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The cyanobacterium Synechococcus elongatus uses both a protein
phosphorylation cycle and a transcription-translation cycle to gen-
erate circadian rhythms that are highly robust against biochemical
noise. We use stochastic simulations to analyze how these cycles
interact to generate stable rhythms in growing, dividing cells. We
find that a protein phosphorylation cycle by itself is robust when
protein turnover is low. For high decay or dilution rates (and com-
pensating synthesis rates), however, the phosphorylation-based
oscillator loses its integrity. Circadian rhythms thus cannot be gen-
erated with a phosphorylation cycle alone when the growth rate,
and consequently the rate of protein dilution, is high enough; in
practice, a purely posttranslational clock ceases to function well
when the cell doubling time drops below the 24-h clock period.
At higher growth rates, a transcription-translation cycle becomes
essential for generating robust circadian rhythms. Interestingly,
although a transcription-translation cycle is necessary to sustain
a phosphorylation cycle at high growth rates, a phosphorylation
cycle can dramatically enhance the robustness of a transcription—
translation cycle at lower protein decay or dilution rates. In fact,
the full oscillator built from these two tightly intertwined cycles
far outperforms not just each of its two components individually,
but also a hypothetical system in which the two parts are coupled
as in textbook models of coupled phase oscillators. Our analysis
thus predicts that both cycles are required to generate robust
circadian rhythms over the full range of growth conditions.

Kai | oscillations

any organisms use circadian clocks to anticipate changes

between day and night (1). It had long been believed that
these clocks are driven primarily by transcription—translation
cycles built on negative feedback. However, although some circa-
dian clocks can maintain robust rhythms for years in the absence
of any daily cue (1), recent experiments have vividly demon-
strated that gene expression is often highly stochastic (2). This
raises the question of how these clocks can be so robust against
biochemical noise. In multicellular organisms, the robustness
might be explained by intercellular interactions (3, 4), but it is
now known that even unicellular organisms can have very stable
circadian rhythms. The clock of the cyanobacterium Synechococ-
cus elongatus, for example, has a correlation time of several
months (5), even though the clocks of the different cells in a
population hardly interact with one another (5, 6). How circadian
clocks can be so stable even at the single cell level is not un-
derstood.

Interestingly, it has recently been discovered that the S. elon-
gatus clock combines a transcription—translation cycle (TTC) with
a protein phosphorylation cycle (PPC). The central components
of the clock are the three genes kaiA, kaiB, and kaiC (7). Under
continuous light conditions, the levels of mRNA from the kaiBC
operon and of the protein KaiC oscillate in a circadian fashion
(8); moreover, overexpression of KaiC abolishes kaiBC expres-
sion (9, 10). These observations led to the proposal that the
Kai system is a transcription—translation oscillator, with KaiC
negatively regulating its own transcription. In 2005, however,
Kondo and coworkers showed that KaiC, which is a hexamer with
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two phosphorylation sites per monomer (11), is phosphorylated
in a cyclical manner with a period of 24 h, even when kaiBC tran-
scription is inhibited (12). Still more remarkably, the rhythmic
phosphorylation of KaiC could be reconstituted in the test tube
in the presence of only KaiA, KaiB, and ATP (13). This raised the
possibility that the principal pacemaker of the clock is not a TTC,
but a PPC (13). Yet, in 2008, the same group showed that circa-
dian oscillations of gene expression persist even when KaiC is
always held in a highly phosphorylated state (14). They thus
concluded that the clock is driven by both a TTC and a PPC and
suggested that the interactions between the two oscillators may
enhance the robustness of the clock (14).

Here, we use mathematical modeling to study how a protein-
modification oscillator and a transcription—translation oscillator
interact in growing, dividing cells. To this end, we study four mod-
els, schematically shown in Fig. 1: (i) PPC-in vitro model (Fig. 1B);
(i) PPC-in vivo model (Fig. 1C); (iii) PPC-TTC model (Fig. 14);
(iv) TTC-only model (Fig. 1D). We first study the PPC-in vitro
model, which describes the PPC that has been reconstituted in
the test tube (13) (Fig. 1B). In this system, the total number
of each Kai protein is constant—they are neither produced nor
destroyed—and only the PPC is operative. We show that in this
case the PPC is highly robust against noise arising from the
intrinsic stochasticity of chemical reactions. Even for reaction vo-
lumes smaller than the typical volume of a cyanobacterium, the
correlation time is longer than that observed experimentally (5).
Living cells, however, constantly grow and divide, and proteins
must thus be synthesized to balance dilution. In fact, dilution
can be thought of as introducing an effective protein degradation
rate set by the cell doubling time. We therefore next study the
PPC-in vivo model (Fig. 1C), which describes a PPC in which
the Kai proteins are produced and degraded with rates that
are constant in time. The simulations reveal that protein synthesis
and decay dramatically reduce the viability of the PPC; we predict
that for a cell doubling time of 24 h and a bacterial volume of
1 pm?, the PPC dephases in roughly 10 days, much faster than
real S. elongatus (5). This is because the constant synthesis of
proteins, which we assume are all initially created in the same
phosphorylation state, necessarily injects KaiC with the “wrong”
phosphorylation level at certain phases of the cycle (1, 15, 16); if
these appear fast enough, they can destroy the oscillation. One
role of the TTC is thus to introduce proteins only when the phos-
phorylation state of the freshly made KaiC matches that of the
PPC. Our simulations of the PPC-TTC model (Fig. 14), which
combines a PPC and a TTC, reveal that a TTC can indeed greatly
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Fig. 1. Overview of the models studied in this manuscript. (A) PPC-TTC
model: ATTC of kaiBC expression (orange background) interacts with a KaiC
PPC (yellow background) (40). KaiC is a hexamer that, in our model, switches
between an active conformational state (circles) in which its phosphorylation
level tends to rise and an inactive state (squares) in which it tends to fall.
Active KaiC activates RpaA, whereas inactive KaiC inactivates RpaA; active
RpaA (red) activates kaiBC expression, leading (after a delay) to the injection
of fully phosphorylated KaiC into the PPC. (B) PPC-in vitro model: Only the
PPC is present, and the concentration of each Kai protein is constant. (C) PPC-
in vivo model: Only the PPC is present, but all Kai proteins are now continu-
ally synthesized and degraded, with rates that are constant in time. (D) TTC-
only model: Only the TTC is present, and KaiC is always in a highly phosphory-
lated state. RpaA and kaiA are expressed constitutively; roles of KaiA and
KaiB are discussed in the text.

enhance the robustness of the PPC, yielding correlation times
consistent with those measured experimentally (5). Finally, we
consider whether the PPC is needed at all, or whether one could
build an equally good circadian clock using only a TTC; to this
end, we study the TTC-only model (Fig. 1D). We find that it is
possible to construct a TTC with a period of 24 h and the ob-
served correlation time of a few months (5). However, this comes
at the expense of very high protein synthesis and decay rates,
which impose an extra energetic burden on the cell. Our results
thus suggest that a PPC allows for a more robust oscillator at a
lower cost. Although our models are simplified, we argue in Prin-
cipal Pacemaker and Discussion that our qualitative results are
unavoidable consequences of the interaction between a circadian
clock and cell growth and so should hold far more generally.

Results

A. PPC-in Vitro: A Protein Phosphorylation Cycle with Constant Protein
Concentrations Is Highly Robust. The PPC has been characterized in
detail (Fig. 1B). KaiC forms a hexamer (11) with two phosphor-
ylation sites per protein monomer, which are phosphorylated and
dephosphorylated in a definite sequence as a result of KaiC’s
autokinase and autophosphatase activity (17, 18). KaiA stimu-
lates KaiC phosphorylation (19, 20), whereas KaiB negates the
effect of KaiA (19-22). Thanks to the wealth of available experi-
mental data, the PPC has proven a fruitful system for mathema-
tical modeling (18, 23-31) (for a review, see ref. 32).

In this manuscript, we adopt the mathematical model devel-
oped by us (26). In this model, each KaiC hexamer has an intrin-
sic ability to cyclically phosphorylate and dephosphorylate itself,
while the phosphorylation cycles of the individual hexamers
are synchronized via a mechanism that we called “differential af-
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finity” (18, 23, 26, 27): KaiA stimulates KaiC phosphorylation,
but the limited supply of KaiA dimers binds preferentially to
those KaiC molecules that are falling behind in the cycle, allowing
them to catch up. Specifically, in our model each KaiC hexamer
can switch between an active conformational state C;, where the
number i of phosphorylated monomers tends to increase, and an
inactive state C;, where i tends to decrease (Fig. 1B); KaiA sti-
mulates phosphorylation of active KaiC, but is sequestered by
complexes containing KaiB and inactive KaiC. KaiC in the inac-
tive state can thus delay the progress of fully dephosphorylated
hexamers that have already switched back to the active state and
are ready to be phosphorylated again. With A and B denoting,
respectively, a KaiA dimer and a KaiB dimer, the model becomes

fi ~ k:“ kpf
C,-;<_’Cl-, C,-—|—A%AC,-—>C,—+1 + A, [1]
i K
. AP - B
C, +B 2 BC, BC; + B 2 B,(G,, [2]
KB 2kBP
. ok - - kY .
B.Ci+A 2 AB,C,, AB,C +A 2 A,B,C, [3]
kP 2kA°
Feps L ks
CG2Ch. G2Cy. (4]
dps kaps
Lok L e .
B.G 5__’ B,.Ci, 1, AyBxC,- 5__’ AyBxC,-H . [5]
Kaps Kaps

This model reproduces the phosphorylation behavior of KaiC
in vitro not only when all Kai proteins are present, but also when
KaiA and/or KaiB are absent (26). It moreover correctly pre-
dicted the experimentally observed disappearance of oscillations
when the KaiA concentration is raised (18, 33), a success that
strongly supports the idea that KaiA sequestration is the primary
driver of synchronization. Our model does not feature monomer
exchange between KaiC hexamers, an alternative means of syn-
chronization (24) that has been observed in experiments (28, 34);
we and others find that monomer exchange is not critical for
stable oscillations (18, 26, 27). In SI Text, we show that similar
results are obtained with a model that focuses on the phosphor-
ylation cycle of individual KaiC monomers (17, 18) rather than of
KaiC hexamers.

We quantify our model’s robustness to chemical noise by
performing Monte Carlo simulations of the chemical master
equation (35) describing the mass-action kinetics associated with
reactions 1-5 in a well-mixed container. In our simulations, we
vary the reaction volume V" but adjust the protein copy numbers
so that the concentrations of the Kai proteins remain constant, at
levels comparable to those used in vitro (33, 34). Fig. 2 shows as a
function of volume the correlation number of cycles n, /,, defined
as the number of cycles after which the standard deviation in the
phase of the oscillation is half a day (31). One issue that arises in
comparing our results to the measured in vivo clock robustness is
that the Kai proteins appear to be present in living cells in a ratio
at which the in vitro system would not oscillate (21, 33, 34). It has
been suggested that this discrepancy may indicate that the clock
reactions are confined to a subdomain of the cell from which
some KaiB and KaiC molecules are excluded (21), allowing
the reactions to proceed at roughly the in vitro ratio (see SI
Text). If we take the volume of this domain to be V' ~ 1 pm?, com-
parable to the size of the entire cell, then Fig. 2 shows that
ny, =200, consistent with the measured 166 + 100 (5). Even
for V'~ 0.5 pm?, we find that n, , ~ 102, still within the experi-
mental bounds (in contrast to predictions of some alternative
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Fig. 2. PPC-in vitro model (Fig. 1B). Correlation number of cycles, Ny, asa
function of the reaction volume V. For V ~ 1 ym3, comparable to the size
of a cyanobacterium, n;,; =200, in agreement with experiment (5). (Inset)
The same data on a linear scale. The protein concentrations are those used
in the in vitro experiments (33, 34): [A]; =0.58 uM; [B]; = 1.75 pM;
[C]; = 0.58 uM. For other parameters, see Table S1. For a time trace of the
phosphorylation level p(t), see Fig. S1.

models (18, 31); see SI Text). Our model thus predicts that
the PPC is resistant to noise arising from the stochastic nature
of chemical reactions.

