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Superemitters in hybrid photonic systems: A simple lumping rule for the local density of optical
states and its breakdown at the unitary limit
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We theoretically investigate how the enhancement of the radiative decay rate of a spontaneous emitter provided
by coupling to an optical antenna is modified when this “superemitter” is introduced into a complex photonic
environment that provides an enhanced local density of optical states (LDOS) itself, such as a microcavity or
stratified medium. We show that photonic environments with increased LDOS further boost the performance
of antennas that scatter weakly, for which a simple multiplicative LDOS lumping rule holds. In contrast,
enhancements provided by antennas close to the unitary limit, i.e., close to the limit of maximally possible
scattering strength, are strongly reduced by an enhanced LDOS of the environment. Thus, we identify multiple
scattering in hybrid photonic systems as a powerful mechanism for LDOS engineering.
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I. INTRODUCTION

Optics encompasses the most fascinating part of the electro-
magnetic spectrum, due to its energetic overlap with electronic
transitions in matter. Nanophotonics aims at controlling such
transitions by molding light at subwavelength scales. Purcell
first predicted that resonators modify the radiative lifetime of
spontaneous emitters.1 Modern literature discusses the Purcell
effect in terms of the local density of optical states (LDOS),
a fundamental quantity governing spontaneous emission,
thermal radiation, and vacuum forces.2 Two tools have
emerged to shape the LDOS: On the one hand, interfaces,3

photonic crystals,4 and dielectric microcavities5 modulate the
LDOS on length scales of order λ/2 via interference. On the
other hand, optical antennas6,7 employ intrinsic plasmonic
resonances to enhance the LDOS on λ/20 length scales.
Optical antennas are so small compared to the wavelength λ

that a source-antenna ensemble essentially radiates as a dipole.
The term “superemitter”8 captures this similarity to a bare
molecule, but with much higher radiative rate. The availability
of photonic building blocks on such different length scales
raises the exciting idea of integrating deep-subwavelength
superemitters in much larger dielectric structures to obtain a
combined advantage, for example by placing a nano-antenna
inside a microresonator9 or onto a planar dielectric antenna.10

These developments trigger the question of how the LDOS of
such hybrid systems emerges from that of the separate entities.
Nano-optic devices can be interpreted as lumped optical
elements,11,12 in analogy to lumped electrical circuit elements.
Since in this analogy the LDOS acts as an impedance for
spontaneous emitters, some circuit rule might be hoped
for, which lumps the LDOS provided by each photonic
building block individually to yield the LDOS of the hybrid
architecture.

This paper investigates how the decay rate enhancement
provided by a superemitter varies when it is placed within
a larger photonic system, i.e., how the LDOS lumps. We
illustrate our theory, which is valid for any background
LDOS, by two archetypical examples: First, we investigate
a superemitter weakly coupled to high-Q resonances. Second,
we consider a superemitter in front of a perfect mirror
without any resonances. Our analytic, yet fully electrodynamic

model yields a simple multiplicative LDOS lumping rule for
moderate antenna factors. For strongly scattering antennas,
i.e., antennas close to the unitary limit, this simple lumping rule
breaks down and the total enhancement becomes proportional
to the inverse LDOS of the background system. This insight
paves the way for engineering the LDOS by exploiting multiple
scattering in hybrid photonic systems.

II. THE SUPEREMITTER CONCEPT

The radiative decay rate enhancement of a quantum
emitter can be calculated via the power required to sustain
a monochromatic classical point current j = ṗ0 that loses
energy by radiation.2 This power equals the cycle averaged
work per unit time done by the source’s electric field on its
own dipole moment p0. The electric field generated at position
r due to a source p0 at r0 is calculated via the electric Green
function G(r,r0) of the respective system. This yields the
power required to drive the source P = 1

2ω pT
0 ImG(r0,r0) p0.

