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Abstract

A random walk problem with particles on discrete double infinite linear grids is discussed. The model is based
on the work of Montroll and others. A probability connected with the problem is given in the form of integrals
containing modified Bessel functions of the first kind. By using several transformations, simpler integrals are
obtained from which for two and three particles asymptotic approximations are derived for large values of the
parameters. Expressions of the probabilityrigrarticles are also derived.
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1. Introduction

The subject of random motion is one on which an enormous amount of mathematical studies have
been made. We mention in this respect the classical work of Rayleigh, Smoluchowski, Chandrasekhar,
and countless othef§]. In this paper, we are interested in the specialization of this general notion to
random walk on a periodic lattice, where a particle makes random jumps between neighbouring sites of
this lattice. In this respect we refer in particular to the pioneering work by Montroll and his collaborators
which has provided the inspiration for the present work.

We shall very briefly indicate the method of Montroll's approach, where throughout this paper we
shall limit ourselves to random walks on one (or more) linear (1D) lattice chains. We shall also suppose
that the jump probabilities of a random walker to the left and to the right are equal, and hence equal to
p= 1 Initially, the time is considered to be discrete, which means that we consider the situation of the
particle after a discrete number of jummswhich is equivalent to allowing the particle to jump once in
every unit of time. Montroll et al4,5] now introduce two quantities which are of very great importance.
These are

1. P,(¢), the probability that the random walker will be at sitafter thenth jump.
2. f,(0), the probability that the random walker will be at sitafter thenth jumpfor the first time

Of course, it is assumed that before the first jump=(0) the particle is at the origirt (= 0).
The functionP, (¢) satisfies the following equation:

P =3P, 16 =D+ 1P, 1t + D). (1.1)

(If at epochn — 1, the particle is at eithet — 1 or £ + 1, it will have a probabilityp = % to be

at ¢ at epochn. If it is anywhere else at epoch — 1, its chance of being at one jump later, is

zero.) This equation also shows that the random walk, as described above, is a Markoff process, in
that the statg(¢) of the random walker at a given epochdepends only on that aine moment

earlier.

Montroll then introduces a generating functioii¢, z) =Y - o P,(¢£)z". This functionU (¢, z) is then
calculated explicitly, from whichP,, and various moments ovércan be calculated. For details we refer
to [4] and[5]. We also refer to these papers for the treatment of the first passageftitie¢sand the
corresponding generating functian(¢, z) = Y v, f,(£)z". The quantityf, (¢) is the probability of
reaching the sité for the first time at theth jump.

For the sake of completeness we give the explicit expressioris(arz) and F (¢, z):

¢
¢ C+1 £+2 1 1-V1-22
U(ﬂ,z)=(£> zFl(—,—;EJrl;zz): i 2( Z>,

2 2 2 —z z
Z\¢ ¢ +1 % U, 2) =0y,
F(Z, Z): <5> 2F1 <§, T,£+1, Zz) —55’0 1—Z2: TZ)EO, (12)

from which explicit forms ofP, (¢) and f;,(¢) follow.
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Montroll et al.[5] also present a method of treating the time as a continuous variable. Then we introduce
as fundamental quantities the following probability densities:

P(£,1)dr : the probability density for the random walker bbe at ¢ during interval(z, ¢ + dr).
F(¢,1)dr : the probability density for the random walker dorive at ¢ during interval(z, t + dr)
for the first time
(2.3)

Jumps are now taken to occur at random times, 13, ... . This implies the introduction of the random
variablesTy =t1, To =t — t1,...T, = t, — 1,1, Which have the common densifyz). For y(r) we
take the exponential densiiy(r) = «e~*, wherex is the average number of jumps made by the random
walker per unit of time. From this point on we shall concentrate on the first-passage probability density
function, that being the one which we shall need most in the following applications.

We also introduce the probability densities

t
Vo) = (1), U, (1) = /0 Yt — D (e, n=123... (1.4)

The functiony,, (r) can be interpreted as the probability density thatithgump of the random walker
takes place in the time intervél, r 4+ dt). We have

n—1
(n—21!