B. PPC-in Vivo: A Phosphorylation Cycle with Constant Protein Synth-
esis and Degradation Rates Is not Stable. Fig. 2 shows that the PPCis
highly robust when the total concentrations of the Kai proteins
are strictly constant. But, in vivo, proteins are continually being
synthesized and degraded. To study how this affects the PPC, we
consider the PPC-in vivo model (Fig. 1C). In this model, the Kai
proteins are produced and degraded in a stochastic (memoryless)
fashion with rates that are constant in time, with the effects of
active degradation (36) and of passive dilution lumped into a
single first-order decay rate p (see SI Text).

Fig. 3 shows the performance of the PPC as a function of de-
gradation rate and cell volume; here, and in the models below,
the synthesis rates are adjusted so that the mean concentrations
are constant and equal to those used in the previous section. The
PPC’s robustness clearly decreases dramatically with increasing
protein synthesis and decay rate. For a volume comparable to that
of a cyanobacterium and a degradation rate of 0.03 h™!, the cor-
relation time is less than 20 days, much lower than that observed
in vivo (5). This degradation rate is precisely the effective rate
arising from protein dilution with a cell doubling time of 24 h.
It is known, however, that KaiC is also degraded actively at a rate
as high as 0.1 h™! (36), leading to still worse stability.

101

_ 108
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0% 10’
1073 100

10' 10°
Volume V[uma]

Degradation Rate p [1/h]
Correlation Number of Cycles

Fig. 3. PPC-in vivo model (Fig. 1C). Correlation number of cycles, n;,, as a
function of reaction volume V and degradation rate p. n;;, decreases as p
increases. Thus, a system in which the Kai proteins are produced and de-
graded with constant rates cannot sustain a stable phosphorylation cycle
when the growth rate is high. The bifurcation line u = 0.0621 h-!, where
the system undergoes a supercritical Hopf bifurcation in the deterministic
limit, is shown in white. KaiA, KaiB, and KaiC are produced with rates such
that the average total concentrations equal those used in the in vitro experi-
ments (see Fig. 2). For a time trace of p(t), see Fig. S1.
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The disappearance of the oscillations for higher protein synth-
esis and decay rates can be understood by noting that fresh KaiC
hexamers are made in a fixed phosphorylation state, which then
has to catch up with that of the proteins already in the cycle (1,
15). When the degradation rate is high, the new proteins are likely
to be degraded before the PPC can synchronize their phosphor-
ylation levels; indeed, in the limit that the protein synthesis and
decay rates go to infinity, the phosphorylation level p(¢) (defined
as the fraction of phosphorylated monomers) becomes constant
in time and equal to the phosphorylation level of freshly made
KaiC proteins. This is not a purely stochastic effect; the white
bifurcation line of Fig. 3 shows that even in a deterministic model
the oscillations disappear when the synthesis and decay rates
become too big (see SI Text).

C. PPC-TTC: A Protein Phosphorylation Cycle with a Transcription-
Translation Cycle Is very Stable. To sustain a phosphorylation cycle,
KaiC has to be made in an oscillatory fashion: Newly synthesized
KaiC proteins should be injected into the phosphorylation cycle
only when their phosphorylation state matches that of the PPC as
awhole (1). This is the principal role of the transcription—transla-
tion cycle. Here, we present a mathematical model, the PPC-TTC
model, for how such a cycle might interact with the PPC (Fig. 14).

Although the TTC is much less well understood than the PPC,
recently much progress has been made (37-39). In particular,
several proteins important for transcriptional regulation of the
kaiBC operon have now been identified. Our model is inspired
by that of Taniguchi et al. (40) and contains the following key in-
gredients:

1. RpaA activates kaiBC expression. Deletion of rpaA, which encodes
a putative response regulator, reduces kaiBC expression (40-42).
Because neither promoters nor transcription or chromosome-
compaction factors have been identified that interact with RpaA
(42), we make the phenomenological assumption that RpaA
directly activates kaiBC expression (40).

2. RpaA is activated by KaiC when KaiC is in the active state. RpaA is
activated via phosphorylation by the histidine kinase SasA, whose
activity is in turn stimulated by KaiC (38, 42); inactivation of SasA
reduces kaiBC expression (40-42). Moreover, RpaA phosphory-
lation occurs 4-8 h before the peak of KaiC phosphorylation (42).
This suggests that partially phosphorylated KaiC that is on the
PPC’s active branch activates RpaA through SasA (40). Because
SasA phosphorylation, occurring on time scales of minutes (38),
is much faster than KaiC phosphorylation, occurring on time
scales of hours, we assume that the SasA dynamics can be inte-
grated out.

3. RpaA is inactivated by KaiC when KaiC is in the inactive state. In-
activation of LabA (41) or CikA (40) increases kaiBC expression,
with inactivation of both having a still stronger effect (40). SasA
inactivation can compensate for both LabA (41) and CikA inac-
tivation (40), but RpaA inactivation cannot compensate for LabA
inactivation (41). Taken together, these results suggest that SasA,
LabA, and CikA control kaiBC expression through different
pathways, with at least the SasA and LabA pathways converging
on RpaA (40). Because phosphorylation of KaiC is critical for
negative feedback on kaiBC expression (10), LabA and CikA ap-
pear to act downstream of phosphorylated KaiC (40). Because
the mechanisms by which LabA and/or CikA repress RpaA acti-
vation are unknown, we make the phenomenological assumption
that inactive KaiC deactivates RpaA.

4. KaiC is injected into the system as fully phosphorylated hexamers.
Imai et al. reported that newly synthesized KaiC is phosphory-
lated in vivo within 30 min (36), much faster than phosphoryla-
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tion of KaiC hexamers in vitro, which takes about 6 h (12);
we thus assume that newly synthesized KaiC is injected into
the system as fully phosphorylated KaiC hexamers.

5. KaiA and RpaA are synthesized at constant rates. The mRNA levels
of kaiA and rpaA exhibit much weaker oscillations than those of
kaiB and kaiC (43). We therefore assume that kaid and rpaA are
expressed at constant rates.

6. The phosphorylation cycle in vivo is similar to that in vitro.

Fig. 14 shows a cartoon of this model, which is described by the
reactions of formulas 1-5 for the PPC together with the following
reactions for the TTC and the coupling between them:

R+X%R4+X, R+X5R4X (6]
B[RI*/(K*+[R]*)

@ =——=— Cs+3B, [71

oBA. oL4R. 8]

R.R A B,C.AC.B,C.A,B,C5@. 9]

Formula 6 models activation of inactive RpaA, R, by
X € {AG,....AGC;s} and inactivation of active RpaA, R, by X €
{A,BCs...A,B,C,} (see SI Text). Formula 7 models activation
of kaiBC by RpaA, using a Hill function with coefficient 4. We
assume a normally distributed delay, denoted by the double
arrow, with mean z = 5 h and standard deviation ¢, = 0.5 h, be-
tween the activation of kaiBC transcription and the appearance
of KaiB and KaiC protein. The length of the delay is dictated by
the requirement that fresh KaiC be produced when its phosphor-
ylation state matches that of the PPC. Formula 8 models consti-
tutive expression of kai4A and rpaA. Formula 9 describes
degradation of all species with the same rate constant p; we
ignore rhythmic KaiC degradation (36), which is not essential
to produce a robust clock. In SI Text we show that, because of
the stabilizing effect of the PPC, the clock’s basic behavior is ro-
bust to variations in parameters such as the size of gene expres-
sion bursts, the width of the delay distribution, and the Hill
coefficient of gene repression; there, we also discuss a more de-
tailed model that includes cell growth and binomial partitioning
upon cell division, which appreciably increases noise without
changing qualitative trends. Although one can think of our model
in loose terms as consisting of coupled transcriptional and post-
translational oscillators, it cannot be mathematically decomposed
into two separate oscillatory systems, each with its own variables,
nor can the strength of the coupling between the two cycles be
independently tuned. It is thus formally quite different from text-
book models of coupled oscillators (44).

Fig. 4 shows the robustness of this PPC-TTC model as a func-
tion of cell volume and protein degradation rate p. As expected,
n,, decreases with decreasing cell volume. Its dependence on the
degradation rate, however, is markedly different from that seen
with constant KaiC synthesis (Fig. 3): A PPC sustained by a TTC
becomes more robust with increasing decay rate. If we assume
that proteins are lost only through dilution, then for a bacterial
volume of 1 pm? and a cell doubling time of 24 h (corresponding
to a decay rate = 0.03 h™'), the correlation time is about
200 days, consistent with the value measured experimentally
(5). If proteins are also degraded actively, increasing p, this ex-
cellent behavior improves still further; even for V = 0.5 ym?,
ny ~ 120 for u = 0.1 h~!. This is in stark contrast to the stability
of a PPC without a TTC (Fig. 3).

D. TTC-only: A Protein Phosphorylation Cycle Dramatically Enhances
the Robustness of a Transcription-Translation Cycle. Figs. 3 and 4
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Fig.4. PPC-TTC model (Fig. 1A). Correlation number of cycles, n, ,, as a func-
tion of the volume V and degradation rate p. The combination of a TTC
and a PPC can generate stable circadian rhythms for a bacterial volume
of V~1pum3, even when the degradation rate is high (compare Fig. 3).
The protein synthesis rates are varied with the degradation rates such that
the average protein concentrations equal those used in vitro (see Fig. 2). For
time traces of p(t) and [C|(t), see Fig. S1.

show that a TTC can greatly improve the robustness of a PPC.
One might thus ask whether the PPC is needed at all, or whether
an adequate clock can be built with only a TTC. To address this
question, we modify the PPC-TTC model (formulas 6-9) so that it
consists only of a TTC, leading to the TTC-only model (Fig. 1D):

BRI /(K +RTY) . ,

: C, -R, C.R-@, [10]
~ kb ki ~
R—-R, C+R->C+R. [11]

In the simulations, we adjust not only the synthesis rate /. but also
the delay 7 so that both the average concentrations and the clock
period remain constant when we vary p (see SI Text).