With LDOS we refer to the (scalar) projection of ImG on a
unit vector along p0, i.e., to the decay rate modification of
a molecular dipole p0 at r0. Every strategy to boost decay
rates via a photonic structure, be it large and dielectric, or
a nano-antenna, represents a modification of ImG, which
comprises all losses due to the environment. These losses
include radiation into the continuum, generation of polaritons,
e.g., surface or particle plasmons, as well as quenching due
to Ohmic losses. Rather than considering its contribution to
ImG, the small size and dipolar nature of a nano-antenna,
however, suggest to interpret its rate enhancement as an
enhancement of the dipole moment p0.8 The simplest optical
antenna is just a particle with polarizability tensor α(ω).6

At distance d in the near field of an emitter, the particle
acquires a large dipole moment ∝ α/d3. The total dipole
moment of the emitter-particle assembly p = [1 + α/d3] p0
can exceed by far the source’s dipole moment p0, rationalizing
the term “superemitter”. If d � λ, the power radiated by the
superemitter8,10

P = 1
2ω| p0|2 LDOSB(r0) × A (1)

exceeds that of the bare source by the antenna factor A =
|1 + α/d3|2 ≈ |α|2/d6.13 The rate enhancement provided by
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the embedding background is described by LDOSB. Mie
calculations show that A accurately describes antenna particles
up to 60 nm in diameter in vacuum.14 This reasoning suggests
that a superemitter can simply replace a bare molecule as a
probe of larger photonic systems, since a simple product rule
lumps the enhancements provided by antenna and photonic
environment as A × LDOSB.

III. ANALYTIC POINT SCATTERING MODEL

We analyze the hypothesis of a simple lumping rule in an
analytic electrodynamic point scattering theory, which is exact
to all multiple scattering orders, with the sole assumption that
the scatterers that constitute the antenna are well approximated
as point dipoles. The N scatterers acquire dipole moments
p1, . . . , pN in proportion to their polarizabilities α1, . . . ,αN ,
and the electric fields E(r1), . . . ,E(rN ) at their locations rn

through15

pn = αn

[
Ein(rn) +

∑
m�=n

GB(rn,rm) · pm

]
. (2)

By construction, the antenna described by the αn is explicitly
separated from the background that it probes, which is quan-
tified by its Green function GB. For a consistent theory, three
facts need to be accounted for. First, the particle polarizability
directly depends on the background via12

α−1
n = α−1

n,0 − GB(rn,rn), (3)

where αn,0 is the electrostatic polarizability. Isotropic particles
can acquire anisotropy due to anisotropy in radiation damping
given by ImGB and resonance shift due to ReGB in complex
photonic systems.16 Second, the source in our model is a single
(unpolarizable) dipole p0 at r0 so Ein(rn) = GB(rn,r0) p0.
The description of a quantum emitter as a constant-current
source is valid as long as Fermi’s golden rule holds, i.e.,
far from the regime of strong coupling between source and
environment.17 Regarding the coupling strength between the
optical antenna and the background system we stress that
our formalism Eq. (2) holds both in the weak and in the
strong coupling regimes since it contains full electrodynamic
interactions to all scattering orders. However, we note that
this work remains entirely in the realm of weak coupling.
Third, the total decay rate of the source is found via the
cycle-averaged work done by the total electric field on the
source p0.2 Therefore the LDOS equals

pT
0 · ImGB(r0,r0) · p0 + Im

∑
n�1

pT
0 · GB(r0,rn) · pn. (4)

The first term is the LDOSB provided by the background
without antenna, while the second term arises from the
antenna. We calculate the LDOS of the hybrid system from
Eq. (4) after solving Eq. (2) for the 3N dipole moments
p1, . . . , pN . We use the exact Green function for a sphere18

and a planar interface2,19 to evaluate how a superemitter
probes the two canonical cases of microcavity resonances and
nonresonant interfaces.3

IV. A SUPEREMITTER COUPLED TO A MICROCAVITY

As a superemitter we consider a source p0 in the gap
of a dimer antenna with p0 along the symmetry axis [see
Fig. 1(a)]. The 40 nm diameter Ag spheres forming the
dimer have a center-center distance of 60 nm.20 The dashed
line in Fig. 1(b) shows Imα of a single antenna particle in
vacuum. The decay rate enhancement of the source in the
dimer-antenna gap [solid line in Fig. 1(b)] reaches about 1200,
in good agreement with full multipole calculations.21 The
dimer resonance is redshifted and broadened by super-radiant
damping compared to the single particle due to longitudinal
symmetric dipolar plasmon hybridization.22 Positioning the
emitter in the center of the dimer maintains a safe distance
to the metal particles, keeping Ohmic quenching losses to a
minimum while offering significant enhancement at a quantum
efficiency of the superemitter exceeding 90%.

