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Abstract. A key quantity in the design of plasmonic antennas and
metasurfaces, as well as metamaterials, is the electrodynamic polarizability
of a single scattering building block. In particular, in the current merging
of plasmonics and metamaterials, subwavelength scatterers are judged by
their ability to present a large, generally anisotropic electric and magnetic
polarizability, as well as a bi-anisotropic magnetoelectric polarizability. This
bi-anisotropic response, whereby a magnetic dipole is induced through electric
driving, and vice versa, is strongly linked to the optical activity and chiral
response of plasmonic metamolecules. We present two distinct methods to
retrieve the polarizibility tensor from electrodynamic simulations. As a basis
for both, we use the surface integral equation (SIE) method to solve for the
scattering response of arbitrary objects exactly. In the first retrieval method, we
project scattered fields onto vector spherical harmonics with the aid of an exact
discrete spherical harmonic Fourier transform on the unit sphere. In the second,
we take the effective current distributions generated by SIE as a basis to calculate
dipole moments. We verify that the first approach holds for scatterers of any
size, while the second is only approximately correct for small scatterers. We
present benchmark calculations, revisiting the zero-forward scattering paradox
of Kerker et al (1983 J. Opt. Soc. Am. 73 765-7) and Alu and Engheta (2010 J.
Nanophoton. 4 041590), relevant in dielectric scattering cancelation and sensor
cloaking designs. Finally, we report the polarizability tensor of split rings, and
show that split rings will strongly influence the emission of dipolar single
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emitters. In the context of plasmon-enhanced emission, split rings can imbue
their large magnetic dipole moment on the emission of simple electric dipole
emitters. We present a split ring antenna array design that is capable of converting
the emission of a single linear dipole emitter in forward and backward beams of
directional emission of opposite handedness. This design can, for instance, find
application in the spin angular momentum encoding of quantum information.
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1. Introduction

Metallic and dielectric nanoscatterers currently enjoy a surge of interest in photonics, due
to the unusual optical properties that may be obtained through a suitable choice of material
and geometry. In plasmonics, it is well established that Ag and Au single nanospheres, rods,
wires, pyramids, triangles, cubes, stars or core—shell particles, as well as oligomers and
arrays of such objects have very distinct scattering resonances that can be used for optical
sensing, improvement of LEDs and solar cells, as well as plasmon-enhanced spectroscopy
on the basis of large field enhancements near metals at the plasmon resonance [3-9]. In
a related development, the field of metamaterials uses metal split rings, loops as well as
so-called cut-wire pairs to generate a strong collective magnetic response [10-12]. The
effective magnetic permeability and electric permittivity that is achieved arises from the
strong electric and magnetic polarization obtained in each building block. Recently, the
fields of plasmonics and metamaterials have come together in so-called ‘metasurfaces’, where
non-identical subwavelength resonant scatterers are organized in a plane at subwavelength
distances, in order to achieve arbitrary phase and amplitude masks that control the transmission,
reflection, refraction and diffraction of light [13—15]. In all these developments, the response is
fundamentally quantified by the geometrical arrangement of scatterers on the one hand, and the
electric and magnetic polarizability of each building block on the other hand.
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Numerical methods in electrodynamics play an increasingly important role in the design
and understanding of nanostructures in an electromagnetic field. In daily practice, finite-
difference time-domain codes (FDTD), finite element simulations (FEM) and boundary element
methods (BEM) are used to replicate experiments, and extract expected observables such as
transmission and reflection coefficients, or the brightness and directivity of localized sources.
Remarkably, it is not common practice to use simulations to extract the fundamental parameter,
i.e. the electric and magnetic polarizability, as well as possibly higher-order multipoles, which
quantify how a building block scatters. A first step to this goal is a recent paper by Miihlig
et al [16] that shows a retrieval of the multipolar moments induced in various metamaterial
scatterers for a particular incident field. Here we propose a rapid and accurate method to retrieve
electric, magnetic and magneto-electric polarizabilities of meta-atoms that can be applied to
any electromagnetic solver (FDTD [17], volume integral equation method (VIE) [18] and
BEM [19]). In our specific implementation, this method is based on surface integral equation
(SIE) calculations to solve Maxwell equations for electric and magnetic fields exactly, and to
calculate the induced effective electric and magnetic surface currents that quantify the scatterer
response. We show how one can extract polarizabilities both from the calculated scattered field
and, as an alternative method, also from the induced currents. By applying this method to,
among other objects, split rings, we retrieve exciting insights regarding the electric and magnetic
response of split rings. In particular, several authors have argued that split rings should be
viewed either as an electric plus a magnetic dipole each with a polarizability [20], or as a
cross-coupled object that also has a magneto-electric response [21]. We show that split rings
are strongly magneto-electric, implying that a large magnetic dipole moment is most easily
induced by electric driving. The particular phase relation between the electric, magnetic and
magneto-electric polarizabilities further implies record-high per-building block optical activity
in extinction and scattering. We show that the insights gained from the polarizability tensor
can be used to construct new types of plasmonic array antennas that have the directivity of
Yagi—Uda antennas [22, 23], but with unique polarization properties. In particular, we show
how metamaterial antennas allow control over the magnetic dipole content of emission and
over the handedness of emitted light. On the basis of this type of control over emission,
we envision applications in control of magnetic dipole emitters [24], photon spin angular
momentum encoding in single-photon sources and enantioselective spectroscopies that employ
near-field enhancement of chirality.

This paper is organized as follows. In section 2, we present the SIE method (2.1) and
the retrieval of polarizability tensors (2.2). In sections 3 and 4, we benchmark the retrieval
for magneto-electric spheres, illustrating the zero-forward scattering paradox of Kerker. In
section 5, we discuss the polarizability of split rings. In sections 6 and 7, we demonstrate how,
on the basis of the extracted polarizability, split rings can be used for the rational design of
antennas for emission control.

