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Microtubules interacting with a boundary: Mean length and mean first-passage times
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I formulate a dynamical model for microtubules interacting with a catastrophe-inducing boundary. In this
model microtubules are either waiting to be nucleated, actively growing or shrinking, or stalled at the boundary.
I first determine the steady-state occupation of these various states and the resultant length distribution. Next,
I formulate the problem of the mean first-passage time to reach the boundary in terms of an appropriate set of
splitting probabilities and conditional mean first-passage times and solve explicitly for these quantities using a
differential equation approach. As an application, I revisit a recently proposed search-and-capture model for the
interaction between microtubules and target chromosomes [M. Gopalakrishnan and B. S. Govindan, Bull. Math.
Biol. 73, 2483 (2011)]. I show how my approach leads to a direct and compact solution of this problem.
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I. INTRODUCTION

Microtubules (hereafter abbreviated as MTs) are filamen-
tous macropolymers built from tubulin dimers. They are one
of the components of the cytoskeleton of all eukaryotic cells.
They play a number of roles, including providing mechanical
stability to the cell, serving as transport pathways enabling
linear transport of versicular cargo by motor proteins, and
providing forces for the positioning of organelles and other
intracellular components (for a general overview see Ref. [1]).
Perhaps their most striking function appears during mitosis
wherein they form the mitotic spindle, the machinery for
positioning and separating the duplicated chromosomes prior
to cell division. They owe their functional plasticity to an
intrinsic so-called “dynamical instability” mechanism [2] that
causes individual MTs to stochastically alternate between
growing and shrinking states. By controlling this dynamical
process, through MT associated proteins (MAPs) that nucleate
new MTs or selectively stabilize or destabilize them by locally
or globally changing the rates with which they switch between
dynamical states, cells are able to reconfigure MT assemblies
on time scales as fast as a few minutes. The canonical
model to describe MT dynamics was developed in the early
1990s by Dogterom and Leibler [3]. This model showed
that isolated MTs, depending on their dynamical parameters,
can either be in a regime of bounded growth leading to an
exponential length distribution in a steady state or in a regime
of unbounded growth in which the MT length on average
increases linearly in time. Of course, MTs “live” within the
confines of a finite size cell, whose dimensions (∼10 μm)
are comparable to the observed lengths of MTs. Interactions
between MTs and boundaries, be it the cell cortex or the surface
of other intracellular compartments, are therefore important.
Indeed, a number of MT functions depends critically on these
interactions: examples are nuclear positioning in yeast [4],
spindle positioning in C. elegans [5], and the orientation of the
cortical MT array in plant cells [6].

In spite of this clear relevance, it appears that a systematic
approach to the theory of MTs interacting with boundaries is
lacking in the literature. The one problem of this type which
did receive substantial attention is the search-and-capture
mechanism by which MTs are thought to find the condensed
chromosomes prior to mitosis [7–10], involving estimating

the mean first-passage time of a MT to hit a limited size target
at a distance from its nucleation point. However, although
these works in fact do contain some of the basic features of
the MT-boundary problem, it is mostly hidden (literally in the
case of Ref. [8], actually an unpublished thesis) under the
specifics of the intended application. Moreover, these works
also rely heavily on “forward” techniques involving the time
evolution of the full probability density for reaching a given
state from specified initial conditions. Although this approach
obviously yields a full solution of the problem, for passage-
time problems, which effectively require integrating over final
states, the full probability density is in a sense a form of
“overkill”. The treatment of this type of problems can in fact
be simplified considerably by using “backward” techniques as
is, e.g., elegantly illustrated for diffusion problems in Redner’s
monograph [11]. In the present work I show how this approach
can be used from the ground up to solve the problem of a MT
interacting with a boundary.

The outline of the paper is as follows. In Sec. II, I introduce
the dynamical model of a MT interacting with a boundary;
solve for its steady-state properties, such as the average
length; and choose an appropriate set of nondimensionalized
parameters and variables. In Sec. III, I turn to the analysis of
the mean first-passage time to the boundary, formally solving
this in terms of a small set of splitting probabilities and
conditioned mean first-passage times, which are subsequently
determined explicitly through the solution of appropriate linear
boundary value problems. I then use some biological data on
MT dynamics to estimate the order of magnitudes for the
quantities involved. Finally, in Sec. IV, I revisit the recent
search-and-capture model discussed by Gopalakrishnan and
Govindan [10] and show how it is compactly solved using
the techniques introduced. I then finish with a number of
concluding remarks and two technical appendices.

II. MEAN LENGTH

A. Dynamical model

The standard two-state dynamical instability model de-
scribes MTs with length l that are either growing with velocity
v+ or shrinking with velocity v− and can switch between
the growing and the shrinking states (a catastrophe) with a
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FIG. 1. Schematic of our model showing the three components of
the state space: the nucleation state N from which MTs are nucleated
at rate rn, the active state A in which MTs either grow or shrink with
velocities v+ and v− and switch between these two states with rates
r+ and r−, and a barrier state B from which MTs exit at a rate rb.

constant rate r+ and between the shrinking and the growing
states (a rescue) with a constant rate r−. Collectively, I call
these two states the active states and denote the corresponding
state space by A. I extend this model by two more states: a
nucleation state N in which a MT enters upon shrinking back
to zero length and from which it can be (re)nucleated into a
zero-length growing state at a constant rate rn and a boundary
state B in which a MT enters upon hitting a boundary at a
distance L from the nucleation point and which it leaves in
a shrinking state at a rate rb. Formally, the state space of
this extended model is therefore given by � = N ∪ A ∪ B. I
illustrate the model and its state space in Fig. 1.

It should be noted that from a biophysical point of view,
the model is of course an idealization. In reality a growing
MT impinging on a boundary will generate forces. These
forces will affect the growth velocity and the propensity to
switch to the shrinking state so that the latter is no longer a
simple Poisson process [12]. Moreover, these forces may also
deform the boundary, lead to buckling of the MT, or cause it
to slide along the boundary (for a review see Ref. [13]). These
additional complexities, however, will have limited impact on
the results to be presented here as long as the residence time
at the boundary is small compared to the time to traverse
the distance between nucleation point and boundary, which
is certainly the case for effectively reflective boundaries for
which rb � r+, and I choose to ignore them here.