As a first test of LDOS lumping we consider as a
background a glass sphere (n = 1.5, radius 1.2 μm) supporting
whispering-gallery modes, illustrated in Fig. 1(a). Characteris-
tic resonances are clearly visible as sharp peaks with Q ≈ 700
in the sphere’s extinction efficiency23 [Fig. 1(c), dashed line].
The Purcell factor for a radially oriented source 50 nm from the
sphere surface [solid line in Fig. 1(c)] reaches moderate values
around 10. Only every second peak in extinction yields Purcell
enhancement, which reflects the field orientation according to
the common TE/TM type classification.24 We now place the
superemitter with the center of the closest antenna particle
50 nm from the sphere’s surface and the symmetry axis point-
ing radially outwards [see Fig. 1(a)]. We stress that throughout
the spectrum all couplings between source, antenna, and cavity
are weak. To determine the regime of coupling, the coupling
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FIG. 1. (Color online) (a) Left: Sketch of a superemitter formed
by two silver spheres. The fluorescent source is located between the
two particles with its dipole moment along the symmetry axis. Right:
Hybrid photonic system composed of a superemitter embedded in
a background system formed by a dielectric sphere. Red and blue
colors illustrate fields of a whispering-gallery mode. (b) Dashed
line: polarizability of a single antenna particle in vacuum. Solid line:
antenna enhancement factor for the superemitter sketched in (a) in
vacuum. (c) Dashed line: Extinction efficiency of a dielectric sphere
showing narrow Mie resonances. Solid line: Purcell factor of the Mie
sphere 50 nm from its surface.
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FIG. 2. (Color online) (a) Solid line (hybrid system): Decay
rate of the source in the gap of the superemitter next to the Mie
sphere normalized to the rate of the source in vacuum. Dashed line
(superemitter in vacuum): Decay rate of the source in the gap of
the superemitter in vacuum normalized to the rate of the source
in vacuum. At the Mie resonances, the hybrid LDOS is drastically
modified compared to that of the antenna in vacuum. (b) Solid line
(hybrid system): Decay rate enhancement in hybrid system [solid
line in (a)], normalized to the rate enhancement in the superemitter in
vacuum [dashed line in (a)]. Off antenna resonance, the superemitter
benefits from the LDOS enhancement offered by the sphere (dashed
line), while on antenna resonance the enhancement is suppressed by
the inverse of the sphere’s LDOS (dotted line).

strength between resonators has to be measured against their
respective damping rates.25 For a fluorescent source (damping
γs ≈ ns−1) typically γant ≈ 106γs ≈ fs−1 at a Purcell factor

FP = 4|g|2
γantγs

≈ 1200, such that the coupling g � γant. Similar
arguments hold for the antenna-cavity and cavity-source cou-
pling strengths. Accordingly, the antenna does not significantly
shift or spoil the microsphere resonances, as also predicted by
Waldron’s formula �ω/ω = −(α/V)|E|2, due to their large
mode volumes V compared to α, their moderate Q factors,24,26

and placement of the antenna far from the normalized mode
function |E|2 maxima. The solid line in Fig. 2(a) is the decay
rate enhancement for the emitter embedded in the antenna, in
turn located next to the Mie sphere, i.e., the rate in the hybrid
system normalized to the rate of the bare source in vacuum.
While the overall shape of the enhancement provided by the
antenna in vacuum [Fig. 2(a), dashed] is still visible, sharp
features appear at five spectral positions coinciding with the
sphere’s whispering-gallery modes [cf. Fig. 1(c)]. To illustrate
the effect of the background system on the superemitter we
normalize the decay rate enhancement in the hybrid system
[solid line in Fig. 2(a)] to the enhancement provided by the
bare antenna in vacuum [dashed line in Fig. 2(a)] and plot
it as the solid line in Fig. 2(b). The sharp enhancements in
the wings of the antenna resonance follow the LDOS of the
sphere, denoted by the dashed line in Fig. 2(b). Therefore,
off antenna resonance, at still significant antenna factors,
we find the anticipated behavior of a superemitter that the
already antenna-enhanced decay rate is further boosted by
a high LDOSB of the background. Furthermore, we note the
dispersive features in the enhancement which swap orientation
upon crossing the antenna resonance. Surprisingly, however,
on antenna resonance, the LDOS enhancement is strongly
suppressed by the Mie sphere. This LDOS suppression close
to antenna resonance cannot be explained by a spoiling or

detuning of the cavity by the antenna, since this would only
result in a shift or absence of a sharp line of extra enhancement
on top of the bare antenna factor. Since Waldron’s formula
excludes that the LDOS suppression results from a spoiling of
the Mie resonances by the antenna, Fig. 2(a) hence implies a
spoiling of the antenna by the cavity resonance.