2. Surface integral equation method and «-tensor retrieval

Any electromagnetic problem is completely specified by the Maxwell equations, together with a
definition of the source, and the boundary condition. We use the equations in integral form [25].
We divide space into a region 1, defined as the embedding medium that we take to be a
homogeneous dielectric with permittivity €; and permeability 14, and a region 2 that represents
the volume occupied by the scattering material of dielectric constant €, and permeability w,. In

New Journal of Physics 15 (2013) 073023 (http://www.njp.org/)


http://www.njp.org/

4 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

the integral equation formalism, it is useful to solve for the electromagnetic response by first
finding the effective auxiliary electric and magnetic surface current densities J and M on the
interface between medium 1 and medium 2 that are used to satisfy the boundary conditions for
continuity of tangential E and H, and normal B and D. Once these surface currents are solved
for, they can be used to construct the electromagnetic field solution everywhere. Assuming
harmonic time dependence (frequency w), the currents are set by an electric field integral
equation (EFIE),

E™(r) forrinregioni =1,
0 forrinregioni =2

ey

% dS'Gi(r,¥) - J(r') — / dS' [V’ x Gi(r. r’)]~M(r’):{
S S

and a magnetic field integral equation (MFIE) that reads
_ , _ H™(r) forr inregioni =1,

/ dS' [V’ x Gy(r, 1)] - J() + 2 / 4Gty My = | 1 DI
s 1 Js 0 forr inregioni =2

2)

Here G(r,r’) is the electric dyadic Green function for each type of homogeneous medium
> (with i = 1, 2) and V' x G(r, r) is the curl of the Green function. The integral runs over
the surface S that contains the current densities. We used the method introduced by Kern
et al [26], which is based on the method of moments [27], and coined the SIE method to solve
these equations. In brief, in the SIE method any scatterer is represented by effective electric
and magnetic surface current densities J and M that are discretized on finite elements over the
surface of the scatterer with the help of the Rao, Wilton and Glisson (RWG) basis functions
f, [28]. Consider the surface S meshed with triangles. We define n =1, ..., N nodes as the
shared edges of the triangles. The basis function £, (r) is zero everywhere except on the triangle
pair 7 that shares node n. Here the function is pyramid shaped, with

+L, + +
S U (3)
" 0 otherwise,

where L, is the length of the shared node, A is the area of the triangle pair and pF are the
non-shared vertices of the triangles, as explained in [26]. The discretized strength and direction
of the currents is accounted for through basis expansion coefficients «, and g, in the following
way:

N
Jm) = a,f, ), )
n=1
N
M) =) B (r). 5)
n=1

By projecting the EFIE and MFIE equations onto the RWG basis functions, the integral
equations transform into a set of linear equations for the «, and g, values:

o, \
M-(IBH)—q. (6)
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In this system of linear equations, the matrix M needs to be found only once and can be used
for any incident field that is only contained in ¢g. The matrix M is defined by

D'+D? —K!—-K? ;
= 1 2
Kl +K2 3_% +IZ)_§ ) ( )
where Z; = /i /€,

P22 ast, @) | dSGir YY) £, (), (8)

1 S Sn
K! = / dSt,(r)- [ dS'V' x Gi(r,r)-f,(r). )

Sm Sl’l

Note how M self-consistently contains the interactions between all the discretized current
elements, as evident from the appearance of G;(r, r’). After this matrix is calculated, it can
be inverted and multiplied by the vector g, which is the projection of the incident field that
drives the scatterer into the RWG functions. Specifically,

:fsmdem(r)-Eif‘C(r), m=1,..., N,
q:

. (10)
Jo  dSE, (@) -H(r), m=N+1,...2N.

We order the variables so that the vector ¢ has the projections of E™ on the N basis functions as
the first N elements, and the projection of H™ on the basis functions as elements N + 1 to 2N.
As an important implementation note, one of the key features of this method is that the Green
function, which is singular at r =r’, is written as the sum of a smooth G(r, ry)s and singular
part G(r, ro)ns as follows:

— _ VV _ VV] 1 [ekR—1 k’R
G(r,ro)S: 1+7 G(r,ro)s: 1+ — | — + - S (11)

; kl-2 47 R 2
G(r,ro)ns = | 1+ vV G(r,ro)ns = | 1+ V11 (1_KR (12)
s L0JNS — klz » LQJNS — klz 47_[ R 2 )

where k; is the wave vector defined as k; =27 /A -, /u;€; and R = |[r —ro|. The singular part
of the integral is treated analytically. For a detailed explanation of this separation method,
we refer to [26]. Without this separation, the matrix M would be highly inaccurate on its
diagonal, as well as for elements D,,, and K, that correspond to close triangles. Moreover,
subsequent retrieval of the scattered field from the calculated currents would be highly
inaccurate close to the scatterers. Once found, the coefficients «, and S, completely specify
the electric and magnetic surface currents that in turn allow one to find the scattered field and
the total field by propagating the currents with the aid of the Green function in the following
manner:

E,‘(I’) = {i} Z |:— ()ln% dS’E(I’, r/) . fn(l'/)
n Sn

E(r) forr inregioni =1,

+,3n/ dS'[V'G(r,r)] x fn(r’)] + = (13)

0 for r in regioni = 2,
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Hl'(l') = {i} Z |:— ,Bna)Tel/ dS/ﬁ(r, r/) 'fn(l'/)

n Sn

HilIlc (r) forr inregioni =1,

—a, / dS[V'G(r, )] x f,,(r/)] + {o (14)

forr inregioni =2.

