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SUMMARY

Cytoskeletal remodeling is essential to eukaryotic
cell division and morphogenesis. The mechanical
forces driving the restructuring are attributed to the
action ofmolecularmotors and the dynamics of cyto-
skeletal filaments, which both consume chemical
energy. By contrast, non-enzymatic filament cross-
linkers are regarded as mere friction-generating
entities. Here, we experimentally demonstrate that
diffusible microtubule crosslinkers of the Ase1/
PRC1/Map65 family generate directed microtubule
sliding when confined between partially overlapping
microtubules. The Ase1-generated forces, directly
measured by optical tweezers to be in the piconew-
ton-range, were sufficient to antagonize motor-pro-
tein driven microtubule sliding. Force generation is
quantitatively explained by the entropic expansion
of confined Ase1 molecules diffusing within the
microtubule overlaps. The thermal motion of cross-
linkers is thus harnessed to generate mechanical
work analogous to compressed gas propelling a
piston in a cylinder. As confinement of diffusible pro-
teins is ubiquitous in cells, the associated entropic
forces are likely of importance for cellular mechanics
beyond cytoskeletal networks.
INTRODUCTION

Diffusion, originating from the random, thermal motion of mole-

cules, is one of nature’s most important transport mechanisms.

It can be exploited for the generation of directed forces when the

molecules are spatially confined. An every-day example is a gas

spring, where the expansion of a gas compressed in a cylinder

can be understood as an entropy-driven process that maximizes

the total number of microscopic states the system can adopt.

We here ask if, analogously, subcellular mechano-systems like

cytoskeletal networks, can harness the entropic forces arising

from the confinement of diffusible molecules.
In many cellular systems, the molecules are not confined to

three dimensions, but rather to two dimensions or even to one

dimension. A prominent example of the latter is the diffusion of

proteins along microtubules (Helenius et al., 2006). Moreover,

the ends of microtubules have been shown to constitute diffu-

sion barriers for proteins involved in forcefully tethering kineto-

chores to the shrinking ends of depolymerizing microtubules

(Asbury et al., 2006; Gestaut et al., 2008; Powers et al., 2009),

as well as for diffusible microtubule crosslinkers (Braun et al.,

2011). An example of a diffusible microtubule crosslinker is

S. pombe Ase1 (a member of the Ase1/PRC1/Map65 family),

which is believed to stabilize bipolar microtubule arrays. Ase1 lo-

calizes to the anti-parallel microtubule overlaps in themidzone of

the mitotic spindle during anaphase (Yamashita et al., 2005) and

to the anti-parallel microtubule overlaps of the interphase micro-

tubule array (Loı̈odice et al., 2005). While forces generated by

molecular motors and dynamic microtubules are believed to be

the main contributors to the remodeling of both of these bipolar

microtubule structures (Civelekoglu-Scholey and Scholey, 2010;

Janson et al., 2007; Peterman and Scholey, 2009), bipolar micro-

tubule arrays are destabilized and break down in the absence

of Ase1 (Loı̈odice et al., 2005; Schuyler et al., 2003; Yamashita

et al., 2005). Since Ase1 crosslinkers slow down microtubule-

microtubule sliding (Braun et al., 2011; Janson et al., 2007),

friction forces by microtubule-bound Ase1 may thus be required

to balance motor forces within networks. Still, because Ase1 can

diffuse in the confined space of microtubule overlaps (Braun

et al., 2011; Kapitein et al., 2008), we reasoned that Ase1, apart

from generating friction, might also generate entropic forces.

We here devised a well-controlled experimental assay to

confine small numbers of Ase1 diffusible crosslinkers in between

two partially overlapping microtubules. Using total-internal

reflection fluorescence (TIRF) microscopy, we showed that the

entropic expansion of the confined crosslinkers is strong enough

to induce the directed sliding of the microtubules with respect to

each other. We directly measured the entropic forces generated

by Ase1 in the expanding overlaps using optical tweezers and

found them to be in the piconewton (pN) range. This suggests

that the entropy of the crosslinkers in an overlap can generate

biologically relevant forces that are on the same scale as forces

induced by microtubule-crosslinking motor proteins. To test this

hypothesis, we employed kinesin-14 motor proteins and found
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Figure 1. Entropic Expansion of Diffusible Ase1-GFP Crosslinkers

Induces the Directed Sliding of Partially Overlapping Microtubules

(A) Schematic representation of Ase1-driven sliding of a transport microtubule

(red) along a surface-immobilized template microtubule (orange).

(B) Typical time-lapse fluorescence, multichannel micrographs showing the

positions of a transport microtubule (red channel) as a function of time before

and after flow-induced compression of Ase1-GFP (green channel) within a

microtubule overlap. Prior to imaging, free Ase1-GFP was removed from so-

lution. Schematic diagrams illustrate the positions of the microtubules before

and immediately after the application of the hydrodynamic flow, as well as at

the end of the experiment. The end of the template microtubule is indicated by

the dashed line.

(C) A gas spring, the macroscopic analog of the molecular Ase1-microtubule

system, expands when the external load is decreased.

(D) Extended kymograph showing multiple cycles of the experiment described

in (B). Time points and direction of flow application are indicated by the vertical

arrows. Asterisks indicate the time of the snapshots presented in (B). The

end of the template microtubule is indicated by the dashed line. Regions with

enhanced localization of Ase1-GFP signal correspond to the microtubule

overlap. See also Movie S1.
that motor-driven microtubule-microtubule sliding could indeed

be reversed by the addition of Ase1. We quantitatively describe

the force generation by Ase1 by a statistical-mechanical model,
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which predicts the expansion force to follow the ideal gas law.

