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During embryonic development, differentiating cells respond via gene expression to positional cues

from morphogen gradients. While gene expression is often highly erratic, embryonic development is

precise. We show by theory and simulations that diffusion of the expressed protein can enhance the

precision of its expression domain. While diffusion lessens the sharpness of the expression boundary, it

also reduces super-Poissonian noise by washing out bursts of gene expression. Balancing these effects

yields an optimal diffusion constant maximizing the precision of the expression domain.
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Embryonic development is driven by orderly, spatial
patterns of gene expression that assign each cell in the
embryo its particular fate. While gene expression is often
highly stochastic, embryonic development is exceedingly
precise. A vivid example is the Bicoid-Hunchback system
in the early Drosophila embryo. Shortly after fertilization,
the morphogen protein Bicoid (Bcd) forms an exponential
concentration gradient along the anterior-posterior axis of
the embryo, which provides positional information to the
differentiating nuclei. One of the target genes of Bcd is
hunchback (hb), which is expressed in the anterior half of
the embryo. The posterior boundary of the hb expression
domain is very sharp: by cell cycle 13, the position of the
boundary varies only by about one nuclear spacing [1–3].
This precision is higher than the best achievable precision
for a time-averaging based readout mechanism of the Bcd
gradient [2]. Intriguingly, the study of Gregor et al. re-
vealed that the Hb concentrations in neighboring nuclei
exhibit spatial correlations and the authors suggest that this
implies a form of spatial averaging enhancing the precision
of the posterior Hb boundary [2]. However, the mechanism
for spatial averaging remained unclear.

In this manuscript, we analytically and numerically
study the Bcd-Hb system. Our analysis reveals a simple,
yet powerful mechanism for spatial averaging, which is
based on the diffusion of Hb itself [2,4]. We show analyti-
cally that Hb diffusion between neighboring nuclei reduces
the super-Poissonian part of the noise in its concentration,
with a factor that depends on the diffusion length of Hb and
the dimensionality of the system. In essence, diffusion
reduces the noise by washing out bursts in gene expression.
This mechanism is generic, and applies not only to any
developmental system, but also to any biochemical net-
work in general. For example, if a signaling protein is
activated at one end of the cell and then has to diffuse to
another place to activate another system, e.g., the messen-
ger CheY in bacterial chemotaxis, then our results show
that the non-Poissonian noise in the activation of the
signaling protein is washed out by diffusion; for this reason

it may be beneficial to spatially separate the in- and output
of a signaling pathway. Our analysis also reveals that,
while Hb diffusion reduces the noise, it also lessens the
steepness of its expression boundary [2]. The interplay
between these two antagonistic effects leads to an optimal
diffusion constant of D ’ 0:1 �m2=s that maximizes the
precision of the hb expression domain.
Our model of the Bcd-Hb system includes the stochastic

and cooperative activation of Hb by Bcd in each nucleus,
and the diffusion of Hb between neighboring nuclei. To
model the cooperative binding of Bcd to the hb promoter,
we assume that Bcd proteins can bind sequentially to five
binding sites on the hb promoter. When all five sites are
occupied, the promoter is active (activity n ¼ 1) and Hb
proteins are produced stochastically with rate �; otherwise
the promoter is inactive (n ¼ 0). Hb proteins are degraded
stochastically with rate �. To obtain a lower bound on the
precision of the hb expression domain, we assume that Bcd
binds to the promoter with a diffusion-limited on-rate
kon ¼ 4��DB=V ¼ 24�DB=d

3 ¼ 8:4� 10�5 s�1 where
� ’ 3 nm is the dimension of a binding site, d ’ 6:5 �m
the diameter of a nucleus and DB ’ 0:32 �m2=s the Bcd
diffusion constant [5]. Since the on rate is assumed to be
diffusion limited, cooperativity of Hb activation is tuned
via the Bcd off-rate koffðjÞ ¼ a=bj which decreases with
increasing number j of promoter-bound Bcd. Using a ¼
12:3 s�1 and b ¼ 6 the average promoter activity as a
function of the number of Bcd molecules B in the nucleus
approximately follows the Hill function

hnðBÞi ’ Bh=ðBh þ Kh
eqÞ; (1)

with h ¼ 5 and Keq ¼ 690. The Hill-coefficient h was

inferred from the relation between Hb and Bcd concentra-
tion, and the activation threshold Keq, where hnðKeqÞi ¼
0:5, is the average number of Bcd molecules hBi in a
nucleus at the Hb domain boundary [2].
To describe the formation of the Hb pattern, we place