We have implemented the described algorithm in MATLAB, using triangular surface gridding
that defines the set of f,(r) as input that we generated using Gmsh [29]. The main objective of
our paper is to discuss the retrieval of polarizabilities from the SIE calculations. On the basis
of the current contributions found through SIE, rwo different approaches can be taken in order
to find the polarizability tensor. On the one hand, the fields produced by the effective currents
can be propagated with the aid of Gand V' x G (equations (13) and (14)) onto a sphere that is
centered around the structure under consideration. The projections of the fields on the sphere on
vector spherical harmonics (VSH) directly define the multipole moments through the expansion
coefficients a,,, and b,,,, as explained by Jackson [25, chapter 10] as well as by Miihlig
et al [16]. Thus, for this first retrieval method we use two steps. First we use SIE to solve for
the fields E and H and then we project these fields onto VSH to find the dipolar moments and
hence the polarizability tensor. This means that E and H might as well be found by using any
other full-wave calculation, for instance FDTD or FEM. As an alternative method, multipole
moments can be defined directly from the current distributions, without calculating fields.
Here we first discuss the multipole expansion method and then the direct definition based on
J and M.

2.1. Multipole moments based on the projection onto vector spherical harmonics

We use the VSH functions as defined by Miihlig et al [16], which are equivalent to the textbook
definition of [30]. As proven in [30] the VSH form a complete and orthonormal set [30].
Therefore the field E(r, 6, ¢) found from SIE has a unique expansion

o n
E(50,0) =) D [dunNun(r, 0, 6) +buMun 1, 6, §)1, (15)
n=1 m=—n
where the expansion coefficients a,,, and b,,, can simply be found by taking the inner product
of the calculated E(r, 6, ¢) with the VSH functions. Here N,,,,,(r, 8, ¢) and M,,,,,(r, 8, ¢) are the
VSH functions, and the inner product is defined as the integration over the unit sphere. While in
principle one could densely sample E(r, 6, ¢) on the unit sphere to evaluate the inner product, it
is particularly advantageous to use the fact that a discrete spherical harmonic transform is exact
for sampling points and weights chosen as consistent with Legendre quadratures for Legendre
polynomials of order N + 1. Thereby one can obtain a highly efficient and exact algorithm,
that requires only very few field sampling points for multipole expansion coefficients up to
order n = N [31], by carefully separating the VSH into ordinary spherical harmonics. As in any
discrete Fourier transform, the only caveat for this exact method is that aliasing artifacts may
occur if the radiated field contains significant contribution from multipoles of order higher than
the truncation order of the transform. Therefore, we use a truncation order N = 5, corresponding
to just 50 sampling points on the unit sphere, as we do not expect multipole moments beyond
N =2 to be significant throughout this paper. The coefficients a,, and b,,,, and hence the
retrieved moments finally, will depend on where the center of the sphere is chosen [16, 25, 32]
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but are independent of the radius of the sphere as long as the scatterers are fully enclosed. The
dipolar moments p and m are calculated from the coefficients a,,, and b,,, using the procedure
explained in [16].

2.2. Multipole moments based on effective currents

As a second method to obtain the induced dipole moments p and m (electric and magnetic
dipole moments), we can directly use the effective magnetic and electric current densities M
and J calculated as the intermediate solution step in SIE. In particular,

p=- /_MG/J(r)dS—E/erdS, (16)
k Q 2 Ja

mzl\/E/M(r)dS+1/rdes, (17)
kV e Jo 2 Ja

where the integration is performed over the surface of the scatterer €2. In contrast to other brute
force methods, SIE naturally provides the effective magnetic and electric currents as an essential
part of its solution strategy. In standard implementations of, for instance, FDTD modeling,
retrieving these currents with enough numerical accuracy would itself be a challenge. On a
standard FDTD Yee grid, these inaccuracies arise from the approximation of curved boundaries
into discretized Cartesian grids, as well as from the fact that, in general, the field components and
their derivatives are not sampled right on the boundary. Consequently, right at object boundaries
large inaccuracies of local fields, fluxes and currents are obtained unless one uses specially
improved FDTD algorithms [33]. The definitions of the RWG basis functions imply that

/ £,(r)dS =L, —rh), (18)
T++T—

/ r x f,(r)dS = (L,/6)(p, — p,) X (r2+13), (19)
T++T—

where r;~ and r," are the centroid vectors of the two triangles that share node n, L, is the
length of the shared line between the two triangles, and finally r, and r; are the vector positions
of the shared vertices of the two triangles. Inserting these results into the discretized form of
equations (16) and (17) allows one to retrieve p and m in terms of the coefficients «,, and B,:

. N N
p= %W; L, —ra, — % Z(Ln/6)(p; —p;) X (Tna+Tn3) B, (20)

n=1

. N 1 N
m = %E D LaT —EDB+ 5 Y (La/6) By = P) X (Fax 4 Fag)ety. 1)
n=1 n=1

Both the electric dipoles p arising from the effective magnetic currents and the magnetic dipoles
m arising from the electric effective currents depend on the choice of origin. One of the potential
advantages of the effective current approach over the VSH approach is that one can find the
dipolar contributions of single scatterers in close proximity to other scatterers, for instance when
examining the physics of multi-element plasmon antennas. Furthermore, one can even envision
that one could calculate the multipole moments for structures close to an interface or inside
lossy environments, while this is certainly not possible with the VSH approach.
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2.3. Polarizability tensor retrieval

For both the VSH retrieval method and the direct current-base retrieval method, the electric
dipole moment p and the magnetic dipole moment m are retrieved given a particular incident
field. Motivated by recent developments in the field of metamaterials, we propose retrieving
polarizability tensors that specify the response for any incident field, rather than induced
moments for a particular incident field. We focus on objects with an electric and a magnetic
dipole response, which we expect to be fully captured by a 6 x 6 polarizability tensor [21]:

(rﬂ) - (EI> - (o—gg i ) | (ﬁ) ~ (22)

In this tensor the upper diagonal 3 x 3 block a is the usual electric polarizability tensor, while
the lower diagonal block &y is the magnetic polarizability tensor. The off-diagonal blocks
represent magneto-electric response, i.e. the electric (magnetic) moment that might be induced
through magnetic (electric) driving. This form of the polarizability tensor is commonly used in
the field of bi-anisotropic and chiral media [34]. Evidently, one should choose six independent
incident conditions, retrieve the induced moments and apply matrix inversions to obtain

inc inc\ ~!
m; --- Ing H1 ce H6

In our work, we use as incidence conditions standing waves constructed as plane waves incident
from opposing Cartesian directions. To construct six independent conditions, we use the three
Cartesian axes as incident directions, each with two orthogonal polarizations (also along the
Cartesian axes). Due to the fact that SIE rigorously respects the linear superposition principle,
this choice of incidence conditions is immaterial for the final result. Although this choice is
entirely arbitrary, it has the esthetic appeal of corresponding exactly to each one of the six
Cartesian basis vectors used for the driving fields. It is well known that although the choice of
the basis vectors will affect the resulting a-tensor, the different retrieved tensors are related by a
unitary rotation matrix consistent with the basis choice. As a final note on the retrieval protocol,
we add that the definition of origin that is chosen to refer the dipole moments to, is a non-trivial
matter, due to the well-known dependence of electric and magnetic dipoles on the choice of
origin (more precisely, the contributions to the electric dipoles created by magnetic currents and
to the magnetic dipoles created by electric currents depend on origin). We have made use of
the Onsager relations that the polarizability tensor has to fulfill due to reciprocity [21]. Onsager
relations in particular state that the upper diagonal and lower diagonal cross-polarizabilities are
each other’s negative transpose. Accordingly, we choose the origin for both retrieval algorithms
as the position for which the sum o gy + &€ £ is minimum.

3. Benchmark of vector spherical harmonics and effective current density a-retrieval

In order to benchmark the retrieval of the polarizability tensor, we consider an entirely known
object, i.e. a Mie sphere. We focus on a sphere that has both a dielectric and a magnetic
response in order to benchmark both the electric and magnetic dipole retrieval. We compare
with the rigorous theoretical values for electric and magnetic polarizabilities given by the Mie
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100 1000

Wavelength (nm)

Figure 1. Magnitude of the electric and magnetic polarizabilities for a bead
of 10nm radius, with € = €goq and p = 4. The polarizabilities are calculated
using a VSH expansion of the scattered fields, with the use of effective currents
(currents) and finally based on the theoretical Mie expansion of a sphere. The
electrical polarizabilities are divided by 4 €, while the magnetic polarizabilities
are divided by 4 so as to have dimensions of volume.

coefficients (labeled here as ¢[™ and c{*) [35, 36]:

_ 6rricoc™ <
@y = ——— 5, 24)
0
6 : TE_
@ =y (25)

k
For our benchmark, we fix © = 4 and set € equal to the dielectric constant of gold as fitted by
Etchegoin et al [37]. While these values do not represent any currently physically realizable
object, these values allow us to assess whether we can accurately separate electric and magnetic
dipole moments. We use a fixed discretization of the sphere surface by 572 nodes composed of
1241 triangles. While the vertices of the mesh are exactly located on the assumed nanoparticle
radius of 10 nm, we note that the triangulated surface is entirely located within the assumed
sphere. For this reason, SIE simulations effectively underestimate the sphere size, to a degree
that reduces with increasing number of nodes. We quantify the effective radius by calculating
the mean distance from the center of the sphere to the surface of the meshing triangles.
For the particular meshing conditions used here, the effective radius is 9.96 nm, which we use
in the Mie calculations to which we compare the SIE results. In figure 1, we plot the diagonal
elements ag,, and apy, of the polarizability tensor over the wavelength range from 100 to
4000 nm. For both the VSH projection and the equivalent current retrieval, there is excellent
correspondence between the retrieved dipole, moments and the polarizabilities predicted by
equations (24) and (25). The origin used for the retrieval was found to coincide with the center
of the sphere, as expected based on symmetry. The error between the VSH retrieval procedure
and the theoretical dipole moments is less than 0.1% throughout the whole wavelength range
of the simulation. This agreement is only possible due to the precision of the discrete spherical
harmonic transformation over the sphere (taken here to have a radius of 10 «m), and of course
also to the extremely good convergence of the SIE method. Furthermore, this almost perfect
agreement to the theoretical values spans all the way to wavelengths equal to the diameter of
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the sphere. This agreement is hence beyond what is needed for metamaterial analysis where
wavelengths around five to ten times bigger than the structures are commonly used. When
examining the current retrieval procedure, we find that the error between the effective currents
retrieval and the theoretical electric dipole moments is less than 0.006% at 4000 nm and grows
monotonically up to 1% at 100 nm wavelength. For the magnetic dipole, it is 0.03% at 4000 nm
and 8.7% at 100nm. The difference between the rigorous values and those extracted from
the effective currents method is due to the fact that the current-to-dipole expressions used
in the current retrieval procedure (equations (16) and (17)) are only valid for krp,<1 as
explained by Jackson [25]. These two equations, which are the equations commonly used in the
metamaterial field [38—40], derive from exact formulae (9.167 and 9.168 in [25]) by replacing
the involved spherical Bessel functions with their small-argument asymptotes. Therefore, the
effective current method is only expected to be accurate for r < /27 (i.e. kr ~ 1). The error
is thus not a numerical error but an error due to a poorly met approximation. This error, and
whether it is larger for p than for m or vice versa, depends not only on the size of the scatterer
but also on the specific weighting given by the current distribution. In contrast, the VSH retrieval
through fields is valid for arbitrary frequency and arbitrary size of the radiating object.