The dynamics of the model described above defines a
time-homogeneous Markov process on the full state space.
It is, however, technically convenient to split the dynamics on
the “active” part of the state space A from those on the two
“waiting” states N and B and deal with the communication
between these different states through boundary conditions. I,
therefore, first define the probability densities (per unit length)
ms(l,t |ω0,t0) for an active MT to have length l and be in state
s = +,− at time t , given that it was in some state ω0 at time
t0 < t . These densities satisfy the evolution equations

∂

∂t
m+(l,t |ω0,t0) = −v+

∂

∂l
m+(l,t |ω0,t0) − r+m+(l,t |ω0,t0)

+ r−m−(l,t |ω0,t0), (1)

∂

∂t
m−(l,t |ω0,t0) = v−

∂

∂l
m−(l,t |ω0,t0) − r−m−(l,t |ω0,t0)

+ r+m+(l,t |ω0,t0). (2)

Likewise, I define the probability Mn(t |ω0,t0) for the MT to be
in the nucleation state at time t , given that it was in some state
ω0 ∈ � at time t0 < t . This probability satisfies the evolution
equation

∂

∂t
Mn(t |ω0,t0) = v−m−(0,t |ω0,t0) − rnMn(t |ω0,t0). (3)

The probability Mb(t |ω0,t0) for the MT to be in the boundary
state at time t in turn satisfies

∂

∂t
Mb(t |ω0,t0) = v+m+(L,t |ω0,t0) − rbMb(t |ω0,t0). (4)

This system of equations is closed by the boundary conditions

v+m+(0,t |ω0,t0) = rnMn(t |ω0,t0), (5)

v−m−(L,t |ω0,t0) = rbMb(t |ω0,t0). (6)

By construction, the dynamics on the full state space conserves
probability, and indeed if I define the total probability

M(t |ω0,t0) = Mn(t |ω0,t0) + Ma(t |ω0,t0) + Mb(t |ω0,t0)

= Mn(t |ω0,t0) +
∫ ∞

0
dl {m+(l,t |ω0,t0)

+m−(l,t |ω0,t0)} + Mb(t |ω0,t0), (7)

then

∂

∂t
M(t |ω0,t0) = 0, (8)

allowing me to set M(t |ω0,t0) = 1.

B. Steady-state behavior

In the steady state the probabilities do not depend on time
nor on initial conditions, allowing me to write the evolution
equations as a set of balance equations

v+
d

dl
m+(l) = −r+m+(l) + r−m−(l), (9)

−v−
d

dl
m−(l) = −r−m−(l) + r+m+(l), (10)

v−m−(0) = rnMn, (11)

v+m+(L) = rbMb, (12)

to be supplemented by the boundary conditions

v+m+(0) = rnMn, (13)

v−m−(L) = rbMb. (14)

Adding Eqs. (9) and (10) yields

d

dl
{v+m+(l) − v−m−(l)} = 0. (15)

Combining either Eqs. (11) and (13) or Eqs. (12) and (14)
shows that the constant of integration vanishes, and hence,

v+m+(l) = v−m−(l). (16)

This identity is now used to eliminate m−(l) from Eq. (9) from
which I then readily find that for l � L,

m+(l) = rnMn

v+
e−l/l̄ , (17)
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m−(l) = rnMn

v−
e−l/l̄ , (18)

where the length

l̄ =
(

r+
v+

− r−
v−

)−1

(19)

is of course only positive when r+v− − r−v+ > 0, the so-
called bounded-growth regime and represents the steady-state
average length of an active MT in the absence of the boundary.
Although in the presence of boundaries one can also consider
the unbounded-growth regime r+v− − r−v+ < 0 as was done,
e.g., in Ref. [14] for the case wherein the boundary is fully
reflecting, I will not do so here and focus exclusively on the
bounded-growth case. The dependence of the probability that
the MT is in the boundary state can, from Eq. (12), be shown
to obey the following relationship:

Mb = rn

rb

e− L

l̄ Mn. (20)

The normalization condition (7) can then be used to determine
the probabilities for a MT to be in a nucleation state, an active
state, and a boundary state, respectively,

Mn = 1

1 + rnl̄
(

1
v+

+ 1
v−

)
(1 − e−L/l̄) + rn

rb
e−L/l̄

, (21)

Ma =
rnl̄

(
1
v+

+ 1
v−

)
(1 − e−L/l̄)

1 + rnl̄
(

1
v+

+ 1
v−

)
(1 − e−L/l̄) + rn

rb
e−L/l̄

, (22)

Mb =
rn

rb
e−L/l̄

1 + rnl̄
(

1
v+

+ 1
v−

)
(1 − e−L/l̄) + rn

rb
e−L/l̄

. (23)

Taking the limit L → ∞, I find Ma ∝ rnl̄( 1
v+

+ 1
v−

). As density
∝ nucleation rate × lifetime, this suggests that the time

t̄ = l̄(
1

v+
+ 1

v−
) = v+ + v−

r+v− − r−v+
(24)

is the expected lifetime of an, otherwise unconstrained, zero-
length newly nucleated MT, a result indeed first derived by
Rubin [15].

I now define the mean length of the active MTs

〈l〉a = 1

Ma

∫ L

0
dll {m+(l) + m−(l)} = l̄

[
1 − (

1 + L

l̄

)
e−L/l̄

]
(1 − e−L/l̄)

.

(25)

The time-averaged length of all MTs present is then simply

〈l〉 = Ma

Ma + Mb

〈l〉a + Mb

Ma + Mb

L. (26)

I can readily check the limits 〈l〉a → l̄ when L → ∞ and
〈l〉a � 1

2L for L → 0. The latter limit can be understood by
considering that for very small L, the growing and shrinking
traversal times L/v+ and L/v− become small with respect to
the mean time between catastrophes 1/r+ and rescues 1/r−,
respectively, so that the MT is deterministically “bouncing”
between the end points l = 0 and l = L.