It can now easily been understood tf&it

Y, (t) =o' e ™ n=123.... (1.5)

F(t, =Y falO, ). (1.6)

n=0

If we use they,, (r) given above and thg, (¢) that follow from the second line of (1.2), we obtain

o {+2n
= bt~ (€/2), (£/2+1/2), (u)
Ft,t)=2te 1 , 1.7
€0 nZ:E) n!(£+1), € +2n—-1)! -7
where(a), denotes Pochhammer’s symbol defined by
(a)og=1, (@@,=a@+---(a+n-1, n=123,.... (1.8)

Comparing the expansion in (1.7) with that of the modified Bessel function of the first kind,
see[l, Ch. 9]

S (Z/Z)v+2n

1,(z) = _ 1.9
@) nX:(:)n!F(v-i-n—i-l) (19
and using the duplication formula of the gamma function
2z—1
Iz = r@rz+3), (1.10)

NG
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Fig. 1. The random walks fok andB.

an explicit form forF (¢, t) is obtained:
— £
F(l,t) = e‘“t;Ig (o). (1.11)

From[1, Eq. 11.4.13jt follows that for¢ # O

/ F(¢,t)dt :E/ e “I(at)— = 1. (1.12)
0 0 t

It is of interest to consider the problem of several simultaneous random walkers on a lattice chain,
and the behaviour in time of their mutual configuration. It is as an introduction to this work that we
shall consider two, three, ., independent random walkers on separate lattice chains. We begin with two
random walkers and consider the situation as showignl

Remark 1. The integerd 4 and{p may separately assume negative values. However, to avoid the use
of absolute value signs, we consider only positive valueadnd g. But all results hold for negative
values when we replace these quantities by their absolute values.

We are interested in finding the probability that partilarrives at’ 4, beforeparticleB arrives at’ g.
The solution to this problem is an intermediate result for the treatmentBfgrid random walk problem

of an agglomeration of many particles.
We know that the probability density férto arrive for the first time at 4 in the interval(z, ¢ + dr) is

— 14
F(ly,t)dt = TAe‘“fIgA(at) dr. (1.13)
It is now obvious that the desired probability can be written as
o0 o e} o
P(teA<t53)=/o da F(EA,tA)f dtp F (LB, tp), (1.14)
1A

wherez,, is the time that particlé\ reaches the sité, for the first time, and similar for,,. The
independence of the walkers is expressed by the fact that it is the product éf-furctions which is
being integrated.
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Using (1.12) we have

o0 . A _
P(1, <l43)=1—/ dlAF(fA,tA)/ drg F(£p, tB) (1.15)
0 0

and interchanging the order of integration in this integral, we derive the symmetry properties (which are
evident from the random walk problem)

P(te, <tey) =1— P(te,<te,), hence P(ty, =t,,) =3, if a=2Cp. (1.16)

If £4 = £p we can also use integration by parts

/ dra F (¢, zA)/ digF(¢, tg) = —f [ F(, ) df] d[ F(, 1) dri|
0 A 0

1 [ 2 1
:EUO F(Z,r)dr] =3 (1.17)

In this paper we derive asymptotic expansion®of;, <t,) given by
© dr © dr
P =eAeB/ —Aetag,, (zA)/ —Be s, (1p). (1.18)
0o Ia tx B

In (1.18), the scale factorhas been absorbedip andtp, because of'; .
We will give one expansion that holds for large valueg pfand one for the case that both parameters
{4 andlp are large. We also give an expansion that holds just when the sup¥ g is large.

2. Transforming the integral

We study the integral (1.18). We use well-known properties of the modified Bessel function to transform
the double integral in (1.18) into a single integral.
The inner integral in (1.18) can be modified by evaluating

. ds
Se(t) =4 e " I(s)—. (2.1)
P K
where?¢ =1, 2, ... . We use the integral representation (EeeEq. 9.6.19)
1/ s COs 0
I,(s) = - e cosn6do (2.2)
T Jo
for integer values ofl. Integrating by parts we obtain

¢ 1 (" o
“Ii(s) = —/ e’ €37 sin ¢ sin ¢0.do. (2.3)
N T Jo
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It follows that

e ds 1 (™ o0
z/ e P (s) — == f do sin 0 sin ee/ ds e (P—cos0)
t s T Jo t

et f” sin 0 sin ¢0
0

e 50 dp, (2.4)
p — cos0

T

which holds forp > 1. It follows thatS,(z) of (2.1) can be written as

e’ [™sin0 sin£0 el ™ 1

Sg(t):—/ —e’COSBdez—/ cot =0 sin £0€ Y do. (2.5)
n Jo 1-—coso T Jo 2

Using this relation and interchanging the order of integration in (1.18), we obtain

