima which resemble the extrema of the field Λy(x). For

dipoles oriented perpendicularly to the y-axis, the LDOS is zero: such dipoles can not

couple to the modeΛy(x). By this simple example of a single mode, we have demonstrated

that the LDOS strongly depends on the location and orientation of the emitting dipole.

Let us now turn our attention to photonic crystals. In the previous section we have seen

that interference of scattered waves in photonic crystals strongly modifies propagation of

light. We can predict the effect of an infinite photonic crystal by solving the H-field wave

equation set in Eq. 2.45 for a given ε(r). Knowing the eigenmodes of the photonic crystal,

we can also calculate effects on the radiation dynamics of embedded light sources. In a
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F 2.6: (a) Cavity field mode Λy(x) with a Gaussian profile (dotted curve) normalized to its

maximum. (b) The density of the mode Λy(x) normalized to its maximum for a dipole oriented

in y-direction.

photonic crystal, the eigenmodes En,k(r) = Λn,k(r)/
√
ε(r) (11) are Bloch functions, so that

the expression for the LDOS in Eq. 2.27 becomes

N(r, ω, ed) =
1

(2π)3

∑
n

∫
BZ

dkδ(ω − ωn,k)|ed · En,k(r)|2, (2.54)

where n is the band index. Very often, one studies spontaneous emission from a collec-

tion of atoms with randomly-oriented transition dipole moments. In this case, the dipole

orientation ed is averaged over all solid angles, which results in

N(r, ω) =
1

6π2

∑
n

∫
BZ

dkδ(ω − ωn,k)|En,k(r)|2. (2.55)

Further, in order to describe emission dynamics of atoms randomly distributed in the

photonic-crystal unit cell, the LDOS can be integrated over the unit cell:

Nav(ω) =
∫

WS C
drρ(r)N(r, ω), (2.56)

where ρ(r) is a density of atoms at certain points in the crystal. We should note here

that in such experiments on ensembles of identical atoms in photonic crystals, the ob-

(11) The H-field plane-wave method results in the set of eigenmodes Hn,k(r), which are related to En,k(r) by the
Maxwell equations in Eqs. 2.39.
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F 2.7: LDOS calculated with the plane-wave method in the same GaP inverse-opal

photonic crystal as in the previous section. (a) LDOS at (0,0,0) [the center of an air sphere]

and at ( 1
4 ,

1
4 ,

1
4 ) shown by connected circles and triangles, respectively. (b) LDOS at ( 1

4 ,
1
4 , 0)

[at the window between two air spheres] projected on [1,1,0] and [0,0,1] directions shown by

connected squares and triangles, respectively. Dotted curves are for LDOS in a homogeneous

medium with ε = 3.1. This value of ε corresponds to the unit-cell averaged dielectric function in

the inverse opal.

served intensity of spontaneous emission does not decay in time as a single-exponential

function, as one might naively think. The intensity decay in this case is a distribution of

exponential decays, and the average rate constant of the distribution can be compared to

that determined with the average LDOS in Eq. 2.56.

To examine the effects of photonic crystals on the LDOS and radiative dynamics of

internal sources, we will consider the example of the GaP inverse-opal photonic crystal,

whose dispersion relation was discussed in the previous section. In Figures 2.7a and 2.7b

we show the LDOS at three different positions in the crystal unit cell: at points (0,0,0),

( 1
4 ,

1
4 ,

1
4 ) (a) and ( 1

4 ,
1
4 , 0) (b). At the first two points, the LDOS does not depend on

the dipole orientation ed due to high symmetry, whereas at the third point, the LDOS is

strongly orientation-dependent. At frequencies near the lowest-order stopgaps, a/λ ≈ 0.6

[compare to Figure 2.5b], the Bloch modes are eliminated for k-vectors in a solid angle,

which can occupy a considerable part of the whole 4π solid angle. This leads to decreased

LDOS and spontaneous-emission rate γ, especially when the orientation of the transition

dipole ed and its position in the unit cell are not favorable for coupling to allowed Bloch

modes. At frequencies in the photonic bandgap, a/λ ≈ 0.9, there are no Bloch modes at
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all: the LDOS is zero regardless the dipole orientation and position in the unit cell. Con-

sequently, spontaneous emission from a dipole emitter vanishes completely. The decay

of the excited state in this case can only occur via possible non-radiative channels and via

weaker atom-field interaction processes, such as, e.g., two-photon dipole-quadrupole pro-

cesses [10]. On the other hand, at frequencies outside the bandgap, the density of Bloch

modes is increased leading to enhanced radiative decay rates. Figure 2.7 reveals sharp

peaks in the LDOS just above the bandgap, which are called van Hove singularities. In

this situation, the Weisskopf-Wigner approximation does not hold, which means that the

full equation of motion (Eq. 2.28) must be solved. Consequently, the emission decay of a

single atom is not exponential as it is in media with smoothly varying LDOS. In several

theoretical papers [11, 37–39], it was predicted that near the bandgap edge the decay of

spontaneous emission is fractional and has an oscillatory behavior. As we have seen by

this realistic example, the strong modification of the LDOS in photonic bandgap materials

can lead to ultimate suppressions as well as enhancements of spontaneous emission.

The plane-wave method is a widespread technique to calculate eigenvalues and the

local density of eigenmodes in infinite and perfectly-periodic 3D photonic crystals. To

calculate the eigenmodes Ek(r) for a finite structure or in a defect of a periodic structure,

one has to use an expansion with an enormous number of plane waves, which therefore

makes the task practically not realizable. An alternative approach is to find the LDOS

via the Green’s tensor G(r,r′, ω), which represents the electric field at position r radiated

by three orthogonal dipoles located at r′ [40, 41]. For a scattering system described by

dielectric function ε(r), G(r,r′, ω) is a solution of the wave equation with a point source:

∇ ×
[
∇ ×G(r, r′, ω)

]
− ε(r)

ω2

c2 G(r, r′, ω) = −Iδ(r − r′), (2.57)

where I is the unitary matrix. Because G(r,r′, ω) can be expressed in terms of the Bloch

functions:

G(r, r′, ω) =
c2ε(r′)
ε(r)

∑
n

∫
BZ

dk
E∗k(r′)Ek(r)

ω2 − ω2
k
, (2.58)

the LDOS can be inferred via evaluating the imaginary part of the Green’s tensor when

the source point r′ coincides with r:

N(r, ω, ed) = −
2ω
πc2 Im{eT

d · [G(r, r, ω)] · ed}. (2.59)

The same can be done for the dipole-averaged LDOS:

N(r, ω) = −
2ω
πc2 Im{Tr[G(r, r, ω)]}. (2.60)
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The obtained expressions for the projected and dipole-averaged LDOS yield the same

results as Eqs. 2.54 and 2.55 that contain the Bloch functions. This approach is advanta-

geous when it is difficult to find the set of Bloch functions. The Green’s tensors can be

readily calculated for finite structures with various geometries built from particles with

known scattering properties, e.g., spheres. Therefore, the Green’s-tensor method is ideal

for finite-sized opals or inverse opals with or without defects.

Modifications of the spontaneous-emission rates in finite 3D dielectric structures with

arbitrary geometries can be inferred using the method of finite-difference time-domain

(FDTD). The flexibility of this technique is paid by its computational complexity: the field

across the whole structure is required to be evaluated for a single dipole orientation. This

makes the method less effective for more-or-less large structures and for cavities where the

waves travel for a long time. Nevertheless, the simulations reported in [42, 43] revealed

that 3D crystallites built of only a few unit cells are enough for substantial modifications

of the emission rates of embedded sources.

2.4 Conclusions

We have reviewed the quantum theory of light-matter interaction, which explains the re-

laxation process of the atomic excited state via emitting a photon. We have also discussed

important approximations necessary to derive the analytic expression for the rate of spon-

taneous emission. Propagation electromagnetic waves in periodic dielectrics was studied.

We explained the origin of the photonic band gap as well as the photonic dispersion re-

lation in 3D photonic crystals. Based on the results from the H-field plane-wave method,

we concluded that the LDOS can be radically modified in photonic crystals: the frequency

dependence of the LDOS is noticeably different from that in homogeneous media. In ad-

dition, in photonic crystals, the LDOS, and therefore, the rate of spontaneous emission

are the functions of position in the crystal unit-cell and orientation of the transition dipole

moment.
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C 3

T   

  

We discuss the necessary instruments to control the process of spontaneous emission of light. Pho-
tonic crystals are recognized as an ideal tool for radical suppression and also enhancement of spon-
taneous emission. The rate of spontaneous emission vanishes completely, and light is localized in
defects inside photonic crystals with a photonic bandgap. We review the requirements on the crystal
symmetry and the dielectric contrast for opening of the bandgap as well as the methods to fabricate
such periodic structures on a large scale. Thereafter, optical probes necessary to investigate the
interaction of light with real photonic crystals are discussed. These probes include measurements
of angle-resolved spectra of reflected and transmitted light as well as emission from internal light
sources, both angle- and time-resolved. We also consider the role of unavoidable structural disorder
in light propagation through real photonic crystals. We give a detailed description of polystyrene
opals and titania inverse opals - photonic crystals used in our emission experiments. Finally, we
discuss light sources that can be used as internal fluorescent probes of photonic crystals.

3.1 Experimentally realized structures
with photonic bandgaps

It is important to emphasize that photonic bandgaps do not appear in crystals with any lat-

tice symmetry and any dielectric contrast. Existence of photonic bandgaps for reasonable

dielectric contrasts were predicted only in a few structures: the diamond [1] and diamond-

like structures [2], the so-called Yablonovite [3], the simple cubic (sc) structures [4], the

face-centered-tetragonal “woodpile” structure [5] and the close-packed fcc and hcp struc-

tures [6]. For all these symmetries, a photonic bandgap appears if the dielectric contrast

exceeds a certain threshold.

41
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(a) (b)

1.5 µm 1 µm

F 3.1: (a) Scanning electron microscopy (SEM) image of a silicon inverse opal (cut

along (111) facet): the crystal consists of air-spheres packed in the f cc lattice and covered

by silicon shells. The black holes are windows connecting the spheres. Image courtesy of A.

Blanco [9]. (b) SEM image (top view) of a woodpile photonic crystal consisting of four layers of

silicon rods. The structure was made by the layer-by-layer assembly described in [14].

We will first consider close-packed periodic structures with the fcc crystal symmetry,

because they can be made relatively easy on the large scale using self-assembly meth-

ods [7–10]. An example of experimentally realizable photonic crystals that can possess a

bandgap are silicon inverse opals, which have a refractive-index contrast of about 3.5 in

the infrared range [9, 10]. Figure 3.1a shows an SEM image of such inverse-opal pho-

tonic crystal made from silicon. The drawback of the fcc periodicity is that the photonic

bandgap in crystals with this lattice symmetry is caused by high-order diffraction. Conse-

quently, the relevant Fourier components of ε are smaller than in the first-order diffraction

leading to a narrower gap. For fcc photonic crystals built from air spheres, the refractive-

index contrast (
√
ε1/ε2) should be larger than 2.8 for the bandgap to appear between

bands 8 and 9 [4, 6]. The high-order diffraction is also more sensitive to unavoidable

structural disorder than the first-order diffraction. Indeed, due to random displacements

of the building blocks of the periodic structure, the intensity of the diffraction is reduced

by D ∼ eu2/λ2
, where u is the average displacement from the ideal lattice plane and λ is

the Bragg wavelength. D−1 is known as the Debye-Waller factor [11].

For the diamond-lattice symmetry, the requirement on the dielectric contrast is less

strong: the bandgap opens between bands 2 and 3 for refractive-index contrasts larger

than 1.9 [5]. In contrast to the case with the fcc symmetry, this bandgap corresponds

to the first-order diffraction, which is less sensitive to the structural disorder. Moreover,

the softer requirement on the dielectric contrast gives a greater choice of materials to
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make photonic crystals with wide bandgaps. Therefore structures with the diamond and

the diamond-like symmetries are very desired. However, fabrication of such structures

with the submicron periodicity and a considerable number of lattice periods is still a

challenge. The methods of self-assembly of colloidal particles mainly result in close-

packed fcc structures. Attempts to use patterned surfaces to grow colloidal crystals with

other symmetries than the fcc have led to structures with the sc symmetry, however, with

only a few periods in thickness [12]. The lithographic layer-by-layer methods, on the

other hand, result in the desired structures as can be seen in Figure 3.1b. Due to many

technological steps, required for fabrication of a single crystal layer, these structures are

also limited to only a few lattice periods [13–16].

A very promising method to manufacture the bandgap structures is the photoelectro-

chemical etching and subsequent focused-ion-beam drilling [17–19]. In the photoelec-

trochemical etching process, a pattern of pores is created in silicon. Then the structure

is cleaved, and a new pattern of pores orthogonal to the first one is drilled with a fo-

cused ion beam. The smallest lattice parameter is determined by the minimum feature

size of the etch and drill processes and is about 100 nm. This method yields diamond-like

“woodpile” crystals with thicknesses of about 20 periods and even larger lateral sizes.

The 3D holographic lithography [20, 21] and the direct laser writing by multi-photon

polymerization [22, 23] are two techniques, which can potentially result in photonic-

bandgap materials over large volumes. In the 3D holographic lithography, interference of

four non-coplanar laser beams in a polymer photoresist generates an intensity distribution

in a form of a 3D lattice, in which the reciprocal-lattice vectors are equal to the differ-

ences between the wavevectors of the beams. The use of an ultraviolet laser results in a

minimum feature size down to 100 nm. In the direct laser writing, a desired 3D pattern is

drawn in the photoresist by a focused laser beam. With two-photon polymerization, one

can achieve lateral voxel sizes down to 120 nm, and this determines the size of the smallest

features. Both these methods result in high-quality periodic structures from the polymer

photoresist with thicknesses of 10-80 lattice periods and much greater lateral dimensions.

The main deficiency of these techniques is that, in order to obtain high dielectric-contrast

replicas from such 3D polymer templates, a complex process of double inversion must

be performed [24]. An alternative way to avoid the necessary double inversion of the

polymer templates is direct laser writing in chalcogenide glasses that have refractive in-

dices above 2.45 [25]. The direct laser writing method has another advantage: functional

defects in the polymer lattice can be introduced in a controlled way.
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3.2 Optical characterization of photonic crystals

3.2.1 Observation of stopgaps

Theory for photonic crystals often describes light interaction with perfect infinitely large

crystals [1, 6, 26–28]. In practice, however, every structure is finite and has unavoidable

disorder. The existence of a photonic bandgap predicted by the theory for ideal periodic

structures is questionable for real photonic crystals [29, 30]. Therefore, experimental in-

vestigations of fabricated photonic crystals are necessary to reveal if real crystals indeed

possess signatures of a bandgap and to understand how they interact with light. Available

tests of optical properties of photonic crystals include measurements of angle-resolved

spectra of reflected, transmitted and emitted from internal light sources; for examples of

such experiments see [31–45]. In a reflection experiment, the crystal is illuminated by

external plane waves of a wide spectrum; light at frequencies inside a stopgap is Bragg

diffracted and rejected from the crystal. Comparing the spectrum of rejected frequencies

to the reflectance from a known reference, e.g., a flat metallic mirror, reveals a stopband

- an experimental measure of a stopgap. As an example in Figure 3.2, a reflectivity spec-

trum measured from a polystyrene opal (a) is compared to a calculated photonic band

structure for an opal with a dielectric contrast of 2.53 (b). The reflectivity measured at

normal incidence to the (111) crystal-lattice plane reveals two peaks at frequencies where

the stopgaps are predicted by the theory. The peak at a/λ = 0.6 is a manifestation of a

stopband due to the first-order Bragg diffraction on the set of (111) lattice planes. The

peak at a/λ = 1.1 is associated with the second-order diffraction on the same lattice-

plane set. However, comparison of the reflectivity spectrum with the calculated bands

becomes complicated at higher frequencies, because of the bands folded back into the

first Brillouin zone [45]. This frequency range already reveals a limitation of reflection

experiments, since an increased reflectivity may be also due to flat dispersion bands and

not only to absence of bands (as in a stopgap). The reduced reflectivity of the stopbands to

less than 100 % is attributed to imperfections of the crystal lattice. This effect of structural

disorder will be discussed in the following section.

In angle-resolved experiments, stopbands associated with diffraction on other lattice

planes can be studied, i.e., with other k-vectors in the Brillouin zone. Repulsion between

stopbands due to simultaneous Bragg diffraction, a prerequisite of a photonic bandgap,

was observed in strongly-interacting photonic crystals in angle-resolved reflection [37,



3.2 Optical characterization of photonic crystals 45

F 3.2: (a) Measured normal-incidence reflectivity spectrum from a polystyrene opal

(rsphere = 241 nm) consisting of hundreds of lattice periods in all directions. (b) Photonic band

structure for an f cc crystal built from dielectric spheres with ε = 2.53. The bands are plotted

versus wavevector on the ΓL line, see the inset in Fig. 2.5.

43] as well as emission experiments [39]. A possible evidence of a photonic bandgap

would be to find a range of frequencies where stopbands overlap for all directions. An

invariant stopband was observed along high-symmetry directions of the Brillouin zone

for the silicon inverse opals [42]. In another experiment, an overlap of stopbands over

a wide solid angle was demonstrated in a “woodpile” photonic crystal [44]. However,

the angle-resolved reflection (and emission) spectra require a careful analysis: crystals

without a photonic bandgap can also reveal omnidirectional stopbands (see, e.g., [38]).

The difficulty is that the apparent reflection peaks (troughs in emission and transmission

spectra) can be caused by “dark” modes - modes of the crystal, to which coupling of

external waves is impeded [46, 47]. Therefore, reflection and transmission experiments

do not provide conclusive proofs of the existence of a photonic bandgap.

3.2.2 Role of structural disorder

The measured reflectivity in stopbands is often less than 100 %. In the reflectivity spec-

trum of the polystyrene opal in Fig. 3.2a, we see features that are not explained by the

theory: the experimental peaks are rounded and have maxima lower than 100 %. Ideally,

one would expect rectangular peaks with 100 % reflectivity. The rounding, asymme-
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F 3.3: Schematic representation of emission propagating through a bulk photonic crys-

tal. Directional emission pattern from a light source initially determined by locally available

Bloch modes is smeared out by random scattering over a specific length `. At distances from the

surface smaller than `, photons escape ballistically from the crystal. The emission is diffracted

by the crystal planes and attenuated in the direction of the stopgap if the last scattering event

occurs at distances larger than the length LB necessary for Bragg diffraction to build up.

try and lowered intensity of the peaks are explained by extinction, (1) which is due to

various structural imperfections: regions with non-crystalline features, grain boundaries,

dislocations and other defects peculiar to all types of crystals [48]. It is important to

realize that the building blocks of metastructures such as photonic crystals are never iden-

tical to each other, in contrast to atoms in atomic crystals. Therefore, imperfections like

the size variation, roughness and displacement of the building blocks are always present

in all photonic crystals [49]. This omnipresent disorder induces random scattering of

light and leads to diffuse (Lambertian) reflection of external light, thereby affecting the

interference-induced properties of photonic crystals. This explains the decreased attenu-

ation in the stopbands in Fig. 3.2a and why the attenuation at higher frequencies a/λ is

noticeably lower than that at the frequencies of the first-order stopband.

In a bulk photonic crystal, due to the defect-induced multiple scattering, the direction

of propagation of a coherent light beam coupled to an allowed mode is randomized over a

length scale called the transport mean free path. This transport mean free path ` limits the

range of the crystal sizes for photonic applications where the coherency is of importance.