Fig. 5 shows, for a bacterial volume of 1 pm?, the robustness
of this TTC-only model as a function of the degradation rate, to-
gether with the results for the PPC-TTC model (Fig. 4) and the
PPC-in vivo model (Fig. 3). The TTC-only model’s behavior is the
opposite of that of the PPC-in vivo model; the TTC-only model is
most stable for high degradation rates, and its robustness falls
dramatically when p drops below 0.2 h~!'. The combined PPC-
TTC model, however, is robust for all degradation rates—its cor-
relation time interpolates between those of the TTC-only model
for large p and of the PPC-in vivo model for small p. Importantly,
the relative advantage of the combined model is greatest when
1/u is of order the oscillator period, and this is precisely the
regime where physiological degradation and dilution rates for
S. elongatus fall (36). Further, the combined oscillator does much

1035 T T
10%

10"

Correlation Number of Cycles

10°
10

Degradation Rate p [1/h]

Fig. 5. Correlation number of cycles n;, as a function of degradation rate u
for the PPC-in vivo (Fig. 1C), TTC-only (Fig. 1D), and PPC-TTC (Fig. 1A) models.
V =1 pm? in all models; for the TTC, n; ;, was computed for [C](t) rather than
for p(t) (see SI Text). Clearly, a PPC in combination with a TTC generates ro-
bust rhythms over a wide range of degradation rates. The protein synthesis
rates are varied with the degradation rates such that the average concentra-
tions equal those used in the in vitro experiments (see Fig. 2).
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better than either oscillator alone; in contrast, when two conven-
tional phase oscillators with comparable noise levels are coupled,
one expects only about a factor of two gain in n,,, (44).

Dilution puts a lower bound on the degradation rate, which
means that a stable oscillator cannot be based on a PPC only,
especially when the growth rate of the bacterium is large. The
degradation rate can, on the other hand, be increased by active
degradation. For high degradation rates, i.e., » > 0.2 h™!, an os-
cillator based only on a TTC can be sufficiently robust (Fig. 5).
However, to balance these high decay rates, the protein synthesis
rates have to be correspondingly large, which can be energetically
costly (45). Combining a PPC with a TTC makes it possible to
dramatically improve the robustness while keeping the synthesis
rates the same. Although a phosphorylation cycle does not come
entirely for free (46), this suggests that a PPC combined with a
TTC gives the best performance-to-cost ratio.

E. The Principal Pacemaker. What drives the circadian clock, the
PPC or the TTC (1)? As our analysis shows, the answer depends
on the growth rate. When protein turnover is slower than the
oscillation period, the clock is primarily driven by the PPC,
and adding a TTC does not enhance its robustness (Fig. 5). In-
deed, a TTC can generate large-amplitude oscillations in KaiC
concentration only if proteins are synthesized and degraded on
time scales faster than the oscillation period. At high growth
rates, on the other hand, adding a PPC to a TTC does not im-
prove stability, and the TTC is the principal driver. In this regime,
the time scale for protein turnover is much faster than that for
protein (de)phosphorylation; KaiC hexamers are thus typically
degraded before they can complete a single phosphorylation
cycle, rendering the PPC irrelevant.

To gain a deeper understanding of the transition between these
two limiting cases—and in particular of the crossover regime
where 1/p is of order 24 h and the gain in robustness from com-
bining TTC and PPC is most dramatic—we introduce in SI Text
section S2 minimal versions of the models discussed above
together with two additional models designed to isolate specific
modes of interaction between the two cycles (see also Fig. S2).
The first of these, the PMS-TTC model, combines a TTC with
a protein-modification sequence (PMS): the KaiC hexamers un-
dergo a sequence of dephosphorylation steps on the PPC’s inac-
tive branch, but not a full phosphorylation cycle. The second
additional model, the UPPC-TTC model, combines a TTC with
an unsynchronized protein phosphorylation cycle (UPPC); here,
each KaiC can undergo a full cycle of protein-modification steps
as in the original PPC, but no KaiA is present, and synchroniza-
tion through differential affinity thus cannot occur. These two
models reveal two distinct mechanisms by which coupling a TTC
with a PPC enhances robustness in the crossover regime (Fig. S3).
The PMS-TTC model shows that the sequence of Poissonian pro-
tein-modification steps, an inherent property of the PPC, narrows
the distribution of the delay between gene repression and gene
expression, which enhances the robustness of the TTC. The
UPPC-TTC model shows that the TTC is not only necessary to
sustain a PPC at higher growth rates, as discussed above, but
in fact enhances it, because the periodic synthesis of KaiC in a
given phosphorylation state has a synchronizing effect on the
phosphorylation cycles of the individual KaiC hexamers.

The picture that emerges from the analysis of these models is
thus the following: At small p, the PPC functions as it does in
vitro, with protein synthesis and degradation playing only a minor
role. As p increases, the burden of synchronization is gradually
passed from the differential affinity mechanism to periodic
protein synthesis; we can still usefully think of the oscillation
as driven by the PPC, but with the TTC now lending an essential
helping hand. Finally, at still larger p, 1/u becomes much larger
than the oscillation period, and most hexamers do not survive
long enough to complete a full phosphorylation cycle. At this
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point, the clock has become essentially a standard delayed nega-
tive feedback oscillator, with the twist that, unless p is very large,
the PPC helps to narrow the distribution of delay times and thus
to reduce noise. Consistent with recent experiments (16), our
simulations suggest that S. elongatus usually finds itself in the sec-
ond of these regimes, in which the TTC plays an important part in
synchronizing the PPC.

Discussion

The evidence is accumulating that circadian rhythms are driven
by both transcription—translation and protein-modification cycles
not just in cyanobacteria, but even in higher organisms (1, 47).
Our analysis suggests that both cycles are required to generate
stable circadian rhythms in growing, dividing cells over a wide
range of conditions: Although a PPC alone must inevitably fail
at high and a TTC without active degradation at low growth rates,
the combined clock is robust for all growth rates. Although our
PPC-TTC model is simplified, it does capture the essence of a
coupled TTC and PPC. That is, it is built around a protein that
not only undergoes a protein-modification cycle, but also regu-
lates its own synthesis in a manner that depends on its modifica-
tion state. Moreover, its qualitative behavior can be explained by
the generic arguments of the preceding section, which are based
on a simple comparison of the clock period with the time scales of
protein modification and protein degradation. Our results should
thus apply to any system that exploits both a PPC and a TTC to
generate circadian rhythms.

Our combined PPC-TTC model is consistent with a number
of experimental observations. It not only matches the average
oscillations of the phosphorylation level and the total KaiC con-
centration in wild-type cells (Fig. S1), but also reproduces the ob-
servation that even in the presence of an excess of KaiA, the total
KaiC concentration still undergoes at least a damped oscillation
with a circadian period (14, 16) (see Fig. S4). Yet, because quite a
few elements of the TTC have not been characterized experimen-
tally, our model of the TTC is necessarily rather simplified and
phenomenological; not surprisingly, some observations thus can-
not be reproduced. For example, our model predicts that the
phase of the oscillation in KaiC abundance lags behind that of
the phosphorylation level by a few hours, whereas experiments
seem to show that these oscillations are more in phase (12, 14).
This may be due to our simplifying assumption that KaiC is pro-
duced as fully phosphorylated hexamers. Although phosphoryla-
tion of fresh KaiC has been reported to occur within 30 min (36),
fragmentary evidence suggests that hexamerization is slow (48);
one would then expect to detect KaiC monomers in experiments
several hours before our simulations report the presence of fully
functional hexamers.

In S. elongatus, the period of the circadian rhythm is insensitive
to changes in the growth rate (49, 50). Because protein synthesis
and decay rates, on the other hand, tend to vary with the growth
rate (51), the question arises whether the period of the oscillator
as predicted by our model is robust to such variations. In SI Text
we show that a tenfold increase in the synthesis and degradation
rates of all proteins decreases the period only by 10-20%. The
reason is that the clock period is mostly determined by the intrin-
sic period of the PPC. The latter does not depend on the absolute
protein synthesis and decay rates, although it does depend on the
ratio of the concentrations of the Kai proteins (26, 33, 34).
Clearly, it would be of interest to investigate how this ratio varies
with the growth rate.

Finally, how could our predictions be tested experimentally?
The most important testable prediction of our analysis is that
the PPC requires a TTC when the growth rate is high. Kondo
and coworkers have demonstrated that a PPC can function in
the absence of a TTC (12). These experiments were performed
under constant dark conditions, which means that the growth rate
was (vanishingly) small, protein synthesis was halted, and even
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protein decay was probably negligible, because the KaiC level was
rather constant (12). These experiments are consistent with our
predictions, but the critical test would be to increase the growth
rate while avoiding any circadian regulation of kaiBC expression.
This means that the cyanobacteria must be grown under constant
light conditions. Moreover, one would need to bring kaiBC
expression under the control of a promoter that is constitutively
active. However, most promoters of S. elongatus (37, 43), and
even many heterologous promoters from Escherichia coli (52),
are influenced by the circadian clock. Nevertheless, a number
of promoters have been reported that exhibit arrhythmic activity
(43), and these might be possible candidates. A still more chal-
lenging experiment would be to express the phosphorylation cycle
in the bacterium E. coli (53). Our analysis predicts that in growth-
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arrested cells, the phosphorylation cycle should be functional,
whereas in normal growing E. coli cells, with cell doubling times
of roughly 1 h, the oscillations should cease to exist.

Methods

The simulations were performed using the algorithm of ref. 35, and n;, was
computed from the decay of the correlation function of p(t), except for the
TTC-only model, for which we used [C|(t); our estimates for n,, are typically
accurate to within 15-20% (see S/ Text).
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SI Text

S1. The Models. $1.1. PPC-in vitro model: A PPC with constant protein
copy numbers. Fig. 1B of the main text shows a cartoon of the
PPC-in vitro model. In this model of the protein phosphorylation
cycle (PPC) the total concentration of each Kai protein is con-
stant. The model is described by reactions 1-5 of the main text,
which we repeat here:

KM

fi - i Kt
C2C, G+A+2AC3CL +A, [S1]
b, K
. 4B . kY
¢, +B=BC., BG +Bz2 B, [S2]
KB kP
P - . kM ~
Bsz + A "(A_ ABXC,, ABzci + A __4—/; A2B2Cl‘7 [S3]
k. 2k;
ks ~ ke
CGa2C,. Gz2CG, [S4]
kdps Kaps
Lok L ks -
B.C;2B.C,  ABGC 2ABC L. [S5]
kdps kdps

Here, C; denotes a KaiC hexamer in the active conformational
state, in which the number i of phosphorylated monomers tends
to increase, and C; denotes a KaiC hexamer in the inactive con-
formational state in which i tends to decrease; A denotes a KaiA
dimer, and B denotes a KaiB dimer. The reactions C; 2 C; in S1
model the conformational transitions between active and inactive
KaiC; the second set of reactions in S1 describe phosphorylation
of active KaiC that is stimulated by KaiA; the reactions in S2
model the binding of KaiB to inactive KaiC and those in S3 mod-
el the sequestration of KaiA by inactive KaiC that is bound to
KaiB; note that an inactive KaiC hexamer can bind up to two
KaiA dimers; the reactions in S4 and S5 model spontaneous
phosphorylation and dephosphorylation of active and inactive
KaiC. For a more detailed discussion of the model, we refer
to ref. 1.

We study this model, as well as the other stochastic models
discussed below, using kinetic Monte Carlo simulations of the
chemical master equation (2). In our simulations, we vary the re-
action volume, but keep the concentrations of the Kai proteins
constant at levels comparable to those used in the in vitro experi-
ments (3, 4). Fig. S14 shows two time traces of the phosphoryla-
tion level p(f), defined as the fraction of monomers that is
phosphorylated, for two different volumes, whereas Fig. 2 of the
main text shows the correlation number of cycles, n, /,, as a func-
tion of the volume; for a discussion of how n, /, is computed, see
section S7.