C. Dimensional analysis

I have deliberately deferred the dimensional analysis of the
system up to this point to allow the results of the steady-state

solution to guide me to a natural choice of the units of length
and time. In view of Eqs. (21) and (25), I choose l̄ of Eq. (24)
as the unit length and t̄ as the unit of time. For completeness
sake, I can also introduce the unit of speed

1

v̄
≡ t̄

l̄
= 1

v+
+ 1

v−
. (27)

By convention I will adopt the Greek alphabet to denote di-
mensionless quantities. I introduce the dimensionless param-
eters: growth speed ν+ = v+/v̄, shrinkage speed ν− = v−/v̄,
catastrophe rate ρ+ = r+ t̄ , rescue rate ρ− = r− t̄ , nucleation
rate ρn = rnt̄ , barrier unbinding rate ρb = rbt̄ , and distance
to barrier � = L/l̄. Note that these assignments, which have
the clear advantage of maximizing the interpretability of the
nondimensional equations, do have the disadvantage of leaving
dependencies among the parameters as by construction

1

ν+
+ 1

ν−
= 1, (28)

ρ+
ν+

− ρ−
ν−

= 1. (29)

To denote the independent variables of time and length, I write
τ and λ, respectively. Finally, the densities, as my dependent
variables, are denoted by μs(λ,τ |ω0,τ0) = l̄ms(λl̄,τ t̄ |ω0,τ0 t̄).

Using these notations, the steady-state results of the
previous section can be summarized as

Mn = 1

1 + ρn(1 − e−�) + ρn

ρb
e−�

, (30)

〈λ〉a = [1 − (1 + �)e−�]

(1 − e−�)
. (31)

For future reference I will also rewrite the evolution
equations in a more compact notation. To do so, I treat pairs
of functions (ϕ+(λ,τ ),ϕ−(λ,τ )), defined on the growing and
shrinking parts of the state space, respectively, as a single
vector-valued function ϕs(λ,τ ),s = +,−. This allows me to
write

∂

∂τ
μs(λ,τ |ω0,τ0) =

∑
s′

G∗
s,s ′ [μs ′ (λ,τ |ω0,τ0)], (32)

where G∗ is the operator matrix

G∗
s,s ′ =

(−ν+ ∂
∂λ

− ρ+ ρ−
ρ+ ν− ∂

∂λ
− ρ−

)
. (33)

The fact that I use the notation G∗, signifying the Hermitian
conjugate of the generator G of the Markov process, is con-
ventional when discussing the forward Kolmogorov equation,
which is the formal term for the evolution equation for the
probability densities [16].

III. THE MEAN-FIRST PASSAGE TIME

I approach the problem of calculating the mean-first passage
time (MFPT) for a microtubule to hit the boundary at a distance
� in three steps. I first provide a formal solution to the
problem in terms of a suitably chosen set of survival (and ruin)
probabilities. I then calculate the static splitting probabilities
that describe the relative weights of the direct and indirect paths
of reaching the boundary and finally determine the conditional
MFPTs corresponding to these sets of paths.
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A. Formal solution

I first define the survival set, the subset of state space
excluding the boundary state, which I denote by �� ≡ �/B =
N ∪ A. My goal is to determine the survival probability of the
process in this set when starting at τ = 0 from an arbitrary
active state with length λ < �, which I denote by S��

(τ |λ,s).
I start by observing that in order for the process to survive in the
active state, it should not exit either at length � into the barrier
state B or at length zero into the nucleation state N . Therefore,
the survival probability in the active state, SA(τ |λ,s), can be
written as

SA(τ |λ,s) = 1 − RB
A (τ |λ,s) − RN

A (τ |λ,s), (34)

which introduces the conditional ruin probabilities RB
A (τ |λ,s)

and RN
A (τ |λ,s), being the probabilities to have exited into

the boundary state at λ = � or the nucleation state at λ = 0
at time τ , respectively, without leaving the active state at any
prior moment. Associated to any ruin probability, RD

O (τ |ω) is a
corresponding propensity function σD

O (τ |ω), which is the time-
dependent rate at which the process exits from its “origin” state
O into the “destination” state D. This propensity is defined as
σD

O (τ |ω) = ∂
∂τ

RD
O (τ |ω), or, equivalently, given a conditional

survival probability SD
O (τ |ω), σD

O (τ |ω) = − ∂
∂τ

SD
O (τ |ω). Using

this definition, I can state the following identity:

S��
(τ |λ,s) = SA(τ |λ,s) +

∫ τ

0
dτ ′σN

A (τ ′|λ,s)S��
(τ − τ ′|N ),

(35)

which captures the fact that starting from an active state, the
MT survives either by remaining active and not reaching � or
by shrinking back to zero at some intermediate time τ ′ with
rate σN

A (τ ′|λ,s) and then surviving from the nucleation state
with probability S��

(τ − τ ′|N ). In the nucleation state a MT
survives either by remaining in this state or being nucleated
into a growing one at an intermediate time and then surviving
from the zero-length growing state, leading to the identity

S��
(τ |N ) = SN (τ |N ) +

∫ τ

0
dτ ′σN (τ ′|N )S��

(τ − τ ′|0,+),

(36)

where the nucleation propensity is simply given by σN (τ |N ) =
ρn exp(−ρnτ ) as nucleation is a Poisson process. As is clear
from the steady-state solution, a MT will always leave the
active state for a large enough time (Mn > 0 independent of
the initial conditions) so that SA(∞|λ,s) = 0. The ultimate
conditional ruin probabilities RB

A (∞|λ,s) and RN
A (∞|λ,s)

are usually, and aptly, called splitting probabilities as the
total ruin probability is “split” between them: RB

A (∞|λ,s) +
RN

A (∞|λ,s) = 1. Using the latter relation, I can rewrite identity
(35) as

S��
(τ |λ,s) = [

RB
A (∞|λ,s) − RB

A (τ |λ,s)
] + [

RN
A (∞|λ,s)

−RN
A (τ |λ,s)

] +
∫ τ

0
dτ ′σN

A (τ ′|λ,s)S��

× (τ − τ ′|N ). (37)

I can now define the quantity I am after, viz., the MFPT for the
process to pass length �, starting from the active state (λ,s)

as the integral over the latter survival probability

T��
(λ,s) ≡

∫ ∞

0
dττσ��

(τ |λ,s) =
∫ ∞

0
dτS��

(τ |λ,s).