A typical value of ` = 15 µm was obtained for polystyrene opals and TiO2 inverse opals

(1) Absorption could also explain these experimental features, but it can be safely neglected in the case with
polystyrene and with many other dielectrics.
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[50]. This length is equivalent to a distance of about 40 unit cells or 70 lattice planes,

which is large enough so that Bragg diffraction can build up. Although propagation of

light in the direction of a stopgap is attenuated, there are other directions that are allowed

by the crystal. Due to the multiple random scattering, the light propagates in a sort of

zigzag way in the direction of the stopgap as sketched in Figure 3.3. If a scattering event

occurs close to the crystal surface, the light can be detected unattenuated even in the direc-

tion of the stopgap. Consequently, in emission spectra from sources inside large photonic

crystals as well as in transmission spectra through such crystals, pronounced stopbands

can still be observed, however, their attenuation is considerably decreased by the random

scattering. A stopband with nearly 100 % attenuation in the emission spectrum would

unambiguously indicate a presence of a photonic bandgap [51]. Indeed, the bandgap at-

tenuates propagation in all directions, thus light emitted in defects is trapped inside the

crystal, and the frequencies of the bandgap do not appear in the emission spectrum. A

detailed study of emission spectra from light sources embedded in bulk photonic crystals

is presented in Chapter 4. Comparing the measured data to a theoretical model, which

comprises the photonic band structure and effects of disorder, we explain the attenuation

in stopbands as well as the distribution of emitted light exiting a bulk photonic crystal.

3.2.3 Time-resolved emission

Besides controlling propagation of light, photonic crystals can strongly influence the ra-

diation dynamics of embedded emitters, as discussed in Chapter 2. The evolution of the

emitter’s excited state can be observed in a time-resolved experiment, where the intensity

of emitted light is measured after a short excitation pulse. From the slope of the intensity

decrease one can extract the radiative lifetime - the inverse of the emission decay rate.

The latter is directly related to the LDOS in a photonic crystal and, thus, constitutes a

first experimental constraint on this important theoretical concept. Measurements of the

spontaneous decay rate as a function of the photonic-crystal size can give an unambigu-

ous proof of a bandgap. The bandgap is the frequency range where the LDOS vanishes

completely, and thus, it can only exist in infinitely large photonic crystals. If the sym-

metry of a finite-size crystal allows a bandgap in the infinite-size limit, the decay rate at

frequencies inside the gap will decrease exponentially to zero with the increasing crystal

size (L): limL→∞γ = 0. Otherwise, the limiting value of the decay rate will be finite, for

frequencies outside the gap, or if it is not allowed by the structure [52, 53].
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F 3.4: Measured decay rate (squares) and relative emission intensity (circles) from

quantum dots at λ = 610 nm versus the angle from the normal to the sample surface. The

measurements were performed on a TiO2 inverse opal with the lattice parameter a = 420 nm.

The curves connecting the data are guides to the eye. The relative intensity is inhibited by a

stopband in a wide angular range from 0◦ to 35◦, whereas the decay rate is the same in all

directions, as expected. The angle-resolved experiments are discussed in detail in Chapter 4,

and the emission decay rates, in Chapter 5.

Analysis of the time-resolved emission is often complicated: the measured decay

curves yield the total decay rate, which is the sum of the radiative rate γrad and the de-

cay rate via all non-radiative channels γnrad. These non-radiative channels are determined

by the chemical environment of the emitters. Therefore, the correct interpretation of the

time-resolved effects requires a comparison of the data from a photonic crystal to a chem-

ically identical reference. A strong lifetime effect in weak photonic crystals reported

in [54] is likely caused by chemical interactions between dye molecules and interfaces

in photonic crystals [55]. Because emitters in photonic crystals are often distributed in

different environments, both optically and chemically, measured emission decay curves

are multi-exponential, which requires advanced modeling to infer the decay-rate distri-

butions. Special attention should be also paid to emission from the host material: the

measured decay curves can be distorted by fluorescence of the backbone of the crystal

under the short-wavelength excitation. Furthermore, unphysically direction-dependent

lifetimes in Ref. [56] are most likely caused by influence of the backbone fluorescence on

the measured decay curves. In several other reports [33–35, 40], stopbands in emission

spectra were wrongly associated with strong inhibition of spontaneous emission. How-

ever, in contrast to the directional stopbands, the radiative decay rate is an angle-integrated

property as predicted by theory (Eq. 2.32): the LDOS counts modes with all k-vectors.
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Figure 3.4 shows an example of angle-resolved emission decay rate and continuous-wave

intensity in a photonic crystal: the intensity is strongly direction-dependent as a conse-

quence of Bragg diffraction, but the decay rate is the same for different directions. There-

fore, no change of the emission rates can be concluded from measuring a stopband in

one particular direction. By measuring the total emitted power from sources with a low

quantum efficiency and comparing that power to a homogeneous medium, it is possible

to infer modifications of the emission decay rates [57]. However, in order to truly con-

trol spontaneous emission, one needs highly-efficient light sources and strongly photonic

crystals. In Chapter 5 we describe a lifetime experiment, in which considerable modifica-

tions of decay rates of spontaneous emission were observed in the TiO2 inverse opals and

compared to the calculated LDOS.

3.3 Photonic crystals studied in this work

In the experiments described in this thesis, we have studied two types of 3D photonic crys-

tals: polystyrene opals and titania inverse opals. The polystyrene opals are fcc crystals of

close-packed polystyrene spheres prepared from a colloidal suspension by self-assembly.

The titania inverse opals are fcc structures of close-packed air spheres in a solid matrix of

TiO2. Polystyrene opals as well as titania inverse opals are transparent for visible light,

of a high quality and well characterized [7, 58, 59]. The inverse opals also have a high

refractive-index contrast of about 2.7, which makes them the most strongly photonic 3D

crystals for optical frequencies. Figure 3.5 shows scanning electron microscopy (SEM)

images of surfaces of a polystyrene opal (a) and of an inverse opal from titania (b). De-

tails of the preparation and characterization of the opals and inverse opals can be found

in Reference [7]. All the crystals have typical dimensions of 2x2x0.2 mm3 and contain

high-quality domains with diameters larger than 50 µm. These domains have flat faces

parallel to the (111) crystal plane, which is evident in Fig. 3.5.

We have calculated the photonic band structures corresponding to the polystyrene

opals and titania inverse opals and plotted them in Figure 3.6. The band structure of the

opals reveals a 6 % stopgap along the the ΓL direction (Fig. 3.6a), that corresponds to
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(a) (b)

F 3.5: SEM images (top view) of two photonic crystals with the f cc crystal symmetry:

a polystyrene opal (a) and an inverse opal (b). In the inverse opal, the white material is TiO2

(titania), while the air-spheres appear grey. Neighboring air-spheres are connected by windows,

which are seen as the black holes.

F 3.6: The photonic band structures plotted along lines connecting points Γ, L, X, U, W,

K (see the inset in Fig. 2.5) calculated for two f cc crystals: (a) opal consisting of close-packed

spheres with ε = 2.53 and (b) titania inverse opal built from air spheres surrounded by dielectric

shells (ε = 6.5). Parameters of the shell structure for the inverse opals are described in detail

in Chapter 6. Grey rectangles indicate stopgaps in the ΓL direction and one stopgap in the ΓX

direction for the inverse opal. The calculations were done using 725 plane waves.
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Bragg diffraction on the (111) crystal-plane set. Such first-order stopgaps, also called

L-gaps, are typically seen as reflectivity peaks in normal-incidence measurements, as

demonstrated in Fig. 3.2a. Because the inverse opals have a higher photonic strength, as

discussed in Section 2.2, the band structure for the inverse opals has brighter features.

In Fig. 3.6b we see a broader L-gap as well as other, higher-order stopgaps in the ΓL

direction and a narrow stopgap in the ΓX direction. The L-gap in the inverse opals is

wider (11 %) than in the opals and occurs at slightly higher frequencies due to a lower

volume-averaged refractive index in the inverse opals (nav = 1.27) than that in polystyrene

opals (nav = 1.45).

Prior to investigating emission in our photonic crystals, the stopgaps predicted by

the band structures were studied experimentally. First, we inspected the opals and the

inverse opals with an optical microscope: samples with large high-quality domains have

flat and opalescent (in case when the stopbands are in the visible range) surface regions.

Then, using an external broadband light source, reflectivity spectra were recorded from

those regions in order to determine the center frequencies and the widths of the stopbands

[36, 43]. The reflectivity spectra were recorded using a Fourier-transform spectrometer

F 3.7: Normal-incidence reflectivity spectra from titania inverse opals with four different

lattice parameters: (1) a = 370 nm, (2) a = 425 nm, (3) a = 600 nm and (4) a = 755 nm.

The reflectivity peaks represent the first-order stopbands, the frequency ranges of which are

determined by the lattice parameter. The relative width of the stopbands ∆ω/ω is about 0.16.

Sample 4 clearly shows second-order stopbands within the studied frequency range: between

15500 and 19500 cm−1.
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(Biorad FTS-6000). Only samples with reflectivity larger than 15 % were selected for the

emission experiments. A typical reflectivity spectrum from the polystyrene opals has been

shown in Fig. 3.2a. The reflectivity measurements at normal incidence on the polystyrene

opals reveal the first-order stopband with reflectivity up to 80 % and the relative width of

about 0.075. In Figure 3.7 we present reflectivity spectra from four titania inverse opals

with different crystal lattice parameters. In reflection measurements on the titania inverse

opals, the stopbands with reflectivity up to 75 % were observed. The center frequency

of the first-order stopband increases with decreasing lattice parameter, and the relative

width is unchanged: ∆ω/ω ≈ 0.16. In earlier studies, it was shown that propagation of

light at frequencies within the lowest stopband is forbidden for 55 % of the 4π solid angle

[36]. The three stopbands of the higher order (Fig. 3.7, curve 4) are caused by the second-

order stopgaps, which have negligible angular dispersion and, hence, are the precursor of

a photonic band gap [38].

3.4 Light sources

The ideal light source for emission-lifetime experiments in photonic crystals should meet

the following essential requirements: (a) a narrow emission spectrum in order to maxi-

mally feel changes of the LDOS, (b) a high magnitude of the transition dipole moment

that determines the emitter-field interaction, as discussed in Chapter 2 (Eq. 2.4); (c) a low

rate of non-radiative transitions γnrad, which means a nearly 100 % quantum efficiency;

and (d) its optical properties such as energy levels and the transition dipole moment as

well as the non-radiative rate γnrad are insensitive to the chemical environment. We now

will briefly review several classes of light sources.

Lanthanides, or rare-earth atoms, show luminescence due to transitions from 4f inter-

nal atomic levels, which are shielded by the outer electrons. Therefore these transitions

are, in principle, not influenced by the environment. The emission spectra of all lan-

thanides have characteristic sets of sharp peaks [60]. The drawback of these emitters is

that the internal-shell transitions are parity forbidden, which results in low values of the

transition dipole moment and consequently, low emission rates. The emission lifetimes

of such ions are therefore very long: from microseconds to milliseconds. Fluorescent

molecules, for comparison, have nanosecond emission lifetimes. For the same reason, the
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absorbance of these ions is also poor, and the quantum efficiency of most of lanthanides

is rather low.

In contrast to a few kinds of atomic emitters, there is a great variety of organic fluo-

rescent molecules often called organic dyes [61, 62]. These organic light sources cover a

wide range of wavelengths: from ultraviolet to near infrared. Organic fluorescent probes

are available with quantum efficiencies close to 100 %, with short (nanoseconds) as well

as long (up to milliseconds) lifetimes. Optical properties of these emitters, however, are

strongly influenced by chemical interactions [61, 62]: this property is often used in char-

acterization of complex chemical and biological systems. However, one often encounters

difficulties using organic dyes as fluorescent probes in photonic crystals made from strong

quenchers such as, e.g., TiO2 [63]. Furthermore, under influence of excitation light, ir-

reversible modifications of dye molecules often occur, making the molecules nonfluo-

rescent. This photobleaching process is the main drawback of the organic dyes, which

limits their usage time. Due to complex structure of the molecular vibrational levels, the

homogeneous emission linewidth of dye molecules is rather broad: mostly broader than

stopbands of photonic crystals. This makes the dyes ideal internal probes of photonic

crystals in angle-resolved experiments: the stopbands can be readily inferred from mod-

ified shapes of the broad emission spectra. On the other hand, the radiative lifetime of

the dyes is determined by an average LDOS over the homogeneous linewidth, and the

changes of the lifetime are expected to be small [64, 65].

Semiconductor nanocrystals, also known as quantum dots, are a new and very promis-

ing type of light sources [66–68]. In contrast to bulk semiconductors, the exciton energy-

level structure of the nanocrystals is strongly size- and shape-dependent due to the small

sizes of several nanometers. In a bulk semiconductor, when an electron is excited across

the bandgap into the conduction band, it leaves a hole in the valence band. By the at-

tractive Coulomb interaction, the excited electron in the conduction band and the hole in

the valance band may approach each other and form an electron-hole pair called exciton.

In case of a bulk CdSe semiconductor, such an electron-hole pair forms a weakly bound

exciton or the Wannier exciton [69, 70]. The average electron-hole separation distance

is known as the Bohr radius, which is about 6 nm in bulk CdSe. If the size of the semi-

conductor particle is comparable to the Bohr radius, the exciton is confined inside the

resulting quantum dot. With a further decrease of the quantum-dot size, the energy gap

becomes larger and the valence and conduction bands gradually split to discrete levels,

as schematically depicted in Figure 3.8a. This discrete-level energy structure in quantum
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F 3.8: (a) Schematic band structure of a bulk semiconductor (le f t) and of a nanocrystal

(right). In the bulk crystal, the energy gap ∆Ebulk separates the populated valence band (VB)

from the empty conduction band. In the nanocrystal, the energy-level scheme is discrete; the

highest occupied and lowest empty levels are separated by the size-dependent gap ∆Enc. (b)

Measured absorption (solid curve) and emission (dashed curve) spectra of CdSe-ZnSe core-

shell quantum dots with the average diameter of 4.5 nm. The emission is measured at a

non-resonant excitation with λ = 450 nm. The inhomogeneous broadening of the absorption

and emission peaks as well as the Stokes shift between the peaks are due to a size dispersion

of the nanocrystals [70]. Image courtesy of F. van Driel.

dots results in narrow, atom-like emission spectra. For example, at cryogenic tempera-

tures, AlAs/InAs/GaAs quantum dots grown by molecular beam epitaxy (further, MBE

quantum dots) and CdSe colloidal quantum dots have relative linewidths ∆ω/ω that are

less than 1.5 · 10−4 [71, 72]. At higher temperatures, the MBE quantum dots become dark

due to low exciton binding energies in these dots. The emission linewidth of colloidal

quantum dots increases with temperature; and at room temperatures, it is ∼ 0.025 [73, 74],

which is still small enough to observe the LDOS variations in photonic crystals. On the

other hand, because the level spectrum at high energies is still continuous as in bulk semi-

conductors, the absorbtion spectra of the quantum dots are very broad. This gives freedom

to choose the excitation frequencies in the emission experiments on a particular photonic

crystal: the frequency should be low to minimize the backbone fluorescence but, on the

other hand, it should be outside the stopbands of the photonic crystal. In Figure 3.8b we

see wide absorption and narrow lowest-exciton emission spectra from the CdSe quantum

dots with the diameter of about 4.5 nm. The observed peaks in the absorption and emis-
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sion spectra are inhomogeneously broadened because of the size variation between the

quantum dots in the ensemble.

By appropriate selection of materials and sizes of quantum dots, one can tune emis-

sion over a wide range of wavelengths. The exciton emission in ZnO quantum dots can

be tuned around 380 nm [75–77]. Dots from CdSe and CdTe cover most of the visible

range between 460 and 760 nm [78–80]. In the infrared, emission from MBE dots can

be tuned within 0.85 - 1.1 µm range [68, 71, 81–83] and from PbSe/PbS dots within 1.1

- 2.2 µm range [84–86]. The radiative lifetimes of different nanocrystals range from pi-

coseconds to microseconds. Quantum dots can be also capped with semiconductors with

larger bandgaps and/or with layers of organic materials [78, 87–90]. These capping lay-

ers shield the nanocrystals and prevent interactions of excitons with the surface thereby

enhancing the quantum efficiency and chemical stability of the quantum dots. Various

capping techniques of the MBE quantum dots result in a red shift of emission wave-

lengths toward the desired for telecommunications λ = 1.55 µm and, furthermore, to the

conservation of high radiative recombination efficiency up to room temperature [91–93].

Hence, owing to the narrow and tunable emission spectra and the photostability, quantum

dots are widely used as fluorescent sources in light-emitting thin-films devices [94, 95],

lasers [68, 96, 97] and biological labels [87, 88]. These highly-efficient emitters are also

ideal probes for the lifetime experiments in photonic media: modifications of the radiative

lifetimes [98, 99] and even signatures of strong coupling between a quantum dot and a

cavity [100–102] were observed in experiments on the MBE dots in microcavities.

In the emission experiments described in this thesis, we used CdSe quantum dots

capped with ZnSe prepared by chemical synthesis [78, 103]. The quantum efficiency

of an ensemble of these nanocrystals dispersed in chloroform is larger than 50 %: we

measured it by comparing the emission and absorbtion yields to the R6G dye, which is a

calibrated standard (for details see Ref. [104]). The quantum dots have a size dispersion

of 5 % around the average diameter of 4.5 nm, which determines the center wavelength

of the emission spectrum at λ ≈ 610 nm (see Fig. 3.8b). Extensive details of preparation

and characterization of these high-quality quantum dots can be found in Reference [105].
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3.5 Conclusions

We have discussed the crystal symmetries allowing for the photonic bandgap for reason-

able dielectric contrasts. Fabrication of photonic crystals possessing the bandgap is a

rather complicated task. However, the recent advances in the nano-structuring technolo-

gies can make the photonic crystals with the bandgaps at optical frequencies practically

realizable. Optical characterization of fabricated photonic crystals is necessary to un-

derstand how the latter influence light propagation and to prove existence of the photonic

bandgap. Knowledge of the photonic dispersion relation as well as effects of the structural

disorder are important for correct interpretation of data obtained in the angle-resolved re-

flection, transmission and emission experiments. We have introduced the photonic crys-

tals that we use in our emission experiments: polystyrene opals and titania inverse opals.

Their optical characteristics are also presented: theoretical (photonic band structures) and

experimental (reflectivity spectra). We have discussed different sorts of fluorescent probes

that can be used in the emission experiments on photonic crystals. One should be aware

of possible chemical effects of materials constituting the photonic crystals on the radiat-

ing properties of the embedded emitters. We concluded that organic dyes with their broad

emission spectra are very suitable for the angle-resolved experiments, whereas semicon-

ductor quantum dots with very narrow linewidths are ideal probes for the time-resolved

experiments on photonic media.
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layers of Nanocrystals in Molecular Organic Devices, Nature 420, 800 (2002).

[96] V. M. Ustinov and A. E. Zhukov, GaAs-Based Long-Wavelength Lasers, Semicond. Sci.
Technol. 15, Review: 41 (2000).

[97] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale,
H.-J. Eisler and M. G. Bawendi, Optical Gain and Stimulated Emission in Nanocrystal
Quantum Dots, Science 290, 314 (2000).

[98] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard and V. Thierry-Mieg, Enhanced
Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity, Phys. Rev.
Lett. 81, 1110 (1998).

[99] M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald and A. Forchel, Inhibition
and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microres-
onators, Phys. Rev. Lett. 86, 3168 (2001).