N ¼ 64� 64 ¼ 4096 nuclei on a square lattice with spac-
ing ‘ ¼ 8:5 �m [2]. Hb diffuses over the lattice with
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diffusion constant D. With reflecting boundary conditions
in one and periodic in the other direction, our model is a
cylinder which is symmetric around the anterior-posterior
x axis. Activation of Hb is induced by the Bcd profile

BðxÞ ¼ Keqe
�ðx�xtÞ=�B ; (2)

which decreases exponentially with the distance x from the
anterior pole at x ¼ 0. The decay length is �B ¼
119:5 �m [2] and the threshold position for Hb activation
is set to xt ¼ 0:5L; L ¼ 64‘ ¼ 544 �m is the length of the
embryo. Diffusion of Bcd between nuclei induces fluctua-
tions in the Bcd copy number on the time scale �d ¼
‘2=ð4DBÞ ’ 102 s. Because �d is much smaller than the
time scale for promoter binding, k�1

on ’ 104 s, Bcd copy
number fluctuations are efficiently averaged out by slow
binding of Bcd to the promoter. We therefore assume that
the total number of Bcd in a nucleus is constant and given
by Eq. (2). The state of the system is described by the
number of promoter-bound Bcd and the number of Hb in
every nucleus. The reaction-diffusion dynamics is simu-
lated using the next-subvolume algorithm described in [6].

Figure 1(a) shows simulation results for the average
number of free Bcd molecules hBi, the average promoter
activity hni, and the average number of Hb molecules hHi
as function of the position x=L. Without Hb diffusion
hHðxÞi is proportional to hnðxÞi. For a finite Hb diffusion
constant, however, the shape of the Hb profile is deter-
mined not only by hnðxÞi, but also by the diffusion length of
Hb, � ¼ ffiffiffiffiffiffiffiffiffiffiffi

D=�
p

—with increasing � the profile becomes
less steep. Figure 1(b) shows instantaneous Hb profiles at
different times. Fluctuations of promoter activity induce
large fluctuations of H, which lead to an uncertainty �x in
the position at which H crosses the threshold hHðxtÞi ¼
0:5�=�.

We now consider the Hb boundary width �x when the
Hb diffusion constantD is zero. Figure 2(a) shows that this
decreases with increasing lifetime of Hb. To understand
this, we note that, to a good approximation,

�x ¼ �ðxtÞ
jhHðxtÞi0j ; (3)

where �ðxtÞ is the standard deviation of the Hb copy
number and jhHðxtÞi0j is the magnitude of the Hb gradient
at the boundary position xt [2,7]. When the Hb lifetime � is
much longer than the time scale koffð5Þ�1 of the promoter
state fluctuations, then the noise in Hb copy number be-
comes Poissonian and the variance is given by the mean:
�2ðxtÞ ¼ hHðxtÞi ¼ hnðxtÞi�=� ¼ 0:5��. On the other
hand, the steepness of the boundary, jhHðxtÞi0j, increases
linearly with �whenD ¼ 0 and the synthesis rate� is kept
constant. Equation (3) thus predicts that �x decreases as

