Scanning force microscopy on monomolecular films of eicosylperfluorotetradecane, F(CF2)14(CH2)20H, on mica, silicon oxide, or water revealed spontaneous organization to well-defined nanoscopic ribbon and spiral or toroidal superstructures. Whether ribbons or nanospirals were formed depended on the solvent from which the molecular monofilm was cast. Ribbons were observed when a hydrocarbon or a perfluorocarbon solvent was used, e.g., decalin or perfluorodecalin. When the compound, however, was deposited from nonselective hexafluoroxylene, the molecules assembled into spirals of defined size. The spirals/toroids transformed to ribbons when exposed either to decalin or perfluorodecalin vapor, and the ribbons transformed to toroids when exposed to hexafluoroxylene vapor. These changes could be observed in situ. Scanning force microscopy yielded an identical height and width for the bands forming the spirals and for the parallel flat ribbons. X-ray reflectivity yielded a height of 3.61 ± 0.05 nm, again identical for both morphologies. Yet, the length of the extended F(CF2)14(CH2)20H molecule, i.e., 4.65 nm, exceeds the layer thickness obtained from X-ray reflectometry. It is, however, consistent with an arrangement where the fluorinated chains are oriented normal to the surface layer and where the alkyl segments are tilted with a 122 º angle between the two segments. Within the plane defined by the tilt, this angle allows a dense packing of the alkyl segments compensating for the larger cross-section of the fluorocarbon segment. The tilt plane defines an "easy" direction along which the monolayer structure can preserve order. In the plane perpendicular to this axis, long-range ordered dense packing of the alkyl chains is not possible. Incommensurable packing can in principle explain the finite and regular width of the ribbons and the stepwise turn in the spirals.

Mourran, A., Tartsch, B., Gallyamov, M., Magonov, S., Lambreva, D. M., Ostrovskii, B. I., … Möller, M. (2005). Self-Assembly of the perfluoroalkyl-alkane F14H20 in ultrathin films. Langmuir, 21, 2308–2316. doi:10.1021/la048069y