Comparing the robustness with in vivo measurements. Fig. 2 of the
main text shows that 1, , increases with the volume. To compare
our predictions with the experimental results obtained in vivo (5),
we have to verify that the concentrations of the Kai proteins in
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vitro/in silico are similar to those in vivo, because the behavior of
the phosphorylation cycle depends on the concentrations of the
Kai proteins (3, 4). The copy number of KaiC monomers in vivo
has been measured (6) to be around 10,000, corresponding to
roughly 1,000 KaiC hexamers, which, assuming that the bacter-
ium is roughly 1 cubic micron, corresponds to a KaiC hexamer
concentration of about 1 uM, comparable to the KaiC hexamer
concentration in vitro (3, 4). It thus seems meaningful to compare
the predictions of Fig. 2 of the main text with experiment. Our
model predicts that for a bacterial volume of 1 cubic micron, the
phosphorylation cycle is highly robust, with n; , =~ 200, in agree-
ment with what has been measured experimentally in vivo, which
is ny/, = 166 & 100 days (5). However, the number of KaiA
monomers in vivo has been measured to be on the order of
250-500 monomers (6), corresponding to 125-250 KaiA dimers.
This means that in vivo the concentration ratio of KaiA dimers to
KaiC hexamers is about 1:6, which is lower than the correspond-
ing ratio in the test tube, which is 1:1 (3). In fact, for the in vivo
concentration ratio of KaiA to KaiC, the in vitro system does not
exhibit macroscopic phosphorylation oscillations (3, 4). It has
therefore been suggested that in vivo the oscillations are confined
to a small subcellular domain from which some KaiB and KaiC
molecules are excluded (6), allowing the reactions to proceed at
roughly the in vitro ratio; here, we adopt this hypothesis and as-
sume that the Kai proteins are found in the physiologically rele-
vant reaction volume in proportions comparable to those used in
the in vitro experiments. If we take this volume to be a third of the
total bacterial volume, i.e., V ~ 0.3 pm>—small enough that the
measured number of KaiA molecules is more than adequate to
give the in vitro KaiA dimer concentration of 0.58 uM (3, 4)—
then our model predicts that the phosphorylation cycle has a cor-
relation time of roughly 75 days. This would still be consistent
with the value measured experimentally (5), in contrast to the
models proposed by Eguchi et al. (7) and Rust et al. (8) (see sec-
tion S5). Our model thus predicts that the phosphorylation cycle
is highly robust against the intrinsic noise arising from the sto-
chastic nature of the phosphorylation reactions and the physical
interactions between the Kai proteins.

$1.2. PPC-in vivo model: A PPC with constant protein synthesis and
degradation rates. In the main text, we also discuss the perfor-
mance of a model that includes not only a PPC, but also synthesis
and degradation of the Kai proteins; we call this model the PPC-
in vivo model. This model is described in reactions S1-S5 plus the
following reactions for the synthesis and degradation of the Kai
proteins:

o5Cs+3B,  @BA. [S6]
A.B,C,AG,B,C, A B.G5Q. [S7]

As explained in the main text, we assume that fresh KaiC is in-
jected into the system as fully phosphorylated hexamers because
phosphorylation of fresh KaiC proteins has been reported to be
fast, i.e., occurring within 30 min (9). However, the precise choice
for the phosphoform of fresh KaiC is not so important in this
model; it does not affect the robustness of this model. Because
the KaiB and KaiC proteins are both products of the kaiBC op-
eron, we choose to model the production of both proteins as a
single reaction. We note that while in the model with the tran-
scription—translation cycle, discussed in section S1.4, the delay
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in the synthesis reactions is critical, in the above model, where the
Kai proteins are produced with rates that are constant in time, a
delay would have no effect; the synthesis reactions are therefore
modeled as simple, Poissonian birth reactions. Fig. S1B shows
time traces for the phosphorylation level p(¢) for three different
degradation rates.

$1.3. Deterministic PPC-in vivo model. To verify that the disappear-
ance of oscillations as the degradation rate is increased is not a
purely stochastic effect, we consider the model of S1-S7 in the
deterministic limit of infinite volume and protein number. In this
limit, the concentrations of the different proteins evolve accord-
ing to deterministic rate equations. We make two further simpli-
fying assumptions: First, we replace the two-step binding of KaiB
to C; with a trimolecular reaction that turns C; directly into B,C,,
and making a similar change for binding of KaiA to the inactive
branch. Second, we assume that binding and unbinding reactions
are fast enough that they are effectively in steady state and thus
explicitly keep track only of the concentrations of the various
KaiC species; the concentrations of free KaiA and KaiB can then
be inferred from conservation laws. The dynamical equations are
then essentially the same as those given in equations 44-47 of our
previous publication (1), with the addition of a linear decay term
with rate p for each species and of synthesis of Cq with rate fg,:

d Ci S S S S
Gt o2 (Gl + 0 Co 1~ (6 + ) [Clr = o (Cy
+6f°[C], + Bedis — #[Cilr. [S8]
dmﬁ—%[éA]+k [Cii1] = (kps + kaps ) [Ci] + 6FF[Ci]p — 6F[C]
dr pstisl dps i+l ps dps)%il T 05 %l — G i
- - ~Bbf<.[B Cj.] -
(B ~25(B,Clr (G + S -G
[S91
ABCly & o n
% = kps[BoCisit ] + kaps[BoCot 1 = (Kps + Kaps) [B2Cilr
- - KBPK,[B,C]]
+ R ([B]y — 25,[B,C)p)?[C] - ST
& ([Blr (B.Ci]1)*[C] K + AP
- u[B.Clr. [S10]
where the concentration of free KaiA, [A], is given by
L [AICH & APB.Clr sy

Here [Gj]y is the total concentration of KaiC hexamers with i
phosphorylated monomers in the active state, whether or not
complexed with KaiA, i.e., [C]; = [C] + [AC/]; [B,C/]y is defined
similarly. The effective rate constants appearing in these equa-
tions depend on the concentration [A] of free KaiA and are de-
fined in terms of the more microscopic rate constants as follows:
The effective (de)phosphorylation rates on the active branch are

GZPS - (kpsKi + kpf[AD/(Kl + [AD and 6?}35 = Kikdps/(Ki + [AD
The effective flipping rates are given by of" = f,K;/(K; + [A])
and 6 = b;, where f; and b; are the forward and backward flip-
ping rates. The parameters &P' and k" differ from kP and kP,
respectively, in that the «’s are rate constants for trimolecular re-
actions, which are broken down into two successive bimolecular
reactions in the stochastic simulations. The dissociation constants

K; satisfy K; = k2A° /k2; the K; could be defined similarly in terms
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of forward and backward rates for KaiA binding to the inactive
branch, but (just as with KB and ¥PP) these rates would differ from
those used in the stochastic simulations, so we choose instead to
quote the dissociation constants directly. Following ref. 1, we
choose values for the new parameters associated with trimolecu-
lar interactions such that time dependence of p(f) matches the
average behavior of the stochastic model.

To determine where oscillations disappear as p is increased, we
analyzed these equations using the XPPAUT implementation of
the AUTO continuation package (10). We found that, for the
parameter values given in Table S1, the system undergoes a super-
critical Hopf bifurcation at y = 0.0621 h™!, as noted in the
main text.

$1.4. PPC-TTC model: The PPC and TTC combined. The PPC-TTC mod-
el of the main text consists of a PPC, a transcription—translation
cycle (TTC), and a pathway that couples these two cycles. This
model is described by the reactions of S1-S5 for the PPC, to-
gether with the following reactions for the TTC and the coupling
between them:

R+x8R4X, R+XER4X [S12]
AIRT /(K7 +R]") s, b o
R.R.AB.C AC.BC.ABCHD. [S14]

Here, R and R denote the RpaA protein in its active and its in-
active form, respectively, whereas 7 is the Hill coefficient of gene
repression; its baseline value is n = 4, but in section S4.3 we study
the effect of varying n. The X and X in S12 denote any of the
phosphoforms of KaiC that mediate the activation and repression
of RpaA, respectively; in section S4.1, we discuss the dependence
of the results on precisely which phosphoforms are chosen to ac-
tivate and repress RpaA, respectively. The double arrow indicates
a reaction with a Gaussian distributed delay with mean z and var-
iance o,. We thus assume that kaiBC expression is activated by
RpaA, where the activity of RpaA is modulated by the PPC.
In contrast, the expression of KaiA, KaiB, and RpaA is assumed
to occur constitutively. Fig. S1C shows time traces for the phos-
phorylation level p(¢) and total KaiC concentration [C]y(¢) for
V' =1 pm? and y = 0.03 h™! (solid lines) and » = 0.1 h~! (dotted
lines), respectively.

$1.5. TTC-only model. The TTC-only model is given by the following
reactions:

Be[RI*/(K*+[R]*)
) — C7

7,0,

o%R. CRL@. [S15]

RER. cirYCHR [S16]
In the simulations, we adjust the delay = and the synthesis rate g,
for each choice of the degradation rate p such that the oscillation
period is 24 h and the average KaiC concentration is comparable
to that of the other models considered so far. Fig. S1D shows time
traces for the concentrations of KaiC and active RpaA, respec-
tively. In section S2 we discuss the simplest possible TTC model,
namely one in which KaiC directly represses its own synthesis;
this gave very similar results.

$1.6. Parameters. Table S1 gives the values of the parameters used
in the stochastic simulations based on the kinetic Monte Carlo
algorithm developed by Gillespie (2). Unless otherwise noted,
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we choose the total concentrations of the Kai proteins to match
common conditions for the in vitro reaction system (3, 4):
[A]lr = 0.58 pM, [B]; = 1.75 pM, and [C]; = 0.58 pM.

S2. A Simplified Description Provides Insight into the PPC-TTC Model's
Robustness. To elucidate why a clock built upon a TTC and a PPC
is robust across a range of protein turnover rates, we study mini-
mal versions of the models discussed above. We also introduce
two new models, the PMS-TTC model and the UPPC-TTC model,
that represent intermediate cases between the extremes of the
coupled PPC-TTC model on the one hand and the separate
PPC-in vivo and TTC-only models on the other. Cartoons of these
new models are shown in Fig. S2 A-D. Below, we first briefly de-
scribe the different models and then use them to explain why a
PPC enhances the robustness of a TTC, and vice versa. Through-
out this section, we refer to the more realistic models introduced
in the main text, and discussed in the preceding section, as full
models, while the simplified versions considered in this section
are called minimal models. The parameters of the minimal mod-
els are shown in Table S1.