62 References
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C 4

D    



We have performed angle-resolved measurements of spontaneous-emission spectra from laser dyes
and quantum dots in opal and inverse-opal photonic crystals. Pronounced directional dependencies
of the emission spectra are observed: angular ranges of strongly reduced emission adjoin with
angular ranges of enhanced emission. It appears that emission from embedded light sources is
affected both by the periodicity and by the structural imperfections of the crystals: the photons
are Bragg diffracted by lattice planes and scattered by unavoidable structural disorder. Using a
model comprising diffuse light transport and photonic band structure, we quantitatively explain
the directional emission spectra. This work provides detailed understanding of the transport of
spontaneously emitted light in real photonic crystals, which is essential in the interpretation of
quantum-optics in photonic bandgap crystals and for applications wherein directional emission
and total emission power are controlled.

4.1 Introduction

Control over spontaneous emission is of keen interest for applications, and therefore emis-

sion properties of sources such as atoms, dyes and quantum dots are intensively investi-

gated. The decay dynamics of the emitter excited state, as discussed elsewhere in this

thesis, are proportional to the local radiative density of states (LDOS). In 3D photonic

crystals pronounced variations of the LDOS are predicted even in the absence of a pho-

tonic bandgap [1, 2], which give rise to angle-independent variations of the total emis-

sion. Recently LDOS effects on spontaneous emission have been experimentally demon-

strated: Using 3D photonic crystals, considerable variations of the emission rates in large

band widths were obtained in both continuous-wave (cw) total-emission power experi-

ments [3, 4] and in time-resolved lifetime experiments [5, 6]. While lifetime experiments

63
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provide a direct measurement of decay rates, it is important to quantitatively interpret

concomitant emission spectra, for instance, to confirm that light sources inside the crystal

are probed. Cw experiments, on the other hand, rely on a comparison of angle-integrated

spectra with a homogeneous medium. In the latter case a complete understanding of all

angle-dependent effects, that is Bragg diffraction, on the propagation of light is crucial.

In this Chapter we present such a quantitative analysis.

In contrast to decay rates, emission spectra of sources embedded in photonic crystals

are strongly directional [7–12]. Particular frequency ranges of the spectra are suppressed

in certain directions forming stopbands, whose center frequencies and the widths are de-

scribed by the photonic dispersion relation. Besides Bragg diffraction, which is an effect

of the order of the periodic structure, light propagating inside the structure also feels dis-

order: polydispersity, roughness and misarrangements of the building blocks [13]. This

deviation from perfect periodicity affects the interference-induced properties of photonic

crystals. Previous work on the effect of disorder on spontaneous emission includes the

realization that disorder determines the depth of stopbands [9, 11]. Furthermore, the first

observations of enhanced emission in the range of first and second-order stopbands were

also related to disorder-induced redistribution of emitted photons [14]. While the propaga-

tion of light from external sources has been studied in great detail [15–17], a quantitative

explanation of the behavior of light emission from internal sources has lacked sofar.

Here we present strongly frequency-dependent angular distributions of spontaneous

emission from a laser dye in polystyrene opals and from quantum dots in titania inverse

opals in the frequency range around the first-order Bragg diffraction (L-gap). We compare

the data to a theoretical model that unifies effects of structural disorder and photonic crys-

tal properties [17]. Angle-dependent internal reflection due to the photonic gaps plays a

key role in our model. The theory quantitatively explains both the enhancement and re-

duction of light in certain propagation directions that were observed experimentally. The

excellent agreement confirms that the propagation of light in a photonic crystal is well

understood for frequencies around the L-gap. Furthermore, we show that by analyzing

the exit emission distributions, one can reveal stopbands in the quantum dot spectra. Such

an analysis should be performed before any quantum-optical experiments since it unam-

biguously proves the effect of the photonic crystal on emission. We finally discuss the

applicability of photonic crystals to improve the emission efficiency of light sources.
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4.2 Experimental details

4.2.1 Samples

We have studied emission from dyes in polystyrene opals and from quantum dots in titania

inverse opals. The photonic crystals used in this experiment are described in Chapter 3.

We studied 4 polystyrene samples with lattice parameters a = 178 and 365 ± 8 nm and

8 titania samples with lattice parameters a = 370, 420, 500, 580 and 650 ± 15 nm. The

polystyrene opals were doped with the laser dye Rhodamine 6G (R6G) by soaking them

for 30 minutes in a dilute solution (10−6 mol/l) of the dye in ethanol. Afterwards, to re-

move the dye from the sample surface, the samples were rinsed in ethanol and dried. To

estimate an upper bound to the density of the dye, we assume that the infiltrating solu-

tion completely fills the air voids in the opals, and that, in the process of drying, the dye

molecules distribute uniformly on the surfaces of the spheres inside the opals. Knowing

the volume of the air voids in each unit cell of the opals (0.26 a3) and the dye concentra-

tion, we arrive at no more than 10 dye molecules per unit-cell inner surface (1) (for opals

with lattice parameter a = 365 nm). While this surface density increases linearly with the

lattice parameter a, the average distance between the dye molecules remains more than 2

orders of magnitude away from the typical intermolecular distances where reabsorption

and energy-transfer processes could play a role [18]. Before emission experiments, we

performed a selective photobleaching (2) of the dye at the surface of opal photonic crystals

in order to ensure that the emission is recorded only from the bulk of the crystal, and not

from the crystal surface [9]. The whole surface was illuminated for up to 1 hour by an

intense laser beam at the Bragg angle for the pump frequency. At this angle the pump

intensity decreases exponentially with depth, which implies that the dye bleaches within

the first few crystal layers. However, our experimental results were found to be almost

independent of the amount of bleaching, thus indicating that emitters in the bulk of the

photonic crystals provide the dominating contribution to the measured emission intensity.

The titania inverse opals were doped with ZnSe-coated CdSe colloidal quantum dots

(QDs), which were introduced in Chapter 3. The inverse opals were soaked for 24 hours

in a dilute suspension (10−7mol/l) of the QDs in a mixture of 50 % chloroform and 50 %

(1) In an fcc structure consisting of spheres of radius r with a lattice parameter a =
√

8r, the inner surface per unit
cell A equals 4 · 4πr2 = 2πa2. Therefore the surface density Ns of the dye is proportional to 0.26a3/2πa2 ∼ a.
(2) Photobleaching is a photoinduced irreversible modification of dye molecules, which makes them non-
fluorescent. Typically, it happens because of oxidation of dye molecules that damages them permanently.
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butanol. In chloroform only, which is an apolar solvent, the QDs deposit only on the sur-

face of the titania inverse opals. We have found that by adding butanol, a polar solvent,

the infiltration was successfully performed. This was checked by selectively probing QDs

positioned in the bulk of a test sample that was cut in two pieces. After the infiltration,

the samples were rinsed in chloroform and dried. We used the same estimation in order

to get the maximum number of QDs per unit cell in the inverse opals. For samples with

the largest lattice parameter a = 650 nm, this concentration is 15 QDs per cubic unit cell

and is sufficiently low to avoid energy-transfer processes and reabsorption. In order to

minimize photooxidation and contamination of the QDs, (3) the inverse opals were infil-

trated with the QDs in a nitrogen-purged glove box (Braun) and held in a sealed chamber

under a 1.7 mbar nitrogen atmosphere during the optical measurements. No bleaching at

the external surface could be performed for the QDs, however a detailed analysis of the

angular emission data (see below) demonstrates that light emission from the QDs from

the bulk dominates.

4.2.2 Experimental set-up

The light sources inside the crystals were excited by a cw Ar-ion laser (λ = 497 nm)

with the power at the sample around 10 µW. At this pump power, we did not observe any

effects of bleaching of the dye during the emission experiments. Figure 4.1 shows the

experimental set-up used to measure emission from light sources inside photonic crystals.

To focus the pump beam on the sample surface a fiber-coupled microscope objective was

used. The beam was focused to a spot of about 30 µm in diameter at an incident angle

θp relative to the surface normal, usually θp ≈ 25◦. In order to acquire emission spectra

as a function of the detection angle θe relative to the surface normal, the sample was

mounted on a rotation stage. The surface normal is parallel to the 111 reciprocal lattice

vector G111. In order to illuminate the same area irrespective of θe, the fiber-coupled

objective (O1) is mounted on the same rotation stage as the sample. In this way, the angle

of incidence θp between the pump beam and the surface normal is kept constant. The

advantage over previous experiments, where the sample was rotated with respect to both

the pump and detection beams, is that the absolute intensity of the angle-dependent spectra

(3) Photooxidation of a QD is a process when oxygen penetrates the ZnSe passivating layer and reacts with the
CdSe core, which results in a growth of a quenching oxide layer. Consequently, the QD is gradually bleached
due to increased number of quenching states [19]. Because the oxidation also lowers the size of the CdSe core,
the emission spectrum shifts to higher frequencies.
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F 4.1: Scheme of the experimental set-up. The pump beam is focused onto the sample

at incident angle θp by the objective O1 (f = 7.3 cm, NA = 0.05). Luminescence within a cone

centered at detection angle θe relative to the surface normal is collected by the lens L1 (f = 12

cm) and imaged on the spectrometer slit by the lens L2 (f = 12 cm). A color filter F prevents

scattered pump light from entering the prism spectrometer. The angle θe is varied by rotating

the rotation stage, which carries the sample holder, the fiber and the objective O1; whereas the

incident angle θp is kept fixed.

can be reliably compared. The position of the pump spot on the sample is monitored with a

microscope. The emitted light is collected within a cone of 15◦ full width around the angle

θe, imaged on the slit of a prism spectrometer (Carl Leiss). The width of the spectrometer

slit was set to provide a spectral resolution of ∼ 85 cm−1 (3 nm). A microchannel plate

photomultiplier tube (MCP-PMT, Hamamatsu R3809U) was used to detect the emitted

photons. The angle-resolved spectra are usually measured at the detection angles from

0◦ to 75◦ at intervals of 15◦. The measured spectra are corrected for the dark count of

the MCP-PMT. The shapes of the spectra are confirmed to be independent of the pump

intensity, and the emitted intensity is linear with the pump power.

4.3 Diffuse light transport in photonic crystals

4.3.1 Escape function

In real photonic structures, defects in the arrangement of the building blocks are always

present and cause random multiple scattering of light. This means that all light emitted
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in such photonic structures becomes diffuse on length scales equal to the transport mean

free path `, which is often much smaller than the thickness of the sample L [13]. For

example, our opals and inverse opals have mean free paths of about 15 µm [20], whereas

the thickness of the samples is about 200 µm. Thus, even though light generated inside a

photonic crystal is diffracted by the crystal planes, this effect is smeared out by the random

multiple scattering while the light propagates through the bulk towards the crystal surface

(see Fig. 3.3). Only at distances from the crystal-air interface z smaller than `, where

the photons emanate ballistically towards the interface after a last scattering event, the

effect of Bragg diffraction is not destroyed by the scattering. Hence the diffuse emission

acquires a directional dependence only when it exits the crystal [17].

We consider the ratio of the mean free path ` to the attenuation length for Bragg

diffraction LB in order to estimate the attenuation of emission caused by Bragg diffrac-

tion, as proposed in Ref. [11]. Since the mean free path ` is larger than the Bragg at-

tenuation length LB (typically `/LB ∼ 2 − 5 [20]), an attenuation in the stopband equal

to 1 − LB/` = 50 % to 80 % is predicted, which is in agreement with our observations.

As will be discussed later, the stopband attenuations are obtained directly from reflec-

tivity measurements, therefore, the mean free path ` is not an explicit parameter in our

theoretical model.

In the present work we investigate directional properties of light emitted by sources

from 3D photonic crystals and compare to a model of diffuse light transmission through

opaque media [21–23] extended to photonic crystals [17]. Based on the diffusion theory,

the intensity of light I(ω, µe) with frequency ω that exits the sample at external angles

between θe = cos−1(µe) and cos−1(µe + dµe) relative to the surface normal is equal to

I(ω, µe)dµe = Itot(ω)P(ω, µe)dµe. (4.1)

Here Itot(ω) is the total spontaneous emission power - the spectrum of the light sources

integrated over the exit angles θe. For sources with a low quantum efficiency or with

homogeneously broadened spectra, Itot(ω) is proportional to the LDOS, as demonstrated

in Ref. [3]. (4) The distribution P(ω, µe) is defined as

P(ω, µe) = µe
n2

e

n2
i

(1 + R̄(ω)
1 − R̄(ω)

+
3
2
µi

)
[1 − R(ω, µi)], (4.2)

where ne and ni are average refractive indices outside and inside the sample [25], re-

spectively. µe and µi are related by Snell’s law. R(ω, µi) is an angle-dependent internal-

(4) In Ref. [24], this proportionality was incorrectly related to inhomogeneous broadening.
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reflection coefficient that yields an angle-averaged internal-reflection coefficient R̄(ω):

R̄(ω) =
3C2(ω) + 2C1(ω)

3C2(ω) − 2C1(ω) + 2
, (4.3)

Cn(ω) =
∫ 1

0
R(ω, µi)µn

i dµi . (4.4)

From diffusion theory, R̄(ω) determines the so-called extrapolation length that sets the

boundary conditions of the diffuse intensity [21–23]. The normalized function P(ω, µe)

describes the distribution of emission intensity over the escape angles and will be called

the “escape function”. In absence of reflection effects, the escape distribution tends to the

well-known Lambertian distribution of diffuse surfaces.

In random media such as powders or macroporous sponges the internal-reflection co-

efficient R(ω, µi) is barely frequency dependent [26], and propagation through the inter-

face is well described by Fresnel reflection model assuming an average refractive index.

The angular dependence of the escape function P(ω, µe) agrees well with experiments on

random media [22, 23]. For highly dispersive photonic crystals, however, Fresnel model

cannot describe the internal reflection since light escaping from a depth z < ` from the

crystal surface is Bragg attenuated for angles and frequencies inside a stopband. We

model the strong angle and frequency dependent internal reflection with photonic band

structures. At a particular frequency ω∗ where a stopband is present, the internal re-

flectivity R(ω∗, µi) blocks the emission in the directions of the stopband (a range of µ∗i ’s

related to ω∗ by the photonic band structure) and therefore reduces the escape function

P(ω∗, µ∗e), cf. Eq. 4.2. The presence of the stopband raises the angle-integrated reflectiv-

ity R̄(ω∗), which enhances the escape function P(ω∗, µe) for angles outside the stop band.

Thus, the escape function is strongly non-Lambertian in a photonic crystal, showing clear

suppressions or enhancements.

4.3.2 Internal-reflection coefficient

To model the internal-reflection coefficient R(ω, µi), we have taken into consideration

calculated photonic band structures. Figure 4.2a shows the photonic band structure for

polystyrene opals calculated along the LU and LK lines of the Brillouin zone in the

frequency range around the first-order stopgap (L-gap) that is related to optical Bragg

diffraction by (111) planes parallel to the sample surface. The emission spectrum of R6G

is in the low-frequency limit relative to the stopbands of opals with a lattice parameter
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F 4.2: (a) Photonic band structure for polystyrene opals (dashed curves), center fre-

quency of the stopband vs. detection angle θe according to Bragg’s law (solid curve), the

frequency range of R6G emission is shown for opals with lattice parameters a = 178 and

365 nm (hatched regions between the dash-dot-dotted lines and dash-dotted lines, respec-

tively). (b) Normal-incidence reflectivity spectrum for a polystyrene opal with a lattice param-

eter a = 365 nm. Circles are measured values, the black solid curve is a fit with the modified

Gaussian reflectivity peak (Eq. 4.5), the dashed curve is a fit with a Gaussian reflectivity peak.

a = 178 nm (region confined by the dash-dot-dotted lines). Consequently, this sample

is effectively homogeneous for the emission frequencies, and therefore it can serve as a

reliable reference. For these non-photonic crystals we used the Fresnel model to describe

the internal reflection. In Figure 4.2a one can also see the frequency gap between the

two lowest bands (dashed curves), which obeys Bragg’s law (solid curve) within the fre-

quency range of R6G emission for the opals with a lattice parameter a = 365 nm (region

confined by the dash-dotted lines). Therefore, the angular dependence of the center fre-

quency of the L-gap is modeled with the solid curve, i.e.: ωc(µi) = ωc(µi = 1)/µi. To

investigate the frequency dependence of the reflectivity, we have performed reflectivity

experiments on the samples using external incident plane waves, since this technique re-

veals the center frequencies and the widths of stopbands [16, 27, 28]. Figure 4.2b shows

a normal-incidence reflectivity spectrum measured from an opal with lattice parameter a

= 365 nm (circles). The reflectivity peak does not agree well with a Gaussian (dashed

curve). As an improved model, we propose a modified Gaussian (Fig. 4.2b, solid curve):

R1(ω, µi) = A1(µi) exp
[
−

(ω − ωc(µi))4

2(∆ω(µi))4

]
, (4.5)
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where A1(µi) is the magnitude of the internal-reflection coefficient and ∆ω(µi) is the

width parameter. This peak shape is seen to fit the measurements well for frequencies

> 16000 cm−1. At frequencies below the stopband, i.e., below 16000 cm−1, a deviation

from the model is observed. We attribute this deviation to Fresnel reflection, which is

important only in the low-frequency limit and therefore is not relevant for the escape

function of photonic samples. The width of the L-gap ∆ω(µi) hardly varies with µi within

the range of the dye emission, therefore it is taken to be constant in our model. The

magnitude of the internal-reflection coefficient A1(µi) decreases with µi because at larger

internal angles θi = cos−1(µi) the path length for the light to become Bragg attenuated

increases with µi, and this increases the probability of scattering at z < LB. The value of

A1(µi) at µi = 1 is taken from the normal-incidence reflectivity experiments. Thus, for the

opals with a = 365 nm we have A1(µi) = 0.7µi, see Fig. 4.2b.

Emitted light that is scattered within a depth LB < z < ` towards the exit interface can

also be redirected by Bragg diffraction by the sets of (111̄) planes, which are oriented at

θi = 70.5◦ to the (111) planes and the surface normal. The internal-reflection coefficient

R2(ω, µi) for Bragg diffraction by (111̄) lattice planes is modeled similarly to R1(ω, µi).

Taking into account that we measure emission from many azimuthally variously oriented

crystal domains, the reflectivity R2(ω, θi) is averaged over the azimuthal angles φ between

the LK and LU lines, yielding:

R2(ω, θi) =
3
π

∫ π/3
0

A2(θi, φ) exp
[
−

(ω − ωc(θi, φ))4

2(∆ω(θi))4

]
dφ, (4.6)

where A2(θi, φ) = A2(70.5◦, 0◦) cos(θi − 70.5◦) cos(φ) where A2(70.5◦, 0◦) = 0.7. The

total internal-reflection coefficient R(ω, µi) is calculated as a sum of the R1(ω, µi) and

R2(ω, cos(θi − 70.5◦)) modified Gaussian peaks. We expect this model of the angle- and

frequency-dependent internal reflectivity to capture the essential frequency dependence

of the first-order photonic stopbands in polystyrene opals.

In the case of the titania inverse opals we apply the same escape model to explain our

experimental data. However, for calculations of the internal-reflection coefficient R(ω, µi),

Bragg diffraction from other lattice planes must also be included. This difference com-

pared to polystyrene opals appears since titania inverse opals are more strongly photonic

and the measurements were performed at higher reduced frequencies (a/λ = ωa/2πc).

Moreover, the resulting stopbands occur at lower detection angles θe in these crystals than

in the polystyrene opals, as a consequence of the lower average refractive index. There-

fore Bragg’s law is not a sufficient approximation and is not used to model the angular
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dependence of the stopbands in the titania inverse opals. Instead, the full band structure

model is employed, in which we take into account multiple Bragg wave coupling [11, 28].

For the inverse opals, this model was already successfully tested on diffuse transmission

experiments [17].