��1=2 for large � � koffð5Þ�1, which is indeed observed in
the simulations [see Fig. 2(a)]. Hence, the hb expression
boundary could be made arbitrarily precise if the lifetime
of Hb could be increased indefinitely.
In practice the averaging time cannot be made arbitrarily

long [2]. Ultimately, it is limited by the nuclear divi-
sion time �nd, which at cell cycle 13 is roughly 30 min.
Figure 2(a) shows that �x ’ 4 nuclei for � ’ �nd and D ¼
0, which is larger than the precision measured experimen-
tally [2]. The limited averaging time thus puts strong
constraints on the precision that can be achieved via the
mechanism of time-averaging alone.
Figure 2(a) reveals, however, that the precision of the hb

expression domain can be enhanced significantly by in-
creasing the Hb diffusion constant D to a finite value. This
may seem surprising, since the steepness of the boundary,
jhHðxtÞi0j, decreases with increasing D (Fig. 1) and this—
as Eq. (3) shows—tends to increase the boundary width.
However, increasing D also reduces the noise in the Hb
copy number. This is the mechanism of spatial averaging,
which we now study analytically. Increasing precision by
Hb diffusion was proposed by [2] and demonstrated re-
cently in a large-scale numerical study [4].
To elucidate the mechanism of spatial averaging, we first

analyze how the steepness of the Hb boundary depends on
the Hb diffusion length �, and then how the noise in the
Hb copy number at the boundary, �ðxtÞ, depends on � [see
Eq. (3)]. To calculate the Hb profile, we note that a nucleus
at a position xi produces Hb with an average rate �hnðxiÞi
[Fig. 3(a)]. Analyzing the discrete biological system using
a continuum approximation, in one dimension the steady-

(a) (b)

FIG. 1. (a) Normalized average number of free Bcd, hBi=B0, of
Hb, hHi=H0, and average promoter activity hni in a nucleus as
function of the position x=L; B0 ¼ 6480 and H0 ¼ 500. Hb
decay rate is � ¼ 1:2� 10�4 s�1, production rate � ¼ 500� ¼
0:06 s�1, and Hb diffusion constant D ¼ 0:32 �m2=s. The off-
rate of the active promoter state is koffð5Þ ’ 1:6� 10�3 s�1.
(b) Instantaneous Hb profiles at different times. All simulations
are for the full, two-dimensional system.

(b)(a)

FIG. 2. (a) Simulation results for the Hb boundary width �x as
a function of the Hb lifetime � ¼ ��1 for a constant production
rate � ¼ 0:06 s�1 and different diffusion constants D. The solid
line scales as ��1=2. (b) Simulation results for �x as a function of
D and for � and � as in Fig. 1. The simulation results are
compared to Eq. (3) using Eqs. (5) and (8). All simulations are
for the full, two-dimensional system.
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state number of Hb molecules in a nucleus of size ‘ at x due
to a point source at xi is

hHðx; xiÞips � �hnðxiÞi=�
2ð�=‘Þ e�jx�xij=�: (4)

The total Hb profile is the sum hHðxÞi ¼ P
ihHðx; xiÞips

over all point sources xi ¼ 0; ‘; 2‘; . . . , which is approxi-
mated as hHðxÞi � R

dx0hHðx; x0Þips=‘. To perform the in-

tegration, we approximate the activity hnðxiÞi from Eqs. (1)
and (2) by a piecewise linear function which behaves as
hnðxiÞi ¼ 0:5þmðxt � xiÞ around the boundary for xt �
1=2m< xi < xt þ 1=2m and which is unity below and
zero above the boundary. The slope �m ¼ �h=4�B is
the derivative of hnðxiÞi at xi ¼ xt. At the boundary xt
the slope of hHðxÞi is

hHðxtÞi0 ¼ m
�

�

�
1� e�ð1=2m�Þ � sinh

�
1

2m�

�
e�ð2xt=�Þ

�
:

(5)

It increases linearly with the number of Hb molecules �=�
and decreases as � increases. Because of the rotational
symmetry, the slope in the full, two-dimensional system is
also given by Eq. (5). Figure 3(b) plots Eq. (5) as function
of � and shows that the prediction agrees very well with the
two-dimensional simulation results.