Taken together, our results show that Ase1 diffusible cross-

linkers confined between partially overlapping microtubules

create a pressure, analogously to gas molecules confined in a

cylinder by a piston. Our results are a demonstration of the unex-

pected effects entropy may have in cells. We suggest that forces

generated by diffusible crosslinkers of the Ase1/PRC1/MAP65

family are likely of importance in the midzone of the mitotic

spindle, where they may regulate the motorized sliding of anti-

parallel microtubules.

RESULTS

Entropic Expansion of Diffusible Ase1-GFPCrosslinkers
Induces the Directed Sliding of Partially Overlapping
Microtubules
To study force generation by confined Ase1 crosslinkers in vitro,

we generated overlapping microtubules by (1) immobilizing dimly

rhodamine-labeled ‘‘template’’ microtubules on a coverslip, (2)

allowing 50 picomolar (pM) Ase1-GFP to bind diffusively to the

immobilized template microtubules, and (3) flushing in brightly

rhodamine-labeled ‘‘transport’’ microtubules to bind to the tem-

plate microtubules using a solution without Ase1-GFP; this effec-

tively removed Ase1-GFP molecules that were not bound to the

template microtubules (Figure 1; Experimental Procedures). We

then applied hydrodynamic flow of assay buffer without Ase1-

GFP to slide the transportmicrotubules along the templatemicro-

tubules, generating partial overlaps with reduced overlap lengths

(Figures 1A and 1B). Due to their high affinity formicrotubule over-

laps, as compared to their lower affinity for single microtubules

(Braun et al., 2011), the diffusible Ase1-GFP molecules did not

leave the overlap regions during this process. The reduction in

the overlap lengths consequently led to an increasedconfinement

of the crosslinkers. As soon as the flow stopped, the overlap

lengths increased through directed sliding of the transport micro-

tubules (Figure 1B and Movie S1). During this expansion, the

confinedAse1-GFPmolecules redistributed themselvesuniformly

within the overlap regions by one-dimensional diffusion. Again, no

Ase1-GFP molecules were lost as evidenced by the constancy

of the integrated Ase1-GFP fluorescence intensity along the over-

lap regions (Figure S1B). Compression and expansion could be

cyclically repeated (Figure 1D and Movie S1), resembling the

macroscopic mechanism of a gas spring (Figure 1C).

Quantification of the Forces Generated by Ase1-GFP
Confined between Partially Overlapping Microtubules
Using Optical Tweezers
We quantified the forces generated by Ase1 confined between

partially overlapping microtubules by optical tweezers (Figure 2).

First, we formed microtubule overlaps in a similar manner as

in the previous experiment (Experimental Procedures). In the

absence of Ase1-GFP in solution, we attached a silica micro-

sphere to a transport microtubule by optical tweezers. Using a

piezo translation stage, we thenmoved the templatemicrotubule

in steps relative to the laser trap in the direction along the

longitudinal axis of the template microtubule, forming partial

microtubule-overlaps and compacting Ase1-GFP until the two

microtubules were pulled apart (Figures 2A, 2B, S2A, and S2B
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Figure 2. Quantification of the Entropic

Forces Generated by Ase1-GFP Confined

between Partially Overlapping Microtubules

by Optical Tweezers

(A) Schematic representation of the optical twee-

zers experiment. A trapped, NeutrAvidin-coated

silica bead (not drawn to scale) is attached to a

biotinylated transport microtubule (red). In order to

slide the microtubules relative to each other, the

template microtubule (orange) was moved by a

piezo translational stage, while keeping the center

of the laser trap at a fixed position.

(B) Typical multichannel kymograph showing the

movement of the dimly labeled template microtu-

bule (driven by the movement of the piezo stage)

relative to the trapped, brightly labeled transport

microtubule in the absence of free Ase1-GFP in

solution. The density of Ase1-GFP increased in the

shortening overlap. Approximately 2 min before

the separation of the microtubules, the movement

of the piezo stage was slowed down to obtain a

higher number of data points. The bleached spot in

the middle of the transport microtubule is caused

by the focused trapping laser. The region with

enhanced localization of Ase1-GFP signal corre-

sponds to the microtubule overlap. For snapshots

of the event see Figure S2A. See also Movie S2.

(C) Equilibrium bead displacements, correspond-

ing to the steady-state forces induced by the

confined Ase1-GFP in the overlaps, as function of

overlap length. Presented are ten independent

measurements. The inset shows the measured

forces as function of Ase1-GFP fluorescence in-

tensity in the overlap averaged for overlaps with

lengths between 0.6 and 0.8 mm (denoted by the

gray box in the main panel; same color-coding of

measurements). Overlap lengths and forces were

offset-corrected by assuming that the overlap

length is zero right before the microtubules were

pulled apart (dashed line) and that the force is zero

after the microtubules were pulled apart.
and Movie S2). After each step, we allowed the system to equil-

ibrate before measuring the force. We found that the force

increased with decreasing overlap length, reaching values up

to 3.7 ± 1.8 pN (average ± SD, n = 10) just before the two micro-

tubules were pulled apart (Figure 2C). The observed forces

increased linearly with increasing Ase1-GFP densities in the

overlaps as inferred from fluorescence intensities (Figures 2C,

inset, and S2C; Experimental Procedures).