*© dr
P=€A/O e IeA(t)SzB(t)T

14 m 1 . o0 dr
=2 | cot 5(9 sin 50 [/ g 2frcosty, (t)7j| do. (2.6)
0 0

T
Invoking again (2.3) we obtain

/d sin 02 smEBOzf sSin 01 Sin €401
2 1—cosf, Jo 1(1—cosel)+(1—cosez)'

The0;-integral can be evaluated. An easier way is to use in (2.6) the Laplace integral

x dr -t
—pt — 2
E/O e P I(r) ; —<p—|—,/p 1> , £>0, p=>1, (2.8)

which follows from[1, 29.3.53]by takinga = 1, b = —1. This gives

1 T 1 —ZA
P=Z= cot=0sintgb 2_1 do, =2 — cosH. 2.9
n/o 5 B <p+\/p ) P (2.9)

3. Asymptotic expansions

2.7)

We give three asymptotic expansions:
e one for largel 4, with ¢ fixed, or small,

e one for largel 4 and{lp, with £4 ~ £,
e one uniform expansion in which one or both parameters may be large.

3.1. The casé > {p
We start from (2.9) in the form

_1 / " r0)etat 0 dp (3.1)
TJo
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where
f(0) =cot 30 sin €0, $(0) =In (p +./p?— 1) , p=2—cos. (3.2)
First we observe that
ino cos 1o
§0) = e = 2" (3.3)
V=1 J1si?do
Hence,¢(0) is an increasing function o, =] with
p(0)=0, ¢'(O=1 ¢ =0. (3.4)
It follows that
1 [%
P~= / F(0)eta?® dg, (3.5)
T Jo

wheredg is a fixed number irf0, =), and the error in this approximation is exponentially small whgn
is large.
Carrying out an integration by parts in the form

e A R A )

3.6
mla Jo ¢'(0) (3.6)
leads to
1O 0|, L f ’ —a(0)
P~——:" ‘et — 0)e 49O dg, 3.7
" ¢'(9)e o +n€A ; fi(0)e (3.7)
where
_d f()

We can repeat this procedure, and compute the integrated terms. The teégroarabe neglected because
they give exponentially small contributions compared with the contributions fren®. Note that we
cannot také)y = =, because’(n) = 0.

In this way we obtain the asymptotic expansion

1
PN_{ao+ﬂ+2+..}, (3.9)
A
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Fig. 2. Graphs ofP(t,, <ty,) based on the asymptotic approximation (3.9) (thin curves), compared with graphs based on
expansion (3.34) (thick curves). The thin and thick graphs deviate from each other because of the failure of the non-uniform
approximations for large values 6§.

where, fork =0,1, 2, ...,

_ k(0 _d fil®
ai = m» Ji+1(0) = @—d),(g),

The coefficientsy;, with odd indices are zero. This follows from observing tliaf) and¢’(0) are even
functions; see (3.2) and (3.3). Heng&(6) of (3.8) is odd. By using the recursion in (3.10) it follows
that fo, (0) is even, and thato+1(0) is odd. The first non-zero coefficients are

fo(0) = f(0). (3.10)

ao=20p, ap=30p(1—{%), as=4Cp(23— 8005 +120%). (3.11)

In Fig. 2we compare the approximations based on (3.9) with values obtained by using the expansion
in (3.34), which holds wheri4 + ¢ is large. We see that for smaller values¢gf the graphs of the
asymptotic approximation (3.9) are in agreement with the graphs obtained from the expansion that holds
when at least one of the parametégsor ¢ is large. The failure of the non-uniform approximations
(shown as thin curves) is due to the failure of the asymptotic approximation (3.9) that has been chosen
for this case.