The VSH retrieval method can be downloaded from our webpage, to be used with
the fields calculated with any full-wave maxwell solver (www.amolf.nl/research/resonant-
nanophotonics).

4. Polarizability retrieval applied to Kerker’s paradox of zero-forward scattering spheres

As a more challenging benchmark, we also consider magnetoelectric spheres where material
parameters are set to the very special condition that is the subject of Kerker’s paradox raised
in [1] and resolved in [2]. It was first noted by Kerker [1] that at a particular combination of €
and pw, spheres appear to have zero-forward scattering, yet non-zero extinction. This apparent
paradox that occurs for very small spheres when € = (4 — )/(2u + 1) gained new interest in
the framework of cloaking and invisibility [41, 42]. Alu and Engheta [2] showed that these
spheres indeed have very low yet non-zero forward scattering, thereby complying with the
optical theorem. The almost zero-forward scattering results from destructive interference in the
forward direction of the radiation of the generated electric dipole and magnetic dipole moments.
Here we reproduce three of the examples studied by Alu [2], using the SIE method (see figure 2),
and retrieve the polarizability tensor. First, in figure 2 the bistatic scattering cross section or
differential scattering efficiency is plotted for the spheres treated in [2]. The spheres have
different radii @ = A/100, A /20 and A /4. The permeability of the three spheres is © = 3 while
the permittivity is € = 0.143, 0.121 and 0.315. It should be noted that for larger spheres, the
condition of minimal forward scattering is shifted away from the criterion € = (4 — )/ 2u +1).
The calculated efficiencies are in excellent quantitative agreement with the values reported by
Alu [2]. It is evident that the forward scattering for the three spheres is close to zero. We report
as a table in figure 2(b) the retrieved values of o expressed in units of > for all the three cases,
as extracted from the VSH method and expressed in units of the particle radius cubed. All off-
diagonal elements are at least 10° times smaller than the diagonal elements, i.e. zero within
numerical precision. The retrieved polarizabilities are isotropic to within 0.1%. We therefore
only report the mean diagonals oz and ay . Evidently, for all three spheres the condition p = —m
required for complete destructive interference in the forward direction is almost met, consistent
with the conclusion derived in [2] and [1] that this is a necessary condition for zero-forward
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Figure 2. Differential scattering efficiency (bistatic scattering cross section/ma?)
for a parallel and perpendicular scattered field from three different magneto-
electric spheres of radius ‘a’, as studied in [1]. The first sphere has € =0.143
and p = 3; the simulation is done at A = 100a. The second sphere has € = 0.121
and pu = 3; the simulation is done at A = 20a. The third sphere has € = 0.315 and
i = 3; the simulation is done at A = 4a. The table shows the retrieved values of
o expressed in units of a* for all the three spheres, as extracted from the VSH
method and expressed in units of the particle radius cubed.

scattering. For increasing sphere size compared to the wavelength, the imaginary part of the
diagonal elements of the tensor increases due to radiation damping. For the largest sphere, p
deviates noticeably from —m, and forward scattering is noticeable.

This benchmark shows the usefulness of SIE to simulate magneto-electric scatterers with
very high precision, and suggests that the retrieved a-tensor can be used on more complex
systems to gain insight into the problem beyond that usually obtained from just brute force
calculations.

5. Split ring polarizability

In the metamaterial community, the performance of a material is usually quantified through
effective responses € and . However, the fundamental parameter underlying the effective € and
w 1s the a-tensor of the metamaterial building block, which is much less frequently studied. Here
we use the benchmarked code to understand a single plasmonic magneto-electric structure and
use this understanding to design a more complex antenna based on the unit cell characteristics.

Split rings are the archetypical structures used for metamaterials, and extensive literature
has been devoted to explain the response of this structure [43—45] in terms of LC resonators.
Here we report the full polarizability tensor of split rings resonant at 1.5 wm. We consider a gold
split ring with dimensions of 30 nm height, 200 nm length and 200 nm width with a central hole
of 140 nm by 80 nm. In our simulation, the split ring is placed in a homogeneous environment
with € = 1 and p = 1 and the surface discretization used consists of 774 nodes.
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Figure 3. (a) Total scattering cross section of a split ring with width = 200 nm,
length = 200 nm, height =30nm and an inner hole of 80 x 140 nm. The inset
shows a model of the split ring used. (b) Total scattering cross section of a split
ring for different angles of incidence of circularly polarized light with right-
handed polarization o+ and left-handed polarization o —.

Figure 3(a) reports the total scattering cross section upon excitation by a plane wave with
polarization of the electrical field in the x-direction and the k vector directed in the negative
z-direction. The response of the split ring presents two resonant peaks in the wavelength range
studied, i.e. from 400 to 1700 nm. The first resonance is centered around 1544 nm with a width
of 124 nm and the second resonance is centered at 689 nm with a width of 44 nm, in excellent
agreement with experiments and FDTD simulations [46]. The first resonant peak is also called
the LC resonance as described in [46]. This resonance has a calculated maximum total scattering
cross section of 0.13 um? in very good agreement with measured data, which show an extinction
cross section of 0.3 um? with an albedo of 30% [46, 47]. We focus on this fundamental
resonance and its scattering characteristics, choosing the wavelength of 1544 nm for retrieval
of the polarizability tensor. At the split ring resonance, the quadrupolar terms contribute less
than 2% to the total extinction. Therefore, here we disregard any higher multipolar terms. The
center used for the retrieval was found to be —25nm from the geometrical center in the y-
direction, i.e. closer to the base of the split ring. The SIE dipole polarizability retrieval procedure
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allows us to quantify both the diagonal values in the polarizability tensor and the crosscoupling
between the magnetic and electric moments. We find the following values for the VSH and

effective current retrieval procedures, where V denotes the geometrical volume of the split ring
(V =6.33 x 10~* um?).