Modeling the Ase1-Induced Expansion of Partial
Microtubule-Overlaps
To explain the origin of the observed forces generated by Ase1,

we analytically modeled the mutually exclusive binding of cross-

linkers to discrete binding sites along a single protofilament in

a microtubule overlap (Figure 3). For the case of a constant num-

ber of confined crosslinkers in the overlap; i.e., when no cross-

linkers bind into or unbind from the overlap (scenario as in

Figures 1 and 2), the entropic expansion force, F, acting on the

transport microtubule is found to be given by the one-dimen-

sional analog of the ideal gas law FLynkBT (Extended Results,

Text 1). Here, L is the overlap length and n is the number of
crosslinkers within the overlap, kB is the Boltzmann constant,

and T is the absolute temperature. This model predicts that the

force increases linearly with the density of the crosslinkers in

the overlap, as observed in our experiments (Figures 2C, inset,

and S2C). While a quantitative test of the predicted relation

between force and crosslinker density is not possible due to

experimental uncertainties in overlap lengths and protein

numbers, the range of maximum measured forces is predicted

correctly. The model predicts the generation of forces in the 1

pN range when the crosslinkers are maximally compressed

between two microtubule protofilaments, that is when all

binding sites within the overlap are fully occupied by Ase1.

Structural work on Ase1 homologs suggests that such high

densities of crosslinkers are indeed possible (Subramanian

et al., 2010). The observed maximal forces of 3.7 ± 1.8 pN

may indicate that multiple rows of Ase1 crosslinkers bind to

neighboring protofilaments in the overlap (Extended Results,

Text 1).

We next investigated whether entropic forces, in combination

with frictional drag exerted by the Ase1 crosslinkers, can also

explain the observed sliding velocities of transport microtubules
Cell 160, 1159–1168, March 12, 2015 ª2015 Elsevier Inc. 1161
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Figure 3. Ase1-GFP Entropy Together with

an Exponential Scaling of Friction Explain

the Expansion of Microtubule Overlaps in

the Absence of Ase1-GFP in Solution

(A) Schematic representation of the modeled

geometry. Microtubules are modeled as a one-

dimensional array of lattice sites. For the compu-

tational model, microtubule-Ase1-microtubule

links are simulated as harmonic springs, whose

ends can hop individually between neighboring

lattice sites. The spring constant is chosen

to match the measured diffusion rates of

Ase1-GFP on single microtubules and in microtu-

bule overlaps. Rate constants for crosslinker

binding and unbinding are in agreement with

the measured dissociation constants (Figures

S3A and S3B; Extended Results, Texts 1–4;

Table S1).

(B) Averaged velocities of Ase1-GFP induced

microtubule sliding as function of overlap length.

Shown are experimental data (red open circles,

95 events, 48 microtubules in experiments as

presented in Figure 1B), results from the analytical

model (gray dashed line, vMT = 2 DMT
Ase1=L with

DMT
Ase1 = 0:085± 0:007 mm2 s�1 assuming a con-

stant number of Ase1-GFP in the overlap), as well

as results from the computational model (gray

open circles, total of 24 simulation runs, parame-

ters summarized in Table S1). In the computational

model, the initial number of crosslinkers n0 and

initial overlap lengths L0 were chosen from the

experimentally observed range of n0 = 10, 20,

50, and L0 randomly between 0.1 and 30 mm,

respectively. The overlaps were allowed to expand

for at least 15 min. Solid red and black circles

represent the binned averages (±SD) of the

experimental data and the computational model,

respectively. Data points (overlap lengths ranging

from 0 to 30 mm) were binned in six equidistant

bins with a width of 5 mm.

(C and D) Typical time traces of overlap expan-

sions obtained from the computational model

(C, data as shown in Movie S3 and summarized in

Figure 3B) and from the experiments (D, data as

shown in Figure 1B and Movie S1 and summarized in Figure 3B). Different colors represent individual events. The variability in the time traces reflects the

stochasticity of the underlying force-generating mechanism.

(E) Results of the computational model predicting that friction increases exponentially with the number of crosslinkers. The diffusion constants of transport

microtubules on an infinitely long template microtubule were determined by computing their mean-square displacements as a function of time, for different

numbers of crosslinkers. Friction coefficients g were calculated from the computed diffusion coefficients D using g = kBT/D. The simulation parameters are

summarized in Table S1.

(F) Experimental results showing that friction increases exponentially with the number of Ase1-GFP crosslinkers, as inferred from the Ase1-GFP fluorescence

intensity integrated along the overlap region. Friction coefficients were calculated from the diffusion of single transport microtubules (Figure S3D and Movie S4)

by the same procedure as in (C). Friction coefficients (n = 56 diffusing microtubules) were binned according to the Ase1-GFP fluorescence intensity measured in

the overlap during the movement into four equidistant bins with the width of 4 AU (solid black circles represent averages ±SD).
in absence of external load (scenario as in Figure 1). The viscous

drag exerted by the solution was neglected due to its small

contribution at low velocities (Hunt et al., 1994; Tawada and

Sekimoto, 1991). We described the frictional drag coefficient g

of a single Ase1-microtubule link following the Einstein relation

g= kBT=D
MT
Ase1 (Einstein, 1906), where DMT

Ase1 is the diffusion

constant of a single Ase1 molecule on a single microtubule.

Assuming a linear dependence of the frictional drag on the num-

ber of diffusible crosslinkers (Tawada and Sekimoto, 1991),

the velocity of overlap expansion is given by vMT = 2 DMT
Ase1 / L
1162 Cell 160, 1159–1168, March 12, 2015 ª2015 Elsevier Inc.
(Extended Results, Text 2). This analytical expression, indepen-

dent of the number of crosslinkers in the overlap, qualitatively

reproduced the trend of the measured velocities (Figure 3B).

However, it overestimated the absolute values, suggesting that

friction might be underestimated in our analytical model.