Minimal PPC-in vivo model. In the minimal PPC-in vivo model, the
binding of KaiB to KaiC has been integrated out and intermedi-
ate conformational transitions between active and inactive KaiC
are disallowed. The model is described by the following reactions:

- - KM g
CliC  EBC, CGHAZACEC,, +A,  [S17]
kAb
- AN - kR
CG+A2AG,  AG+A =2 AC, [S18]
i e
ks _ ks Lok
CGa2GCGh. Gz2G,. AG2AG, [S19]
dps Kaps Kaps
ohc, oBA  ACAGACLE. [S20]

These equations give a generic description of a protein modifica-
tion cycle that is synchronized via the mechanism of differential
affinity (1), in which KaiA sequestration synchronizes the phos-
phorylation cycles of different KaiC hexamers. The solid red line
of Fig. S2E shows the correlation number of cycles, n,,, as a
function of the degradation rate p for ¥ = 1 ym? for this minimal
PPC-in vivo model; when p is varied, the protein synthesis rates
are adjusted such that the average protein concentrations are un-
changed. The minimal model’s behavior is not only qualitatively,
but also quantitatively very similar to that of the full PPC-in-vivo
model (Fig. 5 of main text); in particular, the PPC alone is stable
only at low protein degradation rates.

Minimal TTC-only model. The simplest and most generic TTC mod-
el is one in which KaiC directly represses its own synthesis (with a
delay, indicated by a double arrow as in the main text):

B/ (KEH[CTY)
"

C, C-0. [S21]

70,

It can be seen that in comparison to the TTC-only model of the
main text, here RpaA has been integrated out. The green line of
Fig. S2E shows n, /, as a function of p for I’ =1 um?; when p is
varied, both the protein synthesis rate g, and the delay in protein
synthesis 7 are adjusted such that the average KaiC concentration
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and the oscillation period remain constant. The minimal model
behaves very similarly to the full 77C-only model discussed in the
main text (see Fig. 5), showing robust oscillations only for high
protein turnover rates.

Minimal PPC-TTC model. The PPC of the minimal PPC-TTC model
is given by the minimal PPC described above (S17-S20). In the
full PPC-TTC model, the active KaiC phosphoforms activate
RpaA and thereby stimulate KaiC synthesis, whereas the inactive
KaiC phosphoforms deactivate RpaA and thereby repress KaiC
synthesis. In the minimal PPC-TTC model, we have integrated
out RpaA. Moreover, we assume that only the inactive KaiC
phosphoforms regulate, i.e., repress, KaiC synthesis. This yields
the following synthesis and decay reactions:

BK*/(K*+[R]*)

G, oka, [S22]

70,

AC.ACACLD. [S23]
Here, [R] = X% (G + [AC] + [A,C}]) is the total concentration
of all the KaiC phosphoforms that are in the inactive state. The
blue line of Fig. S2F shows the correlation number of cycles n, /,
as a function of the degradation rate p for V' = 1 pm? for this
model. As p is varied, the protein synthesis rates are adjusted
to keep the average protein concentrations constant, but it turns
out not to be necessary to change the delay 7 in protein synthesis,
because the period of the clock is dictated primarily by the PPC
(see section S6 for a more detailed discussion). As expected, the
behavior of the minimal PPC-TTC model is similar to that of the
full PPC-TTC model discussed in the main text; the clock is ro-
bust not only in the limiting regimes of low and high protein turn-
over rates, but also in the biologically relevant crossover regime.

Minimal PMS-TTC model. This model is meant to capture one pos-
sible effect on the TTC of coupling it to the PPC: Rather than
disappearing only through first-order degradation at a rate p,
as they do in the TTC-only model, the KaiC forms that repress
transcription can also, when a PPC is present, be eliminated by
their advance through KaiC’s phosphorylation cycle, which must
eventually turn repressing hexamers C; on the inactive branch
into active hexamers C; that do not affect transcription. More-
over, because progress through the phosphorylation cycle in-
volves a sequence of first-order steps, the distribution of times
for repressors to disappear via this new route will be narrower
than the distribution of degradation times, which should in turn
increase the clock’s robustness. To elucidate these effects, the
PMS-TTC model combines a TTC with a protein modification
sequence (PMS): The proteins do not undergo a full cycle of pro-
tein modification steps, as in the original PPC, but a half cycle,
during which they progress through a sequence of repressive KaiC
phosphoforms before being converted into the C, form that can-
not regulate transcription. The model is described by the follow-
ing reactions:

C()—)CG, C0—>C0, [824]
GGy [S25]
K/ (KA+R]Y) -
- C67 C6,C(),Ci—>®. [826]
Here, [R] = Y%, [C]; is the total concentration of inactive KaiC,

which represses kaiC. Note that, in order to maintain as close a
correspondence as possible with the PPC-TTC model, KaiC is
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produced in its fully phosphorylated, but active, state, C¢. Be-
cause the flip rate from Cg to Cg4 is much faster than the depho-
sphorylation rate, however, this has essentially no effect on the
dynamics. In contrast, the reaction from C, — C, is critical:
Omitting it would yield a model that behaves exactly as the
TTC-only model—dephosphorylation would merely change the
phosphorylation label of KaiC, but not the dynamics of kaiC re-
pression. In order for protein modification to have an effect on
the temporal regulation of kaiC repression, it is essential that
KaiC can leave the modification states in which it represses kaiC
via a reaction other than degradation. It should also be noted
that, in order to compare the PMS-TTC model with the PPC-
TTC model, the dephosphorylation reactions have the same rates
as in the PPC-TTC model. As for the TTC-only model, when p is
varied, both the protein synthesis rate . and the delay in protein
synthesis 7 are adjusted so that the average KaiC concentration
and the oscillation period remain constant. When y < kg, the
gene-repressing phosphoforms turn into the nonrepressing C
state via protein dephosphorylation before they are degraded,
and one might thus think that the model’s behavior is completely
independent of p in this limit. However, C, is part of the total
KaiC concentration, which we fix by adjusting g. for each p;
and because . does affect the behavior of the system as described
below, p remains an important control variable, even when
# < kgps. The magenta line of Fig. S2E shows the correlation
number of cycles n;,, as a function of the protein degradation
rate p for V' =1 pm’ for the PPC-TTC model. It is more robust
than the TTC-only model, with sustained oscillations for lower
values of the protein degradation rate. Nonetheless, the oscilla-
tions still cease to exist for small enough p.

Minimal UPPC-TTC model. This model probes the ability of the TTC
to synchronize the PPC. To this end, it combines a TTC with an
unsynchronized protein phosphorylation cycle (UPPC). Each
protein undergoes a full cycle of protein modification steps as
in the original PPC, but the cycles of the individual proteins
(KaiC hexamers) are not synchronized as in the original PPC
—KaiA, and thus the differential-affinity synchronization me-
chanism, has been removed. The model is defined by the reac-
tions

- = b k
LG, B¢, G, [S27]
Fps - Ky
Ci 4__) i+1» Ci j_—) i+1» [st]
Kaps Kaps
BKH/(KE4[R]Y) =
_ GCe. GC.C-O. [S29]
Here, R] = Y% [C;] is, as in the other minimal models, the total

concentration of the KaiC phosphoforms that repress kaiC ex-
pression. The light blue line of Fig. S2E shows the robustness
of this model, n;/,, as a function of the protein turnover rate
p for V' =1 um?3; when y is varied, the protein synthesis rates
are adjusted to keep the average protein concentrations constant.
(As with the PPC-TTC model, the period is largely determined by
the phosphorylation cycle.) Its behavior in the limit of high pro-
tein degradation rate is similar to that of the PMS-TTC model,
but the oscillations disappear more gradually as p is decreased,
and even in the limit of low protein turnover rate, the system
shows damped oscillations, leading to a n,/, value of about
1-2 days.

Toward a mechanism for robustness. In section E of the main text,
we argued that the PPC-TTC model is easily understood in the
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limits of low and high degradation rates: At low degradation
rates, a TTC by itself must fail, because it can generate only large
amplitude oscillations if proteins are synthesized and destroyed
on times scales faster than the oscillation period; one thus expects
that the PPC-TTC clock is driven primarily by the PPC for small
p. On the other hand, at high degradation rates, most KaiC pro-
teins are destroyed before they can complete a full phosphoryla-
tion cycle, reducing the importance of the PPC. The TTC should
thus be dominant when p is large. These expectations are borne
out by the simulation results of Fig. S3. For small p (Fig. S34), the
total KaiC concentration is nearly constant in time, and oscilla-
tions in the concentration of KaiC phosphoforms that repress
kaiC expression ([R]) are driven almost entirely by the protein
modification cycle of the PPC. For large p (Fig. S3B), in contrast,
[R] tracks the total KaiC concentration almost perfectly, indicat-
ing that the oscillations arise primarily from periodic protein
synthesis and degradation.

Although these limiting cases go a long way toward unraveling
the behavior of the PPC-TTC model, they do not entirely explain
the crossover regime when 1/u is of order of the clock period and
the combined PPC-TTC performs far better than the TTC or PPC
alone. The PMS-TTC and UPPC-TTC models allow us to move
away from the limiting cases and to examine how a PPC can en-
hance a TTC, and vice versa, in this crossover regime.

To explain why a PMS can enhance the stability of a TTC, we
show in Fig. S3C time traces of the concentrations of the indivi-
dual KaiC phosphoforms that repress kaiC in the PMS-TTC mod-
el, as well as their sum [R]; for comparison, we also show a time
trace of the KaiC concentration [C] in the TTC-only model. In the
TTC-only model, the concentration of KaiC varies slowly and un-
reliably. In contrast, in the TTC-PMS model, the total repressor
concentration [R] switches rapidly and strongly between a value
that is well below the repression threshold and one that is well
above it; this occurs because the concentrations of the individual
KaiC phosphoforms rise and fall sharply as a result of the se-
quence of protein modification steps. These strong oscillations
are beneficial because they minimize the effect of fluctuations
in the repressor concentration on the timing of gene repression.
To demonstrate this more clearly, we analytically compute for the
TTC-only and the PMS-TTC models the distribution of times it
takes to cross the gene repression threshold [R] = K, assuming
that initially N molecules are present in the system that then de-
cay either via protein degradation only, as in the TTC-only model,
or via a combination of protein degradation and protein modifi-
cation, as in the PMS-TTC model (see Appendix for details).

Fig. S3D shows the distribution of crossing times for both the
TTC-only model and the PMS-TTC model, and for different va-
lues of the protein degradation rate p. It is seen that the crossing-
time distribution of the PMS-TTC model is narrower than that of
the TTC-only model, especially when the protein degradation
rate is lower than the protein modification rate. Although in
the TTC-only model gene repression is relieved only via protein
degradation, involving a single Poisson process, in the PMS-TTC
model gene repression can also be relieved via protein modifica-
tion, which involves a sequence of Poissonian steps. The sequence
of Poissonian steps leads to a narrower waiting-time distribution
for crossing the repression threshold, and this explains why a pro-
tein modification sequence, which is a key characteristic of the
PPC, can enhance the robustness of a TTC.