4.4 Results and Discussion

4.4.1 Emission from dye in polystyrene opals

Reflectivity measurements at normal incidence of polystyrene opals (Fig. 4.2b) reveal

that the relative width of the first-order stopband is ∆ω/ω ≈ 0.075. For opals with a

lattice parameter a = 365 nm this means a stopband in the range 16100 - 17300 cm−1

for light escaping the crystal normally to the surface. The dye R6G emits in the range

of 15000 - 20000 cm−1, and hence we expect to observe directional-dependent emission

of the dye from the opals with a = 365 nm. Figure 4.3a displays the emission spectra at

selected detection angles for such doped opals. It is clearly seen that the shapes of the

spectra are affected by the photonic crystal. The emission is suppressed by the crystal for

θe = 0◦ in the spectral range from 16000 to 17500 cm−1. With increasing angle θe the

low-frequency parts of the emission recover, and the suppressed emission range shifts to

F 4.3: Emission spectra of R6G in polystyrene opals with lattice parameters a = 365 nm

(a) and a = 178 nm (b). The solid curves are obtained at θe = 0◦, dashed curves at θe = 30◦,

dotted curves at θe = 37.5◦, and dash-dotted curves at θe = 60◦. The dash-dot-dotted curve in

(a) indicates the total emission spectrum Itot(ω). Note, the spectra are not scaled to each other.
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F 4.4: Angular distribution of the R6G emission from a polystyrene opal with a lattice

parameter a = 178 nm. The pentagons indicate the intensity measured at the spectral maximum

(ω = 17860 cm−1 or λ = 560 nm), the solid curve is the calculated escape function with Fresnel

internal-reflection coefficient. Measured intensities corrected for the detection efficiency of the

set-up are displayed as stars. All data are normalized at θe = 0◦.

higher frequencies, as expected from Bragg’s law for a photonic stopband from a single

set of lattice planes. In contrast, the shape of the spectra from an opal with a lattice

parameter a = 178 nm remains unchanged (Fig. 4.3b). The sample is not photonic for the

frequency range considered: the frequencies of R6G emission lie far below the first-order

stopband in the opal with this lattice parameter.

Before studying spontaneous emission from photonic samples we have verified the

applicability of the above-mentioned model of diffuse light transport on the non-photonic,

reference samples. We use Fresnel reflection to describe the angular-dependent internal-

reflection coefficient, taking an average refractive index nav = 1.44, which is derived from

the polystyrene filling fraction ϕ ≈ 74 % in opals and the refractive index of polystyrene

n = 1.59. We record the intensity at the maximum of the emission spectrum as a function

of the exit angle θe relative to the measurement at θe = 0◦. The relative intensity I(θe)

is compared to the escape function P(θe) in Figure 4.4. While the expected decrease

with angle is observed, it is clear that the calculated intensity differs systematically from

the measured data. This deviation appears to be caused by an angle-dependent detection

efficiency as a result of the increase with θe of the projection of the spectrometer slit on the

sample. Correcting the measured intensity I(ω, µe) for the detection efficiency D(µe) (see

Appendix A) yields the corrected intensity Ic(ω, µe) = I(ω, µe)/D(µe) displayed as star

symbols in Fig. 4.4. The agreement between the corrected intensity and the calculated
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F 4.5: R6G emission from a polystyrene opal with lattice parameter a = 365 nm. The

scatter plots represent the measured spectra corrected for the angular aperture of the collecting

lens ΩL and divided by the total emission spectrum Itot(ω). The calculated escape functions are

plotted with solid curves. The black solid curve and squares are for θe = 00, red dashed curve

and triangles are for θe = 300, green inverted triangles and short-dashed curve are for θe = 450

and blue circles with dash-dotted curve are for θe = 600.

escape function is excellent. With the proper account of the detection efficiency, the

angular distribution of emission escaping the reference samples is thus fully understood.

In all experimental data presented further, the detection efficiency has been included.

In the case of the photonic samples the exit distribution of emission strongly depends

on the frequency ω as mentioned above: P(ω, θe) = Ic(ω, θe)/Itot(ω). The total emission

spectrum Itot(ω) is determined by discretely summing the angle-resolved spectra Ic(ω, θe)

weighted by 2π sin(θe)dθe to approximate the integration over 2π solid angle. The spectra

from Figure 4.3a divided by the total emission spectrum Itot(ω) are plotted in Figure 4.5

(symbols) together with the calculated escape function P(ω, θe) (curves). We observe a

good agreement between our experiment and theory. The escape function hardly varies

with frequency in the low-frequency region ≤ 15600 cm−1, while it does depend on the

detection direction. In contrast, at higher frequencies strong variations are seen compared

to the low-frequency range. At the exit angle θe = 0◦, the escape function is signifi-

cantly reduced in the spectral range from 16000 to 17500 cm−1 by the stopband centered

at ω = 16700 cm−1 due to internal Bragg diffraction, which is described by the term

[1 − R(ω, µi)] in Eq. 4.2. The change of the center frequency as well as the decrease
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F 4.6: Intensity ratios Ic(θe)/Itot corrected for the lens aperture ΩL as a function of the

exit angle θe for a polystyrene opal with a lattice parameter a = 365 nm for frequencies ω =

15000, 16500, 17400 and 18350 cm−1 (blue inverted triangles, black squares, red circles and

green triangles). The indicated error-bars are typical for all measurements. The corresponding

curves represent the calculated escape distributions (for reduced frequencies ωa/2πc = 0.55,

0.6, 0.64 and 0.67, respectively).

in the attenuation of emission inside the stopband with increasing exit angle θe are well

described in our model by the frequency and angular dependent internal-reflection coeffi-

cient R(ω, µi). At θe = 60◦, the stopband has moved out of the spectral range of R6G.

Figure 4.5 also shows a peculiar feature: the frequency ranges where the emission

is inhibited along certain directions, adjoin with the ranges where emission is increased

along the same directions. Such an increase appears at the blue side of the stopband at

θe = 0◦ and 30◦, and at the red side of the stopband at θe = 45◦ and 60◦. This enhanced

escape probability in the frequency range 16000 - 19500 cm−1 along the directions, which

do not coincide with the stopband, is reflected in our model for P(ω, µe) (Eq. 4.2) as an

increase of the angle-averaged internal-reflection coefficient R̄(ω). The good agreement

between experiments and theory confirms a qualitative attribution of such enhancements

to diffuse escape effects [14]. Moreover it unambiguously demonstrates that our experi-

mental observation of the emission enhancement is not due to Bragg standing wave effects

proposed in Reference [29], but is related to diffusion of light.

In Figure 4.6 we compare the experimentally determined intensity distributions (sym-

bols) for several fixed frequencies with the calculated ones (curves) as functions of the

exit angle θe. The experimental values of P(θe) were obtained by dividing the emission
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Ic(θe) by the total emission spectrum Itot and correcting for the angular aperture of the

collecting lens ΩL. For the frequency ω = 15000 cm−1, below the stopband, the dis-

tribution follows the Lambertian distribution and is similar to the exit distribution from

the non-photonic sample (Fig. 4.4). For the frequencies above the red edge of the stop-

band we observe strongly non-Lambertian behavior. For the frequency ω = 16500 cm−1

emission is suppressed relative to the Lambertian distribution in the range of the exit an-

gles from θe = 0◦ to 20◦. This range moves to larger exit angles for the frequency ω =

17400 cm−1 in qualitative agreement with Bragg’s law. For ω = 18350 cm−1 the suppres-

sion observed around θe = 40◦ is preceded by a considerable increase of emission in the

angle range 0◦ to 20◦. A qualitative explanation of this effect is as follows. Some escape

directions are blocked by internal Bragg diffraction, and diffusion eventually distributes

this back-reflected light along the remaining directions. Thus, light is more likely to exit

the crystal along these allowed directions. From Figures 4.5 and 4.6 we conclude that the

escape function is in excellent agreement with the measured angle-dependent spectra. To

the best of our knowledge, the current work provides the first quantitative modeling of

spontaneous emission spectra in 3D photonic crystals.

4.4.2 Emission from quantum dots in titania inverse opals

The titania inverse opals interact with light more strongly than the polystyrene opals ow-

ing to their inverse structure and high refractive-index contrast (m ≈ 2.7). The concomi-

tant large modifications of the LDOS make these inverse opals very attractive for con-

trol of propagation and spontaneous emission of light [3, 5]. Figure 4.7 shows emission

spectra of CdSe QDs in a titania inverse opal with lattice parameter a = 420 nm for se-

lected detection angles θe (curves) and a normal-incidence reflectivity spectrum (circles)

from the same inverse opal. No significant changes in the spectral shapes due to internal

Bragg diffraction are observed, because the relative spectral width of the QD ensemble

(∆ω/ω < 0.06) is considerably smaller than the width of the stopband of the photonic

crystal (∆ω/ω ≈ 0.16). This shows that the escape distribution P(ω, θe) does not vary

significantly within the frequency range of the QD spectrum. In contrast, a strong angular

dependence of the emission intensity is apparent in Fig. 4.7. As a consequence, effects of

Bragg diffraction are most convincingly observed by recording the angular dependencies

at the spectral maxima of the emission spectra.
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F 4.7: Normal-incidence reflectivity spectrum (circles) and emission spectra of CdSe

quantum dots (curves) in a titania inverse opal with a lattice parameter a = 420 nm. The

emission spectra are measured at θe = 0◦, 30◦ and 60◦ (shown by the solid, dashed and dash-

dotted curves, respectively).

In Figure 4.8a we present escape distributions from titania inverse opals with lattice

parameters a = 370 and 420 nm at frequency ω = 16390 cm−1, and with a lattice param-

eter a = 500 nm at ω = 15870 cm−1. Both measured (symbols) and calculated (curves)

values are shown. For the crystal with lattice parameter a = 370 nm, the center frequency

of the QD spectrum lies below the stopband, and thus, the escape function follows the

Lambertian distribution. A large deviation from the Lambertian distribution is observed

for the QD emission from the crystals with larger lattice parameters. In the crystals with

a = 420 nm, the emission is strongly reduced in the range of the angles from θe = 0◦

to 35◦, and it is enhanced at higher exit angles. For the crystals with a = 500 nm, the

suppression is shifted to the range of θe = 20◦ to 45◦, as expected for photonic gaps at

higher reduced frequency (a/λ = ωa/2πc), and in excellent agreement with our theoret-

ical predictions. The stopband ranges are noticeably wider than that in the case of the

polystyrene opals (Fig. 4.6), which is due to a wider frequency range of the stopband in

the titania inverse opals. To the best of our knowledge, this is the first demonstration of

photonic crystal bands in the emission spectra of confined excitons in QDs.

Figure 4.8b shows the photonic band structure for a titania inverse opal calculated

along the LU line. The hatched regions indicate the stopband caused by Bragg diffraction

by (111) lattice planes. In the angular range from θe = 35◦ to 55◦, multiple Bragg wave
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F 4.8: (a) Escape distribution as a function of the exit angle θe for titania inverse opals

with lattice parameters a = 370 and 420 nm at ω = 16390 cm−1 (λ = 610 nm, black squares

and red circles, respectively), and with a lattice parameter a = 500 nm at ω = 15870 cm−1

(λ = 630 nm, green triangles). The corresponding curves represent the calculated distributions.

(b) Photonic band structure for the inverse opals along the LU line (black dotted curves). The

hatched regions indicate the stopband caused by Bragg diffraction by (111) lattice planes. The

horizontal bars represent the reduced center frequencies of the QD emission from the crystals

with lattice parameters (bottom to top) a = 370, 420, 500, 580 and 650 nm. The colors of the

bars indicate the values of the escape function P(ω, θe) obtained from the measurements at exit

angles shown by the stars.

coupling from (111) and (200) diffracted waves takes place [11, 28]. The horizontal bars

represent the reduced center frequencies of the QD emission from the inverse opals with

lattice parameters a = 370, 420, 500, 580 and 650 nm. The colors of the bars indicate

the measured values of the escape function P(ω, θe). For reduced frequencies around the

stopbands, it is seen that inhibited escape probability appears in the angular ranges of the

stopbands, whereas enhanced escape is found outside the stopbands. Hence, the photonic

crystals are seen to “funnel” light along certain allowed directions.

For experiments on QD emission in photonic crystals, the good agreement between

the experimentally obtained escape distributions and the calculated ones confirms that the

light emanating from inside the crystals is diffuse. Importantly, it also confirms that the

observed emission is dominated by sources inside the bulk of the crystal. We can exclude

that light sources on the sample surface contribute significantly: their emission would

give rise to an angle-independent component of the intensity, which is not observed by

us. Furthermore, observation of stopbands in emission spectra is important for successful

lifetime experiments or other quantum-optical studies of light sources in photonic crystals.
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F 4.9: The angle-averaged internal reflectivity R̄(ω) for the polystyrene opals (solid

curve) and for the titania inverse opals (dashed curve) according to the diffusion model, in

which only the first-order Bragg diffraction is taken into account. R̄(ω) determines the enhance-

ment of the escape probability outside a stopband direction.

The stopbands are evidence that the emission from the light sources is strongly coupled to

the photonic crystals, and they are a prerequisite for time-resolved experiments of changes

in the emission decay rate caused by a modified LDOS [5].

Based on the close accordance of the experiments with the model, we can extract

the angle-averaged internal-reflection coefficient R̄(ω). Figure 4.9 shows that R̄(ω) is as

large as 50 % for the titania inverse opals and up to 20 % for the polystyrene opals. The

internal-reflection coefficient varies strongly with frequency in contrast to the frequency-

independent R̄ in random media. The coefficient increases with solid angle for Bragg

reflection, starting from the low-frequency edge of the L-gap. For the opals, the maximum

R̄ occurs at the high-frequency edge of the L-gap, where the reflecting stopbands extend

over the largest solid angle [27]. For the inverse opals, the maximum R̄ occurs at higher

reduced frequencies in the range of multiple Bragg wave coupling (ωa/2πc ∼ 0.85) [11].

The shoulder near 1.0 is attributed to inclusion of (200) reflection condition in our model.

In a more elaborate escape-model with additional diffraction conditions, we may expect

additional peaks in the angle-averaged reflection coefficient at even higher frequencies.

Since the inverse opals interact more strongly with light than the opals, their stopbands

are wider and hence the angle-averaged reflectivity is larger, which is in agreement with

our observations.

A closer consideration of the reflectivity coefficients can serve to optimize the spon-

taneous emission yield of light sources (atoms, dyes or quantum dots) embedded inside
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thick photonic crystals (L > `). Such an optimization can be achieved either via the ex-

citation of the sources, via their emission, or both. First, the excitation efficiency can be

increased by realizing that increased escape probability also implies an increased proba-

bility for excitation light to enter a photonic crystal. Thus, by tuning an excitation beam to

frequencies and angles of high escape, the combined action of diffusion and Bragg diffrac-

tion retain relatively more excitation light inside the sample, thus increasing the proba-

bility for spontaneous emission of the embedded light sources. Secondly, spontaneously

emitted radiation is efficiently channeled out of the sample along particular directions.

This occurs when the lattice parameter of the photonic crystal is chosen such that the

emission frequencies are in the range of enhanced R̄(ω). A clear example of enhanced es-

cape is apparent in Fig. 4.5 at θe = 0◦ near 18000 cm−1. In the ultimate case of a photonic

bandgap, it has even been predicted that the diffuse emission is extremely directional, see

Ref. [17]. Thirdly, one can envision situations where both excitation and emission are

enhanced: in Fig. 4.8(b) enhanced escape probability occurs both at ωa/2πc ∼ 0.8 and

θe = 0◦ and at ωa/2πc ∼ 0.7 and θe = 50◦. Thus, by tuning the excitation to the former

condition and the emission to the latter, the spontaneous emission yield is expected to be

enhanced by at least a factor of 2. Further improvements should be feasible in photonic

crystals with even larger R̄.

4.5 Conclusions

We have presented experimental data on angular resolved emission from light sources

embedded in efficient 3D photonic crystals. The experiments were compared in detail to

a recently developed model of light transport in real and thick photonic crystals that are

influenced by ubiquitous disorder. Our model is based on diffusion of light due to scatter-

ing (disorder) combined with angle- and frequency-dependent internal reflections (order).

Good quantitative agreement between experiment and theory confirms that the details of

the emission spectra are determined by the intricate interplay of order and disorder. Prop-

erties of the stopbands, such as their frequency range, magnitude, and angular depen-

dence, are extracted from the experiment by analyzing the emission escape function. The

enhanced escape probability for emission along directions outside the stopbands is ex-

plained by the angle-averaged internal-reflection coefficient R̄(ω). The diffuse and angle-

dependent nature of light escaping from the photonic crystals proves that the light comes
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from emitters inside the crystals. By measuring the escape functions of the QD emission

from the titania inverse opals, we have for the first time revealed clear stopbands in the

QD emission spectra, confirming that the confined excitons experience optical confine-

ment. The quantitative agreement between experiment and theory demonstrates that light

propagation and spontaneous emission in real 3D photonic crystals is well understood.
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C 5

S   - 

   

    

We have measured spontaneous-emission decay rates from an ensemble of CdSe quantum dots in
strongly interacting inverse-opal photonic crystals. We have observed considerable modifications of
emission decay rates: both inhibition and enhancement are achieved by varying the crystal lattice
parameter. The complex decay curves are successfully analyzed in a new way: with a continuous
distribution of decay rates. The resulting most-frequent decay rate varies by a factor of 3, whereas
the width of the distribution reveals a sixfold modification. The large modification of the distribution
width with the lattice parameter is identified with variations of the radiative emission rates from
quantum dots at various positions in the unit cell and with variously oriented transition dipoles.
This interpretation qualitatively agrees with calculations of the projected local density of states.
The mean emission rate varies by a factor of 8, in conformity with the change of the total emitted
power. Measurements at different optical frequencies show that the variation of the decay rate with
the lattice parameter is larger at higher emission frequencies of the quantum-dot spectrum.

5.1 Introduction

The radiative rate of spontaneous emission of elementary light sources (atoms, molecules

or quantum dots) is proportional to the local radiative density of optical states (LDOS),

to which the sources with certain orientations of the transition dipole moments couple,

as discussed in Chapter 2. This projected LDOS counts the number of electromagnetic

states at a given frequency, location and orientation of the transition dipole. Therefore,

knowledge of the frequency and position dependence of the LDOS offer a tool to control

spontaneous emission from molecules [1], atoms [2, 3], and quantum dots [4–8]. It has

83
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been predicted that photonic crystals possessing a photonic bandgap (PBG) can radically

change spontaneous emission [9]. Later, it was theoretically shown that a much weaker

requirement than a PBG has to be met to suppress spontaneous emission: sources should

be placed at judicious locations in the crystal unit cell where the LDOS vanishes [10]. For

emitters with fixed or slowly varying dipole orientations, for instance for dye molecules

on substrates [11, 12], the density of modes projected on the dipole orientations should

be suppressed. Since the frequency-integrated number of states is conserved, one expects

the LDOS to be strongly increased at some frequencies outside such a pseudogap [10, 13–

16]. Hence, photonic crystals may completely control the emission rates between absolute

inhibition and strong enhancement even in the absence of a PBG.

Most of the theoretical papers on photonic crystals study spontaneous emission from

single emitters. However, it is often more practical to measure emission from many light

sources. Moreover, control over spontaneous emission from a large number of sources is

important for applications such as light-emitting diodes and solar cells. One could expect

that the radiation dynamics of an ensemble of emitters, distributed in different locations

in the unit cell of a photonic crystal, are not characterized by a single decay rate, but

rather by a distribution of decay rates. Due to such multi-exponential decays, analysis of

the measurements on ensembles of emitters in photonic crystals becomes more difficult

comparing to cases with single emitters.