Next, we study the effect of Hb diffusion on the variance
in the Hb copy number�2 [see Eq. (3)]. For clarity, we first
do the calculations for one dimension and extend our
approximation to general dimensions afterwards. To com-
pute �2, we exploit the observation made above that each
nucleus acts as a point source of Hb [Fig. 3(a)], and that the
expression of Hb in each nucleus is an independent sto-
chastic process. We denote the variance of the Hb copy
number in a nucleus at a distance x from the point source as
�2

psðxÞ. In a uniform space, the total Hb variance in a

nucleus is the sum �2 ¼ P
i�

2
psðxiÞ over all point sources,

which is approximated as�2 � R
dx�2

psðxÞ=‘. To calculate
�2

psðxÞ, we assume that the Hb dynamics is fast on the time

scale of promoter switching, such that the Hb concentra-

tion switches between zero when the promoter is off, and
hHðx; 0Þips=hni, with hHðx; 0Þips given by Eq. (4), when the
promoter is on. In this limit,

�2
psðxÞ � hHðx; 0Þips þ hHðx; 0Þi2ps h1� ni

hni ; (6)

where the second term is due to promoter switching with
variance h1� nihni, and the first term describes the
Poisson noise coming from the production, diffusion, and
decay of Hb when the promoter is active.
Figure 4(a) shows �2

psðxÞ for different values of �. For
small �, �2

psðxÞ is large for small x, but reduces quickly

with increasing x. Hence, the variance at a given nucleus is
determined by few nuclei in the neighborhood but each
contribution is large. For increasing � the number of nuclei
contributing to the variance increases, but the contributions
of nearby nuclei are smaller; this is because diffusion
washes out the bursts of Hb production at the source. To
see which of the two opposing effects dominates, we
integrate Eq. (6) to obtain the total variance:

�2 ¼ hHi þ hHi2
4ð�=‘Þ

h1� ni
hni : (7)

Compared to the variance in an isolated nucleus, the over-
all effect of diffusion in a one-dimensional, uniform space
is a reduction of the non-Poissonian noise by ð4�=‘Þ�1.
The Poissonian part cannot be reduced because diffusion
itself is Poissonian. Indeed, spatial averaging can reduce
the effect of noise in gene expression, but only if this is
super-Poissonian.
The finite range of non-Poissonian fluctuations implies

the following model. N nuclei contribute equally to a well-

FIG. 3. (a) Hb is produced in nuclei and diffuses away from
these point sources. The stationary number of Hb in a given
nucleus (shaded area) is the sum over contributions from all
nuclei. (b) Slope hHðxtÞi0 of the Hb profile at the boundary xt as

function of the Hb diffusion length � ¼ ffiffiffiffiffiffiffiffiffiffiffi
D=�

p
. All lengths are

in units of the lattice constant ‘ ¼ 8:5 �m. Analytical results
from Eq. (5) (dashed line) are compared to simulation results
(symbols) for the full, two-dimensional system.

FIG. 4. (a) Variance �2
psðxÞ of Hb as function of the distance x

from a point source at x ¼ 0 in one-dimensional space for
increasing Hb diffusion length �. Equation (6) is compared to
simulation results (dashed lines) for � ¼ 1:2� 10�2 s�1 and
� ¼ 500� ¼ 6 s�1, i.e., for fast Hb dynamics; � is varied
through the diffusion coefficient D. The inset shows the Hb
noise strength �2

psðx=�Þ=hHðx=�; 0Þips as a function of x=�.

(b) Non-Poissonian part of the Hb noise strength, �2=hHi � 1,
for a uniform system with N ¼ 32� 32 nuclei on a square
lattice as function of �=‘; D is varied, hni ¼ 0:5, � and � are
constant as in Fig. 1 [Hb dynamics is thus not fast, as in panel
(a)]. Simulation results for the uniform system (circles) are
compared to Eq. (8) with Nð�Þ ¼ 8ð�=‘Þ2 (solid line). The value
�2

0=hHi � 1 ¼ 82:4 [see Eq. (8)] in an isolated volume has been

calculated numerically. These results are compared to the Hb
noise strength for the full, two-dimensional system (see Fig. 1) in
a nucleus at the boundary with hni ¼ 0:5 (triangles).
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stirred reservoir containing M Hb molecules, with hMi ¼
NhHi and variance �2