Although the protein modification sequence makes the PMS-
TTC model more robust than the TTC-only model (Fig. S2E), the
PMS-TTC model nonetheless is subject to the same fundamental
bounds on its amplitude as a function of p, and it therefore does
fail for protein degradation rates lower than about 0.05 h=!. If we
examine the simulation results in this regime in more detail, we
can see that the immediate cause of the failure is an accumulation
of molecules in the C state, leading the concentrations of KaiC
phosphoforms that repress gene expression to drop below the re-
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pression threshold permanently. The UPPC-TTC model differs
from the PMS-TTC model in that it does not permit proteins
to accumulate in one state, but instead includes an entire cycle
through which molecules can be recycled to the Cg state. With
such a cycle, coherent oscillations are in principle possible down
to u = 0; all that is required is a mechanism to synchronize the
cycles of the different KaiC hexamers. In the models in which
only a PPC is present, this synchronization is of course accom-
plished by the differential-affinity mechanism, but a moment’s re-
flection reveals that the TTC must also have a synchronizing
effect: When, once each oscillation period, a burst of proteins
is produced in the Cg state, the distribution of phosphoforms
not only shifts toward Cg, it also becomes narrower. Or, to phrase
the argument slightly differently, while all KaiC hexamers are re-
moved from the system at a rate that does not depend on the
modification state, meaning that the protein removal process
has no effect on the breadth of the phosphoform distribution,
they are replaced by a synchronized group of proteins all in
the same phosphorylation state, which means that the synthesis
process does tend to narrow the distribution. This necessarily acts
to synchronize the oscillation as a whole. With the UPPC-TTC
model, in which this is the only synchronizing influence present,
we can examine quantitatively how strong this effect is. To this
end, we need to examine the stability of the UPPC-TTC in the
regime 0.02 < p < 0.05 h~!. In this regime, the UPPC-TTC mod-
el is much more stable than the T7TC-only and the PMS-TTC mod-
els, showing that the PPC is the principal driver in this regime.
Moreover, the stability of the UPPC-TTC model in this regime
is higher than that in the limiting regime of low growth rate. This
difference is due to the synchronizing effect of the TTC on the
PPC. This idea is supported by the fact that the n, /, values for the
UPPC-TTC model and the PPC-TTC model begin to increase at
almost the same degradation rate p. Taken together, these obser-
vations strongly suggest that the increased robustness of the PPC-
TTC model in the crossover regime can be attributed in large
measure to the additional synchronizing effect of the TTC.

In summary, our analysis suggests that at low protein turnover
rates, where n{/""C xn{]F > n{[C, the PPC is the principal
driver of the circadian c{ock; at somewhat higher p, where
nPPCTTC 5 pPPC s pTIC) the PPC still drives the clock, but it
needs help from the TTC to create macroscopic oscillations
out of the phosphorylation cycles of the individual hexamers;
at even higher values of p, where n?/="77¢ > nlTC > n{7C, the
TTC is the principal pacemaker, but its stability is enhanced
by the protein modification sequence of the PPC; and at the high-
est turnover rates, where n{; "7 ~n{ [ > n{7f the TTC is the
sole driver of the clock.

S3. PPC-TTC Model: Rhythms of kaiBC Expression when kaiA Is Over-
expressed. Kitayama et al. have shown that kaiBC expression o0s-
cillates with a circadian period in the presence of an excess of
KaiA, although it is not clear whether these oscillations are sus-
tained or damped (17). Our PPC-TTC model of the main text,
which is described by S1-S5 and S12-S14 above, generates oscil-
lations in kaiBC expression with a period of 24 h when kaiA is
overexpressed threefold, as shown in Fig. S44. This figure shows
that the phosphorylation level also exhibits weak oscillations,
which are not seen experimentally; this is due to the fact that
our PPC model neglects phosphorylation of inactive KaiC, which
is known to occur at high KaiA concentrations (8). To rectify this,
we have extended our model to include KaiA-stimulated phos-
phorylation of inactive KaiC, using the same reactions as those
used for active KaiC; specifically, we add to the reactions of
S1-S5 and S12-S14 the following reactions:

- KM -k ~
ABC +AZ ABGASABG,, +A,

[S30]
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for each phosphorylation level i; the rate constants equal those of
the corresponding reactions of active KaiC, except that the KaiA-
KaiC association rate is reduced by a factor of 100. All other rate
constants are as in Table S1. We also include autoactivation of
RpaA via

R3R, [S31]
with kT = 25 h~!. Autoactivation of RpaA becomes necessary
because the concentrations of the KaiC phosphoforms that acti-
vate RpaA become very low when KaiA is in excess. (The freshly
injected KaiC hexamers do not make it to the bottom of the phos-
phorylation cycle because of the excess KaiA.) This model not
only matches the in vitro observation that when an excess of KaiA
is added during the dephosphorylation phase, the phosphoryla-
tion level of KaiC rises immediately (8), but also reproduces
the in vivo oscillations of the total amount of KaiC when KaiA
is overexpressed (17), as shown in Fig. S4B.

S4. Robustness of the PPC-TTC Model to Parameter Variations. In this
section, we discuss how robust our PPC-TTC model is to varia-
tions in a number of parameters. In the next subsection we show
that the results are insensitive to details of the pathway that cou-
ples the PPC with the TTC. In subsection S4.2 we show that bursts
in gene expression hardly reduce the stability of the clock. In the
next two subsections we show that the stability of the clock is
highly insensititive to the value of the Hill coefficient of gene re-
pression as long as it is larger than one, and quite insensitive to
the variance in the delay of protein synthesis. In essence, combin-
ing a PPC with a TTC enhances the robustness of the clock to
variations in the parameters of the TTC, such as the magnitude
of bursts in gene expression, the Hill coefficient, and the width of
the delay distribution. Finally, in subsection S4.5 we study a mod-
el in which cell growth, cell division, and binomial partitioning of
proteins upon cell division are modeled explicitly and show that,
due to the stabilizing effect of the PPC, its behavior is similar to
the model of the main text. In the next section, section S5, we
discuss a different PPC-TTC model, namely one that is based
upon the model of the PPC developed by Rust et al. (8).

$4.1. Results are independent of details of the output pathway. In this
section, we show that the precise choice of the KaiC phospho-
forms that activate and repress RpaA is not critically important
for the existence of oscillations. Table S2 shows the different
models that we have considered, and Fig. S5 A-C shows their
time traces. It is seen that the time traces are very similar to those
of the PPC-TTC model of the main text, which is model a in
Table S2. The most significant difference can be observed for
the time trace of RpaA in models d and e. In these models,
not only C,A activates RpaA, but also C,, thus KaiC that is
not bound to KaiA. The concentration of C.A reaches zero dur-
ing the dephosphorylation phase, and, as a result, the concentra-
tion of RpaA becomes zero during this phase in models a—c.
However, the concentration of C, does not reach zero during
the dephosphorylation phase, and consequently, there is some re-
sidual activation of RpaA during this phase in models d and e.
Nevertheless, RpaA activation during the dephosphorylation
phase in these models does not manifest itself in the time traces
of KaiC, because the concentration of active RpaA is still below
the threshold for kaiBC expression. The oscillations of the phos-
phorylation level and total KaiC concentration are thus fairly
similar in all models, although models d and e are less robust.

$4.2. The effect of bursts. In the PPC-TTC model of the main text,
described in section S1 of this SI 7ext, we have concatenated tran-
scription and translation into one gene-expression step. More-
over, we have ignored promoter-state fluctuations. Allowing

5 of 14


http://www.pnas.org/cgi/doi/10.1073/pnas.1007613107

Bane

/

I\

=y

for the explicit formation and translation of mRNA (11), as well
as for slow promoter-state fluctuations (12, 13), could lead to
bursts in protein synthesis, which are expected to lower the ro-
bustness of the TTC. This could potentially lower the stability
of the clock. To address this, we have performed simulations
of a model in which KaiB and KaiC are produced in bursts.
We assume that 5 KaiC hexamers and 15 KaiB dimers are formed
in each gene-expression reaction (rather than the 1 and 3 of S13);
this corresponds to typical burst sizes observed experimentally
(11) in Escherichia coli. Formula S13 is thus replaced by

AlRI /(K £ [R*)
@ =——=— 5Cs + 15B.

Tto,

[S32]

Fig. S5D shows the resulting phase diagram. It is similar to Fig. 4
of the main text, which shows the results of the PPC-TTC model
without bursts in gene expression. The robustness of the model
with bursts is lower, but not very much so: n, ;, = 150 for the mod-
el with bursts versus n,,, = 195 for the model without bursts
shown in the main text (x = 0.03 h™! and V' = 1 pm? in both
cases). We believe that this relatively small reduction in the
clock’s stability is due to the stabilizing effect of the PPC.

54.3. Robustness to varying the Hill coefficient. Fig. SSE shows for
the full PPC-TTC model the correlation number of cycles,
nys, as a function of the degradation rate p for V' =1 pm?,
for four different values of the Hill coefficient of gene repression
(see 7 of the main text and S13). It is seen that the stability of the
clock is highly insensitive to the value of the Hill coefficient, ex-
cept when the degradation rate is high: For g > 0.1 h™!, the os-
cillator becomes unstable when the Hill coefficient drops from 2
to 1. For lower values of p the PPC plays an important role in
driving and stabilizing the clock; in fact, for 4 < 0.02 h™! the
PPC is the sole driver, which means that in this regime the clock
is not sensitive at all to variations in the parameters of the TTC
(as long as the average concentrations and copy numbers remain
constant). For 4 > 0.1 h™!, however, the TTC becomes the prin-
cipal driver of the clock, which means that now the system does
become sensitive to variations in the parameters of the TTC. It is
known that oscillators built on only negative transcriptional feed-
back require a Hill coefficient that is larger than one to become
stable (14). Our results are in line with these observations.

S$4.4. Robustness to the variance in the delay of protein synthesis.
Fig. SSF shows for the full PPC-TTC model the correlation num-
ber of cycles n,, as a function of the degradation rate p and the
width of the distribution of the delay in protein synthesis, o, (see
S13). It is seen that because of the stabilizing effect of the PPC
the clock is essentially insensitive to variations in ¢,. Only for
u > 0.1 h™!, when the TTC becomes the principal pacemaker
of the clock, does n; /, decrease when o, becomes larger than 3 h.

54.5. PPC-TTC model with volume growth and binomial partitioning.
Living cells constantly grow and divide, and proteins thus have
to be synthesized to balance dilution. In the main text, we argued
that the principal effect of dilution is to introduce an effective
degradation rate set by the cell doubling time. Here, we show that
this is indeed the case: We study a model in which growth, cell
division, and binomial partitioning of the proteins upon cell divi-
sion are modeled explicitly (15) and show that its qualitative be-
havior is similar to the model of the main text, in which the
volume is held constant and protein degradation occurs at a rate
that is constant in time.

The model we consider here is the PPC-TTC model presented
in the main text, but with the degradation reaction, 9, replaced by
a scheme in which the bacterial volume V' grows exponentially as
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V() = Vo™i, [S33]
where T4 denotes the doubling time after which the volume
reaches twice its minimum V, and cell division is triggered. Divi-
sion includes dividing the volume by two, partitioning the pro-
teins binomially (15), and deleting events on the queue of the
delay associated with the KaiC production reaction with a prob-
ability of 0.5 for each daughter cell. To compare the results of this
model with those from the main text, we take Ty = In2/u, where
p is the protein degradation rate of the model in the main text; if
proteins were to decay only by dilution in a cell with a doubling
time T4, then p would be the effective protein degradation rate; if
proteins are also degraded actively, then y =1In2/T, is a lower
bound on the actual degradation rate.