(38)

Considering the integration of the first term on the right-hand
side of Eq. (37), I find∫ ∞

0
dτ

[
RB

A (∞|λ,s) − RB
A (τ |λ,s)

]
=

∫ ∞

0
dττσB

A (τ |λ,s)

= RB
A (∞|λ,s)

∫ ∞
0 dττσB

A (τ |λ,s)∫ ∞
0 dτσB

A (τ |λ,s)

≡ RB
A (∞|λ,s)T B

A (λ,s),

(39)

which introduces the conditional MFPT T B
A (λ,s) of the process

to exit at � without ever shrinking to zero and where I have
used the fact that, by definition, the ruin probability is the time
integral over the propensity, i.e.,

RB
A (∞|λ,s) =

∫ ∞

0
dτσB

A (τ |λ,s). (40)

Similarly, integrating the second term yields∫ ∞

0
dτ

[
RN

A (∞|λ,s) − RN
A (τ |λ,s)

] = RN
A (∞|λ,s)T N

A (λ,s),

(41)

where T N
A (λ,s) is the MFPT to exit into the nucleation state by

shrinking to length zero without first reaching the boundary at
λ = �. Finally, integrating the last term gives∫ ∞

0
dτ

∫ τ

0
dτ ′σN

A (τ ′|λ,s)S��
(τ − τ ′|N )

=
∫ ∞

0
dτ ′σN

A (τ ′|λ,s)
∫ ∞

τ ′
dτS��

(τ − τ ′|N )

= RN
A (∞|λ,s)T��

(N ).

The MFPT starting T��
(N ) from the nucleation state is readily

obtained from Eq. (36) and yields

T��
(N ) = TN (N ) + T��

(0,+) = 1

ρn

+ T��
(0,+), (42)

where I have used that exiting the nucleation state is sure, i.e.,
SN (∞|N ) = 0.

Collecting all these results then yields

T��
(λ,s) = RB

A (∞|λ,s)T B
A (λ,s)

+RN
A (∞|λ,s)

{
T N

A (λ,s) + 1

ρn

+ T��
(0,+)

}
.

(43)

The interpretation of this result is clear. Starting from (λ,s),
the MT either exits directly at λ = �, which happens with
probability RB

A (∞|λ,s) and (on average) takes a time T B
A (λ,s),

or the MT first shrinks back to λ = 0 [with probability
RN

A (∞|λ,s)], which takes a time T N
A (λ,s), and then has to

wait a time 1
ρn

to be renucleated after which it takes a time
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FIG. 2. Schematic showing how the unconditional MFPT (gray
arrow) for a growing MT reaches the boundary from starting length λ

splits into two conditional MFPTs: the first associated with all direct
paths (black arrows) from λ to the boundary at � and the second
associated with all paths that shrink to zero length without reaching
the boundary, spend time in the nucleation state (wiggly line), and
then try again unconditionally starting from length zero.

T��
(0,+) to reach λ = � for the first time. I illustrate this

result schematically in Fig. 2.

If I now consider a MT starting at λ = 0 and in the
growing state s = +, I can self-consistently solve for the
MFPT T��

(0,+), which is my main result:

T��
(0,+) = T B

A (0,+) + RN
A (∞|0,+)

RB
A (∞|0,+)

{
T N

A (0,+) + 1

ρn

}
.

(44)

This latter result is in fact sufficient to solve the general
problem because in order to reach the boundary at � from
length zero, the MT first has to pass through each intermediate
length λ < �, taking time T�λ

(0,+) (note the subscript λ to �

here), and then reach � from there, i.e.,

T��
(0,+) = T�λ

(0,+) + T��
(λ,+), (45)

showing that the MFPT for a MT starting in the growing state
at an arbitrary length can be expressed fully in terms of MFPTs
starting from the zero-length state.

Although due to the fundamental asymmetry of the prob-
lem, there is no corresponding simple rule for the shrinking
case, the following argument shows how I can leverage
the results of the growing case to obtain a fairly compact
representation. I first introduce the survival probability of the
shrinking state with respect to rescues, which is simply given
by S−(τ |−) = exp(−ρ−τ ). If no rescue occurs, the shrinking
MT will hit zero length at the deterministic time τ−(λ) = λ/ν−
so that

S��
(τ |λ,−) = {1 − H (τ − τ−(λ))}

{
S−(τ |−) +

∫ τ

0
dτ ′σ−(τ ′|−)S��

(τ − τ ′|λ − ν−τ ′,+)

}

+H (τ − τ−(λ))
{∫ τ−(λ)

0
dτ ′σ−(τ ′|−)S��

(τ − τ ′|λ − ν−τ ′,+) + S−(τ−(λ)| − )S��
(τ − τ−(λ)|N )

}
, (46)

where H (x) is the standard Heavyside function. Integrating over all time yields the desired result

T��
(λ,−) = 1

ρ−
(1 − e−ρ−τ−(λ)) + ρ−

∫ τ−(λ)

0
dτe−ρ−τ T��

(λ − ν−τ,+) + e−ρ−τ−(λ)T��
(N )

= (1 − e−ρ−τ−(λ))

{
1

ρ−
+

∫ τ−(λ)
0 dτσ−(τ |−)T��

(λ − ν−τ,+)∫ τ−(λ)
0 dτσ−(τ |−)

}
+ e−ρ−τ−(λ)T��

(N )

= R−(τ−(λ)| − )
{

1

ρ−
+ 〈

T��
(λ − ν−τ,+)

〉
(λ,−)

}
+ S−(τ−(λ)| − )

{
1

ρn

+ T��
(0,+)

}
, (47)

where
〈
T�L

(λ − ν−τ,+)
〉
(λ,−) is the average MFPT of a MT that

starts in a growing state after a single rescue from a shrinking
state originally at length λ at time zero, provided this happens
before the shrinking state hits zero length.