3.2. The casé, ~ £, both large

We replace in (2.9§4 by ¢ and{p by £ + 6. We know thatP = % if 6 =0. We expand (2.9) for large
values of?, keepingo fixed. We have

P=3+Pi+ P, (3.12)
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where

—¢
=— cot 0 cosdé0 — 1) sin £0 -1 do
n/ ( ) (p +/p? )
¢
/ cot = 9(cosé(9 — 1)el0 (p +./p?— 1) do,
1 1 -t
Po== cot =0 sin 50 cos£0 Jp2—1 do
2= /0 5 (P +P )
1/ 1 : -t
=R=- [ cot=0sinsoe?’ Jp2—=1) do. 3.13
n/o 2 (p Tyr ) ( )

FIII—‘

Let
g(H):cot%@(coséH—l), ¢(0) = —i0 +1In (p+,/p2—1). (3.14)
Then we integrate by parts in the integral féyr
1 _ g(@) _
= 0)e 0 dp = — / de ¢, 3.15
- /0 2(0) N (3.15)

and we obtain an expansion as in (3.9),

1 b1 by
P~ —|b — 3.16
1 [ 0ot +£2 + - ] (3.16)
where, fork =0,1, 2, ...,
gk (0) d g« (0)
by =3 —— 0) = ——— 0) = g(0). 3.17
k J¢/(0), gr+1(0) W50 go(0) = g(0) (3.17)

It turns out that the coefficients with even indices are zero. To verify this we can use a similar argument
as for thegy in (3.10). The first non-zero coefficients are

b1=—15% b3=162 bs= L6%(4s* —200% — 7. (3.18)

In a similar way, let:(0) = cot 30 sin 50. Then

1
P [ ] 3.19
2~ — cot+ 2 i 1,2 72 2 4. (3.19)
where, fork =0,1, 2, ...,
hi(0) d hi(0)
=R——, h 0)=———, ho(0) =h(0). 3.20
Ck 50) k+1(0) 409 0) 0(0) = h(0) ( )
It turns out that the coefficients with even indices are zero. The first non-zero coefficients are

co=0, c2=20(0%—1), ca=—520%(126% +206% — 77). (3.21)
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3.3. The casé, + ¢ large

Because of (see (3.4))

efZA(/)(()) ~ e*ZA()’ 9 — 0’ (322)
we have for large values @f4
2 [ sinigh 2 l
P~ / > BT e tal g = £ arctan-2, (3.23)
7 Jo 0 n la

where we usefll, Eq. 29.3.11Q]

Observe that this estimate perfectly reflects the propertids mentioned in (1.16); also, it is less
than unity, as the probabilitl itself is. Moreover, in this estimate large valuesLgfdo not disturb the
approximation.

Result (3.23) is obtained by combining the dominant behaviour 6f%? near the origin with the
complete form sir? g0, without expanding this function.

We modify the integration by parts procedure of Section 3.1, by including the (possible large) parameter
¢ in the “phase function?(6). We can do this by writing siti g0 = 357, A complication is the pole
of the function cot%é), which singularity is removable in combination with the function &j9.

To perform the integration by parts procedure we proceed in the following way. In (2.9) we can consider
£ as a continuous parameter, and we can differentiate with respiget\de also observe th&vanishes
with ¢5. We have

oP 1 ™ 1 ~ta
— =R / 0cot =0 p+./p2 -1 do |. (3.24)
op = 0 2

We write this in the form

aEZ _ im 0. (3.25)
where

0= /o " F e do, (3.26)
with

f(0)=20cot30, Y(0)=ilgh—L4In <p+\/1?27—1). (3.27)
We integrate by parts, starting with

0 / l; ((f;)) SO _ l; (((;)) / OO do, (3.28)
where

Jf1(0) = — d 7O (3.29)

doy/'(0)
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We repeat this procedure, and compute the integrated terms. Again, the térmag aan be neglected.
We obtain

Q~do+di+dz+--, (3.30)

where
Jx(0) d fi_1(0)
dy = ——F—, 0)=—— , k=0,1,2, ..., 3.31
k /0 f(0) @ V0 (3.31)
and fo(0) = f(0). Again, all coefficients with odd index vanish. This follows from
in 0 20
VO =ity — a0 gy g, 0S¥ (3.32)
Jvp2—1 V1+sin1/20
which is an even function angd(0) is also even. Hencegf (0) in (3.29) is odd; and so on.
We have
1 204 + i€ 2302 + 129044 p + 262
do= —=—, dy=ATNE gy ST ST Ty (3.33)
ly—ilp 6(0s —ilp) 6064 —ilp)

Considering (3.25), taking the real parts of the coefficients and integrating the real parts over the interval
[0, 5], we find