To interpret Eq. (1) correctly, the scattering strength of the
antenna needs to be taken into account, which is given by
the scatterer’s optical volume, i.e., its polarizability, measured
against the inverse background LDOS according to Eq. (3). To
illustrate the effect of the background LDOS on the scattering
strength of an optical antenna, we now discuss an antenna
significantly smaller than the wavelength and described as a
single scatterer with polarizability α.27 Equation (3) ensures
that the optical theorem Imα � LDOSB |α|2 is fulfilled, where
equality holds for the case of no material loss.28 Thereby
Eq. (3) strictly bounds the polarizability according to

Im(α) � 1

ImGB
, (5)

which is a general form of the unitary limit. This limit is a
well known fundamental constraint in any scattering theory.29

In vacuum, the unitary limit for extinction cross section is
σext = 4πkImα � 3

2π
λ2, a limit reached by an ideal scatterer

on resonance, and closely approached by any plasmon particle
above 20 nm in size.14 The unitary limit Eq. (5) states that
α of a strong scatterer, and hence the dipole moment it
acquires, is proportional to the inverse LDOS. Since a strong
scatterer is predominantly damped by radiation, increasing the
background LDOS increases its loss and therefore suppresses
the scatterer’s response.30

To quantitatively verify that the unitary limit indeed
governs the hybrid system’s LDOS we evaluate Eq. (4) for
a physically small superemitter. The hybrid system’s LDOS
is then governed by the LDOS enhancement provided by the
optical antenna LDOSA which is dominated by ReGvac to read

LDOSA = pT
0 ReGvac(r0,r1) Imα ReGvac(r1,r0) p0, (6)

which is of order 1/d6 (with d = |r1 − r0|) and precisely
yields Eq. (1).31 To illustrate the effect of the background
system on ImαMie we plot in Fig. 3(a) the radial component of
the sphere’s Green function GMie at the superemitter (50 nm
from the sphere surface). Real and imaginary parts of GMie

show the typical lineshape of a resonance, where ImGMie by
definition equals the microcavity Purcell factor at the source
[cf. Fig. 1(c)]. In Fig. 3(b) we plot as the solid line the
radial component of ImαMie of an antenna located 50 nm
from the sphere surface. The values of GMie in Fig. 3(a) are
the correction terms entering Eq. (3) that modify αMie close
to the sphere [solid line in Fig. 3(b)] with respect to αvac

in vacuum [dash-dotted line in Fig. 3(b)]. Close to antenna
resonance ImαMie is indeed limited by the inverse of the
sphere’s LDOS [Fig. 3(b), dotted line]. The transition from
enhancement to inhibition in the lumped LDOS going from
weak to strong scattering is captured by amending the antenna
factor A in Eq. (1) with Eq. (3), such that when neglecting the
real frequency shift the radiated power reads

P ∝ ∣∣α−1
0 − i LDOSB

∣∣−2
LDOSB. (7)
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FIG. 3. (Color online) (a) Real (solid) and imaginary (dashed)
parts of the radial component of the Green function of the Mie
sphere 50 nm from sphere’s surface. These terms enter the radiation
correction to αMie. (b) Solid line: Radial component of the antenna
polarizability αMie when located 50 nm from the Mie sphere. Dash
dotted line: αvac for the same antenna in vacuum. While αvac is limited
by the inverse vacuum LDOS (dashed line), αMie is bounded by
the inverse of the sphere’s LDOS (dotted line), which leads to the
suppression of αMie close to the antenna resonance.

For small α0, i.e., in the limit of weak scattering, P ∝
|α0|2 LDOSB since weak Rayleigh scatterers are constant
current sources unaffected by the unitary limit.32 Therefore,
for weak scatterers a simple multiplicative lumping rule
holds. In the limit of strong scattering P ∝ LDOS−1

B , since a
scatterer at the unitary limit is not a constant current source.33

Accordingly, close to antenna resonance, the enhancement of
the hybrid system [solid line in Fig. 2(b)] follows the inverse
of the Mie sphere’s LDOS.