M ¼ N�2
0, where �

2
0 is the noise of H

in a nucleus if there were no Hb diffusion. Each nucleus
then samples Hb molecules in a binomial fashion from this
reservoir. The noise in each nucleus is given by �2 ¼
E½V½HjM�� þ V½E½HjM��, where E½X� denotes the expec-
tation and V½X� the variance of X. The first term describes
the noise in the sampling process, and is given by
E½V½HjM�� ¼ hHið1� N�1Þ. The second term describes
the variance inH due to fluctuations in the reservoir, and is
given by V½E½HjM�� ¼ �2

0=N. Hence,

�2 ¼ hHi þ �2
0 � hHi
N

: (8)

This shows that it is the super-Poissonian part of the
noise, �2

0 � hHi, which is reduced by spatial averaging.

Since N scales with the dimensionality d as N � �d, this
reduction becomes more efficient in higher dimensions.
Interestingly, Eq. (8) also reveals that if hb expression
would be sub-Poissonian [8], e.g., due to active mRNA
or protein degradation, diffusion would increase the noise.

Figure 4(b) shows the non-Poissonian part of the vari-
ance in a uniform, two-dimensional system as function of
�; the exact, numerical result is compared to Eq. (8) withN
chosen to be the number of nuclei within a distance 2� of a
given nucleus along the edges of a square lattice, Nð�Þ ¼
8ð�=‘Þ2. For sufficiently large � for which Nð�Þ> 1, the
approximation is excellent. Figure 4(b) also compares the
results for the uniform system to those of the full, nonuni-
form system in which a Bcd gradient activates Hb. Clearly,
the well-stirred approximation describes �2 at the Hb
boundary very well; only for � > 5‘ is the variance at
the boundary significantly influenced by nuclei far from
the boundary with smaller variance.

Finally, we can combine Eqs. (5) and (8) with Eq. (3) to
predict the boundary width �x. Figure 2(b) shows that the
prediction agrees very well with the simulations. This
figure also shows that the two antagonistic effects of Hb
diffusion—reducing the slope but also the variance—lead
to a diffusion constant that optimizes the boundary width
for a fixed Hb lifetime. Interestingly, this minimal width is
less than one nuclear spacing, as found experimentally [2].
This suggests that for achieving the necessary precision,
mechanisms based on multiple gradients or interactions
between multiple Bcd targets are not required, although
these may provide robustness against embryo-to-embryo
variations [9–11]. Since the exact mechanism for Hb trans-
port is unknown, it is tempting to speculate that the preci-
sion achieved via spatial averaging could be increased
further by separating the two effects of Hb diffusion using
an anisotropic transport of Hb: slow transport along the
anterior-posterior axis would allow for steep spatial pro-
files, while fast diffusion along the perpendicular direction

would allow for effective spatial averaging. The benefit of
anisotropic transport could imply the existence of active
mechanisms for Hb transport.
Spatial averaging can only be beneficial when the noise

in Hb production has a super-Poissonian component. The
observation of spatial correlations in Hb indicates that this
is the case [2,12]. The question arises whether bursts in
gene expression are inevitable and spatial averaging a
prerequisite for achieving a precise hb expression domain.
The Hb lifetime is limited by the nuclear division time,
while the time scale for promoter state fluctuations is
limited by the diffusion of Bcd. The magnitude of the
bursts could be reduced by reducing the promoter strength,
but this would lower the Hb copy number and hence the
steepness of the Hb boundary; the net result would, in fact,
be a decrease of its precision. In a model with explicit hb
mRNA, the effect of promoter state fluctuations could be
alleviated by reducing the transcription rate. However, to
achieve a sufficiently steep and precise Hb boundary with a
low copy number of hb mRNA, the translation rate had to
be increased such that Hb production becomes super-
Poissonian again. Moreover, Hb autoactivates its own ex-
pression [13], which also tends to increase the super-
Poissonian part of the noise. It thus appears that spatial
averaging is a fundamental mechanism for generating pre-
cise patterns of gene expression. Clearly, it will be of
interest to study how other modes of transport, e.g., sub-
diffusion or active transport, affect the mechanism of spa-
tial averaging.
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