Fig. S5 G and H show time traces of the total KaiC concen-
tration and the KaiC phosphorylation level for this refined model.
It is seen that the oscillations of the total KaiC concentration are
more noisy than those in the model in which the Kai proteins are
degraded with rates that are constant in time (Fig. S1C). Clearly,
binomial partitioning is a major source of noise, with the random
removal of items from the queue associated with the KaiC synth-
esis reaction being the largest source of noise. Nonetheless, the
oscillations of the KaiC phosphorylation level are much less af-
fected, with the correlation number of cycles being n; , = 88. In-
deed, while this model combining a TTC with a PPC is fairly
robust, an oscillator with exponential volume growth and bino-
mial partitioning built upon a TTC alone, is not stable. This sup-
ports our statement in the main text that a PPC can strongly
enhance the robustness of a TTC. In future work, we will system-
atically study the effect of bursts in gene expression and binomial
partitioning.

S5. An Alternative PPC-in Vitro Model: The Rust Model. In the main
text, we argue that the synergy between a transcription—transla-
tion cycle and a protein modification cycle is a generic feature of
clocks that exploit both cycles. To support this claim, we have stu-
died a model in which our model of the PPC is replaced by that of
Rust et al. (8). This model describes a phosphorylation cycle at
the level of KaiC monomers, rather than KaiC hexamers as in our
model. In the Rust model, each KaiC monomer cycles between an
unphosphorylated state “U,” a singly phosphorylated state “T,”
where KaiC is phosphorylated at threonine 432, a doubly phos-
phorylated state “ST,” where KaiC is phosphorylated at threonine
432 and serine 431, and a singly phosphorylated state “S,” where
KaiC is phosphorylated at serine 431 (8, 16). This cycle is de-
scribed by the reactions

UeT, TeoST, SToS, SoU [S34]
with reaction rates given by equation 5 of the supplementary ma-
terial of Rust et al. (8). These rates depend on the concentration
of free KaiA, which is sequestered by KaiC in the S state. We
model KaiA sequestration explicitly:

S+A«AS, AS+AA,S. [S35]

We picture sequestration to be fast and we picked a forward rate
of 1.72 - 102 1/Mh and a backward rate of h~! for both equa-
tions above. Dephosphorylation of KaiC in the S state might oc-
cur even when KaiA is bound, in which case the KaiA protein is
released from the complex. We define the output signal as

[T] + [ST] + [S] + [AS] + [A,S]
[U] + [T] + [ST] + [S] + [AS] + [A,S]”

p(t) = [S36]

which resembles the phosphorylation ratio in the case where we
cannot distinguish between singly and doubly phosphorylated
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KaiC. The denominator in the above expression is also the total
KaiC monomer concentration. We use the same concentrations
as Rust et al., [KaiA] = 1.3 pM (active KaiA monomers) and
[KaiC] = 3.4 pM (KaiC monomers), and simulate this model
using the Gillespie algorithm (2).

When we simulate this model for a volume V' = 1 pm?, we find
a period of L = 21.4 h and a decay constant for the autocorrela-
tion function of z; = 128 h. The corresponding correlation num-
ber of cycles is n;/, = 30, which is lower than that observed
experimentally, n,,, = 166 £ 100 (5), and lower than that of
the PPC developed by us (1), for which n,,, ~200 (see Fig. 2
of the main text). This is because the model of Rust et al. features
a phosphorylation cycle at the level of KaiC monomers rather
than KaiC hexamers as in our model. The concomitant reduction
in the total number of phosphorylation steps in the cycle reduces
the robustness in the model of Rust et al. (8).

§5.1. An alternative PPC-in vivo model: The Rust model with constant
protein synthesis and degradation. To study the behavior of the
model of Rust et al. (8) under conditions in which cells grow
and divide, we have to include protein degradation and make
up for this by protein synthesis. As in the main text, when we vary
the protein degradation rates, we adjust the protein synthesis
rates such that the average protein concentrations are unchanged
and similar to those used in the in vitro experiments (3, 4).

Fig. S6A4 shows the results for this model. They are qualita-
tively the same as those of Fig. 3 of the main text: The robustness
decreases with decreasing volume and increasing degradation
rate. Hence, not only in our model but also in that of Rust et
al. (8), protein degradation can cause the oscillations to disap-
pear. This supports our claim that a protein modification oscil-
lator cannot function on its own when the cell’s growth rate is
high enough.

$5.2. An alternative PPC-TTC model: The Rust model with a TTC. We
will now show that a TTC can resurrect the PPC of Rust et al.
(8). We model the TTC as

Be[RI*/ (K +[R]*) B B =
— ST, DA, @—R, [S37]
R+TER4T, R+ASSRHAS, xef{012), [S38]
ARRUSASTSTS@, [S39]

where the first line describes the production of proteins to coun-
teract their degradation and the second line summarizes the
RpaA signaling pathway, where KaiC that is phosphorylated at
the T site activates RpaA and KaiC that is phosphorylated at
the S site represses RpaA activation. The parameters in this
model are g, =1.16 uM/h, K =0.058 pM, g, = 0.13 pM/h,
B, =0.058 uM/h, k, =k; = 1.71 - 10° 1/Mh, u = 0.1 h™!, and
the delay is 7 = (3 £ 0.3) h. Fig. S6B shows the results of this
model at a volume V' = 1 ym®. Analyzing the autocorrelation
function, we find a period L = 22.5 h and a correlation decay
time of 7 = 1,832 h leading to a correlation number of cycles
of n/, = 402. Clearly, a TTC can also resurrect the PPC of Rust
et al. (8), supporting our claim that the qualitative results of the
main text should apply to any biological system that exploits both
a protein modification cycle and a protein synthesis cycle to gen-
erate circadian rhythms.

S6. PPC-TTC Model: Period as a Function of Cell Volume and Protein
Degradation Rate. Fig. S7 shows the period of the oscillation of
the KaiC phosphorylation level in the full PPC-TTC model of
the main text (1-9) as a function of the cell volume and the pro-
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tein degradation rate. As before, the protein synthesis rates are
adjusted such that the average protein concentrations are con-
stant and similar to those used in the in vitro experiments (3,
4). It is seen that the dependence of the oscillation period on
the cell volume and protein degradation rate is rather weak. This
is because the rhythm of the clock is dictated by the PPC, which is
insensitive to the absolute rates of protein synthesis and decay.
We note here that the period of the oscillation, as well as its am-
plitude, would change if the ratio of the concentrations of the Kai
proteins were changed. Although the dependence of both the am-
plitude and the period of the in vitro PPC on the ratio of the con-
centrations of the Kai proteins has been characterized in detail
(3, 4), the dependence of the in vivo oscillator on their ratio has
not been studied experimentally.

S7. Measuring the Robustness. In this section, we discuss how we
calculate the correlation number of cycles 7/, for our various
models. We begin with some theoretical background: Consider
a phase variable ¢(f) that increases with an average frequency
 and is also subject to noise. Its time evolution can be written
as

do(t)

— =t E(r) with (E()E(T)) = 628(t—1'). [S40]

Here &(¢) is Gaussian white noise of strength 62, and (°) indicates
averaging over different realizations of the noise. Integrating the
equation with the initial condition ¢(0) = 0 yields

@(t) = ot + W (1), [S41]

where 7/(t) is a Gaussian random variable with mean zero and
variance

((p() - w1)?) = o%1. [S42]
From this, we can construct an oscillating signal
x(t) =xo+a - sing(t) [S43]

with mean x, and amplitude a. The autocorrelation function of 44
is then

(ox(t)ax(t +1'))

A= a0

= el - cos(at'), [S44]

where 8x(¢) =x(t) —x, is the deviation of the signal from its aver-
age value x,. We thus expect that the correlation function is a
sinusoid modulated by a single exponential decay.

$7.1. Incorporating amplitude noise. Because the phase is the only
“soft” direction of the dynamical system, one generically expects
any noisy oscillator at long times to act similarly to the simple
model of a phase oscillator just described. Nonetheless, a more
realistic description would also include a fluctuating amplitude.
We incorporate this behavior phenomenologically by including a
time dependence in the amplitude:

a—a(t) =ag + &) () = x(t) =X + [ao + &) ()] - sinfwr + 7 (7)),
[S45]

where ¢, () denotes a Gaussian white noise process of strength
62 and therefore neglects correlations in the amplitude fluctua-
tions. We can again calculate the correlation function analytically.
By definition, we have C(0) = 1 for # = 0, but because a(f) now
contains a white noise term, C(¢) jumps discontinuously to a smal-
ler value for any ¢ > 0. One finds
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Considering the more natural case of a finite correlation time in
the amplitude noise, the picture will only change slightly: Instead
of jumping from 1 to v at ¥ = 0, the envelope will undergo a
smooth transition involving two time scales: a short time scale
of the order of the correlation time of the amplitude fluctuations
and a much longer time scale associated with the phase diffusion.
In practice, we found that including amplitude fluctuations did
not significantly change our estimate for n,,.

§7.2. Computing the correlation number of cycles. To calculate the
correlation number of cycles n, ,, we begin by using our simula-
tion results to estimate the correlation function C(¢). After an
initial equilibration phase of 500 h, we do simulations for
50,000 h. From these, we extract N = 500,000 values x; for the
time trace x() at equidistant points in time, which we can then
use to calculate the correlation function at times separated by an
interval At = 0.1 h:

) ) 1 N—i
X =x(to+i-Ar),  C@-Ar)= Wzdxjéxjﬂ-
j=0
[S47]

Here x(¢) is either the phosphorylation level p(¢) or the total con-
centration of KaiC hexamers. p(¢) is used for all cases except for
models where there is only a TTC and a phosphorylation level
cannot be defined.

Once C(¢) has been computed, it can be fitted to the form S46
to determine the free parameters v, 6%, and w. In practice we
perform the fit using gnuplot, which in turn implements a
Marquardt-Levenberg algorithm.

Finally, it remains to translate the fitted parameter values into
an estimate of n,,. Eguchi et al. define n,/, as the number of
cycles after which the standard deviation of the phase is = (7).
Thus, we have

2
T
\/<[(/’(L i) o) =x S =

[S48]

where L = 2z /w denotes the period and we have used Eq. S42 to
solve the left equation for n, ,. The value of n;  is then obtained
by substituting the fitted values for 6> and . Using this method
we can reliably measure 7/, from 1 to 1,000. The upper bound is
given by the fact that we compute the correlation function C(z)
only up to ¢t = 3,000 h and therefore correlation functions that
decay on much longer time scales are difficult to detect.
Concerning the error bar on the computed n, ,, it should be
noted that there are two distinct sources of error: one due to sta-
tistical fluctuations, and one due to systematic errors, e.g., that
the correlation function cannot be fitted to Eq. S46. To estimate
the former, for certain parameter values we repeated the proce-
dure described above 32 times, i.e., we performed 32 independent
simulations and computed the mean and the standard deviation
of the set of 32 independently estimated values for n; ,. For V' =
1 pm? and p = 0.025 h™', this gave n; ), = 168 + 31 (mean =+ SD)
for the combined PPC-TTC model. To address the second type of
error, we also computed 7, using two different methods. One is
the method of Eguchi et al., which is based on examining the
times at which the oscillation reaches its maximum in each cycle
and thus does not assume any particular form like Eq. S43 for the
oscillating signal (7). The other method involves computing the
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width of the dominant peak in the power spectrum of the time
traces. The three methods gave similar error bars and values
for n;/, that agree within the error bar. Although all methods
gave the same result, we found the method based on the correla-
tion function (Eq. S46) more robust for noisy oscillations at low
cell volumes.