Friction between Crosslinked Microtubules Depends
Exponentially on the Number of Crosslinkers
To explain the magnitude of entropy-driven sliding velocities

quantitatively, we set up a particle-based, computational model
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Figure 4. Overlap Expansion Slows Down in the Presence of Ase1-GFP in Solution

(A) Typical simulated time traces (computational model) of overlap length and number of crosslinkers in the overlap during microtubule sliding in the presence of

Ase1 in solution. At 0.1 nM Ase1 concentration, overlap expansion comes to an apparent stall before reaching full overlap (20 mm in this particular case). Model

parameters are listed in Table S1; the initial number of crosslinkers was 30. Different colors represent individual simulated events. The variability in the time traces

reflects the stochasticity of the underlying mechanism.

(B) Typical multichannel kymograph of Ase1-GFP driven sliding of a transport microtubule (red) in the presence of 17 pMAse1-GFP (green) in solution. In contrast

to experiments with a constant number of Ase1-GFP in the overlap (see Figures 1 and 3), sliding comes to a halt due to the increase in the number of Ase1-GFP

molecules, and thus the Ase1-GFP induced friction, in the expanding overlap. The region with enhanced localization of Ase1-GFP signal corresponds to the

microtubule overlap.

(C) Typical experimental time traces (out of 15 captured events) of overlap length and number of crosslinkers (data as presented in the kymograph in Figure 4B).

Different colors represent individual events. The variability in the time traces reflects the stochasticity of the underlying mechanism.
in which the microtubule-Ase1-microtubule links are described

as harmonic springs whose ends can hop between neighboring

binding sites within an overlap formed by two opposing protofila-

ments (Figure 3A; Extended Results, Text 3). The spring constant

of the individual microtubule-Ase1-microtubule links was esti-

mated from the about 8-fold lower diffusion coefficient of

Ase1-GFP in microtubule overlaps compared to Ase1-GFP on

single microtubules (Figure S3C). This computational model

yielded time traces of the overlap expansion that are in good

agreement with those measured experimentally (Figures 3B–

3D and Movies S1 and S3). Interestingly, our computational

model predicted that the total friction between two microtubules

increases exponentially, instead of linearly, with the number of

Ase1 crosslinkers in the overlap (Figure 3E). This non-linearity

explains why our simple analytical model overestimated the

sliding velocities.

To test the predicted exponential dependence of the friction

on the number of crosslinkers, we characterized the Ase1-

generated friction experimentally. We again formed microtubule

overlaps in a similar manner as in the previous experiments

(Experimental Procedures). In the absence of Ase1-GFP in solu-

tion, we observed the transport microtubules diffusing along the

template microtubules (Figure S3D and Movie S4). For each

transport microtubule that fully overlapped with a template

microtubule, we estimated the diffusion coefficient by deter-

mining the mean square displacement as a function of time.

Using the Einstein relation, we calculated the friction between

the transport and the templatemicrotubules.While a quantitative

comparison between simulations and experiments was not

possible due to experimental uncertainties in determining the

number of crosslinkers (Experimental Procedures), the experi-

ments confirmed the predicted exponential increase of the fric-

tion with the number of Ase1-GFP molecules as inferred from

fluorescence intensities (Figure 3F).
Ase1-GFP Condensation Slows Down the Overlap
Expansion
Experiments so far were performed in the absence of Ase1 in so-

lution. In this situation, the entropic force for overlap expansion

decreased with overlap length, as the available Ase1 was diluted

in the overlap (Extended Results, Text 1). However, in the pres-

ence of Ase1 in solution, the binding of new crosslinkers into fila-

ment overlaps, ‘‘crosslinker condensation’’, generates additional

forces for filament sliding (Lan et al., 2009; Peskin et al., 1993;

Zandi et al., 2003). Our analytical model predicts that, in the

presence of crosslinker condensation, a constant, length-inde-

pendent, driving force is obtained, analogous to gas being

continuously added into an expanding gas spring such that the

pressure remains constant (Extended Results, Text 1). However,

binding of additional crosslinkers also increases friction. The

analytical model, in which the friction increases linearly with the

number of bound crosslinkers, predicts that condensation of

new crosslinkers to the expanding overlap slightly increases

the velocity of overlap expansion, as compared to the case in

which overlap expansion is driven by entropy alone (Extended

Results, Text 1). In contrast, the computational model, in which

the friction increases exponentially with the number of bound

crosslinkers, predicts that binding of new crosslinkers to the

overlap rapidly brings overlap expansion to a standstill; while

crosslinker condensation keeps the driving force for overlap

expansion constant, the exponential increase of the friction pro-

hibits sliding (Figure 4A).

To test this prediction experimentally, we added assay buffer

with Ase1-GFP to partially overlapping microtubules. This re-

sulted in Ase1-GFP condensation into the overlap. We observed

that the microtubules slid slower as compared to the situation

without crosslinker condensation and that, in agreement with

our computationalmodel, they stopped sliding before full overlap

was reached (Figures 4B, 4C, and S4). Our computational model
Cell 160, 1159–1168, March 12, 2015 ª2015 Elsevier Inc. 1163
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Figure 5. Ase1-Induced Entropic Forces

Balance the Forces Exerted by Multiple

Ncd Motors

(A) Typical multichannel kymograph showing the

sliding of a transport microtubule (red) on top of an

immobilized template microtubule. Partial micro-

tubule-overlaps were formed in the presence of

312 pM Ase1-GFP (green) and 300 pM Ncd, re-

sulting in a force equilibrium between the Ncd-

motor generated force (acting in the direction of

decreasing overlap length) and the Ase1-GFP

entropic force (acting in the direction of increasing

overlap length). The region with enhanced locali-

zation of Ase1-GFP signal corresponds to the

microtubule overlap. See also Movie S5, left.