B. The splitting probabilities

To calculate the splitting probabilities RN
A (∞|λ,s) (exit at

λ = 0) and RB
A (∞|λ,s) (exit at λ = �), I first recall from the

theory of Markov processes that expectation values of future
events seen as functions of the initial time and state satisfy the
backward Kolmogorov equation [16]. Specifically, any ruin
probability RC

K (T |τ,λ,s), where K is some subset of � and C

is a conditioning event, satisfies

∂

∂τ
RC

K (T |τ,λ,s) = − ∂

∂T
RC

K (T |τ,λ,s)

= −
∑
s ′

Gs,s ′
[
RC

K (T |τ,λ,s ′)
]
, (48)

where the generator Gs,s ′ is the Hermitian conjugate of the
operator (33), i.e.,

Gs,s ′ =
(

ν+ ∂
∂λ

− ρ+ ρ+
ρ− −ν− ∂

∂λ
− ρ−

)
. (49)

Since my process is time homogeneous, I can of course take the
initial time to be τ = 0. Letting my final time T → ∞, I see
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that ∂
∂τ

RC
K (∞|τ,λ,s) = ∂

∂τ
RC

K (∞|0,λ,s) = 0 so that splitting
probabilities satisfy∑

s ′
Gs,s ′

[
RC

K (∞|λ,s ′)
] = 0 (50)

and are said to be harmonic in analogy with diffusion where
the operator G is the Laplacian.

For convenience sake I now drop the explicit mention of
the final time and set RN

A (λ,s) = RN
A (∞|λ,s) and RB

A (λ,s) =
RB

A (∞|λ,s). I first consider the splitting probabilities for
exiting into the boundary state and write out Eq. (49) to obtain

ν+
∂

∂λ
RB

A (λ,+) − ρ+RB
A (λ,+) + ρ+RB

A (λ,−) = 0, (51)

−ν−
∂

∂λ
RB

A (λ,−) − ρ−RB
A (λ,−) + ρ−RB

A (λ,+) = 0, (52)

with the obvious boundary conditions of surely exiting when
in the growing state at the boundary, RB

A (�,+) = 1, and never
exiting at B when starting from the shrinking state at λ =
0,RB

A (0,−) = 0. I find the following solutions:

RB
A (λ,+) = eλ − (1 − λ+)

e� − (1 − λ+)
, (53)

RB
A (λ,−) = (eλ − 1)(1 − λ+)

e� − (1 − λ+)
, (54)

where I have introduced the mean forward run length of
a MT, λ+ = ν+/ρ+. In an analogous manner, the splitting
probabilities for shrinking back to zero length, RN

A (λ,s), are
also readily determined to be

RN
A (λ,+) = e� − eλ

e� − (1 − λ+)
, (55)

RN
A (λ,−) = e� − (1 − λ+)eλ

e� − (1 − λ+)
. (56)

One checks that these forms satisfy the a priori re-
quirements RB

A (λ,+) + RN
A (λ,+) = RB

A (λ,−) + RN
A (λ,−) =

1, which follow from the fact that the ultimate ruin of a MT on a
finite length interval is sure. These splitting probabilities were
also derived in Ref. [8] by considering Laplace transforms of
recurrence relations satisfied by the probability density.

C. The conditional MFPTs

With the splitting probabilities determined, I can directly
calculate the conditional MFPTs by solving a time-integrated
form of the backward equation. Indeed, integrating Eq. (48)
over the final time T and recalling that RC

K (τ |τ,λ,s) = 0 yields
as a first step

−
∫ ∞

τ

dT
∂

∂T
RC

K (T |τ,λ,s)

= −RC
K (∞|λ,s)

= −
∫ ∞

τ

dT
∑
s ′

Gs,s ′
[
RC

K (T |τ,λ,s ′)
]
. (57)

At this point I would like to interchange the integration and
the operation of Gs,s ′ , but as RC

K (T |τ,λ,s ′) tends to a constant
for T → ∞, this is not directly possible. However, I can
use the fact that the splitting probabilities are harmonic, i.e.,
Gs,s ′ [RC

K (∞|λ,s ′)] = 0, and the linearity Gs,s ′ to obtain the

identity

−Gs,s ′
[
RC

K (T |τ,λ,s ′)
]

= Gs,s ′
[
RC

K (∞|λ,s ′)
] − RC

K (T |τ,λ,s ′). (58)

Substitution of this identity into Eq. (57) yields an integrable
argument exactly of the form previously encountered in
Eq. (39) so that

−
∫ ∞

τ

dT
∑
s ′

Gs,s ′
[
RC

K (T |τ,λ,s ′)
]

=
∫ ∞

τ

dT
∑
s ′

Gs,s ′
[
RC

K (∞|λ,s ′) − RC
K (T |τ,λ,s ′)

]

=
∑
s ′

Gs,s ′

[ ∫ ∞

τ

dT
{
RC

K (∞|λ,s ′) − RC
K (T |τ,λ,s ′)

} ]

=
∑
s ′

Gs,s ′
[
RC

K (∞|λ,s ′)T C
K (λ,s ′)

]
. (59)

Combining Eqs. (57) and (59) yields the sought-after relation

∑
s ′

Gs,s ′
[
RC

K (∞|λ,s ′)T C
K (λ,s ′)

] = −RC
K (∞|λ,s), (60)

which together with appropriate boundary conditions yields
a closed form equation for the conditional MFPTs T C

K (λ,s ′).
Note that this is in fact a rather general result, valid for all
mixed discrete and/or continuous time-homogeneous Markov
processes.