Appendix: Crossing-Time Distribution in TTC-Only and PMS-TTC Mod-
els. We imagine that at t =0 we have N repressor molecules,
which can only decay; they can either decay via degradation only,
as in the TTC-only model, or decay via a combination of degra-
dation and a sequence of modification steps, as in the PMS-TTC
model. The aim is now to compute the distribution of times the
system crosses the repression threshold at a later time ¢. We ima-
gine that the repression threshold is crossed when the number of
molecules M (¢) at time ¢ drops below M., thus when M goes from
M, to M, — 1. This yields the following expression for the (nor-
malized) distribution of crossing times:

N!

Pelt) = Meq(t) 3y

SEOM(1 = S(e))N Mo, [S49]

where S(t) is the survival probability, which is the probability that
amolecule has not decayed at later time ¢, and g(f) = —dS(¢) /ot is
the probability per unit amount of time that a molecule, given
that it is active at t = 0, decays at a later time .

The task is now to compute S(¢). In the TTC-only model the
molecules can decay only via degradation, and the survival prob-
ability is simply S(r) = e™#, where p is the degradation rate. For
the PMS-TTC model, we assume that the molecules start in the
repressing Cgq state. They can then go_through a sequence of ir-
reversible protein modification steps Cg - Cs — --- = C; = C,,
and then switch to the nonrepressing C, state; moreover, in each
state they can also decay via degradation. Each modification re-
action occurs at a rate 4 = kg, degradation proceeds with a rate
p, and the switch from C, to C, occurs with rate b,. A molecule is
still active as a repressor when it is in one of the Cq4,Cs,---,C;,C,
states, meaning that the survival probability is given by

[S50]

where P;(t) is the probability that a molecule is in state C; at time
t. For i =1,2,...,5,6, it is given by

(Ar)
(6—i)!

Pi(t) = e~(Hur, [S51]

Indeed, this equation holds for all the repressing states except the
last one, because in this state C, the molecule can become non-
repressing not only via degradation, but also by switching to the
nonrepressing state C, state. The probability of being in the C, at
time ¢ is

t
Py(t) =1 / dr'P,(t')e~ Gotui=t), [S52]
0

28 Lo :
:ge—wbwt / dr't” e U=bot’, [S53]
: 0

which can be solved analytically by iteratively integrating by parts.
Clearly, if by = A the above expression reduces to Eq. S51 for
i=0. It is also clear that if by — oo, Py(f) becomes zero and
S() = X5, Pi(¢). Finally, if 2 =0, this model reduces to the
TTC-only model.
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Fig. S1. Time traces of the different models studied in the main text. (A) PPC-in vitro model, a PPC model in which the concentration of each Kai protein is
constant. Time traces of the phosphorylation level p(t), defined as the fraction of monomers that is phosphorylated, for two different volumes. The correlation
number of cycles, ny,, as a function of volume is shown in Fig. 2 of the main text. (B) PPC-in vivo model, a PPC model in which the Kai proteins are continually
being produced and degraded. Time traces of the phosphorylation level p(t) for three different degradation rates . The correlation number of cycles, n,, asa
function of volume and the degradation rate is shown in Fig. 3 of the main text. (C) PPC-TTC model, which combines a PPC with a TTC. Time traces of the
phosphorylation level p(t) and total KaiC concentration [C];(t) for V =1 pm3 and x = 0.03 h~" (solid lines) and x = 0.1 h~! (dashed lines). The correlation
number of cycles, n,;, as a function of volume and the degradation rate is shown in Fig. 4 of the main text. Time traces of RpaA are shown in Fig. S5C.
(D) TTC-only model. Time traces of the concentrations of active RpaA and KaiC (V = 1 um3 and x = 0.15 h="). The (average) concentrations of KaiA, KaiB,
and KaiC are those used in the in vitro experiments (3, 4): [A]; = 0.58 uM; [B]; = 1.75 pM; [C]; = 0.58 pM. For other parameter values, see Table S1.
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esis and decay of the TTC. (C and D) The importance of a protein modification sequence in the crossover regime of intermediate protein degradation rates. (C)
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of the PMS-TTC model exhibits large amplitude oscillations due to the pronounced oscillations of the concentrations of the individual KaiC phosphoforms that
repress kaiC, [C;](t); the latter are the result of the protein modification sequence. (D) The distributions of times T (normalized by the average (T)) the system
crosses the repression threshold at M, = 500 molecules, for different values of the degradation rate , given that att = 0 N = 1,000 repressor molecules are put
into the system. The repressors can either decay via first-order degradation only, as in the TTC-only model, or decay via a combination of degradation and a
sequence of protein modification steps, as in the PMS-TTC model. The two distributions for the TTC-only model are identical, because protein decay is governed
by a single Poisson step. The important point to note is that the distribution of the PMS-TTC model is significantly narrower than that of the TTC-only model,
especially when p is low. This is because of the sequence of Poissonian modification steps.
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and autoactivation of RpaA (S31). Note that the total amount of KaiC exhibits pronounced, albeit somewhat arrhythmic, oscillations, whereas the phosphor-
ylation level is high and fairly constant. For both panels, the protein degradation rate is x = 0.1 h~" and the volume is V = 2.97 pm?3; kaiA is overexpressed by a
factor of 3.
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Fig. S5. Robustness of the PPC-TTC model to parameter variations. (A-C) Time traces of the stochastic simulations of models with different output pathways
from the PPC to the TTC (see Table S2). The phosphorylation ratio (A), the total concentration of KaiC (B), and the concentration of RpaA (C) are fairly similar for
all models studied. (D) The correlation number of cycles n,, as a function of the degradation rate p and the volume V for a PPC-TTC model that exhibits bursts
in gene expression; upon a gene-expression event, 5 KaiC molecules are produced and 15 KaiB dimers. (E) n, as a function of p for V = 1 pm?3, for different
values of the Hill coefficient n of gene repression (see Eq. $13). (F) n, , as a function of u and the width of the distribution of the delay in protein synthesis, o,
for V = 1 ym3 (see $13). (G and H) Time traces of the PPC-TTC model modified to take into account cell division and binomial partitioning. Here, the cell divides
when the volume reaches V,,, = 1.38 um?3, which occurs every 20 h, as indicated by the arrows above the graph; a cell doubling time of 20 h corresponds to an
effective degradation rate of 4 = 0.035 1/h. The average volume is V = 1 um3. (G) Time traces of the phosphorylation level and the total KaiC concentration.
(H) Time traces of the total KaiC concentration, the KaiC copy number, and the volume. Note that the time trace of the total KaiC concentration is hardly

. affected when cell division happens to occur during the degradation phase, whereas it has a relatively large effect when cell division happens to occur during
the KaiC production phase; this is because the removal of items from the queue associated with the KaiC synthesis reaction effectively lowers the synthesis rate;
indeed this explains the change in slope in the KaiC concentration during the production phase.
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Fig. S6. Robustness of a PPC-in vivo (A) and a PPC-TTC model (B), where the PPC is based on the model of Rust et al. (8). (A) Contour plot of n, , of the PPC
model of Rust et al. but with production and degradation of Kai proteins with rates that are constant in time, as a function of the degradation rate p and the
volume V. (B) Time trace of the Rust model (8) extended to include a TTC for V = 1 um?3. Both the total concentration of KaiC and the phosphorylation level of
KaiC show stable oscillations. The messenger protein RpaA concentration is shown tenfold and crosses the threshold of K = 0.174 uM (~100 molecules) reliably.
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Fig. S7. Period of the oscillation in the KaiC phosphorylation level in the full PPC-TTC model of the main text as a function of cell volume and protein de-
gradation rate. When the degradation rate is varied, the protein synthesis rates are adjusted such that the average protein concentrations are constant and
similar to those used in the in vitro experiments (3, 4). The period is essentially independent of the volume and exhibits only a weak dependence on the
degradation rate p.
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Bane

Table S1. The parameters used for the full models of the main text and the

minimal models of section S2

Constant Value Constant Value
PPC (1-5 and S1-S5): -
Kos, /~<ps 0.025 1/h Kdps: kaps 100 1/h
k 1.0 1/h
pf

fi {10-5,10-%,10-4,103,10-2,10~",10} 1/h b; 100 1/h
kff 1.72-10" 1/M:h k{'\b {1,3,9,27,81,243,729} 1/h
ket 1.72 - 10° x {0.001,0.1,1,1,1,1,1} 1/M-h kBe {10,1,1,1,1,1,1} 1/h
P 1.72 - 10% x {10-2,103,10%,103,102,10-3,10~%} 1/M-h
/}f*b {10,1,1,1,1,1,10} 1/h

n Deterministic PPC (Egs. $8-S11):

“ 7t 2.97 - 10" x {0.01,1,1,1,1,1,1} 1/M2:h xBb 100 x {10,1,1,1,1,1,1} 1/h
K; 3.37-10% x {0,100,1,1,100, 00,00} M2
RpaA activation (6 and $12):
ka 8.6 - 10° 1/M-h k; 4.3-10° 1/M-h
TTC (7-9 and S13 and S14):
K 0.058 uM
Pa w1 x0.58 uyM Pe w1 %x0.29 uM
T 5h o, 0.5h
RpaA activation TTC-only (11 and S16):
kS 11/M-h Kt 100 1/M-h
Minimal PPC (S17-520):
Kaps: Kaps 0.375 1/h kot 1.0 1/h
fe 100 1/h bg 90 1/h
kﬁf 1.72-10" 1/M:h k‘f‘b {1,3,9,27,81,243,729} 1/h
f(l{*f 1.72-10% x {10’2,103,103,103,102,10’3,10’4} 1/M-h
khe {105,103,10-2,103,103,10-3,10} 1/h
Minimal TTC (521-523):
K 0.29 pM Pa 11 x0.58 uM
T 8h c 0.8 h

3

The degradation rate p is a free parameter that we vary to explore different growth conditions. The numbers between the curly brackets
correspond to the different KaiC phosphorylation states i in ascending order; values of « for K; indicate that a particular binding reaction is
not allowed. The production rate g, is determined from an optimization for the mean protein concentration ([C]) = 0.58 uM.

Table S2. Models with different output pathways from the PPC to the TTC

Model Activator Repressor Threshold K Ny
a AG,, AGs, AC,, ACs A,B,Cy,... A B, Cs 0.058 pM 195
b AGCs, AC, AB,Gy, .. A B.Cs 0.058 uM 118
C AG;, AC, A/B,G;, .. A B«Ca 0.058 pM 180
d C3, AC3,C4, AC4 AyBXG3, A B g 0.029 },IM 39
e Cy. AC,, x € {2,3,4,5} A,B,Gs, .. A B,Cs 0.029 uM 48

These models differ in the choice of phosphoforms that activate and repress RpaA, respectively. The maximal production rate . has been modified such
that the average concentration of KaiC is 0.58 uM, as used in the in vitro experiments (3, 4). In each case, ny, is given for a volume V = 1 ym? and a decay
rate u = 0.03 h~'. Model a is the PPC-TTC model from the main text. To make the simulations tractable, we neglected repression of RpaA activation by KaiC
phosphoforms that occur in negligible concentrations; consequently, the full list of phosphoforms that has the potential to repress RpaA is
{B,Cs, B,Cs,AB,Cs,A;B,Cs, B,Cs AB>Csq A,B>Ca B,C3, AB,Cs, A,B,Cs, B,Ch AB,Cp, A,B,C, }. Other parameters are given in Table S1
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