(B) At a constant Ncd concentration, the equilib-

rium overlap length increased with increasing

amounts of Ase1-GFP in the overlap (Pearson’s

correlation coefficient = 0.6, p = 0.004). The length

of microtubule overlaps was measured in events

as presented in Figures 5A and S5B, at the

moment when sliding had stopped (n = 25 events).

Ase1-GFP fluorescence intensity was integrated

along the overlap region at the moment when mi-

crotubules started to separate (denoted by vertical

white arrow in the kymograph in A). Solid black

circles represent the binned averages (±SD) of the

experimental data. Data points were binned in four

equidistant bins with a width of 20 AU.

(C) Results of the computational model showing

the positive correlation between the initial number

of crosslinkers (when the microtubules start to

separate) and the equilibrium overlap length. The

lengths of microtubule overlaps were determined

in events as presented in Figure S5C, at the

moment when sliding had effectively stopped. The

motor force wasmodeled as an external load on the transport microtubule that scales linearly with the overlap length. The simulation parameters are summarized

in Table S1.

(D) Typical multichannel kymograph (out of a total of six recorded events) demonstrating the shift of the force balance after deactivation of the Ncd-motors by

exchanging ATP with ADP in the assay buffer. Driven by the entropic expansion of the Ase1-GFPmolecules bound to the overlaps, the transport microtubule did

slide in the direction of increasing overlap length. During the expansion phase, the Ncd-motor concentration was kept constant in solution (300 pM) and no free

Ase1-GFPwas present in solution. The region with enhanced localization of Ase1-GFP signal corresponds to themicrotubule overlap. See alsoMovie S5,middle.

(E) Typical multichannel kymograph (out of a total of eight recorded events) demonstrating the shift of the force balance after increasing the Ase1-GFP con-

centration in solution (from 91 pM to 1,400 pM) leading to an increase in the number of Ase1-GFP molecules binding into the overlap. The transport microtubule

slid in the direction of increasing overlap length; i.e., against the ATP-driven force of Ncd (kept at constant concentration of 300 pM in solution). The region with

enhanced localization of Ase1-GFP signal corresponds to the microtubule overlap. See also Movie S5, right.
thus explains overlap expansion in absence (Figures 3B–3D) and

presence of crosslinker condensation (Figure 4).

Ase1-Induced Entropic Forces Balance the Forces
Exerted by Multiple Microtubule-Crosslinking Motors
To test whether the forces associated with the entropic expan-

sion of the Ase1-GFP molecules are sufficient to counteract

forces generated by microtubule-crosslinking motor proteins,

we formed and imaged microtubule overlaps in the presence of

Ase1-GFP andD. melanogaster kinesin-14 Ncd (Figure 5; Exper-

imental Procedures). Ncd, which does not directly interact with

Ase1 (Braun et al., 2011; Figure S5A) started to slide the microtu-

bules apart, thereby compressing the Ase1 molecules in the

shortening microtubule overlaps. During this compression, the

number of bound Ase1-GFP linkers stayed roughly constant

because of their high affinity for the overlap, while the number

of Ncd molecules decreased linearly with decreasing overlap
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length (Braun et al., 2011). After about 10 min, sliding came to a

halt and the lengths of the overlaps stayed constant (Figures 5A

and S5B and Movie S5, left). This suggests that the sliding force

inducedby theNcdmotors is balancedby theentropic expansion

force of Ase1, analogous to a gas spring, in which the external

load is balanced by the internal pressure of the gas. The equilib-

rium overlap lengths increased with increasing numbers of Ase1-

GFP molecules in the overlap (Figure 5B). When simulating the

motor force as an external load that scales linearly with overlap

length (Braun et al., 2011; Furuta et al., 2013), our computational

model qualitatively reproduced both the establishment of an

equilibrium state in which the overlap length becomes constant

(Figure S5C) and the correlation between the number of cross-

linkers in the overlap and the length of the overlap (Figure 5C;

Model parameters summarized in Table S1). A quantitative com-

parison between experiment and simulation was not possible

due to the experimental uncertainty in the number of crosslinkers



(Experimental Procedures) and the lack of information about the

magnitude and scaling of the forces generated by multiple mo-

tors (Furuta et al., 2013; Nelson et al., 2014).

In line with the hypothesis that the Ncd sliding forces are

balanced by the Ase1 generated forces, we found that the over-

lap lengths immediately increased when either (1) Ncd motors

were deactivated by exchanging ATP for ADP in the assay buffer

(Figure 5D and Movie S5, middle) or (2) crosslinkers were added

into the overlaps by increasing the Ase1-GFP concentration in

solution (Figure 5E and Movie S5, right). Hence, just like a gas

spring, the overlap expandedwhen the force balance was tipped

by either (1) reducing the opposing, external load or (2) raising the

internal pressure by increasing the number of molecules in the

overlap. These findings demonstrate that diffusible crosslinkers

are capable of generating entropic expansion forces of the

same order of magnitude as the forces generated by multiple

molecular motors.

DISCUSSION

Diffusible Microtubule Crosslinkers Can Generate
Entropic Forces in the pN Range
Previously, cytoskeletal re-organization has been attributed to

forces either generated by molecular motors (e.g., motor-driven

filament sliding in muscles, mitotic spindles, or flagella) or fila-

ment dynamics (e.g., polymerization-dependent protrusions in

cell motility or depolymerization-dependent chromosome segre-

gation). In our work, we described an additional force-generating

mechanism, which is based on the entropy of diffusible cross-

linkers confined between partially overlapping cytoskeletal

filaments. So far, the diffusion of proteins along cytoskeletal

filaments has been mostly associated with the generation of me-

chanical friction in response to slidingmovement (Bormuth et al.,

2009; Braun et al., 2011; Forth et al., 2014; Janson et al., 2007;

Subramanian et al., 2010). However, diffusion inside a confined

space also creates a pressure that can manifest itself as a

directed entropic force even in the absence of other forces.