Elements of o VSH Eff. currents
ap, /(4nVep) —1.38+10.471 0.32+10.87i
ap /(4nVep) 1.52+0.10i 1.53+0.101
ag /(4 Ve) 0.11i 0.12
gy, /(4nV/c) —2.83 —0.41i —2.92+0.044 (26)
ayg, /(4T V/Z) 2.85+0.48i 2.92 —0.00i
ay /(4rV) —0.01i —0.01
oy /(4mV) 0 0

ay /[(4nV) —0.15+0.781 —0.02+0.791

All the other values in the polarizability tensor are 10~ below af_ . Both retrieval procedures
indicate that the scatterer has magneto-electric nature given the values of the magnetic and cross
polarizabilities. The difference in magnitude between both retrieval procedures is maximally
16%. Based on the MIE calculations, we already saw that the VSH retrieval procedure is
accurate, whereas the common current-based definition is fundamentally limited and only valid
for small objects of size r < A/2m. This condition is not met for the split ring. Therefore, we
will focus now on the values retrieved with the VSH procedure. The electric polarizability for
the p, oriented dipole af, is the largest polarizability in this structure, and is well in excess
of the physical particle volume. Thereby the split ring is very much like a strongly plasmonic
particle. That the retrieved g, is mostly imaginary confirms that A = 1544 nm corresponds
to resonant driving. The magnetic polarizability for the m, oriented dipole o is 13 times
smaller than the electric polarizability. The off-diagonal values &gy, and oy significantly
exceed the magnetic polarizability. We note that the retrieval very well confirms fundamental
constraints on the cross polarizabilities. In particular, the cross polarizabilities are the negative
of each other to within 2%, as fundamentally expected from Onsager relations. Also the phase
relations arg(ogpy,. /g, ) = /2 and arg(ay /oxg,) = 0 are satisfied to within 0.06 rad. These
phase relations are consistent with the LC-circuit intuition that if a magnetic response arises
through electric driving, i.e. through cross polarizability, it must lag by a quarter wave, as it is
due to relaxation of the charge that accumulates in response to E across the capacitor. Finally,
we note that ayp, =i,/ ag, to within 0.4%. These data comply excellently with [45],
which claims that for planar scatterers that can be described by a circuit model the « tensor
must have ‘maximally strong’ cross coupling. The numerical values that we retrieve are in
reasonable accordance with experimentally retrieved values [45], which were reported to be
approximately |xg |=6.4V, |y |=0.9V and |xyg | =2.1V. That the split ring in our
model is comparatively even less magnetic than extracted in experiments is likely due to either
one of two causes. Firstly, the split ring resonator (SRR) response depends sensitively on
geometrical details such as the exact gap size and the rounding assumed for approximating the
SRR shape. The SRR that we model is comparatively thin and rounded compared to the SRRs in
experiments. Secondly, in the experiments the polarizability was retrieved rather indirectly, from
a comparison of SRR array transmission to a lattice summation model. The fact that SRRs were
located at an air—glass interface was disregarded. At a dielectric interface, polarizabilities can
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be significantly renormalized [48]. A strong response in the « gy cross-coupled polarizability
elements implies that the structure possesses optical activity as explained in [45]. Indeed
figure 3(b) shows strong optical activity for the split ring, as evidenced by the change of
total scattering cross section for right- and left-handed circularly polarized light excitations at
different incident angles. Thereby SIE confirms the optical activity expected for any magneto-
electric scatterer with a magneto-electric cross coupling term in its a-tensor [45]. The angle
of maximum optical activity fyax 1S consistent with the right eigen-vectors found from the
diagonalization of alpha. Indeed, we find that the maximum response of this structure occurs
for an eigen-excitation with E = (0.964, 0, 0) E, and H = (0, 0, 0.0093 — 0.2641) E/ Z, and the
minimum response occurs when E = (0.00396 — 0.261i, 0, 0) Ey and H= (0,0, 0.965)E,/Z
(where Z is the characteristic impedance of free space). These excitations require a phase
delay between E, and H, that can be generated by using an easily experimentally achievable
circularly polarized plane wave under oblique incidence. Furthermore, it is straightforward to
calculate that the maximum coupling of a circularly polarized plane wave with a split ring of
polarizability as in equation (26) should occur at a polar angle ~20° whose full-wave SIE indeed
shows as the angle of maximum scattering.

6. Single split ring as a magnetic dipole converter

One of the most exciting features of plasmonic antennas is that since the plasmons are a
combined oscillation of the optical fields and the free electrons in the metal, their resonances
can be confined to very small modal volumes [3]. These small modal volumes make plasmonic
antennas perfect candidates for coupling to single emitters since local fields and LDOS are
enhanced [49]. Some of the functionalities that have been already experimentally proven for
single emitters coupled to these antennas are change of polarization of the emitted field by using
rod antennas [50] and directionality in the emission of the emitter through the use of Yagi—Uda
antennas [51]. We present calculations of the interaction between a single emitter and an
SRR.