Inhibition of the radiative decay rate versus frequency has been observed in continuous-

wave experiments on sources with a low quantum efficiency [17, 18]. However, time-

resolved control of the spontaneous-emission lifetimes is only possible with much more

efficient sources. Indeed, both enhanced and inhibited decay rates have been observed

from highly-efficient emitters in 3D inverse opals [5] and also in 2D slab structures [6–

8, 19]. To our knowledge, all experimental work to date concerns the frequency depen-

dence of the LDOS and of the emission rate in photonic crystals, but the position and

orientation dependencies remain open issues. In this chapter we present a study of the

position and orientation dependencies of the LDOS: we distributed an ensemble of iden-

tical light sources over a well-defined set of positions in the unit cell and measured the

time-resolved emission. We propose a novel method to interpret the emission data with

a continuous distribution of emission rates. The width of the distribution is proportional

to the distribution of the LDOS over all positions ri (see Fig. 5.1) and dipole orientations

sampled by sources with fixed emission frequency ω. The mean emission rate reveals

a striking variation of a factor of 8 with varying crystal lattice spacing. These obser-
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r1

r2

F 5.1: (Left) Electron-microscope image of the (111) surface of an inverse opal consist-

ing of air spheres in TiO2 with lattice parameter a = 455 nm. (Right) Schematic representation

of quantum dots (black spots) inside an air sphere (white) on the internal titania-air surfaces at

symmetry-inequivalent positions ri.

vations are in qualitative agreement with intricate calculations of the LDOS. This is the

first experimental evidence for position- and orientation-dependent emission rates in 3D

photonic crystals.

5.2 Experimental details

5.2.1 Samples

We have studied time-resolved spontaneous emission in titania inverse opals introduced

in Chapter 3 and similar to the samples studied in the angle-resolved experiment in Chap-

ter 4. We investigated emission in 18 different samples with lattice parameters ranging

from a = 255 to 760 nm. (1) As light sources we used CdSe-ZnSe core-shell colloidal

quantum dots (QDs) because of their high fluorescence quantum efficiency and narrow

homogeneous spectral width. The QD ensemble dispersed in chloroform has a quantum

efficiency of about 50 % and a size dispersion of 5 % around the average diameter of

4.5 nm, as discussed in Chapter 3. The average diameter determines the center frequency

of the emission spectrum at ω ≈ 16400 cm−1 (λ ≈ 610 nm). The spectral widths of

the QD ensemble is about ∆ω/ω ≈ 0.075 (see, e.g., Fig. 3.8b). The relative homogeneous

linewidth of a single QD at room temperature ∆ω/ω ≈ 0.025 is due to the electron-phonon

(1) The values of the lattice parameters have random deviations of about 3 % due to size dispersion of spheres in
opals and the shrinkage of the inverse opals during the preparation [20].
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interactions, as calculated in Ref. [21] and measured in Ref. [22]. The rest of the emis-

sion linewidth is inhomogeneously broadened by the size dispersion in the QD ensemble.

The process of the liquid infiltration of the photonic crystals with the QDs is described

in Chapter 4. After the infiltration, the QDs precipitate on the internal surfaces of the

air spheres inside the inverse opals, with an estimated low density of four QDs per air

sphere, as sketched in Figure 5.1. During the optical experiments, the inverse opals were

held in a sealed chamber under a 1.7 mbar nitrogen atmosphere, in order to minimize the

probability of the photooxidation of the QDs.

5.2.2 Time-resolved experiment

The quantum dots inside the photonic crystals were excited at λ = 447 nm with a pulsed

diode laser (Picoquant, LDH-440) with a pulse duration of 90 ps and a repetition rate of

10 MHz. The energy on the sample was below 20 nJ/pulse to avoid double excitations of

the QDs. The excitation beam was focused by a microscope objective (N.A. = 0.05, focal

length of 73 mm) to a spot diameter of ∼ 30 µm at an incident angle of ∼ 25◦ relative

to the surface normal, which is parallel to the 111 reciprocal lattice vector. The position

of the excitation spot on the sample was monitored with a microscope. To detect the QD

emission, we used the same set-up that is described in Chapter 4. The emitted light was

collected within a cone of 15◦ full width and imaged on the slit of the prism spectrometer

with spectral resolution better than 85 cm−1 (3 nm).

To measure the arrival time of the photons emitted after the laser pulse, we use the

time-correlated single-photon counting technique [23, 24]. The signal from the photo-

multiplier tube (average count rate ∼ 10 kHz) is sent to a time-to-amplitude converter

(Tennelec, TC 864) that produces a ‘start’ signal to indicate that a photon has been de-

tected and thereby to initiate a voltage ramp. The synchronization signal from the pump

laser is used as a ‘stop’ signal, and the voltage difference that builds up between ‘start’ and

‘stop’ events is a measure of the emission time of the QD excited state after excitation. A

multichannel analyzer converted the voltage to a time channel using an analog-to-digital

converter. The decay curves are histograms of the arrival time of a single photon emitted

after the laser pulse, obtained over many excitation-emission cycles with a time resolu-

tion better than 100 ps. The slope of the decay curves yields a fluorescence decay rate

γ = γrad + γnrad, which is the sum of the spontaneous-emission decay rate γrad and the

non-radiative rate γnrad that depopulate the excited states of the QDs.
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5.3 Experimental results

The CdSe-ZnSe core-shell quantum dots are new and exciting type of light sources whose

emission properties can be tuned to satisfy needs of experimentalists. However, emission

properties of these light sources are sensitive to oxygen: as discussed earlier, photoin-

duced reaction of the QDs with oxygen leads to the “blue shift” of the emission frequency

and to the quenching of fluorescence. In our emission experiments on QDs in the low-

pressure nitrogen atmosphere, we did not observe any significant effects of photooxidation

such as bleaching of the QDs and the blue shift of the emission spectrum. In contrast, in

some samples, the emission intensity was found to increase during the experiment, while

the excitation intensity was constant. An example of this effect is shown in Figure 5.2a

(squares). This process, called photoenhancement or photobrightening of the QD fluores-

cence, is not yet understood [25]. It was observed that the photobrightening is reversible

and attributed to chemical modifications of the QD surfaces induced by non-resonant

excitation, which improve the fluorescence efficiency. We have observed that the photo-

brightening affects the emission dynamics of the QDs: a strong increase of the emission

intensity correlates with a considerable decrease of the ensemble-averaged decay rate of

the QDs in an inverse opal as shown in Figure 5.2b. Only a few samples from the whole

F 5.2: (a) Intensity I at the QD spectral maximum versus time after the beginning of the

emission experiment. Some samples reveal noticeable photoenhancement as an inverse opal

with lattice parameter a = 890 nm (squares). In contrast, the intensity from many other samples

is stable, as in inverse opals with a = 320 nm (circles, I/2), a = 755 nm (triangles, I/10) and a =

425 nm (inverted triangles). (b) Most-frequent decay rate γMF (see Eq. 5.2) for the sample with

a = 890 nm as a function of the emission intensity during the photoenhancement process.
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series revealed this effect, and we observed no correlation between the lattice parameter

of the inverse opals and the occurrence of the photobrightening. We only found that the

probability of this effect increases if the samples infiltrated with the QDs are kept for a

long time, even in the nitrogen atmosphere: there were more samples with photobrighten-

ing among those, which were measured after 5 to 7 days after the infiltration, than those,

measured within 3 days after the infiltration. In our experiments, we want to compare

the decay rates of the QDs in photonic crystals with different lattice parameters. This

comparison is impeded if the decay rates change during the experiment. Therefore, we

disregarded the samples, which showed the photobrightening, and will further present

data on the samples, in which the emission intensity stabilized within several minutes

[see, e.g., Figure 5.2a (circles, triangles and inverted triangles)].

In Fig. 5.3 we show time-resolved spontaneous emission from the QDs in inverse

opals with three different lattice parameters a, i.e., at different reduced frequencies a/λ.

The data were collected at λ = 615 nm within a narrow range ∆λ = 3 nm, to select the

same population of QDs with identical emission properties on each sample. For inverse

opals with a = 255 nm, λ = 615 nm is in the low-frequency limit, where the frequency

dependence of the LDOS is known to be proportional to ω2 [10, 15]. We see that spon-

taneous emission in a sample with a = 425 nm is inhibited compared to the reference.

Conversely, in a sample with a = 540 nm, the decay rate is enhanced. It is important to

notice that in contrast to atoms in vacuum, emission from sources embedded in solid-state

systems as photonic crystals can be distorted by the fluorescence from the the backbone

material. In our experiment, the fluorescence of the titania backbone distorts the signal at

short times [see Fig. 5.3a (curve 4)]. We have carefully removed the TiO2 signal from the

measured decay curves since we know its spectrum and decay curve from measurements

on an undoped inverse opal; the backbone has a countrate less than 12 % of the QD sig-

nal. We exclude the possibility that QDs at the sample surface contribute any measurable

signal since: a) QDs on the surface were rinsed off after infiltration, b) the excitation in-

tensity is maximum inside the samples at a distance of several Bragg attenuation lengths

from the surface due to light diffusion, and c) and analysis of the angle-resolved mea-

surements described in Chapter 4 reveals an excellent agreement with theory for sources

emitting in the bulk of photonic crystals. We have also verified that the excitation beam

is not Bragg diffracted. Therefore, Fig. 5.3 demonstrates time-resolved emission from an

ensemble of QDs controlled by photonic crystals, over a much larger time range than in

previous experiments [5–8, 19].
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F 5.3: (a) Fluorescence decay curves recorded at ω = 16260 cm−1 (λ = 615 nm) and

T = 295 K from QDs in inverse opals with lattice parameters: a = 425 nm (1), a = 255 nm (2)

and a = 540 nm (3). Curves 2 and 3 are overlapped at 0 ns with curve 1. Curve 4 represents

a decay from the backbone emission at the same frequency. This decay curve contains 1/15

of the total counts of curve 1. (b) Curves 1, 2 and 3 represent the same measurements as

in (a) with the backbone emission subtracted. Solid lines are fits of the log-normal distribution

of decay rates to the data. The goodness of fit χ2
red varies from 1.1 to 1.4, close to the ideal

value 1. (c) Curve S shows a nearly single-exponential decay from the QDs in a homogeneous

medium (in chloroform).

An important feature in Figure 5.3b is that the decay curves from the QDs in the

inverse opals are multi-exponential, which can be due to four possible reasons:

i. The QDs experience different LDOS, since they are distributed over symmetry-

inequivalent positions and random dipole orientations in the unit cell (see Fig. 5.1).

ii. It has been predicted that single QDs reveal non-exponential decay due to van

Hove singularities in the LDOS [26]; however, this requires single-dot experiments,

which is not the case here.
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iii. It has recently been identified that colloidal QDs are not true two-level systems

[27]. Nevertheless, it was observed that the emission decay of the QDs was closely

single-exponential, as confirmed in Fig. 5.3c.

iv. It was suggested that temporal fluctuations of the environment surrounding the QDs

induce a distribution of non-radiative decay channels [28, 29]. In our experiment,

the non-radiative rates hardly vary from sample to sample because QDs from the

same batch are used, and the photonic crystals are chemically identical. (2) We

indeed observe only minute differences of decay-curve slopes among the samples

with the same lattice parameters.

Therefore, we attribute the observed variations of the multi-exponential decay curves to

a distribution of radiative decay rates as a result of a spatial and orientational variation of

the LDOS.

5.4 Modeling of multi-exponential decay curves

To interpret complex, non-single-exponential decay curves, we propose a new line of

attack by modeling the decay curves with a continuous distribution of decay rates:

I(t) = I0

∫ ∞
γ=0
φ(γ)e−γtdγ, (5.1)

where φ(γ) represents a distribution of decay rates γ with dimension of time [30]. We use

the log-normal distribution function:

φ(γ) = A exp
(
−

ln2(γ/γMF)
w2

)
, (5.2)

where γMF is the most-frequent decay rate corresponding to the maximum of φ(γ), w is a

dimensionless width parameter that determines the distribution width at 1/e:

∆γ = 2γMF sinh w. (5.3)

A in Eq. 5.2 is the normalization constant, so that
∫ ∞
γ=0 φ(γ)dγ = 1. The distribution

function φ(γ) enables us to model intrinsically multi-exponential decay curves, which is

essential when treating an ensemble of emitters. The important features of our analysis

(2) Because the QDs in chloroform have different chemical environment from the inverse opals, we do not com-
pare emission from the QDs in chloroform (Fig. 5.3c) with emission from the QDs in the inverse opals.
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are that the distribution containing the physical information is readily available, that it is

specified in terms of only two free parameters, γMF and ∆γ, and that the log-form of the

distribution function excludes unphysical negative decay rates. Another multi-exponential

model is the stretched exponential that has been employed to single QDs [28, 29]. The

stretched exponential model, however, does not match our data, which again confirms that

the variations we observe are due to LDOS effects in photonic crystals and not to complex

emission properties of the QDs. In Fig. 5.3(b) it is seen that the log-normal distribution

model (solid curves) provides an excellent description of the experimental data.

5.5 Photonic-crystal effects on emission decay rates

5.5.1 Decay rates vs. crystal lattice parameter

We will first consider the resulting decay rates of QDs measured at fixed emission fre-

quency in the inverse opals with different lattice parameters. In this way, we can study

radiative-decay dynamics from QDs having identical internal properties as a function of

the reduced frequency, which is an important parameter of the LDOS. Fig. 5.4 shows the

resulting decay-rate distributions for three lattice parameters. It is remarkable that the log-

normal provides an excellent explanation for all reduced frequencies a/λ studied, which

F 5.4: Decay distributions φ(γ) for the inverse opals with lattice parameters a = 425 nm

(1), a = 255 nm (2) and a = 540 nm (3), corresponding to the data shown in Fig. 5.3. Inset

shows φ(γ) for a = 255 nm in the semi-log scale. Clear modifications of ∆γ and γMF with varying

lattice parameter of the inverse opals are seen.
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will be seen below to agree with calculations. Compared to the low-frequency reference

(a = 255 nm), the maximum of the distribution φ(γ) is shifted to lower decay rates for

the crystal with a = 425 nm, and to higher rates for the crystal with a = 540 nm. These

shifts are a clear demonstration of a photonic-crystal effect of the inverse opals on the

ensemble of embedded emitters. In Fig. 5.4, we see a dramatic change of the width ∆γ of

the distribution. The large width of each distribution is identified with the variation of the

radiative emission rates due to orientational and positional ri dependencies of the LDOS

at each lattice parameter. Consequently, the decay rates of individual QDs are much more

strongly modified by the photonic crystal than the most-frequent rate γMF of the ensemble.

In Fig. 5.5(a,b) we have plotted the resulting values for ∆γ and γMF versus reduced fre-

quency. Let us briefly consider γMF: because the non-radiative part of the total decay rates

does not change with the lattice parameter, the change of γMF - γre f
MF is purely radiative and

related to an averaged photonic-crystal LDOS. We compare the experimental data to the

calculated LDOS (dashed curve) that is averaged over several symmetry-inequivalent lo-

cations on the internal TiO2-air interfaces and over random dipole orientations. The mea-

sured variation of γMF is in good agreement with the DOS. Both inhibited and enhanced

decay rates are observed, and the experimental variation in γMF amounts to a factor of 3.

Now, if we consider the change of the distribution width ∆γ, we see that the data show

a striking variation of a factor of 6, which is much larger than the change of γMF. Al-

ready in the low-frequency limit, a/λ = 0.4, there is a spatial variation of the radiative

rate (∆γ ≥ 0), because the QDs distributed over inequivalent positions in the unit cell

couple to different electric fields [32]. At the frequencies of the L-gap, a/λ ≈ 0.7, the

radiative rate γrad is inhibited in most places in the unit cell that are occupied by the QDs,

as confirmed by a low continuous-wave (cw) countrate of only ≈ 2.5 kHz. Therefore,

the observed narrow width ∆γ = 0.1 ns−1 is a measure of the distribution width of non-

radiative rates. In contrast, at a/λ = 0.88, ∆γ is strongly increased; here the cw countrate

is ≈ 56 kHz at similar experimental conditions, in agreement with an enhanced γrad. We

therefore conclude that the large widths ∆γ are determined by a broad distribution of ra-

diative emission rates ∆γrad that are proportional to a broad distribution of the projected

LDOS at fixed frequency.

We have performed intensive computations to find the LDOS at various positions in

the unit cell of the inverse opals. Details on the calculations of the LDOS are presented in

Chapter 6. The LDOS shown in Figure 5.5c was calculated at two representative positions

in the unit cell at the TiO2-air interface, for dipole orientations parallel and perpendicular
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F 5.5: (a) Width of the decay-rate distribution ∆γ vs. lattice parameter at fixed emission

wavelength (triangles, dashed curve is guide to the eye). (b) Difference between γMF measured

on a photonic sample and γre f
MF = 0.05 ns−1 of the low-frequency reference (squares). Error

bars are estimated from the largest difference between data on samples with similar a. Dashed

curve represents the difference between the averaged LDOS in the inverse opals [31] and the

averaged LDOS for the low-frequency reference (LDOSref ≈ 0.7 at a/λ ≈ 0.41). The averaging

was performed over all dipole orientations and over five points on the internal TiO2-air inter-

faces: at points a, b, c, d (shown in Fig. 6.5) and r=(0.23,0.23,0.14). (c) LDOS at two positions

on the internal TiO2-air surfaces projected on dipole orientations parallel (‖) or normal (⊥) to

the internal surface: at ra = 1
4
√

3
(1,1,2) and at rb = 1

2
√

6
(1, 1, 1).

to the TiO2-air interface. The resulting LDOS in Fig. 5.5c reveals a strong dependency on

the position in the crystal unit cell (compare curves 1 and 2) and on the dipole orientation

(compare curves 1 and 3). It is remarkable that in the relevant a/λ range the frequency

dependence of the LDOS is the same at both positions r and both dipole orientations, and

even at all other studied positions and orientations (see also Fig. 6.6). This result agrees

with the observation that all measured decay curves are successfully modeled with the

same shape of the decay-rate distribution. Because the LDOS for dipoles perpendicular

to the interface is inhibited and nearly constant at all reduced frequencies whereas the
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F 5.6: (a) Mean decay rate γmean of the decay-rate distribution φ(γ) (empty squares)

and cw countrate at the maximum of the QD spectrum (empty circles) vs. lattice parameter. (b)

Standard deviation σ for the distribution φ(γ). Dashed lines are guides to the eye.

LDOS for parallel dipoles has strong variations, we propose that the width of the LDOS

distribution has a similar frequency dependence as the LDOS itself. This notion agrees

with the observation that ∆γ tracks the behavior of γMF. A quantitative comparison of our

data to the calculated LDOS is compounded, since, as discussed above, knowledge on the

relation between γrad and γ is required to infer the the radiative decay-rate distribution

from the γrad-weighted distribution φ(γ) [30]. Qualitatively, the calculated LDOS reflects

the main features of our experiments.

From the modeled emission decay curves, we have also calculated the mean decay

rate γmean and the standard deviation σ corresponding to the log-normal shape of the

decay-rate distribution φ(γ). (3) The resulting dependencies of γmean and σ on the reduced

frequency, shown in Figure 5.6, reveal a similar trend to γMF and ∆γ. The modifications

of these parameters are, however, noticeably larger: the changes of both γmean and σ

amount to a factor of 8. The modification of the mean decay rate corresponds to the

observed large variation of the cw countrate [see Figure 5.6a (circles)]: for emitters with

the quantum efficiency lower than 100 %, an enhancement of the radiative rate leads to an

increased quantum efficiency and, consequently, to an increase of the total emitted power.

A suppression of the radiative rates conversely leads to a decrease of the emitted power.