Notably, this mechanism is different from mechanisms based

on condensation, which have previously been put forward as

alternative force-generatingmechanisms in a number of different

contexts including thermal ratchets (Gayathri et al., 2012; Hill,

1985; Lan et al., 2009; Neujahr et al., 1997; Peskin et al., 1993;

Sun et al., 2010; Zandi et al., 2003). Employing the diffusible

microtubule crosslinker Ase1, we demonstrated the entropic

force generation against three different external forces, i.e., orig-

inating from hydrodynamic flow, optical tweezers, andmolecular

motors. In line with the prediction of our analytical model, optical

tweezers measurements revealed that the entropic forces were

in the pN range when the binding sites within the overlaps

were highly occupied by the Ase1-GFP molecules (Figure 2C;

Extended Results). In agreement with an entropic driving force,

we observed a linear increase of force with crosslinker density

(Figures 2C, inset, and S2C).

Entropic Forces Are High Enough to Balance the Forces
of Motor Proteins
The crosslinker-induced forces observed in our experiments and

described by our models are comparable to the forces gener-
ated by multiple molecular motors (Figure 5). Molecular motors

that regulate the length of themidzone of themitotic spindle slide

overlapping microtubules apart, thereby decreasing the lengths

of the microtubule overlaps (Fink et al., 2009; Kapitein et al.,

2005). Our work suggests that this motion will compact the

crosslinkers that are localized in the midzone overlaps (Schuyler

et al., 2003; Yamashita et al., 2005), generating entropic forces

that oppose the motor-driven sliding. For kinesin-14 Ncd, which

is capable of exerting additive forces of about 0.1 pN per motor

(Furuta et al., 2013), we were able to directly show the balance

between motor forces and entropic forces. For stronger motors

involved in spindle organization, such as kinesin-5, which gener-

ates forces of 5–7 pN per motor (Valentine et al., 2006), the

entropic forces may not be able to fully antagonize the motor

forces. However, forces generated by multiple molecular motors

do not necessarily add up (Furuta et al., 2013). Moreover, recent

work on Cin8 (yeast kinesin-5) shows that motors can switch

directionality (Roostalu et al., 2011). Thus, the force generated

by multiple kinesin-5 motors might be much lower than the sim-

ple sum of the maximal forces that are generated by each indi-

vidual motor. In such cases, and in situations where motors of

different types compete with one another (Hentrich and Surrey,

2010), Ase1 could play a major role in setting the force balance.

Ase1-induced entropic forces may indeed help to stabilize over-

laps in the spindle midzones during mitosis, where ensembles of

molecular motors are involved in the control of microtubule

sliding.

Our results suggest that entropic expansion and condensation

of Ase1, as well as of other diffusible microtubule crosslinkers,

constitute an additional layer of regulation for the dynamic

control of microtubule overlap length, besides the regulation of

microtubule dynamics (Bieling et al., 2010) and force production

by opposingmolecularmotors (Hentrich andSurrey, 2010). Phos-

pho-regulation of Ase1 during the cell cycle (Fu et al., 2009) could

regulate the difference in affinity of crosslinkers for microtubule

overlaps and for single microtubules. This would enable control

over the magnitudes of the entropic and condensation forces.

In the future, it will be interesting to study entropic force gen-

eration with proteins from other organisms. Although the verte-

brate Ase1 homolog PRC1 unbinds faster from microtubules

then Ase1, similarly to Ase1, PRC1 has a preference for binding

to microtubule overlaps compared to binding to single microtu-

bules (Bieling et al., 2010). PRC1 is thus also confined between

overlapping microtubules, and since it is diffusible, is likely to

generate entropic forces. Extensive in vivo work will be neces-

sary to determine the magnitude of the crosslinker-induced

forces in the different scenarios. Besides the generation of forces

between anti-parallel microtubules, diffusible crosslinkers may

also exert forces between parallel microtubules. In such a geom-

etry, where crosslinking motors fail to generate directed motion

(Braun et al., 2009; Fink et al., 2009; Kapitein et al., 2005), overlap

maximization may aid the focusing of parallel microtubules into

poles in the absence of centrosomes (Compton, 1998).

Crosslinker Friction Scales Exponentially with
Crosslinking Number
When new crosslinkers condense into the expanding overlap,

the friction between the microtubules rises. Our computational
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model predicts that the friction scales exponentially—rather than

linearly—with the number of crosslinking Ase1 molecules (Fig-

ure 3E). Our experiments provide three independent lines of

evidence for this non-linear behavior: (1) the sliding velocities

measured in the absence of crosslinker condensation (Figures

3B–3D), as well as (2) the halting of overlap expansion in the

presence of crosslinker condensation (Figure 4) cannot be ex-

plained by a linear model, and (3) direct measurements of the

friction coefficient as a function of the number of crosslinking

Ase1 molecules show an exponential relation (Figure 3F). Ase1

oligomerization (as reported in Kapitein et al., 2008) could poten-

tially result in superlinear scaling, because the movement of the

monomers in an oligomer becomes tightly coupled. However,

under our experimental conditions we did not observe Ase1 olig-

omers (e.g., Figures 1D, 4B, 5D, and 5E). Moreover, the Hill co-

efficient for Ase1 binding was very low (Figure S3A), indicating

that binding is essentially non-cooperative and that the ener-

getic interactions between the bound Ase1 molecules were

very weak. In our computational model, we therefore assumed

that Ase1 binds non-cooperatively to microtubules, and we

nonetheless found that the friction increases exponentially with

the number of crosslinkers (Figure 3E). We attribute the expo-

nential scaling of the friction to the fact that filament movement

is a collective and activated process that requires the ‘‘simulta-

neous’’ hopping (i.e., transient unbinding) of multiple cross-

linkers. This process involves the crossing of an energy barrier

that increases linearly with the number of crosslinkers, leading

to an exponential decrease in the rate of crossing the barrier

(Erickson, 2009; Volkov et al., 2013) (Extended Results, Text 4).