A technical issue is that the field of a dipolar source driving the scatterer is singular at
the position of the emitter. Therefore, unless a very fine discretization is used simulations
are prone to large numerical errors. This holds for virtually any brute force method. In the
case of SIE, this problem occurs when calculating the values of ¢ (see equation(10)) for
fields coming from a dipole in close proximity to the scatterer. However, since the field
of the dipole source is given by the Green function of the environment, we can follow a
similar procedure to equations (11 and 12), in which the integral over G(r, ry) is separated
into a smooth G(r, ry)s and a singular part G(r, ro)ns, leading to the following equation
for g:

fs,,, dS (@’ o) (G(ro, r)s + G(rg, r)ns) - £, (r) - p, m=1,..,N,
[, dS(@)(V(G(ro, )s + G (rg, )xs)) X £,y (X)) -p, m=N+1,...,2N,

27)

where we used equation (10) and the fact that G, r)T =G, r) and | (V x G, r) ' =-V X
G (', r) for the free space Green function [30], and the identity V x G(ry, r) = VG(rp, 1) x 1
([26, equation 28]). With o we denote the permittivity of the environment where the emitting
dipole is positioned. The smooth part can be calculated by a normal quadrature routine.
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The singular part can be calculated by using the integration of the RWG function found in [52],
1.e. by

Js, (@ p20) (2 (SRYT) — K3 (T;D)...

— L ERYT) — K (T

FEEIK; (5 — KIS -p, m=1, .. N
Js . dSG@)(GIK; (Sun) = SKL(Su-m)])-p, m=N+1,..,2N,

gns = (28)

where Klj (T,,) are the integrals defined in [52] that are performed over the triangle 7, or over the
surface S, linked to the triangle with the same index. After having found ¢, we find the strength
of the current densities J and M by finding «,, and 8, as already explained. It is important to note
that this same procedure can be used to find the scattered field at the source and thereby the local
density of states (LDOS) [53] when using SIE, avoiding the common problems encountered
when working with fields from a dipolar emitter close to scattering structures.

We performed simulations of an electric dipolar emitter located at different distances to
the split ring and also at a fixed position in the middle of the split ring for different orientations
of the emitter. Figure 4(a) shows the calculated electric and magnetic dipole moments found
from just the scattered field of the split ring for different distances of the emitter to the center
of the split ring. In other words, we calculate the induced dipole moments in the antenna. The
induced electric dipole is given in units of the emitter dipole strength (pg), while the units
of the magnetic dipole are given in terms of poc. With this choice of units we can compare
the magnetic and electric dipoles directly, since the magnitude of the radiated power produced
by an electric dipole with strength py is the same as that generated by a magnetic dipole with
strength poc. Figure 4(a) shows that when the dipole is far from the split ring, the induced dipole
is fairly weak. Therefore, the total system emits only with an electric dipolar nature given by
the emitter itself. As the emitter gets closer to the split ring to within 230 nm, the total electric
dipole moment of the system increases to exceed that of just the emitter, as expected for a high
local density of states position near a plasmonic structure. Furthermore, the nature of the lumped
system starts to acquire magnetic character to the point that 30% of the emission is of magnetic
nature. In the bottom part of the graph, we see that the phase of the driven electric dipole when
the emitter is in close proximity to the split ring (50 nm from the geometrical center of the split
ring) is delayed by /2, as expected for a structure driven on resonance. On the other hand the
magnetic dipole is in phase with the driving emitter, 77 /2 advanced with respect to the induced
electric dipole. This is expected from [21] since a. = i,/agay in the polarizability tensor of a
split ring.

In a subsequent calculation, we have placed the electric dipolar emitter at the position of
maximum radiative LDOS, i.e. 0.05 um from the center of the split ring, and we varied the
orientation of the dipole. From the total scattered plus emitted field of the lumped system, we
calculate the effective dipole moments of the complete system. Figure 4(b) shows the electric
and magnetic dipole moments as a function of the orientation of the electric emitter, where
the emitter orientation is rotated around the z-axis that points through the split ring plane.
It is evident that the coupling to the structure only occurs for the x-component of the dipole,
i.e. when p, from the emitter couples to ag, of the split ring. The maximum total electric and
magnetic dipole moment occurs when the dipolar emitter is aligned with the x-axis. For this
alignment, p, < 0.005p, is essentially zero, while p, = 15.1py and m, = 4.9 poc. This result is
commensurate with the relative magnitude of the purely electric and cross-coupled polarizability
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Figure 4. Single emitter in the vicinity of a split ring. In (a) we show the
calculated dipolar moment of the scattered field for different distances to the split
ring center. In (b) we show the dipolar moment of the total field (scattered field
plus single emitter field) for different orientation angles of the single emitter in a
position 0.05 um from the center of the split ring. The angles are rotated around
the z-axis and therefore the x and y electric dipoles are shown as well as the z
magnetic dipole. The other components of the electric as well as the magnetic
dipoles are negligible in magnitude. In (c) we show the scattered field pattern
of a split ring excited by an electric dipolar emitter at the position on maximum
coupling. The electric field magnitude |E|? is calculated at a radius of 100 um
from the center of the split ring. The red continuous line shows the field in the
plane ‘xy’ and the blue dashed line shows the field in the plane ‘yz’. In (d) we
show the calculation of the normalized total and radiative LDOS for different
positions in a line along the y-axis through the center of the split ring.