I now apply Eq. (60) to my specific problem; starting with
the case of exiting at � into the boundary state B, I have

λ+
∂

∂λ
RB

A (λ,+)T B
A (λ,+) − RB

A (λ,+)T B
A (λ,+)

+RB
A (λ,−)T B

A (λ,−) = − 1

ρ+
RB

A (λ,+) (61)

−λ−
∂

∂λ
RB

A (λ,−)T B
A (λ,−) − RB

A (λ,−)T B
A (λ,−)

+RB
A (λ,+)T B

A (λ,+) = − 1

ρ−
RB

A (λ,−), (62)

where I have introduced the mean backward run length,
λ− = ν−/ρ−. This equation is to be solved with the boundary
conditions RB

A (�,+)T B
A (�,+) = 0 and RB

A (0,−)T B
A (0,−) =

0, the former due to the fact that a growing MT at λ = �

will immediately exit into the boundary state B while the
latter follows as the probability for a shrinking MT starting
at λ = 0 to reach the boundary vanishes. Once again the
equations for the corresponding quantities for exiting at zero
length are entirely similar. In practice I reduce these sets of
first-order equations by substitution into inhomogeneous linear
second-order equations. These are readily solved by standard
techniques, and I present the resultant, rather unwieldy,
expressions in Appendix A. As an explicit check on these
results, I consider the time it takes a growing MT to shrink
back to the origin when the boundary is made irrelevant
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TABLE I. Table of MT dynamical parameters for yeast and
interphase plant cells.

Parameter Yeast Plant

Growth speed (μm/min) 2.4 4.8
Shrinking speed (μm/min) 9.6 9.6
Catastrophe rate (/min) 0.3 0.28
Rescue rate (/min) 0.42
Nucleation rate (/min) 0.15 0.15a

Mean length (no boundary) (μm) 8 68.5
Expected lifetime (no boundary) (min) 4.17 21.43

aIn the absence of available data, we take this number equal to that
of yeast.

by placing it at infinity. In that case, the limit of Eq. (A6)
becomes

lim
�→∞

T N
A (λ,+) ≡ T (λ,+) = 1 + λ

(ρ+ + ρ−)

(ρ+ν− − ρ−ν+)
.

(63)

Upon redimensionalizing, this expression is identical to the
one derived earlier by Bicout from the full time and space-
dependent survival probability [17]. As an aside, I note that
the result T (0,+) = 1 shows that the time scale I have adopted
is indeed that of the origin return time of an unconstrained MT
as already stated in Sec. II B.

D. Application to biological data

In order to get a feel for what the results derived above
mean in real-world terms, I apply them to two sets of fairly
well characterized kinetic parameters for MTs, one derived
from observations on fission yeast [18] and one on interphase
Tobacco Bright Yellow-2 plant culture cells [19]. These data
sets are summarized in Table I.

I now confront these two types of MTs with boundaries
located at 5 μm, smaller than both mean lengths in the absence
of boundaries and comparable to half the length of a fission
yeast cell; 20 μm, double the mean length for the yeast MT
and still significantly smaller than that of the Tobacco BY-2
MTs; and 100 μm, on the order of the typical length scale of
a Tobacco BY-2 cell. I first consider the splitting probabilities
RB

A (l,+) and RN
A (l,+), which I plot in Fig. 3. I see that for

the smallest boundary distance L = 5 μm both for yeast and
plant MTs, the probability to reach the boundary from zero
length is already appreciable and increases roughly linearly
with the starting length, consistent with it being dominated by
uninterrupted growth. As I increase the boundary distance, the
probabilities depend more strongly nonlinearly on the starting
length. This is most striking for the case of yeast at L =
100 μm at which RB

A (l,+) is essentially zero until the starting
length is within the natural length l̄ ≈ 8 μm from the boundary.

Next, I turn to the conditional MFPTs T B
A (l,+) and

T N
A (l,+). Here, I first need to take a little care as for yeast

the rescue probability vanishes (r− = 0) so that the backward
run length l− is ill-defined. One can of course go through the
procedure in Sec. III C again, setting ρ− = 0 at the outset in
Eq. (49). However, in this case the conditional MFPTs are also
readily determined from first principles:

Yeast Tobacco BY-2

L = 5 μm

L = 20 μm

L = 100 μm
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FIG. 3. Splitting probabilities for hitting the barrier, RB
A (l,+)

(solid line), and shrinking to zero length, RN
A (l,+) (dashed line),

as a function of the initial length l for different values of the distance
to the barrier L.

r− = 0 : T B
A (l,+) = (L − l)

v+
, (64)

r− = 0 : T N
A (l,+) =

∫ (L−l)
v+

0 dte−r+t
{
t + (l+v+t)

v−

}
∫ (L−l)

v+
0 dte−r+t

= l

v−
+ t̄

[
1 − e− L−l

l̄

(
1 + L−l

l̄

)]
1 − e− L−l

l̄

, (65)

where Eq. (64) follows because a nonrescuable MT can
only reach the boundary without first shrinking away by
growing towards it deterministically and Eq. (65) is obtained
by averaging (i) the time to experience a catastrophe before
reaching the boundary plus (ii) the time to shrink to zero length
from that moment on over the ensemble of histories that do
not reach the boundary. These two approaches indeed give
the same results, serving as another independent check on
the general formalism. Figure 4 shows the resulting passage
times. Perhaps at first sight, a puzzling feature of these
results is the decrease of T N

A (l,+) for increasing the starting
length l, which is evident for the yeast case. This, however,
is a direct consequence of the conditioning on shrinking
back without reaching the boundary. If the starting length
is within the forward run length l+ from the boundary, a
conditioned MT must rapidly undergo a catastrophe after
which it deterministically shrinks back to zero length. The
conditioned return time [the second term on the far right-hand
side of Eq. (65)] is therefore a strongly nonlinearly decreasing
function of the distance to the boundary whereas the time to
deterministically shrink back from the starting length l/v−
only increases linearly with length.
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FIG. 4. Conditional MFPTs for reaching the barrier without
shrinking to zero in between, T B

A (l,+) (solid line), and for shrinking
to zero length without hitting the boundary in between, T N

A (l,+)
(dashed line), as a function of the initial length l for different values
of the distance to the barrier L.