(3) In the calculation of γmean and σ, the integration performed from γ = 0.0125 to 5 ns−1 is consistent with the
time resolution and the range of the decay histograms.
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F 5.7: Most-frequent decay rate γMF and distribution width ∆γ determined using the log-

normal distribution (Eq. 5.2) for QD emission in inverse opals with lattice parameters a = 255,

320, 425, 540 and 755 nm. The lines connecting the data points are guides to the eye. The error

bars shown for a = 320 nm are typical for all samples and estimated from the largest difference

between data on samples with similar a. The dashed curve in (a) represents calculated decay

rates of the QDs in a homogeneous medium: calculations made in Ref. [27] were overlapped

with γMF for sample with a = 255 nm by adding a constant non-radiative part, which yields then

the ensemble-average quantum efficiency of ∼ 30 %.

5.5.2 Frequency dependence of emission decay rates

We will now consider the frequency dependence of the most-frequent decay rate γMF and

the distribution width ∆γ. Figure 5.7 shows the data for γMF (a) and ∆γ (b) for five inverse

opals with different lattice parameters. For each sample we observe an increase of γMF

and ∆γ with increasing emission frequency. The frequency behavior of γMF in the low-

frequency reference sample (a = 255 nm, circles) is in agreement with the supralinear

increase of the radiative decay rate of CdSe QDs that was observed in a homogeneous

medium (dashed curve) [27]. Such behavior is the result of the frequency dependence of

an ideal two-level exciton with a thermal occupation of dark excitonic states. This good

agreement is also an experimental argument to exclude the possibility of resonant energy-

transfer processes between the QDs. (4) As previously discussed, the distribution of the

non-radiative rates γnrad in the QD ensemble is the same for all our inverse opals. We

also exclude any significant variations of γnrad with changing optical frequency within the

(4) In Chapter 4, based on the low density of QDs of at most four dots per air sphere, we concluded that reab-
sorption and energy-transfer processes are negligible.
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narrow frequency range of the QD emission. While the non-radiative relaxation occurs

mostly via acceptor levels at the surface of a QD [28, 33], there is only a 10 % variation

of the surface area among QDs in the ensemble with a 5 % size dispersion. Therefore, the

observed modifications of γMF and ∆γ in the inverse opals with different lattice parameters

are due to changes in the radiative decay rate γrad.

In Fig. 5.7 one can see that the frequency dependence of the QD decay rates is dif-

ferent in inverse opals with different lattice parameters. In the inverse opal with a = 425

nm, both γMF and ∆γ are nearly constant. In contrast, for example, γMF and ∆γ strongly

increase with frequency in the inverse opal with a = 540 nm. Such frequency behavior,

dependent on the lattice parameter, means that the variation of the decay rate with the

lattice parameter is larger at higher emission frequencies of the spectrum of the QD en-

semble. A possible explanation of this effect could be the above-mentioned supralinear

increase of the radiative decay rate in the QDs. Indeed, if the transition dipole moment in

the CdSe QDs is proportional to ω−1, as shown in Ref. [27], then using Equation 2.32 we

can relate the radiative decay rate γrad to the LDOS N(ω) at a specific emission frequency

ω as:

γrad ∝ ω
−2ωN(ω) ∝ ω−1α(a)ω2 = α(a)ω, (5.4)

where we rewrite N(ω) as the lattice-parameter dependent LDOS modulation α(a) mul-

tiplied by the parabolic absolute-frequency dependence ω2. In Eq. 5.4, we see that the

effect of photonic crystal on the decay rates of the QDs is enhanced at higher emission

frequencies. However, the small frequency change within the narrow spectrum of the QD

ensemble can only give a 7 % increase of the decay-rate modification and does not explain

the large (∼ 360 %) increase of the relative variation with the lattice parameter. Another

explanation of the frequency-dependent effect of the photonic crystal can be the fact that

the modeling of the emission decay curves results in decay-rate distributions weighted by

the radiative rate γrad [30]. For emitters with the quantum efficiency below 100 % (the

quantum efficiency of the studied QDs is ∼ 50 %), any variation of γrad changes the quan-

tum efficiency. Consequently, in the time-resolved emission experiment, QDs with higher

γrad emit more photons, and hence, the intensity decay from such QDs has a higher prob-

ability to be detected than the decay from QDs with low γrad. This means that a certain

increase of γrad leads to an even larger shift of the decay-rate distribution φ(γ).

To the best of our knowledge, no one has yet studied absolute-frequency dependence

of spontaneous-emission rates of QDs, as opposed to the reduced frequency. For CdSe
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QDs in homogeneous media, the first study of the dependence of decay rates on optical

frequencies was reported in Ref. [27]. To understand the frequency dependent decay rates

of QD ensembles in photonic crystals, we need to know how the radiative rate γrad is

distributed. To infer the genuine decay-rate distributions of a QDs ensemble, detailed

knowledge of the relation between the total decay rates γ and the corresponding radiative

rates γrad is required. At present, this is a Herculean challenge due to fluctuations of both

non-radiative [28, 29] and radiative decay rates in the QD ensemble in photonic crystals.

5.6 Conclusions

We have studied dynamics of spontaneous emission from quantum-dot ensembles in

inverse-opal photonic crystals. The measured modifications of decay rates are qualita-

tively explained by newly calculated projected LDOS in the inverse opals. Our results

demonstrate that large inhibitions and enhancements of spontaneous emission can be

achieved with properly positioned and oriented efficient dipolar light sources inside 3D

photonic crystals, at room temperatures and in large volumes limited only by the crystal

size. For the complementary case of a single quantum dot with a certain dipole orienta-

tion in a 2D slab, recent results obtained experimentally [6] and theoretically [34] are in

accordance with our observations. We have also studied the decay rates as functions of

optical frequency within the QD emission spectrum. We observe that the variation of the

decay rate with the lattice parameter is larger at higher emission frequencies of the QD

spectrum. Understanding of this effect as well as a quantitative comparison of our data to

the calculated LDOS require detailed knowledge on the relation between γrad and γ, i.e.,

the knowledge of γnrad in the QD ensemble.
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C     

   

We investigate the local density of states (LDOS) in TiO2 inverse-opal photonic crystals. We used
a recognized technique to calculate optical properties of periodic structures, known as the H-field
plane-wave expansion method. To check the validity of our program code, we compared our com-
putations with the known DOS in vacuum and with earlier results on the LDOS in 3D periodic
structures. We calculated the LDOS in many different positions in the TiO2 inverse opals. With the
aim of finding a theoretical explanation of our experimental observations described in Chapter 5,
we calculated the LDOS in several positions on the internal TiO2-air interface. We find that the
LDOS in the inverse opals strongly depends on the crystal lattice parameter as well as on the po-
sition and orientation of emitting dipoles. Near the first-order stopgap, the frequency-dependent
shape of the LDOS is surprisingly similar at all investigated positions and dipole orientations. This
is in agreement with the experimental observations. We identify special locations, frequencies and
dipole orientations, where TiO2 inverse opals have exciting features important for quantum electro-
dynamics such as strongly enhanced and inhibited LDOS and van Hove singularities.

6.1 Plane-wave expansion method

Knowledge of the LDOS is important for controlling spontaneous decay rates, as dis-

cussed in Chapter 5. The H-field plane-wave expansion method is an effective tool to

compute the band structures and the LDOS in photonic crystals [1–4]. According to

the Bloch theorem, which is the base of the plane-wave method, the Bloch modes of a

photonic crystal can be expressed as a product of plane waves and functions describing

the periodicity of the crystal lattice. These known periodic functions are expanded into

Fourier series and inserted into the wave equation, which results in the infinite equation set

given by Eq. 2.45. To compute the eigenfrequencies ωn(k) and the expansion coefficients
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of the eigenmodes un,k
G , the infinite equation set is truncated: the reciprocal-lattice vectors

G are restricted to a finite set G with NG elements. This results in a 3NG dimensional

equation set:

−
∑
G′∈G

ηG−G′ (k +G) × [(k +G′) × un,k
G′ ] =

ωn(k)2

c2 un,k
G , ∀ G ∈ G. (6.1)

The transversality of the H-field gives an additional condition: (k +G) · un,k
G = 0, which

eliminates one component of un,k
G . Following Ref. [3], for each k +G one needs to find

two orthogonal unit vectors e1,2
k+G that form an orthogonal triad with k +G. By expressing

the eigenmode expansion coefficients in the plane normal to k +G as un,k
G = un,k

G,1e1
k+G +

un,k
G,2e2

k+G, we remove one third of the unknowns. Equation set 6.1 becomes

∑
G′∈G

ηG−G′ |k +G||k +G′|

 e2
k+G · e

2
k+G′ −e2

k+G · e
1
k+G′

−e1
k+G · e

2
k+G′ e1

k+G · e
1
k+G′


un,k

G′,1

un,k
G′,2


=
ωn(k)2

c2

un,k
G,1

un,k
G,2

 , ∀ G ∈ G. (6.2)

To find the Fourier coefficients ηG−G′ , we used the method of Ref. [1]: the coefficients

are computed by first Fourier-transforming the dielectric function ε(r), truncating and

inverting the resulting matrix. This approach considerably improves the convergence of

the plane-wave method [5]. The results obtained with NG = 725 deviate by less than 0.5 %

from the converged band structures [4]. Solving Equation set 6.2 gives the frequencies

ωn(k) and H-field eigenmodes Hn,k(r) in the photonic crystal. Then, using the Maxwell

equations (Eqs. 2.39), the E-fields En,k(r) are obtained from

En,k(r) =
1

ωn(k)ε0

∑
G,G′∈G

ηG′−G|k +G|(un,k
G,1e2

k+G − un,k
G,2e1

k+G)ei(k+G′)·r. (6.3)

To compute the LDOS (Eq. 2.54), the integration over k needs to be discretized. The

expression for the LDOS is then written as

N(r, ω, ed) =
∑
n,k

δ(ω − ωn,k)|ed · En,k(r)|2, (6.4)

where the number of k-points should be as large as possible for a better calculation ac-

curacy. In our computations, the k-space of the first Brillouin zone is represented by an

equidistant grid consisting of 291416 k-points. The LDOS histograms are plotted ver-

sus the reduced frequency a/λ = ωa/2πc, where a is the cubic lattice parameter. The

frequency resolution of the histograms in our calculations is 10 points per ∆a/λ = 0.1.
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To calculate the LDOS in 3D periodic structures is a very complicated and time-

consuming task. The chosen degree of the k-space discretization (291416 k-points) and

the number of plane-waves (NG = 725) are in balance between the accuracy and time of

the calculations. Using a personal computer Pentium (R)4CPU 3.2 GHz and 1 GB RAM,

it takes about 7 days to compute the LDOS at several positions in the 3D structures using

the above-mentioned settings. In calculations of the total density of states (DOS) (1), it is

possible to narrow the integration over k down to the irreducible Brillouin zone. Further-

more, it is not necessary to compute the E-fields. These two factors drastically reduce the

computational burden. The expression for the LDOS contains the term |En,k(r)|, and it is

important to realize that in photonic crystals En,k(r) varies under the lattice point-group

operations so that |En,α[k](r)| , |En,k(r)|, as shown in Ref. [6]. Unfortunately, in several

previous reports on the LDOS, this symmetry property was not appreciated, resulting in

erroneous effects, see Ref. [6]. Hence, we perform the integration over the entire Brillouin

zone to obtain the correct LDOS.

6.2 Comparison with previous results

To test our computations, we compared our results with earlier ones: we have calculated

the DOS and LDOS in vacuum and in an fcc crystal consisting of dielectric spheres with

ε1 = 7.35 in a medium with ε2 = 1.77. The spheres occupy 25 vol % of the crystal, as in

Refs [3, 6]. In Figure 6.1 we present the total DOS in the photonic crystal and compare

our result (empty circles) to that from Ref. [3] (curve with dots). We can reproduce

the earlier calculations of the total DOS: both results shown in Fig. 6.1 are in excellent

agreement, with deviations smaller than 2 %. Figure 6.2a shows the LDOS in vacuum

with an averaged dipole orientation: the projected LDOS for three mutually orthogonal

orientations is summed. In this case the LDOS should be obviously equal to the DOS.

However, for the purpose of testing, we have calculated the LDOS in several positions

in the unit cell of the fictitious crystal with zero dielectric contrast. The resulting LDOS

is identical in all the positions and increases parabolically with frequency in agreement

with the theory (Eq. 2.37): the random deviations, due to the finite k-space discretization,

amount less than 3.5 %.

(1) The DOS is the unit-cell and dipole-orientation average of the LDOS defined as N(ω) =
∑

n
∫

BZ dkδ(ω−ωn,k).
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F 6.1: DOS in an fcc crystal consisting of spheres with ε = 7.35 in a medium with

ε = 1.77 with a filling fraction of the spheres of 25 vol %. The solid dotted curve represents

calculations from Ref. [3].

F 6.2: (a) Dipole-averaged LDOS in vacuum (empty circles) compared to the analytically

derived ω2 behavior (curve). (b) Dipole-averaged LDOS in the same photonic crystal as in

Fig. 6.1 at a position ( 1
4 ,

1
4 , 0). The empty circles are for our calculations, and the solid curve

represents results from Ref. [6]. The relative LDOS is the ratio of the LDOS to that in vacuum

at a/λ = 0.495.
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In Figure 6.2b we demonstrate the LDOS in the same photonic crystal as in Fig. 6.1

at a point equidistant from two spheres. In this calculation, we used the same number of

reciprocal-lattice vectors NG = 965 as in Ref [6]. We find that our calculations (empty

circles) are in good agreement with the LDOS calculated previously (solid curve). The

small deviations at high frequencies are perhaps due to a lower frequency resolution ∆a/λ

in our calculations: larger frequency steps resulted in a smoothing of the sharp peaks in

the LDOS.

6.3 LDOS in TiO2 inverse opals

To calculate the LDOS in our TiO2 inverse-opal photonic crystals, we modeled the posi-

tion dependence of the dielectric function ε(r) as shown in Figure 6.3. We assumed an

infinite fcc lattice of air spheres with radius r = 0.25
√

2a (a is the cubic lattice parameter).

F 6.3: Model of the inverse-opal structure (3x3x3 unit cells): an f cc lattice of air spheres

of radius r = 0.25
√

2a with a being the cubic lattice parameter. The spheres are covered by

shells with ε = 6.5 and outer radius 1.09r. Neighboring air spheres are connected by windows of

radius 0.4r. The black cleaved edges are (100) facets. The dashed lines indicate the boundaries

of a cubic unit cell.
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The spheres are covered by overlapping dielectric shells (ε = 6.5) with outer radius 1.09r.

Neighboring air spheres are connected by cylindrical windows of radius 0.4r. These pa-

rameters are inferred from SEM observations and correspond to a volume fraction of TiO2

of about 10.7 %, which is consistent with the structural characterization of the inverse

opals [7]. Moreover, the photonic band structure calculated using this model agrees with

reflectivity measurements in the ranges of both the first-order and second-order Bragg

diffraction [8].

Henceforth, we will consider the relative LDOS, which is the ratio of the LDOS in

a photonic crystal to that in a homogeneous medium with the same average refractive

index. The LDOS in a homogeneous medium is equal to nav(a/λ)2/3, where nav = 1.27.

In Figure 6.4a we plot the resulting LDOS at three positions in the unit cell: in r = (0,0,0),
1
4 (1, 1, 1) and ( 1

2 ,0,0). Due to the high symmetry of these points, the LDOS there does not

depend on the dipole orientation.

The first observation in Fig. 6.4a is that the LDOS strongly varies with reduced fre-

quency revealing troughs and peaks caused by the lowest-order L-gap near a/λ = 0.7 and

by higher-order stopgaps at a/λ > 1.15. In position r = (0,0,0) there is a sharp, factor-

of-three enhancement at a/λ ≈ 1.35 within a very narrow frequency range. On the other

hand, at a/λ around 1.25, the mode density has a wide inhibition at r = ( 1
2 ,0,0).

F 6.4: Relative LDOS in the inverse opal shown in Fig 6.3 at three different positions:

(a) r = (0,0,0) [the center of an air sphere, solid curve], r = 1
4 (1, 1, 1) [among three air spheres,

dash-dotted curve] and r = ( 1
2 ,0,0) [midway between two spheres along [1,0,0] direction, dotted

curve]; (b) r = 1
4 (1, 1, 0) [in the window between two spheres] projected on [1,1,0], [-1,1,0] and

[0,0,1] directions shown by solid, dash-dotted and dotted curves, respectively.
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The second observation from Fig. 6.4a is that the LDOS at all reduced frequencies

differs considerably among these three positions.

The third observation is that, at another position with less symmetry, there is a clear

dependency on the dipole orientation as can be seen in Figure 6.4b. We should emphasize

here that for emitters with fixed or slowly varying dipole orientations (e.g., dye molecules

and quantum dots on solid surfaces), the emission rate is determined by the optical modes

that are projected on the dipole orientations. Therefore, knowledge of the projected LDOS

is important for controlling spontaneous-emission rates as well as for interpreting the data

from experiments on emitters in photonic media.

At low frequencies, a/λ < 0.5, the relative LDOS hardly varies with frequency, which

means that the mode density is proportional toω2, as in a homogeneous medium. Still, the

position-dependence of the LDOS is also apparent at the low frequencies. The reason is

that the photonic Bloch modes exhibit local variations of the electromagnetic fields related

to local variations of the dielectric function. Thus, the LDOS is position-dependent even

at low frequencies relative to the crystal periodicity.
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F 6.5: (Left) View of a single unit cell of the modeled inverse opal. (Right) Cut of the

inverse opal along (111) facet. The letters indicate different positions at the TiO2-air interface

equivalent to: a = 1
2
√

2
(1,0,0), b = 1

4
√

3
(1,1,2), c = 1

2
√

6
(1, 1, 1) and d = (0.33,0.13,0). The dash-

dotted line (Left) shows the main diagonal of the cubic unit cell. The dotted line (Left and Right)

indicates [1,1,2] direction that belongs to the (111) crystal plane.
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F 6.6: Relative LDOS in the inverse opal at four different positions on the TiO2-air

interface shown in Fig. 6.5. At each position the LDOS is projected on three mutually orthogonal

dipole orientations ed. (a) point a for ed = [1,0,0] and [0,1,0]. LDOS at ed = [0,0,1] and [0,1,0]

is the same. (b) point b for ed = [1,1,2], [-1,1,0] and [-1,-1,1]. (c) point c for ed = [1,1,1] and

[-1,1,0]. LDOS at ed = [-1,-1,2] is equal to that at ed = [-1,1,0]. (d) point d for ed = [0.33,0.13,0],

[-0.13,0,0.33] and [0,0,1].
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In the time-resolved emission experiments described in Chapter 5, we studied ra-

diative decay rates of the quantum dots, which were distributed at the internal TiO2-air

interfaces of the inverse opals. To compare our experimental data to the theory, we have

calculated the LDOS at several symmetry-inequivalent positions on the internal interfaces.

Figure 6.5 shows a single unit cell (Left) and a (111) facet (Right) of the modeled inverse

opal. The plot in Fig. 6.5(Right) is convenient for comparison with SEM images of the

real inverse opals, which often reveal the crystal surface cut along the (111) plane (e.g.,

see Fig. 3.5).

We have calculated the LDOS at the indicated positions a, b, c and d for three mutually

orthogonal orientations of the emitting dipole ed, where the first orientation is chosen

along the vector pointing from (0,0,0) toward the corresponding point. Figures 6.6a -

6.6d show that at all those points the resulting LDOS varies with the reduced frequency

and strongly depends on both the position and orientation of the dipole. Furthermore,

the plots reveal that for the dipoles perpendicular to the TiO2-air interface, the LDOS is

noticeably inhibited (by factors of 2 to 8) at all reduced frequencies compared to dipoles

parallel to the interface.

In the reduced frequency range up to a/λ = 1.1, the dependence of the LDOS on the

lattice parameter is very similar at all the positions and dipole orientations. This result is

remarkable because it nicely agrees with the observation made in Chapter 5: the complex

decay curves of quantum-dot emission from the inverse opals are explained by a single

shape (log-normal) of the decay-rate distribution for all reduced frequencies studied.