2
P~ —(eo+ezteates), (3.34)
where
lp
eop = / de(ﬁé) dZ/B. (3.35)
0

The first few are

{p
eg = arctan—,
Uy
_ Lalp(tg — %)
- 2 2,3
365 +€3)
_ Lalp(€h — £5) (235 — 3540445 +2303)
60(¢2 + (3)° ’
_ Lalp (] — 65) (2497 — 107965 (5 + 406303 ¢5 — 10796345 + 24%5)
126(42 + ¢2)° '

eq

c6 (3.36)

We see that the shown coefficients e, eg vanish wherf , = £, and that in facey, (€4, £5) = %nék,o —
e, la),k=0,1,2,... .These properties are in agreement with the relationB fin1.16). Because
there is no symmetry in (2.9) with respectitp andZ g, they do not follow from the construction of the
coefficientsdy, andeyy.
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When we scale the parameters by puttipg= /¢ 4, we see that the shown coefficients obey the relation
_ pep—2k
dox = 0, (3.37)

uniformly with respect ta. > 0. When we write (3.30) with a remainder, that is,
Q=do+dy+--+duy—2+ / far(0)e" @ do, (3.38)
0

a straightforward analysis shows that similarly

far(0) = 0%, (3.39)
uniformly with respect td.> 0 andf < [0, x]. This shows the nature of the uniform asymptotic expansion
of Q, and, after integrating, the nature of the expansion for the probability

By expanding the coefficients in (3.36) for largel 4 with £4 > ¢, we obtain the coefficients of the
non-uniform expansion of Section 3.1.

4. Three particles and more

For three random walkets, B, C the probability integral reads

o0 o0 o0
P(ty, <ty <te.) = / dra F Ly, IA)/ dig F (¢, tB)/ dic F(Lc, tc), (4.1)
0 A 1733

with the density as in (1.13). That is,
Xdrg X drg ®die
P(ty, <tgy <tec)=ﬁA€B€c/ —4 tAIéA(tA)/ =z tBIeB(fB)/ —C e L (1c).(4.2)
0o Ia ta IB g IC

It gives the probability that particla reaches sité 4, before particleB reached 3, while B reaches site
{p, before particleC reached .

Firstwe observe thatthe probability for three particles arriving at the santethisgisl 4 ={p="{ =,
equals. This easily follows from (cf. (1.17))

o0 o0 o0 2
/ dzBF(e,rB)f dtﬁ(@,z@:%[f F(, 1) dri| . (4.3)
A B A

Substituting this in (4.2), performing another integration by parts, and using (1.12), gives th%value
Using the same method we infer that foparticles the probability for ath particles arriving at the same
site¢ equals?.
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Repeating the steps used for obtaining (2.7), and replacing all Bessel functions by using (2.3), we easily
find for (4.3)

P(te, <te, <te.) =
(tey <tep Stec) = —3 1—cosf — cosl — cose
m sin t sin
x/ de reinfar (4.4)
0 3

1 /“ sin 0 sin £¢0 /” q Sing sinfgo
—_—— o
0 0 2

— C0Sf — COSag — COST
Evaluating the-integral gives

sin0 sin£c0  sine sin £go 5 —ta
JVagc—1 df do, 4.5
/ / 1—coso 2—COSH—COSG<q+ 4 7 (4.5)
whereq = 3 — cosf — coSa.
From the above analysis it is clear how a similar integral representation can be obtainedrfdom

walkersAi, Ao, ..., A,. The probability can be written in the form of thefold integral
= sing; sin £A 0;
P(tgAl<l‘gA <tgA ) = / d@l f l_[ s (46)
where
n n 1
P =Z(1—cos@k)=223in2§ek, =12 ...,n. 4.7)
k=j k=j

Integrating the); integral gives

1 (" n —ta 1 sing; smﬁAé)
p=ty [Cane [Can(p+ -1 , @8)
™= Jo 0
j=2
where
p=1+pa=n—) cosl;. (4.9)

j=2
4.1. Asymptotic approximations for three particles

For large values of 4 the main contributions to the integral in (4.5) come from the origin0, 6 = 0.
To see this we observe that

g ++/g%2—1=3—-cos —cosag + \/(2— cosf — cosa)(4 — cosl — coSo)
=14+ V60?+ 62+ 0(0%, 05, 6°), (4.10)

and that

—La _ 2_
<q N /q2 B 1) _ e In(q-i-\/q 1) - e—zm/ozwz’ (4.11)
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asf, ¢ — 0. We also have

0 sin 0 ¢ sing 242
1— cos0 ’ 2—c0s0—cosc 2+ g2
aso, s — 0.