Finally, in Table II I give the MFPT T�L
(0,+) for reaching

the barrier starting from zero length in the growing state as
calculated from Eq. (44).

I see that for a yeast MT, the largest boundary distance
L = 100 μm is effectively unbridgeable and that even the
plant MT needs on average ≈10 times its natural lifetime
t̄ ≈ 20 min to first reach the boundary although it is only ≈1.5
times its natural length of l̄ ≈ 65 μm.

IV. THE GOPALAKRISHNAN-GOVINDAN
SEARCH-AND-CAPTURE MODEL

The first-passage-time model Gopalakrishnan and Govin-
dan recently introduced [10] (hereafter referred to as GG)
considers the problem of the “capture” of a chromosome by
a MT “searching” for it. It has the following ingredients.
The MT is nucleated at a rate rn from a centrosome in an
arbitrary direction into a cone with a solid angle opening
of ��. The centrosome is located at a distance d from
the chromosome, which has a cross-sectional area a, and,
therefore, subtends a solid angle ��c = a/d2 as seen from

TABLE II. The MFPT T�L
(0,+) (in min) as a function of the

distance L.

L (μm) Yeast Plant

5 8.89 3.29
20 119.1 17.23
100 2.9 × 106 266.55

the centrosome. The probability of being nucleated into a
direction in which the target can possibly be hit is therefore
given by pc = ��c/��. When the MT is nucleated outside
of the “target cone”, it can potentially grow until it hits a
cell boundary located at a distance I will call D from the
centrosome. At this boundary, the MT is initially stalled but
experiences an increased catastrophe rate rb > r+.

I will now revisit this model, using the formalism derived
in the previous sections. The state space of this model
is conveniently represented by � = N ∪ Ab ∪ B ∪ Ac ∪ C.
Here, as before, N is the nucleation state, Ab are the active
states with lengths in the interval [0,D] in the directions that do
not “see” the target, B is the state of being at the cell boundary,
Ac are the active states with lengths in the interval [0,d] and
directions within the target cone, and, finally, C is the state of
being on the target chromosome. I nondimensionalize using
the same prescription as in Sec. II C, denoting the additional
parameters needed by � = D/l̄ and δ = d/l̄. Using the results
of Sec. III A, I can immediately write down an expression for
the search time starting from the nucleation state

T�/C(N ) = 1

ρn

+ (1 − pc){TAb∪B

[
(0,+)Ab

] + T�/C(N )}

+pc

(
RC

Ac

[
(0,+)Ac

]
T C

Ac

[
(0,+)Ac

]
+RN

Ac

[
(0,+)Ac

]{
T N

Ac

[
(0,+)Ac

] + T�/C(N )
})

.

(66)

The logic of this equation is simple. Starting from the
nucleation state, the MT (on average) waits 1/ρn before being
nucleated. With probability (1 − pc), the nucleation will be
in a direction that cannot hit the target. In that case the MT
will spend the origin-return time TAb∪B[(0,+)Ab

] in this part
of state space before shrinking back to zero length and starting
again from the nucleation state. With probability pc, the initial
nucleation is inside the target cone. In that case the MT either
hits the target without first shrinking back to zero length with
probability RC

Ac
[(0,+)Ac

], taking time T C
Ac

[(0,+)Ac
], or with

probability RN
Ac

[(0,+)Ac
= 1 − RC

Ac
[(0,+)Ac

shrinking back to
zero length before hitting the target, taking time T N

Ac
[(0,+)Ac

],
and then trying again from the nucleation state. This process
is illustrated in Fig. 5.

B N

0Δ

(1-pc) 
Ab

pc 

0 δ

Ac

C
+

FIG. 5. Schematic illustration of the structure of the search
process in the Gopalakrishnan-Govindan search-and-capture model.
From the nucleation state the MT must either perform (with
probability 1 − pc) a fruitless search (gray arrows) in the directions
in which it can interact with the cell boundary Ab, or (with probability
pc) it is nucleated in the right direction and then either directly
traverses Ac to reach the chromosome C or shrinks back to zero
length without reaching the target and must try again.
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Extracting T�/C(N ) from the relation (66) yields

pcR
C
Ac

[(0,+)Ac
]T�/C(N )

= 1

ρ+
+ (1 − pc)TAb∪B

[
(0,+)Ab

]
+pc

{
RC

Ac

[
(0,+)Ac

]
T C

Ac

[
(0,+)Ac

] + RN
Ac

[
(0,+)Ac

]
× T N

Ac

[
(0,+)Ac

]}
. (67)

As I show in Appendix A, this is, apart from the changed
notation, precisely the result derived by GG (see their Eq. (34)
in Appendix A) from an explicit sum-over-histories argu-
ment. I also note the calculation of the fruitless search
time, TAb∪B[(0,+)Ab

], in the directions not containing the
target, is also readily simplified using the methods presented
here:

TAb∪B[(0,+)Ab
] = RN

Ab

[
(0,+)Ab

]
T N

Ab

[
(0,+)Ab

]
+RB

Ab

[
(0,+)Ab

]{
T B

Ab

[
(0,+)Ab

] + 1

ρb

+ TAb∪B

[
(�,−)Ab

]}
, (68)

where in turn

TAb∪B[(�,−)Ab
] = RN

Ab

[
(�,−)Ab

]
T N

Ab

[
(�,−)Ab

]
+RB

Ab

[
(�,−)Ab

]{
T B

Ab

[
(�,−)Ab

] + 1

ρb

+TAb∪B

[
(�,−)Ab

]}
. (69)

The latter expression allows TAb∪B[(�,−)Ab
] to be expressed

solely by splitting probabilities and conditional MFPTs. While
GG use an ingenious symmetry argument interpreting a
shrinking MT as a growing “anti”-MT to calculate these
latter quantities, I point out that they can also be obtained
in a straightforward manner from the differential equations
presented in Secs. III B and III C.