At higher frequencies we see large variations of the LDOS versus lattice parameter,

position and dipole orientation. The LDOS at position a shows a steep slope at a/λ ≈ 1.2,

where it abruptly changes by a factor of 4. Positions b and d show similarly steep LDOS

variations within a narrow a/λ range. Such sharp peaks in the LDOS (van Hove singulari-

ties) are very desirable for realization of strong emitter-field coupling and non-exponential

decay dynamics of emission from single sources. At a/λ ≈ 1.3 the LDOS is inhibited for

all the positions and dipole orientations (also in Fig. 6.4). The lowest LDOS that we find

is inhibited 18 times compared to the homogeneous medium. It is remarkable because this

trough in the LDOS found for many locations and dipole orientations is due to stopgaps

with little dispersion and is a precursor of a photonic bandgap [8].

To consider the spatial distribution of the LDOS in the inverse opals, we have per-

formed calculations along characteristic directions in the unit cell. Figure 6.7 shows vari-

ation of the LDOS at four key frequencies along the [1,1,1] direction: the main diagonal
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F 6.7: Relative LDOS at four key frequencies, a/λ = 0.535, 0.725, 0.865 and 1.295, in

the inverse opal as a function of the distance r from (0,0,0) point along [1,1,1] direction. The

LDOS is projected on two dipole orientations ed: (a) [1,1,1] and (b) [-1,1,0]. LDOS at ed =

[-1,-1,2] and [-1,1,0] is equal. The hatched boxes indicate the position of the TiO2 shell. For

r/a ∈ [
√

3
2 ,
√

3] the LDOS is mirror-symmetric to that in the presented region.

of the cubic unit cell. The LDOS at those frequencies depends on position and has clear

minima and minima along the diagonal. The LDOS projected on the [1,1,1] direction

is strongly (> 5x) suppressed near the TiO2 shell (r/a ≈ 0.353) at all the frequencies

(Fig. 6.7a). This agrees with the LDOS at position c on the shell shown in Fig. 6.6c. On

the other hand, the mode density for [1,1,1] dipole orientation is enhanced at r/a ≈ 0.28

and 0.57: almost 2.5 and 3 times, respectively. For orientations in the [-1,1,0] and [-1,-1,2]

directions, the LDOS is inhibited at r/a ≈ 0.57 for all the frequencies, as seen in Fig. 6.7b.

This position r/a = 1/
√

3 ≈ 0.57 lies in the (111) lattice plane - the most close-packed

plane in the fcc crystal lattice. It is therefore interesting to consider the LDOS behavior

in that plane.

In Figure 6.8 we show the LDOS at the four frequencies along a line that lies in the

(111) plane and connects the centers of two spheres: (0,0,0) and ( 1
2 ,

1
2 , 1) as shown in

Fig. 6.5 by the dotted lines. We see that for the dipole orientation ed = [1,1,2], the LDOS

at all four frequencies is strongly inhibited in the node amid three air-spheres (r/a around

0.4) and is enhanced just outside the node. The LDOS projected on the [-1,1,0] direction

does not show any sharp features besides the suppression in the node. For the dipole

oriented perpendicularly to the (111) plane (ed = [-1,-1,1]), the LDOS is enhanced at two

frequencies a/λ = 0.535 and 0.725, and is even more strongly enhanced at a/λ = 0.865.
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F 6.8: Relative LDOS in the inverse opal as a function of the distance r from (0,0,0) point

along [1,1,2] direction for the same frequencies as in Fig. 6.7. The LDOS is projected on three

dipole orientations ed: (a) [1,1,2], (b) [-1,1,0] and (c) [-1,-1,1]. The hatched boxes indicate the

TiO2 shells. For r/a ∈ [ 1
2

√
3
2 ,
√

3
2 ] the LDOS is mirror-symmetric to the LDOS in the presented

r/a region.
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6.4 Conclusions

We have managed to perform intensive calculations of the local density of states (LDOS)

in the TiO2 inverse opals, using the H-field plane-wave expansion method. To check the

validity of our program code, we have compared our computations with the theoretically

known DOS in vacuum and with the earlier results on the LDOS. We have calculated the

projected LDOS in various positions in the TiO2 inverse opals, aiming to find a theoretical

explanation of the experimental results described in Chapter 5. The results of our numeri-

cal calculations revealed a surprisingly strong dependence of the LDOS on the orientation

of the emitting dipoles. At frequencies near the first-order stopgap, the dependence of the

LDOS on the crystal lattice parameter is preserved at all investigated positions and dipole

orientations, in agreement with the experiment. We have identified conditions where the

LDOS is strongly enhanced, strongly inhibited and where the van Hove singularities ap-

pear. These predictions mean that the TiO2 inverse opals can have a great potential for

studies of quantum electrodynamics of embedded light sources.
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M     

   

This chapter presents a time-resolved study of spontaneous emission from Rhodamine 6G dye in
opal photonic crystals. We have measured fluorescence lifetimes of the dye by varying both optical
frequency and crystal lattice parameter of polystyrene opals. The observed fluorescence lifetimes
are nearly frequency independent within the dye emission spectrum. This effect is attributed to a
broad homogeneous linewidth of the dye, which means that dye molecules probe the local density of
states (LDOS) in the photonic crystals averaged over all frequencies of the homogeneous spectrum.
Fluorescence lifetimes of the dye are modified when the crystal lattice parameter is changed: we
observe 16 % enhancement and 10 % inhibition of spontaneous emission, which is explained by the
varying LDOS in the opals. The changes of spontaneous emission induced by the polystyrene opals
are considerably smaller than the effects measured in the titania inverse opals. This agrees with
much weaker changes of the LDOS in the opals with respect to those in the inverse opals.

7.1 Introduction

Since 1987, when the potential of photonic crystals in inhibition of spontaneous emission

was firstly pointed out [1], there has been a lot of efforts to observe modified emission

rates in photonic crystals. Early emission experiments were performed on opal photonic

crystals: these crystals consisting of close-packed fcc lattices of monodisperse spheres

from silica or polystyrene can be relative easily fabricated by self-assembly. Already

in 1990, the first report appeared [2], where the emission decay of a dye in an ordered

aqueous suspension of polystyrene spheres was inhibited by a factor of 1.75 compared to a

disordered reference sample. In another emission experiment on dye molecules dissolved

in the same suspension systems [3], a similar inhibition of the decay rate was observed.

However, in the second work, the authors ascribed the observed large modification to

113
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variations of the chemical environment of the dye molecules. They showed that changes

of the chemical environment can lead to large effects on the fluorescence lifetimes. Later,

in the measurements of the fluorescence of dyes in silica opals filled with a polymer,

multi-exponential decays containing both accelerated and inhibited rates were observed

[4] and compared to the dye fluorescence in a polymer film. The resulting accelerated

and inhibited rates differed by a factor of 2 and were attributed to a redistribution of the

density of states across the emission spectrum. This explanation was disputed in Ref. [5]:

the studied opals had a low dielectric contrast and could only weakly modify spontaneous

emission. The large factor-of-two difference is most likely caused by influence of the

fluorescence from the backbone materials: the excitation of the dye in that experiment

was performed in the UV range, and the detected emission was not spectrally resolved.

In the meantime, with the appearance of highly-efficient quantum dots and periodic

structures with high dielectric contrasts, the scientific interest was diverted away from

dyes and opals. In experiments on the quantum dots and wells embedded in strongly

photonic crystals, considerable modifications of spontaneous-emission rates have been

recently achieved [6–10]. The quantum dots, however, are very sensitive to water and

oxygen and have features that are not well understood (blinking, photobrightening), as

discussed elsewhere in this thesis. Furthermore, despite high brightness and resistance to

bleaching of the quantum dots, difficulties in targeting of proteins in live cells are the main

limitation of using these sources as fluorescent labels. In contrast, there is a great variety

of highly-efficient in water organic molecules (dyes) that are widely used as fluorescent

probes in studies of biological samples [11, 12]. It is, therefore, interesting to investigate

if the radiative properties of the dyes can be controlled with photonic crystals.

7.2 Experiment

We have investigated dynamics of spontaneous emission from dye molecules embedded

in opal photonic crystals. The measurements were performed on opals from polystyrene

colloids with different cubic-lattice parameters ranging from 178 ± 3 nm to 922 ± 25 nm,

a total of 7 samples. The opals were doped with Rhodamine 6G (R6G) - a well-known

dye that has a high quantum efficiency of about 95 % [13, 14]. The process of the dye

infiltration is described in detail in Chapter 4. The dye molecules are distributed on the

surfaces of the polystyrene spheres constituting the opals. The excitation of the dye was
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performed at as low as possible frequencies to avoid fluorescence from the backbone of

the photonic crystals. We found that the polystyrene backbone fluoresces when wave-

lengths shorter than 450 nm are used for excitation. Therefore, we used a pulsed LED

(Picoquant, PLS 500), which emits at λ = 502 nm in a bandwidth of 32 nm and has a

pulse width of 600 ps. The time between consecutive pulses was set to 50 ns. The pump

beam was focused to a spot of about 1 mm in diameter on the sample surface. The scat-

tered pump light was filtered out. We used the same set-up that is described in Chapter 4

to detect R6G emission from the photonic crystals. The time-resolved fluorescence inten-

sity was measured at different frequencies within narrow bands of ∆ω ≈ 85 cm−1 using

the time-correlated single-photon counting, similarly to the experiment on quantum dots

described in Chapter 5. Due to the high quantum efficiency of R6G, the decay of the

excited state is dominated by the radiative process, and the measured decay rate (inverse

lifetime) γtot is nearly equal to the radiative decay rate γrad.

7.3 Experimental results

Propagation of emitted light in photonic crystals is affected by the stopbands, as we could

see in the angle-resolved study of emission spectra presented in Chapter 4. The stopbands

also change the LDOS, which has effects on the dynamics of spontaneous emission of

light sources embedded in photonic crystals. In Figure 7.1 we plotted emission spectra of

R6G dye in polystyrene opals with different lattice parameters. The spectra from the opals

with lattice parameters a = 365 and 682 nm are modified by the first- and second-order

Bragg diffraction, respectively. In contrast, in the opal with a = 178 nm, the emission fre-

quencies of R6G are in the low-frequency limit, and therefore, no stopbands are observed.

In the time-resolved experiments, we study influence of the opal photonic crystals

on the fluorescence decay of R6G by varying the crystal lattice spacing and detecting

the fluorescence at different emission frequencies. Figure 7.2 shows examples of the

time-resolved traces of R6G emission in polystyrene opals with three different lattice

parameters. The decay curves were recorded at the maximum of the R6G spectrum at

λ = 556 nm. The apparent difference in the slopes of these decay curves indicates a

modified radiative lifetime. Spontaneous emission in opals with lattice parameters a= 365

and 682 nm, which reveal effects of Bragg diffraction within R6G emission spectrum, is

inhibited comparing to the low-frequency opal.
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F 7.1: Normalized emission spectra of R6G in polystyrene opals with three different

lattice parameters: a = 178 nm (solid curve), a = 365 nm (dash-dotted curve) and a = 682 nm

(dotted curve). In the opal with a = 178 nm, the frequencies of R6G emission lie far below the

first-order stopband. Emission from the opal with a = 365 nm reveals the first-order stopband,

whose angle-dependence is presented in Chapter 4. Spectrum from the opal with a = 682 nm

shows effects of the second-order Bragg diffraction that presented in more detail in Ref. [15].

F 7.2: Fluorescence decay curves recorded at ω = 17985 cm−1 (λ = 556 nm) from R6G

dye in polystyrene opals with lattice parameters a = 178 nm (1), 365 nm (2) and 682 nm (3),

together with the instrument response convoluted with the excitation pulse (4). Curves 1 and 2

are overlapped at 0 ns with curve 3. Solid lines are fits with the stretched-exponential model.
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The decay curves shown in Fig. 7.2 are not strictly single-exponential, whereas the

decay of R6G emission in homogeneous media is explicitly mono-exponential. The slight

deviation from pure mono-exponential decay is because the dye molecules at different

positions on the polystyrene spheres couple to different LDOS and, hence, reveal different

lifetimes. Effects of reabsorption and fluorescence quenching, which can also lead to non-

exponential decays, are excluded due to a very low (10−6 mol/l) doping concentration of

the dye, as discussed in the previous chapters. Thus, to infer the fluorescence lifetimes

(inverse decay rates), we needed to model the measured decay curves. It is reasonably

to assume that the decrease of the number n(t) of excited dye molecules in the opals is

characterized by a narrow distribution of lifetimes. This excited-state behavior can be

modeled by the stretched exponential (1) - a widely-used model with only two adjustable

parameters (see, e.g., [16]) that is defined as

n(t) = n0 exp(−t/τ)β. (7.1)

Here β is the stretch parameter that varies between 0 and 1, and τ is the time when n(t) de-

creases e-times. The stretch parameter β is qualitatively related to a lifetime distribution:

β near 1 corresponds to a very narrow distribution, and smaller β, to a broad distribution.

The corresponding fluorescence decrease proportional to the time-derivative of n(t) (see

Appendix B or [17]) is then modeled as

I(t) = I0(β/t)(t/τ)β exp(−t/τ)β. (7.2)

The main advantage of this model is that the average lifetime τav can be readily calculated:

τav = (τ/β) Γ(1/β), (7.3)

where Γ is the Gamma-function. We have modeled all measured fluorescence decay traces

with the stretched exponential (Eq. 7.2): the results of modeling are shown by the solid

curves in Fig. 7.2. The stretch parameter β is close to 1, varying between 0.92 and 0.99.

From the obtained parameters τ and β, we have calculated the average fluorescence life-

time using Eq. 7.3.

7.3.1 Fluorescence lifetime in opals vs. frequency

In Figure 7.3 we present the frequency dependence of the average lifetime τav for R6G

emission in several opals with different lattice parameters. The data from all samples

(1) The analysis of the R6G decay curves was done before we had learned modeling with decay-rate distributions.
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reveal a slight (< 8 %) decrease of τav with increasing emission frequency, which is

in agreement with previous results [18–20]. These small lifetime changes compared to

expected ω3-behavior can be explained if the spectral width of R6G is dominated by ho-

mogeneous line broadening. Indeed, spectra of dye molecules including R6G are homo-

geneously broadened because of a splitting of electronic energy levels due to interaction

with molecular vibrational and rotational modes: the excited level consists of a ladder of

sublevels |ai〉 and the ground level, of a similar ladder of sublevels |bi〉 [21, 22]. After

excitation, a molecule quickly relaxes to the lowest excited electronic level |a1〉 in a pi-

cosecond time scale. From this level, fluorescent transitions occur to different sublevels

|bi〉 of the ground electronic level. If, in a photonic crystal, a certain transition |a1〉 → |b1〉

is inhibited due to a low LDOS at the frequency of this transition, the excited state will

decay via another |b2〉 sublevel at a different frequency within the homogeneous linewidth

of the dye. Therefore, modifications of the fluorescence lifetime in dyes can only be ob-

served if the homogeneous linewidth is narrower than (or at least comparable to) features

in the frequency dependence of the LDOS.

F 7.3: Average fluorescence lifetime τav vs. detection frequency obtained using the

stretched exponential (Eq. 7.2) for R6G emission in polystyrene opals with lattice parameters

a = 178, 314, 365, 602, 682 and 922 nm. The error bars shown for a = 682 nm are typical for all

samples and estimated from the difference between data on samples with similar a. The lines

connecting the data points are guides to the eye.
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7.3.2 Decay rates vs. crystal lattice parameter

It is remarkable that the fluorescence lifetime is different in opals with different lattice

parameters, as seen in Fig. 7.3. This indicates that the LDOS in the opals is modified

in frequency ranges comparable or larger than the homogeneous linewidth of R6G. Fig-

ure 7.4a shows the measured decay rates (squares) of R6G versus reduced frequency

ωa/2πc, i.e, at fixed emission frequency ω = 17985 cm−1 and varying crystal lattice pa-

F 7.4: (a) Decay rates of R6G (squares) measured at ω = 17985 cm−1 and normalized

to the rate in a homogeneous medium γhom = 0.254 ns−1. Dipole- and position-averaged relative

LDOS (dashed curve). The averaging was performed over five points on the internal surfaces:

at r1 = 1
2
√

2
(1,0,0), r2 = 1

2
√

6
(1, 1, 1), r3= 1

4
√

3
(1,1,2), r4=(0.33,0.13,0) and r5=(0.23,0.23,0.14).

Normalized rates (diamonds) calculated from the averaged LDOS using Eq. 7.4. Dotted curves

indicate R6G emission spectrum plotted vs. reduced frequency for in opals with a = 365 and

682 nm. (b) Relative LDOS at two positions on internal opal surfaces, r1 and r2, projected on

dipole orientations parallel (‖) or normal (⊥) to internal polystyrene-air interfaces.
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rameter a. The decay rates are normalized to γhom = 0.254 ns−1, (2) which is the decay rate

in a homogeneous medium with refractive index n = 1.45.

In order to find if the observed modifications of spontaneous-emission rates (γav =

1/τav) agree with theory, we have calculated the LDOS in different positions on the in-

ternal surfaces of the opals, where dye molecules can be located. In Figure 7.4b we

plotted the relative LDOS (3) at two illustrative positions in the opal, projected on two

dipole orientations: parallel and perpendicular to the sphere surface. The plots clearly

demonstrate variation of the LDOS with the reduced frequency, location as well as ori-

entation of emitting dipoles. In our experiment we detected fluorescence from dyes that

are randomly oriented and randomly distributed on the internal surface of the opals. Con-

sequently, the measurements are compared to the LDOS that is averaged over several

symmetry-inequivalent locations on the spheres constituting the opals and over random

dipole orientations. The reduced-frequency dependence of the resulting averaged LDOS

[Fig. 7.4a (dashed curve)] is in a good agreement with the experimental data.

However, due to the broad homogeneous linewidth of R6G, the decay rate of the dye

is determined by the LDOS at all frequencies of its emission spectrum (dotted curves in

Fig. 7.4a). In the experiments on quantum dots (Chapter 5), we could directly compare

the measured decay rates to the calculated LDOS because the homogeneous linewidth

of those emitters (∆ω/ω ≈ 0.025) is narrow with respect to the LDOS features in the

inverse opals. In case of R6G, we concluded that the emission spectrum (∆ω/ω ≈ 0.09)

is homogeneously broadened. The decay rate of emitters with a homogeneous spectrum

S (ω) coupled to the LDOS N(ω, a) is therefore calculated as:

γ(a) = A
∫ ∞

0
ωS (ω)N(ω, a)dω, (7.4)

where A is a constant parameter that includes the transition dipole moment of R6G, and a

is the lattice parameter of the photonic crystal. It can be recognized that this expression is

a generalized form of Eq. 2.32. By inserting the spectrum of R6G and the LDOS (in units

of [4/a2c]) in Eq. 7.4, we calculated decay rates for opals with specific lattice parameters,

which were then normalized to the calculated rate in a homogeneous medium with n =

1.45. The predicted decay rates still vary with the lattice parameter and are not smoothed

(2) This value is obtained knowing that R6G dissolved in ethanol (n = 1.36) has the quantum efficiency of 95 %
and the decay rate of 0.25 ns−1 [14].
(3) As in the previous chapters, the LDOS is related to the LDOS in a homogeneous medium with refractive
index n = 1.45, which is the effective refractive index of the polystyrene opals.
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by the homogeneous emission spectrum because the latter has the width comparable to

the widths of troughs and peaks in the LDOS.