We hypothesize that this mechanism might be relevant also

for other processes where cellular structures are tethered

to microtubules. For example, fewer microtubule-interacting

proteins than expected based on a linear dependence of the

friction may be sufficient to forcefully tether kinetochores to

microtubules.

Entropic Forces Are Generated whenever Molecular
Diffusion Is Confined
The mechanism of entropic force generation by confined mole-

cules is a universal phenomenon beyond the Ase1/PRC1/

MAP65 family of microtubule crosslinking proteins. Recently,

nucleosome unwrapping was quantitatively explained by the

one-dimensional pressure exerted by DNA binding proteins

diffusing along a DNA strand (Forties et al., 2011). Furthermore,

entropic forces are also generated in 2D systems, which is

exemplified by the finding that crowding of membrane-bound

proteins generates a lateral pressure, which can bend mem-

branes (Stachowiak et al., 2012). Concerning the cytoskeleton,

it has long been believed that the constriction of the actin con-

tractile ring is driven by non-muscle myosin II (NMII) transloca-

tion of actin filaments. However, recent experiments indicate

that NMII is required not for its motor activity to translocate actin,

but for its capacity to crosslink actin filaments (Ma et al., 2012).

Our results suggest that NMII may be able to generate tension

between actin filaments via the mechanism of entropic expan-

sion if it can diffuse between filaments.

Our in vitro system allows for the well-controlled experimental

investigation of the interplay between entropic-expansion
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forces, crosslinker-condensation forces, and crosslinker-fric-

tional forces that drive the sliding of filaments relative to each

other. By examining a minimal system consisting of crosslinkers

and microtubules, outside of the cytoplasm, we gain access to

biophysical properties of the system that are impossible to ac-

cess in vivo where they are obscured by numerous interdepen-

dent processes. Taken together, our results demonstrate that

the thermal motion of confined crosslinkers constitutes a

force-producing element within self-organizing filamentous net-

works, which can complement forces generated by molecular

motors and filament dynamics.

EXPERIMENTAL PROCEDURES

Protein Purification

Recombinant histidine-tagged full-length S. pombe Ase1-GFP (Figure S1A)

and D. melanogaster Ncd and GFP-Ncd were expressed and purified as

described previously (Fink et al., 2009; Janson et al., 2007).

Sample Preparation

Microtubules and flow chambers were prepared as described previously (Fink

et al., 2009). If not noted otherwise, dimly rhodamine-labeled, biotinylated

template microtubules in BRB80 buffer (80 millimolar (mM) PIPES, 1 mM

EGTA, 1 mM MgCl2, 10 mM paclitaxel, pH 6.9) were injected into the flow

chamber and bound in an aligned manner to surface-immobilized biotin

anti-bodies (Sigma, B3640). After rinsing the chamber with assay buffer

(20 mM HEPES at pH 7.2, 1 mM EGTA, 0.1 mM EDTA, 75 mM KCl, 1 mM

ATP (+Mg), 10 mM DTT, 0.5 mg/ml casein, 10 mM paclitaxel, 0.1% Tween,

20 mM D-glucose, 110 mg/ml glucose oxidase, and 20 mg/ml catalase),

50 pM Ase1-GFP was flushed in, which bound to the template microtubules.

In the next step, brightly rhodamine-labeled transport microtubules were

flushed in (without Ase1-GFP in that solution) and allowed to bind to the tem-

plate microtubules that were still covered sparsely with Ase1-GFP. For hydro-

dynamic flow experiments, finally a 30 s long steady flow of assay buffer

(without Ase1-GFP) was applied to shorten the microtubule overlaps by

sliding the transport microtubules along the template microtubules, while

concurrently removing all unbound transport microtubules. For Ase1-conden-

sation experiments the duration of the final step was 5 s and the buffer

included 17 pM Ase1-GFP. For Ncd-Ase1-sliding experiments, the duration

of the final step was 5 s and the buffer included 312 pM Ase1-GFP and

300 pM Ncd. For microtubule-microtubule diffusion experiments the template

microtubules were Cy-5 labeled in order to allow for high-precision position

tracking of the brightly rhodamine-labeled transport microtubules (since

tracking accuracy would be impaired if transport and template microtubules

had the same fluorescent label) and the duration of the final step was

approximately 5 s. For optical trapping experiments dimly Cy5-labeled,

digoxigeninated template microtubules in BRB80 buffer were bound to

surface-immobilized digoxigenin anti-bodies (Roche, # 11333089001). After

rinsing the chamber with assay buffer, Ase1-GFP was flushed in and brightly

Cy5-labeled, biotinylated transport microtubules were subsequently flushed

in (no Ase1-GFP in solution, neither here, nor in the following steps). In the

next step, assay buffer with NeutrAvidin coated silica microspheres was

applied. Using a trapped microsphere attached to a biotinylated transport

microtubule, overlaps were shortened by moving the template microtubule

with a piezo stage.