V. SUPEREMITTER AND CAVITY AS COUPLED
HARMONIC OSCILLATORS

The hybrid system LDOS in Fig. 2(a) closely follows
Fano lineshapes that occur generally in coupled-harmonic-
oscillator models34 that describe, for example, electromag-
netically induced transparency (EIT) in quantum optics35 and
plasmonics.36 With the surge of plasmonic Fano resonances36

a coupled-oscillator simile, initially put forward by Alzar
et al., has emerged as the prime model in order to fit and
discuss lineshapes of various observables that arise due to
the interaction of several photonic constituents.34 It is an
open question in nanophotonics under which circumstances
a mechanical-oscillator model can be applied to describe
strongly scattering systems and how it relates to a fully
electrodynamic model such as our coupled-dipole formalism.
We therefore treat the optical antenna coupled to a single
cavity mode explicitly as coupled oscillators to identify
the similarities and differences with a coupled-mechanical-
oscillator model.

Alzar et al. consider two harmonic oscillators, whose po-
sitions are described by spatial coordinates x1,2, characteristic
frequencies ω1,2, and dissipative damping rates γ1,2 coupled at
a rate κ and the driving forces (normalized by the respective
masses) are F1,2, such that the equations of motion read

ẍ1,2 + γ1,2ẋ1,2 + ω2
1,2x1,2 + κ2x2,1 = F1,2. (8)

Assuming a harmonic time dependence and F2 = 0 the
response of the first oscillator to a driving force F1 is

x1 = χ1 F1 = 1

ω2
1 − ω2 − iωγ1 + κ4

ω2
2−ω2−iωγ2

F1, (9)

where we have defined the mechanical response function χ1.
To quantitatively relate to the coupled-dipole model we need to
define an observable in the mechanical model that represents
the LDOS. Associating the driven oscillator with the antenna
a natural choice is to consider the work done by the driving
force F1 on oscillator x1,

W1 = 〈Re F1 · Re x1〉 = F
†
1 Im χ1(ω)F1. (10)

The mechanical driving force F1 then corresponds to the
electric field generated by the molecular source driving the
antenna Re G p0, and we obtain one-to-one correspondence
between the antenna factor Eq. (6) and the mechanical-
oscillator model Eq. (10) if two conditions are satisfied.
First, the multiple scattering problem of an antenna in a
complex background system can only be described in a
coupled-oscillator framework with a single driven oscillator
if the antenna is small enough such that it is sufficient to
consider the leading term of order d−6 that led to Eq. (6).
Second, we still need to quantitatively map the corrected
polarizability α onto the mechanical response function χ1.
To this end we consider a classical scatterer coupled to a
single mode of a cavity.37 It turns out that electromagnetism
imposes two strong constraints on the parameters of Eq. (8).
First, the damping constant γ1 associated with the antenna,
besides accounting for possible Ohmic losses, must contain the
scatterer’s volume V measured against the unitary limit such
that γ1 = ω1V LDOSvac. This constraint ensures that radiation
damping of the antenna due to coupling to the radiative
continuum modes is included in the oscillator model Eq. (8).
Second, also the coupling constant κ contains the scatterer’s
volume measured against the unitary limit and the cavity mode
volume V , such that κ4 = ω4

1
FP
Q

LDOSvacV , with the Purcell

factor FP = 3
4π2 λ

3 Q

V . Therefore, while naturally included in
a consistent electrodynamic model, radiation effects have to
enter a mechanical-oscillator model as a deus ex machina to
contain the unitary limit by constraining both the coupling
constant κ and the damping rate γ1 in Eq. (8). Any other choice
of κ and γ1 would violate energy conservation by neglecting
coupling to the radiative continuum. That the unitary limit
is not by itself a consequence of classical-oscillator models
reflects the essential fact that, unlike mechanical oscillators,
optical resonances are superradiant or subradiant depending
on interference in the radiative continuum.