V. CONCLUSIONS AND OUTLOOK

My aim was to present a structured approach to the
problem of MTs interacting with boundaries. To this end, I
relied exclusively on “backward” techniques, focussing on

survival probabilities and their associated boundary value
problems. The upshot of this approach is that it allows one
to decompose a complex MFPT problem a priori into a
closed form self-consistency problem involving a small set
of relevant splitting probabilities and conditional MFPTs that
readily follow from a proper disjoint decomposition of the
state space. The utility of this approach is illustrated by its
application to the Gopalakrishnan-Govindan model in which
the key decomposition of the search time in terms of the time
spent fruitlessly searching in the wrong directions, waiting
in the nucleation state, and finally reaching the target is the
starting point of the calculation rather than, as in Ref. [10],
the result of collecting the results of intermediate steps in the
calculation. I hope that the technique presented will serve as
a convenient starting point for future applications to current
problems in microtubule cytoskeleton organization.
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APPENDIX A: EXPLICIT SOLUTIONS OF THE
CONDITIONAL MFPTS

In order to give a fairly concise expression for the
conditional MFPTs, I need to introduce a number of convenient
coefficients:

α = λ+ − 1, (A1)

β = 1

λ+λ−

(
1

ρ+
+ 1

ρ−

)
, (A2)

γ = λ+
ρ−

− λ−
ρ+

, (A3)

δ = λ+ {β(1 − α) + γ } , (A4)

ε = 1 + α − βρ+ + α2βρ+ − γρ+ − αγρ+
= λ+ − ρ+δ. (A5)

With these definitions, I find

T N
A (λ,+) = βλ+ + βλ + 1

e� − eλ

{
−eλ(2β + γ )(� − λ) + RN

A (λ,+)

[
1

ρ+
(e� − 1) + δ − α(2β + γ )�

]}
, (A6)

T B
A (λ,+) = 1

ρ+

1

eλ + α

{
ε + αρ+(β + γ )� + αβρ+λ + (β + γ )ρ+(� − λ)eλ

−RB
A (λ,+)[ε + αρ+(β + γ )� + αβρ+�]

}
. (A7)

In some cases I can use the known relations

1 = 1

λ+
− 1

λ−
, (A8)

1 = 1

λ+ρ+
+ 1

λ−ρ−
, (A9)

to simplify even further. An example is the observation that

βλ+ = 1

λ−

(
1

ρ+
+ 1

ρ−

)
=

(
1

λ+
− 1

)
1

ρ+
+ 1

λ−ρ−

= 1 − 1

ρ+
. (A10)
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TABLE III. Corresponding quantities between Ref. [10] and my own work.

GG This work Description

�(d,T ) σC
Ac

(T |(0,+)Ac
) Conditional waiting time distribution reaching the target without shrinking back to zero

Qd (T ) σN
Ac

(T |(0,+)Ac
) Conditional waiting time distribution shrinking back to zero without reaching the target

QR(T ) σN
Ab

(T |(0,+)Ab
) Conditional waiting time distribution shrinking back to zero without reaching the boundary

�(T ) σAb∪B (T |(0,+)Ab
,∃τ < T : λτ = �) Waiting time distribution return to length zero after reaching the boundary at least once

Taking the limit � → ∞ then yields, as in this limit
RN

A (λ,+) = 1,

T N
A (0,+) = 1 (A11)

as claimed in the main text.

APPENDIX B: FORMAL CORRESPONDENCE WITH THE
GOPALAKRISHNAN- GOVINDAN MODEL

Here, I provide the translation between the results of GG
and my own by noting the following correspondences shown
in Table III. From these correspondences I derive the identities

�̃(d,0) = ∫ ∞
0 dT σC

Ac

(
T |(0,+)Ac

) = RC
Ac

[
(0,+)Ac

]
, (B1)

�̃′(d,0) = −
∫ ∞

0
dT T σC

Ac

(
T |(0,+)Ac

)
= −RC

Ac

[
(0,+)Ac

]
T C

Ac

[
(0,+)Ac

]
, (B2)

Q̃′(d,0) = −
∫ ∞

0
dT T σN

Ac

(
T |(0,+)Ac

)
= −RN

Ac

[
(0,+)Ac

]
T N

Ac

[
(0,+)Ac

]
, (B3)

Q̃′(R,0) = −
∫ ∞

0
dT T σN

Ab
(T |(0,+)Ab

)

= −RN
Ab

[
(0,+)Ab

]
T N

Ab

[
(0,+)Ab

]
, (B4)

� ′(0) = −
∫ ∞

0
dT T σAb∪B(T |(0,+)Ab

,∃τ < T : λτ = �)

= −RB
Ab

[
(�,−)Ab

]{
T B

Ab

[
(�,−)Ab

] + 1

ρb

+TAb∪B

[
(�,−)Ab

]}
. (B5)

The time scales GG introduce are therefore

Td = − �̃′(d,0) + Q̃′(d,0)

�̃(d,0)
= RN

Ac

[
(0,+)Ac

]
T N

Ac

[
(0,+)Ac

] + RC
Ac

[
(0,+)Ac

]
T C

Ac

[
(0,+)Ac

]
RC

Ac
[(0,+)Ac

]
, (B6)

TR = −Q̃′(R,0) + � ′(0)

�̃(d,0)

=
RN

Ab

[
(0,+)Ab

]
T N

Ab

[
(0,+)Ab

] + RB
Ab

[
(�,−)Ab

] {
T B

Ab

[
(�,−)Ab

] + 1
ρb

+ TAb∪B

[
(�,−)Ab

]}
RC

Ac

[
(0,+)Ac

]
= TAb∪B[(0,+)Ab

]

RC
Ac

[(0,+)Ac
]

, (B7)

Tν = 1

ρnR
C
Ac

[
(0,+)Ac

] , (B8)

so that, indeed, their expression

〈T 〉 = Td + (1 − pc)

pc

TR + 1

pc

Tν (B9)

fully coincides with Eq. (67).
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