Image Acquisition during Hydrodynamic Flow, Microtubule-

Microtubule Diffusion, Ase1-Condensation, and Ncd-Ase1-Sliding

Experiments

Rhodamine-labeled microtubules, Cy-5 labeled microtubules, and Ase1-GFP

were visualized sequentially by switching between tetramethylrhodamine

isothiocyanate (TRITC), Cy-5, and GFP filters (Chroma Technology), respec-

tively, using a previously described setup (Fink et al., 2009) with acquisition

rates of one frame per 6 or 30 s (time-lapse information indicated in the

figures).



Image Analysis of Microtubule-Microtubule Sliding and Diffusion

Experiments

In the hydrodynamic flow, Ase1-condensation and Ncd-sliding experiments

the positions of the transport microtubules relative to the template microtu-

bules were determined in each frame. Partial microtubule-overlaps had a

non-moving boundary (corresponding to the end of the template microtubule,

which is fixed on the coverslip) and a moving boundary (corresponding to the

end of the transport microtubule, which moves along the template). The mov-

ing ends were read out from the TRITC channel as the positions of the trans-

port microtubule ends. Using the fact that Ase1-GFP bound more strongly

to the overlaps as compared to single microtubules, the non-moving ends

were read out from the GFP channel as the positions of the edges of the

GFP signals averaged over all frames of a time-lapse movie. Sliding velocities

were obtained from positional data of the transport microtubules using a

rolling frame average over five frames. In the microtubule-microtubule diffu-

sion experiments, image analysis was performed similarly to the experiments

described above with the exception of using a high-precision tracking

software, Fiesta, to determine the drift corrected positions of the transport

microtubules (Ruhnow et al., 2011). Drift correction was performed in Fiesta

by tracking the positions of 200 nanometer (nm) TetraSpeck beads (Life Tech-

nologies) non-specifically attached to the coverslip surface.

Optical Trapping and Analysis

An optical tweezers setup (JPK Instruments, NanoTracker) was built on aNikon

eclipse Ti microscope equipped with a Nikon TIRF 603 N.A. 1.49 objective.

Lateral bead positions were inferred by back focal plane detection using a

quadrant photo diode. Sensitivity and stiffness were obtained using a built-in

calibration feature that fits a Lorentzian function to the power spectrum of the

thermal fluctuations of a trapped bead. Carboxylated silica beads (Bangs Lab-

oratories, #SC04N) were functionalized with NeutrAvidin (ThermoScientific)

using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysulfosucci-

nimide chemistry. All measurements were performed at a trap stiffness of

approximately 0.15 pN/nm (750 milliwatt optical power of a 1,064 nm

infrared-laser), and the time traces were recorded with 5 kHz sampling rate.

The time traces were converted from voltages to forces and further analyzed

using MATLAB. A constant offset, given by the averaged signal after microtu-

bule separation, was subtracted from all forces. To estimate the Ase1-gener-

ated entropic forces, we averaged the detected forces starting after 2 s relax-

ation time after each rapid movement of the piezo stage (see Figure S2B). In

Figure 2C, we only present data that were recorded after the bead was pulled

past the end of the template microtubule, such that the forces applied to the

overlap were solely pulling forces. Negative forces with amplitudes smaller

than 0.5 pN were occasionally observed in individual traces due to drift in the

optical tweezers setup. For optical imaging, the tweezers setup was equipped

with aNikon TIRFmicroscopy unit, whichwas used to visualize themicrotubule

overlaps. Cy5-labeled microtubules and Ase1-GFP were excited sequentially

using 642 nm and 488 nm lasers (Vortran) and a dual-band filter set (Chroma

Technology). Image acquisition was performed by a back illuminated EMCCD

camera (Andor) at rates of one frame per 10 s (time-lapse information indicated

in the figures) using Micro-Manager software (Edelstein et al., 2010).

Estimating the Number of GFP-Ase1 Molecules in Microtubule

Overlaps

The location of a microtubule overlap (either determined by the enhanced

GFP-signal or the positions of the template and transport microtubules) was

used as mask to read out the integrated Ase1-GFP signal in an overlap. The

fluorescence signal (obtained with the same filter set) integrated over the

same mask area directly adjacent to the overlap was subtracted as the back-

ground signal. The ‘‘Ase1-GFP fluorescence intensity’’ in a microtubule

overlap (as used in Figures 2C inset, 3F, 4C, and 5B) was then calculated by

dividing the background-corrected integrated Ase1-GFP signal by the fluores-

cence signal of a single Ase1-GFP molecule, as described previously (Braun

et al., 2011). The Ase1-GFP fluorescence intensity thus provides a rough esti-

mate of the absolute number of GFP-Ase1 molecules in a microtubule overlap

and can, most importantly, be used to study entropic force, friction, and over-

lap length as function of relative changes in the number of GFP-Ase1 mole-

cules in an overlap. However, due to significant errors inherently associated
with the described procedure (e.g., experimental uncertainties due to GFP

bleaching and blinking, as well as the uneven TIRF illumination, the extent of

which may vary from experiment to experiment), we refrain from equating

the Ase1-GFP fluorescence intensity with the actual number of GFP-Ase1mol-

ecules in a microtubule overlap and rather express it in AU.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Results, five figures, one table,

and five movies and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2015.01.051.

AUTHOR CONTRIBUTIONS

Experiments were conceived and analyzed by Z.L., M.B., A.L., P.R.t.W.,

M.E.J., and S.D. and performed by Z.L., M.B., and A.L. P.R.t.W. developed

the theory and supervised the mathematical modeling; A.L. and M.S. opti-

mized the optical tweezers setup; and Z.L., M.B., A.L., P.R.t.W., M.E.J., and

S.D. discussed the results and wrote the manuscript.

ACKNOWLEDGMENTS

We thank Stephan Grill, Joe Howard, Tim Mitchison, François Nédélec, Frie-
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