From the observed modifications of the emission decay rates, which are also in agree-

ment with theory, we conclude that the dynamics of spontaneous emission from dye

molecules can be controlled by photonic crystals. The observed 15 % enhancement and

10 % inhibition of spontaneous emission in the opals are, however, rather comparing to

the eight-fold modifications of emission rates from quantum dots in the inverse opals re-

ported in Chapter 5. This observation is in accordance with the small changes of the

LDOS in the polystyrene opals (Fig. 7.4a), which are much weaker than the LDOS vari-

ations as a function of reduced frequency, position and orientation of emitting dipoles in

the titania inverse opals (see, e.g., Fig. 6.6).

7.4 Conclusions

We have studied time-resolved spontaneous emission from Rhodamine 6G dye in opal

photonic crystals made from polystyrene. The observed fluorescence lifetimes hardly

vary with changing optical frequencies within the dye emission spectrum. This effect is

attributed to a broad homogeneous linewidth of the dye, which means that dye molecules

probe the LDOS in the photonic crystals that is averaged over all frequencies of the ho-

mogeneous spectrum. By changing the crystal lattice parameter, we do observe some

modifications of the lifetimes, which testifies that the LDOS features in the opals are still

broader than the homogeneous linewidth of the dye. The variations of the emission decay

rates induced by the polystyrene opals are in agreement with the calculated changes of the

LDOS integrated over the dye emission spectrum. The observed effects on spontaneous

emission from the dye in the opals are considerably smaller than the effects measured in

the titania inverse opals, which is in accordance with the large homogeneous linewidths of

the dye compared to quantum dots, and with much weaker predicted changes of the LDOS

in the opals with respect to the strong LDOS modifications predicted for the inverse opals.
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S

Spontane emissie is een essentieel proces in generatie van licht uit vele verschillende

energiebronnen zoals hitte, elektriciteit of chemische interactie. Derhalve is het de oor-

zaak van het grootste deel van het licht rond ons. Dit proces brengt straling van fotonen in

overgangen tussen hoogenergie en laagenergie toestanden van elementaire lichtbronnen

(zoals atomen, moleculen of quantum dots) met zich mee. Aangezien de spontane emissie

essentieel is voor diverse dagelijkse toepassingen, zoals lichtgevende dioden, lasers, TV

schermen, het oogsten van energie in zonnecellen, is het duidelijk dat de controle over dit

fenomeen van groot belang is.

De emissie eigenschappen van de elementaire lichtbronnen worden beinvloed door

hun omgeving: de emissie vervalsnelheid (inverse levensduur) van de lichtbronnen wordt

bepaald door de lokale optische toestandsdichtheid (LDOS). Er werd voorspeld in 1987

dat fotonische kristallen de LDOS radicaal kunnen wijzigen en daardoor de emissie ver-

valsnelheden en verspreiding van licht controleren. Fotonische kristallen zijn periodieke

structuren die uit twee materialen met verschillende brekingsindexen bestaan. Deze pe-

riodieke variatie op lengteschalen vergelijkbaar met de golflengte van licht leidt tot in-

terferentie van lichtgolven en tot optische Bragg diffractie. Derhalve zijn de specifieke

frequenties belemmerd om zich langs bepaalde richtingen te verspreiden, analoog aan

Bragg diffractie van röntgenstralen in atoomkristallen. Dergelijke verboden frequentiebe-

reiken worden stopgaps genoemd. Hoe groter het brekingscontrast in de kristallen, hoe

erger wordt licht beïnvloed. De situatie wanneer het licht zich in geen richting kan ver-

spreiden, wordt een fotonische bandkloof genoemd. Spontane emissie is volledig geremd

voor frequenties binnen zo een bandkloof en, omgekeerd, sterk verhoogd voor frequen-
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ties buiten de bandkloof. Daarom vormen fotonische kristallen een ultiem gereedschap

om licht te manipuleren, welke van extreem belang is voor wetenschappers en ingenieurs.

De recente vooruitgang in nanotechnologie heeft in capaciteit geresulteerd om half-

geleiderstructuren met afmetingen van een paar nanometers te maken. Wegens de kleine

grootte, kunnen elektron-gat paren (excitonen) in deze halfgeleider nanodeeltjes worden

opgesloten. Dit leidt tot discrete energieniveaus van de excitonen. De nanodeeltjes, die

excitons in sferische of cirkelruimten beperken, staan als quantum dots bekend. De discre-

te energieniveaus resulteren in zeer nauwe emissiespectra. De emissiefrequenties kunnen

worden afgestemd door de grootte van de nanodeeltjes te variëren: hoe kleiner de grootte,

hoe hoger de emissiefrequentie. Deze eigenschappen maken de halfgeleider nanodeeltjes

veel belovende elementaire lichtbronnen voor vele nieuwe experimenten en toepassingen.

Dit proefschrift beschrijft tijd- en hoekopgeloste experimenten, waarin de effecten

van driedimensionale (3D) fotonische kristallen op de spontane emissie van lichtbron-

nen (quantum dots en kleurstofmoleculen) worden bestudeerd. In Hoofdstuk 2 wordt een

overzicht van de theoretische grondbeginselen van de interactie tussen licht en materie

gegeven. We bespreken de factoren die het proces van spontane emissie teweegbrengen

en beschouwen in detail de tijdsevolutie van de aangeslagen toestand van de lichtbron die

met het gekwantiseerde vacuümveld wisselwerkt. De relatie tussen de snelheid van spon-

tane emissie en de LDOS wordt afgeleid. Het verspreiden van licht in fotonische kristallen

wordt onderzocht. Door het voorbeeld van een 1D fotonisch kristal verklaren we de oor-

sprong van de stopgap. Met behulp van de fotonische dispersierelaties, illustreren we de

belangrijke eigenschappen van 3D fotonische kristallen. De door theorie voorspelde ster-

ke veranderingen van de LDOS en vervalsnelheden in 3D fotonische kristallen worden

tenslotte besproken.

In Hoofdstuk 3 worden de noodzakelijke gereedschappen om spontane emissie te con-

troleren besproken. Daar bediscussiëren we experimenteel gerealiseerde periodieke struc-

turen met een fotonische bandkloof, de eisen aan hun kristalsymmetrie en dielektrisch

contrast voor het openen van de bandkloof evenals de methodes om dergelijke periodieke

structuren op grote schaal te vervaardigen. We bespreken optische testen noodzakelijk

voor het bestuderen van de interactie van licht met echte fotonische kristallen. Deze

testen omvatten metingen van hoekopgeloste spectra van gereflecteerd en doorgelaten

licht evenals emissie uit interne lichtbronnen. We beschouwen de rol van onvermijdelijke

structurele wanorde in propagatie van licht in echte fotonische kristallen. De fotonische

kristallen die in onze emissie experimenten worden gebruikt, worden beschreven, name-
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lijk polystyreenopalen en titania inverse opalen. Tot slot bespreken we de lichtbronnen

die als interne fluorescente sondes in fotonische kristallen kunnen worden gebruikt.

Hoofdstuk 4 beschrijft de hoekopgeloste metingen van emissie spectra van laserkleur-

stoffen en quantum dots in opalen en inverse opalen. We nemen duidelijke richtingsafhan-

kelijkheden van de emissie spectra waar: de bereiken van hoeken van sterk verminderde

emissie grenzen aan deze met verbeterde emissie. Het blijkt dat de emissie uit ingebedde

lichtbronnen zowel door de periodiciteit als door de structurele imperfecties van de kris-

tallen wordt beinvloed: de fotonen worden verstrooid door kristalroostervlakken (Bragg

diffractie) en eveneens verspreid door onvermijdelijke structurele wanorde. We verkla-

ren kwantitatief de gemeten richtingsafhankelijke emissie met hulp van een model dat

transport van diffuus licht en de fotonische bandstructuur verenigt.

In Hoofdstuk 5 tonen we een experimenteel bewijs van de sterk gewijzigde emissie

vervalsnelheden van een ensemble van CdSe quantum dots in de titania inverse opalen.

Door de roosterparameter van de fotonische kristallen te variëren, bereiken we zowel ver-

traging als verhoging van de emissie vervalsnelheden. De complexe vervalcurven worden

met succes geanalyseerd met een ononderbroken distributie van vervalsnelheden. De re-

sulterende meestfrequente vervalsnelheid varieert met een factor 3, terwijl de breedte van

de distributie een zesvoudige wijziging vertoont. Deze grote wijziging van de distribu-

tiebreedte in fotonische kristallen met verschillende roosterparameters wordt geidentifi-

ceerd met variaties van de radiative vervalsnelheden van quantum dots bij diverse posities

in de eenheidscel en met verschillend georienteerde overgangsdipolen. Deze interpreta-

tie wordt vergeleken met berekeningen van de LDOS in de inverse opalen. Het verschil

tussen de laagste en de hoogste gemiddelde emissie vervalsnelheid is zelfs een factor 8,

overeenkomstig met de verandering van de totale uitgezonden intensiteit. Door de op-

tische frequentie te variëren binnen het emissiespectrum van de quantum dots, merken

we op dat de veranderingen van de vervalsnelheid met de roosterparameter groter zijn bij

hogere emissiefrequenties.

In Hoofdstuk 6 bespreken we de LDOS in de titania inverse opalen. Met de vlakke-

golf benadering hebben we de LDOS in vele posities in de eenheidscel voor verschillende

dipooloriëntaties berekend. We vinden dat de LDOS in de inverse opalen sterk afhangt

van de roosterparameter evenals van de positie en oriëntatie van de overgangsdipolen.

We hebben voorwaarden geidentificeerd waar de LDOS sterk wordt onderdrukt, sterk

verhoogt, en waar de scherpe pieken (van Hove singulariteiten) verschijnen. Voor een

theoretische verklaring van de experimentele waarnemingen, welke in Hoofdstuk 5 wor-
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den beschreven, hebben we berekeningen van de LDOS in verscheidene posities in interne

oppervlakken gemaakt. Bij de frequenties dichtbij de laagste stopgap, wordt de afhanke-

lijkheid van de LDOS van de roosterparameter bewaard bij alle onderzochte posities en

dipooloriëntaties. Dit feit komt overeen met de experimentele waarnemingen.

Een tijdopgeloste studie van spontane emissie van kleurstofmoleculen (Rhodamine

6G) in opaal fotonische kristallen wordt gepresenteerd in Hoofdstuk 7. Daar, hebben we

de fluorescente levensduren gemeten van de kleurstof door zowel optische frequentie als

de roosterparameter van polystyreenopalen te variëren. De waargenomen fluorescente le-

vensduren zijn bijna frequentieonafhankelijk binnen het kleurstofemissie spectrum. Dit

wordt toegeschreven aan het brede homogene spectrum van de kleurstof. Nochtans, wor-

den de levensduren gewijzigd als de roosterparameter van de opalen wordt veranderd: we

observeren 16 % verhoging en 10 % vertraging van de spontane emissie. De waarnemin-

gen worden verklaard door de LDOS, welke in de opalen varieert in bandbreedtes verge-

lijkbaar met het homogene spectrum van de kleurstof. De veranderingen van de spontane

emissie in de polystyreenopalen zijn aanzienlijk kleiner dan de gevolgen die in de titania

inverse opalen worden gemeten. Dit feit is verwant aan veel zwakkere veranderingen van

de LDOS in de opalen in vergelijking met de inverse opalen.
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A A

M      -

The aim of this appendix is to explain the difference between the calculated escape dis-

tribution and the measured raw intensity illustrated in Fig. 4.4. This difference appears

because the width of the projection of the collection optics (the spectrometer slit) on the

sample increases with angle θe. The spectrometer slit is imaged via lens L1 and L2 onto

the surface of the sample (Fig. 4.1). The only emission collected emanates from the region

confined by the slit projection on the sample surface, see Fig. A.1. This means that the

spectrometer collects light from a larger region on the surface at larger detection angles,

and that the measured angle-dependent intensity should be corrected for the detection ef-

ficiency of the set-up. The detection efficiency is modeled as a ratio D(µe) of the intensity

B(µe) collected from the surface region within the slit projection (Fig. A.1) at detection

y

xEmission spot

Slit projection

F A.1: Real-space cartoon of the projection of the spectrometer slit (striped rectangle)

on the sample surface overlapped with the emission spot (in grey). One quarter of the slit

projection (small dashed rectangle) has one of the corners in the emission-spot center. The

width of the projection (along x) increases at larger detection angles θe.
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130 Appendix A Model of detection efficiency of emission set-up

angle θe = cos−1(µe) to the intensity B(µe = 1) collected at normal angle:

D(µe) =
B(µe)

B(µe = 1)
, B(µe) =

∫ x(µe)

0

∫ y0

0
I(x, y)dxdy. (A.1)

We take into account that the integration runs over a quarter of the slit, as x(µe) = x0/µe

is the half-width of the slit projection, x0 and y0 are the half-width and the half-height of

the slit projection at µe = cos(θe) = 1, respectively. Typical values of x0 and y0 in the

experiments are 50 µm and 1 mm. It is assumed that the intensity of diffuse light on the

sample surface around the pump beam varies as I(r) ∝ `2/(`2 + r2), where r2 = x2 + y2 is

the distance from the axis of the pump beam along the sample surface, and ` is the mean

free path of light in the sample.



A B

A    

This appendix describes analysis of time-resolved emission decay curves - measurements,

from which fluorescence decay rates can be extracted. We emphasize the relation between

the time-evolution of the excited-state population and that of the corresponding fluores-

cence decay curve. We consider the cases when the emitting system is described by a

single exponential, discrete set of exponentials and continuous distributions.

B.1 Single-exponential decay

Suppose a sample with one sort of fluorophores is excited with an infinitesimally sharp

pulse of light. This results in an initial population of the excited state n0 that is equivalent

to the terms ‘concentration’ or ‘number’ of the excited fluorophores in the detection vol-

ume, which will be equally used throughout this text. The time evolution of the excited

emitters decay exponentially, as discussed in Chapter 2, so that

n(t) = n0 exp(−γ t) (B.1)

where γ = γr + γn is the decay rate of the fluorophores, γr is the radiative part of the

decay and γn is the non-radiative part. The decay rate has a meaning of a number of

decay processes per time. In a fluorescence experiment, we do not directly measure the

number of excited emitters, but rather the fluorescence intensity I(t). The magnitude of

I(t), the flow if emitted photons, is determined by how fast the number of excited emitters

decreases so that I(t) = ∆n(t)/∆t. Conversely, the change of the concentration within a

time bin between 0 and t is proportional to the integral of I(t):∫ t

0
I(t′)dt′ = [n0 − n(t)]η, (B.2)
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132 Appendix B Analysis of emission decay curves

where η = γr/γ is the quantum yield of the fluorophores. The normalized fluorescence in-

tensity f(t) = I(t)/n0 is a probability density function of a photon arrival with a dimension

of per time. The probability that a fluorophore emits a photon in a time window between

t1 and t2 (let the time of the excitation pulse tp = 0 and t1, t2 > tp) is p =
∫ t2

t1
f (t)dt, while

p∞ =
∫ ∞

0 f (t)dt = η.

According to Eq. B.2, the fluorescence decay intensity should be written as

I(t) = n0γ
r exp(−γ t) (B.3)

and has a dimension of per time. The average amount of time the fluorophores remain in

the excited state after the excitation pulse can be calculated knowing the intensity distri-

bution I(t):

< t >=

∫ ∞
0 I(t)tdt∫ ∞
0 I(t)dt

=

∫ ∞
0 t exp(−γ t)dt∫ ∞
0 exp(−γ t)dt

=
1
γ
. (B.4)

We see that for a single-exponential decay the average time < t > is equal to the lifetime

τ = 1/γ. It should be mentioned that the last statement is not true for more complex decay

laws, such as multi-exponential and non-exponential decays.

B.2 Discrete set of exponential decays

The fluorescence decay is often multi-exponential when the sample contains several (or

many) different sorts of fluorophores. The same will be seen in a case of only one fluo-

rophore in a varying environment (chemically or optically). The total number of excited

emitters in the sample is given by

n(t) =
N∑

i=1

ni exp(−γi t), (B.5)

where ni and γi are the excited-state population at t = 0 and the decay rate of an i-

fluorophore (or of the fluorophore in an i-medium), respectively. N is the number of

sorts of the fluorophores (or of the media), i.e., the number of single exponentials.

Consequently, the intensity of a multi-exponential decay is

I(t) =
N∑

i=1

niγ
r
i exp(−γi t), (B.6)

where γr
i is the radiative decay rate of an i-fluorophore. In cases when γr and γn both vary

independently, Equation B.6 is not correct: for a certain γi there can be more than one
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different radiative parts of the decay γr
i . In such a situation Eq. B.6 should be rewritten as

I(t) =
N∑

i=1

[
exp(−γi t)

Mi∑
j=1

ni jγ
r
i j

]
, (B.7)

where ni j is an initial exited-state population of an i-fluorophore demonstrating a radiative

decay γr
i j and a total decay radiative decay (γr

i j + γ
n
i j = γi, no summation over j). Mi is the

number of such i-fluorophores. Thus, single exponentials composing a multi-exponential

decay can consist themselves from emission decays of various fluorophores (or of a flu-

orophore in various environments), which in their turn have the same total decay γi (the

same decay slope) while revealing different radiative decays γr
i j (i.e., different quantum

yields). Since all these decays with different quantum yields still still show the same

slope, it is convenient to take into account only the total weight of the single-exponential

decay αi which represents the amplitude at t = 0. So, we have:

Mi∑
j=1

ni jγ
r
i j = αi, (B.8)

and the multi-exponential intensity decay is written as

I(t) =
N∑

i=1

αi exp(−γi t). (B.9)

The total emission in the case of multi-exponential decay is∫ ∞
0

I(t)dt =
N∑

i=1

αi γ
−1
i . (B.10)

The average time < t > for a fluorophore in the system to emit a photon can be calculated

using Eq. B.4 and is

< t >=
∑N

i=1 αi γ
−2
i∑N

i=1 αi γ
−1
i

=

N∑
i=1

fiγ−1
i , (B.11)

where fi is the fractional contribution of an i-single exponential to the total intensity.

B.3 Continuous distribution of exponential decays

There are situations when the fluorescence decay cannot be described by a discrete num-

ber of decays, but rather by a distribution of single-exponential decays. One can imagine
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a fluorophore in a continuously varying environment, and each environment results in a

different decay rate γ. In this case the total number of excited emitters is

n(t) =
∫ ∞

0
ρ(γ) exp(−γ t)dγ, (B.12)

where ρ(γ) = n(γ)/∆γ is a distribution density of fluorophores over decay rates - number

of emitters with decay γ per ∆γ = γ + 1/2∆γ − (γ − 1/2∆γ).

By analogy with the case of discrete distributions (see Eq. B.7) the total emission

decay is written as

I(t) =
∫ ∞

0
dγ exp(−γ t)

∫ γ
0

dγrρ(γ, γr)γr, (B.13)

where ρ(γ, γr) = n(γ,γr)
∆γ∆γr , and γr can take values from 0 and up to γ (γn = 0). The integral

over γr ∫ γ
0

dγr ρ(γ, γr)γr = α(γ) (B.14)

is defined as a radiative-decay weighted distribution of decay rates α(γ) with dimension

of [number of photons]. Thus, a multi-exponential intensity decay is given by

I(t) =
∫ ∞

0
α(γ) exp(−γ t)dγ, (B.15)

and at time t = 0: ∫ ∞
0
α(γ)dγ = I(0). (B.16)

In many cases of continuous distribution of decay rates, the rates are distributed

around some center (or most-frequent) value of the decay rate, and therefore, one often

uses Gaussian, Lorentzian, log-normal or other functions to describe the function α(γ).

If a decay curve I(t) is successfully modeled with a decay-rate distribution model,

then the function α(γ) found from the fit gives information on contribution of each single-

exponential with γ to the total emission decay. In order to find a distribution of emitters

from a known distribution of single-exponentials, further knowledge of relation between

γr and γ is required.
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