of the split ring in equation (26), indicating that the dipolar scattering approximation of the
split ring can be used for dipolar emitter excitations while still obtaining an agreement of
85% with the full-wave calculation. It is important to note that this agreement is dependent
on the distance of the emitter to the split ring, since dipolar emitters in close proximity to a
plasmonic structure (typically < 20 nm) can increasingly excite higher multipolar moments of
the plasmonic structures due to the strong gradients in the exciting fields [54]. When the dipolar
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emitter is aligned with the y-axis, i.e. rotation angle /2, then p, = 0.44p,, p, =0.12p, and
m, = 0.04 poc. This result indicates, first, that p, hardly induces a magnetic dipole and, second,
that this position has a local density of states for y-oriented dipoles lower than free space.
Figure 4(c) shows a polar plot of the far-field intensity distribution of the scattered field for a
split ring, excited with a dipole located at the position of maximum coupling and aligned along
the gap of the split ring, i.e. along the x-direction. The | E|* distribution is evidently different
from that of an electric dipole, since on the one hand the emission is asymmetric in the y-axis
due to the front-to-back asymmetry of the split ring, and on the other hand the emission in the
x-axis is different from zero, evidencing the partial magnetic nature of the scatterer. Finally
in figure 4(d), we show the calculated total and radiative LDOS normalized to the vacuum
LDOS. The calculations are done for different positions on the y-axis along a line that starts
at the center of the split ring. The maximum total and radiative LDOS occurs at a position
~50nm away from the center of the split ring. While at this position the total LDOS for an
x-oriented dipole is ~75p, the radiative LDOS for an x oriented dipole is ~252.7py. This
radiative LDOS is consistent with the generated total electric dipolar moment of 15.1p, and
the magnetic moment of 4.9 pyc for the lumped system. These values for the dipole moments
indicate a radiative LDOS enhancement of (p*+m?)/p2 = 252. The fact that the total LDOS is
three times the radiative LDOS is consistent with experimental measurements of the albedo of
~30% measured for a single Au split ring by Husnik et al [47]. The relative magnitude of the
total versus radiative LDOS indicates that the quantum efficiency of the system is n ~ 33%.

7. Split ring array antenna

Having understood the split ring as a system composed of an electric and a magnetic coupled
dipole moment whose maximal response to circularly polarized plane waves occurs for a certain
polar angle Oyax, and having studied the way in which electric dipoles couple to single split
rings, we turn to the design of an array of split rings and to the study of the special properties
that arise from it. In our design, we combine two of our earlier results. Firstly, figure 3 shows that
the purest handed response is obtained at an off-normal incidence of 20°. Secondly, excitation
of a split ring array with a single molecule is most advantageous when placed 50 nm from
the geometrical center and with a dipolar orientation along the gap. In addition, we know
from [22, 23, 51, 55] that one can attain directionality in the scattering of arrays of particles
by placing them in a linear array with a pitch of ~A /3. Our design combines these three ideas in
an array of five split rings tilted at 6y;ax and excited by a dipolar emitter in the central element.
Figure 5(a) presents the scattering pattern of the antenna which clearly shows directivity in its
scattering, with scattered fields confined in a half angle < 40°. By studying the complex fields
obtained from the front and back scattering from the antenna, we can retrieve the polarization
and plot it on the Poincare sphere, see figure 5(b). We find right-handed elliptically polarized
light emanating from the front of the antenna (depicted by the blue point in figures 5(a) and (b))
and left-handed elliptically polarized light emanating from the back of the antenna. Both fields
have an electric field seven times stronger in the x-direction than in the y-direction and the
major axis of the ellipse is aligned with the x-axis. Thereby, metamaterial antennas allow new
forms of control over emission compared to plasmon antennas. We foresee that with split rings
with a stronger magnetic polarizability term, it would be possible to reach a totally circular
polarized light regime. Reaching stronger magnetic polarizability currently seems easiest at
mid-infrared and microwave frequencies [45]. We foresee interesting applications especially
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Figure 5. (a) Scattered field pattern of a split ring array antenna showing
directionality in its scattering. The antenna is excited with a unit dipole
positioned at 50 nm from the center in between the arms of the central split ring
in the array. The field is calculated at a sphere 100 um from the center of the
antenna. The solid line shows |E|? in the plane zx and the dashed line shows
|E|? in the plane zy. (b) Depiction of the polarization state of the scattered field
of the array antenna found on the forward (blue) and backward direction (red).
(c) Cartoon model that shows the positioning of the electric dipole on the split
ring array antenna as well as the angled relative positioning of the split rings.

if one can reach this at optical frequencies. In this regime one could envision using split ring
antennas to generate a single-photon source from a simple linear electric dipole emitter, or from
a localized x® nonlinear material that emits its photons in handed beams, or split into two
narrow beams, where handedness and direction are entangled.

8. Conclusions

We have made use of the SIE method to retrieve the polarizability tensor of scatterers. This
retrieval is performed in two different ways. The first method consists of a VSH projection of
the scattered fields, which yields extremely good precision for any wavelength and size of the
scatterer, thanks to the aid of a discrete harmonic transform on the sphere. With the second
method, based on effective electric and magnetic surface currents, we can successfully retrieve
the polarizabilities of small scatterers with the advantage that this retrieval can be done on
non-isolated structures. We have used the lumped system of a dipolar emitter and a split ring
to show how the radiation nature of the system changes drastically from a simple electrical
dipole emitter. In the lumped system the emission is modified by the scattering of the split ring,
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which can imprint its magneto-electric nature on the emission. This realization further extends
current research efforts that have shown how emission from a single electric dipole transition
in a quantum dot can appear as if it originates from a multipole transition by strong coupling of
the emitter to a plasmon antenna multipole resonance [56]. Also, such magnetic and magneto-
electric antennas may enhance the magnetic LDOS that magnetic transitions are sensitive to, as
recently shown for rare earth ions near an interface [24]. Finally, we used our understanding of
split rings to design an array antenna that splits emission from a point source into two beams
of oppositely handed elliptical polarization. For ultimately strong magnetic scatterers, these
findings might provide new ways of manipulating spins via light, and enhance enantioselective
spectroscopies in the near field [57, 58].
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