This motivates us to consider as a first approximation

b ifﬂ d@f“ do sin(¢ch) sin(tgs)  o° ot/ 0P+02
2 J 0 0 o 0%+ 2

’

where we have used (4.5), (4.11) and (4.12).
Next we use polar coordinates féands by writing

0=rcos¢, o=rsing, O0<r<m, O0<P<3m

We extend the finite square in tl o)-plane to the quarter plane and obtain

P 4/
2 Jo

Ther integral can be found if8, Eq. (3.947)] that is,

Nl

i ~ . . .
dd)/ dr sin(fcr cos¢) sin(Lpr sin ¢) Sir? ¢ &7,
0

r COS¢ r sin ¢

00 d 1 2 b 2
f e sin(br) sin(cr) — = = In M
0 r 4 a4+ b-o)

and can be proved by differentiation with respecatdVe obtain

Nl

1 (2" 02 4 (¢ cos¢ + £g Sin $)?
PN_Z/ tan¢>|n§ (Lc ¢ B.¢>)2 ,
n“ Jo €4 + (Lc cos¢ — Lp sin ¢)

which can be written as

NI

1 T 1 cos sin
PN_/ tan¢ In tu Y +v . 2¢d¢,
2 Jo 1+ucos2—vsin2p

where
R 2l
u=-: 2 2 V=02 2 2"
202 + 02 1 2 202 + 02 1 2

Whenv is small we can expand

1+ucos2p+vsin2p 1+ i coe
_ ; - v sin 2
1+ ucos2p—vsin2p 1_m

00 2041 aip2n+1
1 sin?1t12
=2 Z - 2¢1’
= 2n+1(1+u cos 2) 7+

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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which gives

Pr\.z

2 o 2n+1 1q 'r]2n+12
v / " tangp—> ¢ 4.21)
0

— T —— de.
n? = 2n+1 (14 u cos 2p)2+1 ¢
This expansion is useful when is large compared withg and{c.

The integral in (4.21) can be written in terms of a Gauss hypergeometric function, and the sum can be
written as an Appell function. This does not give further insight, however. We prefer to give a few further
estimates.

For examining the convergence of the series in (4.21), observe that

sin?*t12¢ 2
< ,

(L+ u cos %)Zn-i-l (1-— u)Zn-‘rl

tan ¢ (4.22)

with
2075 + 205
Twgee
ATttt
which is bounded away from 0, unle&s is much larger thaii, andép.
It follows that expansion (4.21) can be viewed as an asymptotic expansion for small vaiifes tbfe
right-hand side in (4.18).
Of further interest is that whein= 0, that is,{ p = £ we can evaluate the right-hand side of (4.21) in
terms of elementary functions. In fact we obtain by using

(4.23)

1 3 1
2T F(n+—)F(n+—)
sin?"t2 ¢ co” pdp = 2 27 4.24
/ R (4.24)
a Gauss hypergeometric function, that can be written as an elementary function
1 113 ,\ 1 e
P~—-v,F | = == = — arcsinv, = . 4.25
n”“(zzz”) N (4.25)
Whent, = € = £ this becomes
1 101
P ~ —arcsin- = —, 4.26
T 2 6 ( )

which is the exact value.

5. Discussion and concluding remarks

We have discussed in this paper a method of considering different simultaneous indepdndent 1
random walks. This work has been motivated by an attempt to describe the agglomeration of a number
of random walkers on a linear chain which will be fixed when they come to occupy nearest neighbour
positions on the chain. In treating this problem it turns out to be possible to effect a transformation of
coordinates which makes the evolution equation become separable, such that we obtain a product of “one-
particle” equations which can then be mathematically treated as independent random walkers as describec
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in this paper. However, it turns out that this separation is possible only when the jump probabilities in
both directions are equal. This is the reason why we have limited ourselves to equal jump probabilities
in this work.

For two particles we have given a complete asymptotic description for the caseéwlasm/oré g
are large. For three particles we have also given asymptotic results, but a full description becomes a very
complicated matter.

Very recently a papg] has appeared which treats a related problem (with discrete time steps) by a
different method, involving stochastic matrices.
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