VI. A SUPEREMITTER IN FRONT OF A MIRROR

While it is highly promising that hybrid systems allow
engineering of LDOS using the toolbox of coupled-oscillator
systems, the physics of hybrid photonic systems is far more
general than that of coupled oscillators alone. Indeed, the
surprising spoiling of the antenna enhancement generally
occurs for any large background LDOSB, also in absence
of any resonance. As one example of the general validity
of Eq. (7) beyond microcavity resonances, we examine a
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FIG. 4. (Color online) Relative LDOS enhancement for the
superemitter as a function of distance to a near-perfect mirror.
(a) Superemitter oriented parallel to the mirror surface (see inset).
Solid line: A superemitter with source far below antenna resonance
[ω = 4.0 × 1015 s−1, cf. Fig. 1(b)] traces the LDOS of the mirror
(dashed line), except at small superemitter-mirror separations. A
source close to antenna resonance (long dashed line, ω = 4.5 ×
1015 s−1) traces the inverse of the mirror LDOS (dotted line), except at
small separations. (b) Same as (a) for the superemitter perpendicular
to the mirror (see inset).

near-perfect mirror (ε = −200) as a background that modifies
the LDOS without any resonances.3 In Fig. 4(a), we plot the
decay rate of the superemitter in front of the mirror normalized
to the superemitter in vacuum as a function of distance to
the mirror. The antenna axis is parallel to the mirror (see
sketch in inset). Far below antenna resonance, the enhancement
[Fig. 4(a), solid line] follows the mirror LDOS (dashed line)
as expected from the multiplicative LDOS lumping rule. Close
to antenna resonance the antenna is close to the unitary
limit and therefore the total rate enhancement follows the
inverse of the mirror LDOS. At intermediate frequencies we
observe a smooth transition between the two cases illustrated
in Fig. 4 (data not shown). For the superemitter oriented
perpendicularly to the mirror [Fig. 4(b)] we observe the analog
behavior as for the parallel case. The product lumping rule and
its crossover to inverse proportionality are hence generic, and
only break down for small superemitter-mirror separations (ca.
0.2λ in Fig. 4) where the small-size approximation leading to
Eq. (7) breaks down. When the superemitter size is comparable
to its distance to its own mirror image, superemitters also sense
gradients in G. While outside the simple lumping rule Eq. (7),
this exciting regime, fully contained in our general formalism
Eq. (2), is of great interest as a tailorable analogon to recent
experiments on probing multipolar LDOS.38

VII. CONCLUSIONS

In conclusion, we have examined how the LDOS inside
a superemitter probes the LDOS of a complex photonic

environment. Generally, for any superemitter with a moderate
antenna factor the LDOS enhancements of antenna and
background multiply and a small superemitter will serve as
an LDOS probe for a large background system, exactly as
the term suggests.8 In surprising contrast, a superemitter with
an antenna at the unitary limit probes the inverse background
LDOS, since increasing radiation damping reduces the po-
larizability of strong scatterers.29 Our findings imply that
if a general lumping rule for optical source impedances,12

i.e., LDOS, can be found, it must take into account not
just the bare superemitter LDOS, but also how close the
antenna is to the unitary limit. While throughout this work
antenna and background were only weakly coupled, our
formalism is equally applicable to the strong-coupling case
where the presence of the antenna significantly spoils the
cavity resonances. Regarding source-environment coupling
strength, our antenna-cavity hybrid offers yet another exciting
prospect: Off antenna resonance but on a cavity resonance, the
Purcell enhancement of the hybrid reaches values as high as
FP ≈ 1000 at a quality factor comparable to that of the cavity.
These parameters might suffice to bring a typical quantum
dot8 with γQD ≈ (10 ns)−1 into the strong-coupling regime—
notably with robust building blocks whose individual Purcell
factors are an order of magnitude lower than that of the hybrid.
In addition, our insights bear a plethora of exciting prospects
for LDOS engineering in many background systems beyond
cavity resonances, including plasmonics, indefinite media and
metamaterials, and van Hove singularities at photonic-bandgap
edges. Embedding complex antennas with beyond-dipole
character39 into such systems could provide yet another route
for LDOS engineering. One might consider nanomanipulative
switching of superemitters by moving them with respect to
high-Q resonators.40 Furthermore, our work could lead the
quest for ultrastrong optical antennas towards counterintuitive
hybrids of nanoantennas embedded in photonic bandgap
devices. As a further implication, our findings shed new light
on attempts to use a scatterer as a broadband probe of thermally
populated modes, since the scatterer acquires spectral features
thanks to the environment that it probes.41 Notably, hybrid
photonic systems might benefit from large field enhancements
inside the antenna that occur with convenient moderate-Q
cavities, an exciting prospect for single-molecule detection.42
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